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Abstract. We study Ramsey properties of randomly perturbed 3-uniform hypergraphs.
For t ě 2, write rK

p3q

t to denote the 3-uniform expanded clique hypergraph obtained from
the complete graph Kt by expanding each of the edges of the latter with a new additional
vertex. For an even integer t ě 4, let M denote the asymmetric maximal density of the pair
p rK

p3q

t , rK
p3q

t{2 q. We prove that adding a set F of random hyperedges satisfying |F | " n3´1{M

to a given n-vertex 3-uniform hypergraph H with non-vanishing edge density asymptotically
almost surely results in a perturbed hypergraph enjoying the Ramsey property for rK

p3q

t and
two colours. We conjecture that this result is asymptotically best possible with respect to
the size of F whenever t ě 6 is even. The key tools of our proof are a new variant of the
hypergraph regularity lemma accompanied with a tuple lemma providing appropriate control
over joint link graphs. Our variant combines the so called strong and the weak hypergraph
regularity lemmata.

§1 Introduction

1.1. Ramsey properties of random hypergraphs. Given a distribution R over n-vertex
hypergraphs, as well as an n-vertex hypergraph H, referred to as the seed hypergraph, unions
of the form HYR with R „ R define a distribution over the super-hypergraphs of H, denoted
by H Y R. The hypergraphs H Y R are referred to as random perturbations of H. The study
of the properties of randomly perturbed hypergraphs has received some attention in recent
years. Thus far, two dominant strands of results in this avenue have emerged. One strand
is the study of the thresholds for the emergence of various spanning and nearly-spanning
configurations within such structures (see, e.g., [3–6, 11–14, 23, 32, 40, 41, 47]). The second
strand pertains to their extremal and Ramsey-type properties (see, e.g., [1,2,6,8,20–22,42,53]).
Our result lies in the latter vein. We recall the arrow notation

G ÝÑ pH1, H2q ,

signifying the validity of the asymmetric Ramsey statement that every 2-colouring of the
edges of G yields a monochromatic copy of H1 in the first colour or a monochromatic copy
of H2 in the second colour. Moreover, in the symmetric case when H1 “ H2 “ H we simply
write G ÝÑ pHq.

Ramsey properties of randomly perturbed graphs were first investigated by Krivelevich,
Sudakov, and Tetali [42]. In that work it was shown that n´2{pt´1q is the threshold for the
asymmetric Ramsey property G YGpn, pq ÝÑ pK3, Ktq, whenever G is an n-vertex graph of
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edge density d P p0, 1{2q independent of n. The general problem, put forth by Krivelevich et al.,
of determining the threshold for the property G YGpn, pq ÝÑ pKs, Ktq, whenever G is dense
and s, t ě 4, was recently (essentially) resolved by Das and Treglown [22]. Those authors
showed that n´1{m2pKt,Krs{2sq is the threshold for the property GYGpn, pq ÝÑ pKs, Ktq, when G
is a dense n-vertex graph and t ě s ě 5, where m2pH1, H2q denotes the asymmetric maximal
2-density of two graphs H1 and H2 (see Equation (1.2) for the definition). For other values
of t and s we also refer to the work of Das and Treglown [22, Theorem 1.7 and Theorem 5(ii)]
and for the special case s “ t “ 4 in addition to the work of Powierski [53, Theorem 1.8].

The aforementioned Ramsey-type results for randomly perturbed dense graphs are formu-
lated for 2-colourings only. This restriction is well-justified. Indeed, suppose that more than
two colours are available. The colouring in which the seed is coloured using one colour and
the random perturbation is coloured using all the remaining colours, reduces the problem to
that of studying the Ramsey property at hand for truly random hypergraphs.

The earlier results [22,42,53], as well as our result, stated in Theorem 1.1 below, are affected
by and closely related to research on Ramsey properties in random graphs and hypergraphs
(see, e.g., [19, 30, 31, 33, 36, 37, 44–46,48, 51, 52, 54–57]). For random graphs, the thresholds for
symmetric Ramsey properties are well-understood due to work of Rödl and Ruciński [54, 56].
Minor exceptions for F being a star forest aside, this work asserts that n´1{m2pF q is the
threshold for the property Gpn, pq ÝÑ pF q, where m2pF q denotes the maximal 2-density of
the given graph F (see Equation (1.1) for the definition). The 1-statement of the threshold
was extended to random k-uniform hypergraphs by Conlon and Gowers [19] and by Friedgut,
Rödl, and Schacht [30]. However, a complete characterisation of the exceptional cases is not
yet available and for the progress towards the 0-statement we refer to the work of Nenadov et
al. [51] and Gugelmann et al. [31].

The thresholds of asymmetric Ramsey properties in random graphs are the subject of the
Kohayakawa–Kreuter conjecture [36]. The 1-statement stipulated by this conjecture has been
fairly recently verified by Mousset, Nenadov, and Samotij [48] and progress has been made
with respect to the corresponding 0-statement by several researchers [31, 33, 44, 46]. Following
some progress [15,43,48], the conjecture was finally fully resolved by Christoph, Martinsson,
Steiner, and Wigderson [16].

1.2. Main result. We study Ramsey properties of randomly perturbed hypergraphs; stating
our results requires preparation. A hypergraph H is said to be linear if |e X f | ď 1 holds
whenever e, f P EpHq are distinct. Amongst the linear hypergraphs, expanded cliques are of
special interest. Given t ě 2 and k ě 2, the k-uniformly expanded clique of order t, denoted
by rK

pkq

t , is the k-uniform hypergraph with vertex set of size t `
`

t
2

˘

pk ´ 2q obtained from
the complete graph Kt by expanding every edge of Kt by k ´ 2 new vertices; in particular,
rK

p2q

t “ Kt holds. Expanded cliques have attracted some attention in the literature and related
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extremal and Ramsy-type questions were addressed by Mubayi [49] and by Conlon, Fox, and
Rödl [17].

Two natural measures of density, arising in the context of random hypergraphs, are the
maximum density of a k-uniform H “ pV,Eq, denoted mpHq, and its maximum k-density,
denoted mkpHq. The former is given by

mpHq “ max
"

epF q

vpF q
: F Ď H and vpF q ě 1

*

and the latter is defined by

mkpHq “ max
␣

dkpF q : F Ď H
(

, where dkpF q “

$

’

’

’

&

’

’

’

%

0, if epF q “ 0,
1
k
, if epF q “ 1, vpF q “ k,

epF q´1
vpF q´k

, otherwise.

(1.1)

It is well known that n´1{mpHq is the threshold for the appearance of H as a subhypergraph in
the binomial random k-uniform hypergraph Hpkqpn, pq. For Hpkqpn, pq to satisfy the Ramsey
property for H asymptotically almost surely (hereafter, a.a.s. for brevity) it is reasonable to
expect that many intermingled copies of H are required; this as to create colour restrictions
forcing the Ramsey property for H. Indeed, for (hypergraph) cliques it is necessary that
many cliques sharing a single hyperedge would appear a.a.s. in Hpkqpn, pq. This results in the
higher threshold n´1{mkpHq being encountered for Ramsey properties.

For asymmetric Ramsey properties, another notion of hypergraph density arises. This
notion traces back to the work of Kohayakawa and Kreuter [36]. Given two k-uniform
hypergraphs H1 and H2, each with at least one edge and satisfying mkpH1q ě mkpH2q, the
asymmetric maximal k-density of H1 and H2 is given by

mkpH1, H2q “ mkpH2, H1q “ max
"

epF q

vpF q ´ k ` 1{mkpH2q
: F Ď H1 and epF q ě 1

*

. (1.2)

The equality mkpH,Hq “ mkpHq is easy to verify.
With the above notation in place, our main contribution can be stated; this can be viewed

as a hypergraph extension of the aforementioned results of Das and Treglown [22]. Below we
always tacitly assume that Hn and Hp3qpn, pq share the same vertex set.

Theorem 1.1 (Main result). For every d ą 0 and every even integer t ě 4, there exists a
constant C ą 0 such that for every sequence of 3-uniform n-vertex hypergraphs pHnqnPN with
epHnq ě dn3 for every n P N, we have

lim
nÝÑ8

P
`

Hn YHp3q
pn, pq ÝÑ p rK

p3q

t q
˘

“ 1,

whenever p “ ppnq ě Cn´1{M for M “ m3p rK
p3q

t , rK
p3q

t{2 q.
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The proof of Theorem 1.1 presented here can be adapted for k-uniform hypergraphs and
the asymmetric Ramsey properties Hn YHpkqpn, pq ÝÑ p rKpkq

s , rK
pkq

t q with t ě s. For the sake
of a clearer presentation, we restrict ourselves to 3-uniform hypergraphs and the symmetric
case for even t. We conjecture that Theorem 1.1 uncovers the threshold for the Ramsey
property in question (see Conjecture 6.4 below). From here on we restrict ourselves to 3-
uniform hypergraphs and unless stated otherwise we use the term hypergraph for a 3-uniform
hypergraph.

Our proof of Theorem 1.1 relies on two main technical results, which are related to the
regularity method for hypergraphs. We present these results in §§1.3-1.4 below.

1.3. A tuple lemma for link graphs. A key feature of the regularity method of graphs is
the control over joint neighbourhoods in the regular environment provided by Szemerédi’s
regularity lemma (see, e.g., Lemma 2.4 below). For the proof of Theorem 1.1, we establish a
similar lemma in the context of the regularity method for hypergraphs.

For a vertex v in a hypergraph H “ pV,Eq, define the link graph LHpvq of v to have vertex
set V ∖ tvu and edge set comprised of those pairs of vertices which together with v form
a hyperedge in H, i.e., EpLHpvqq “ tuw : uvw P Eu. In particular, epLHpvqq is the vertex
degree of v in H and is also denoted by degHpvq. Given a graph G with vertex set V pGq “ V

we define the link graph of v supported on G by

LHpv,Gq “ E
`

LHpvq
˘

X EpGq .

Link graphs are a natural hypergraph extension of vertex neighbourhoods in the context of
graphs. A tuple lemma for hypergraphs would have to control the sizes of the of intersections
of link graphs. In that, given a set of vertices U Ď V , we seek to control the sizes of the joint
link graph and the joint link graph supported by G given by

LHpUq “
č

uPU

LHpuq and LHpU,Gq “
č

uPU

LHpu,Gq ,

respectively. For a random hypergraph H “ pV,Eq with edge density d, one would expect
|LHpUq| „ d|U |

`

|V |

2

˘

to hold with high probability. Our tuple lemma asserts that in the regular
environment for hypergraphs this random intuition can be transferred to the deterministic
situation. (We defer the definitions concerning regular hypergraphs to Section 2.)

Proposition 1.2 (Tuple lemma for joint links). For every t ě 2 and ε, d3 ą 0, there exists a
δ3 ą 0 such that for every d2 ą 0 there exist δ2 ą 0 and r ě 1 such that the following holds
for sufficiently large, pairwise disjoint sets X, Y , and Z.

Let H “ pX Ÿ Y Ÿ Z,EHq be a tripartite hypergraph which is pδ3, d3, rq-regular with respect
to a pδ2, d2q-triad P “ pX ŸY ŸZ,EP q. Then, all but at most ε|X|t of the t-tuples of vertices
X 1 “ tx1, . . . , xtu Ď X satisfy

ˇ

ˇLHpX 1, P q ´ dt
3d

2t`1
2 |Y ||Z|

ˇ

ˇ ď εdt
3d

2t`1
2 |Y ||Z| . (1.3)



RAMSEY PROPERTIES OF RANDOMLY PERTURBED HYPERGRAPHS 5

Our proof of Proposition 1.2 extends to all hypergraph uniformities. Alternatives to
Proposition 1.2 exerting some control over the sizes of joint link graphs of vertex tuples
whilst relying on weaker versions of the hypergraph regularity do exist. Such alternatives are
provided in Section 6 (see Lemma 6.1 and Proposition 6.2).

1.4. A variant of the hypergraph regularity lemma. The second main technical lemma
is a new variant of the hypergraph regularity lemma established in [58]. The necessary
definitions are deferred to Section 2.

Proposition 1.3 (Variant of the regularity lemma for hypergraphs). For every δ3 ą 0 and
functions δ2 : N ÝÑ p0, 1s, r : N2 ÝÑ N, and constants ℓ0, t0, and s P N, there exist n0 and
T P N such that for every n ě n0 and every family pH1, . . . , Hsq of n-vertex hypergraphs
satisfying V “ V pH1q “ ¨ ¨ ¨ “ V pHsq, there are integers t and ℓ satisfying t ě t0 and ℓ ě ℓ0,
a vertex partition V with V1 Ÿ ¨ ¨ ¨ Ÿ Vt “ V and an ℓ-equitable partition B with respect to V
such that the following properties hold.
(R.1): |V1| ď |V2| ď ¨ ¨ ¨ ď |Vt| ď |V1| ` 1,
(R.2): for all 1 ď i ă j ď t and α P rℓs, the bipartite 2-graph Bij

α is pδ2pℓq, 1{ℓq-regular,
(R.3): Hi is δ2pℓq-weakly regular with respect to V for every i P rss, and
(R.4): Hi is pδ3, rpt, ℓqq-regular with respect to B for every i P rss.

In Proposition 1.3 there is a combination of the environment of the hypergraph regularity
lemma [58] (see Lemma 2.6) and the so-called weak hypergraph regularity lemma (see
Lemma 2.5 below), which is the straightforward extension of Szemerédi’s regularity for graphs.
A lemma of similar spirit can be found in the work of Allen, Parczyk, and Pfenninger [9].

In the sequel, these hypergraph regularity lemmata are distinguished by referring to these as
the Strong Lemma and Weak Lemma, respectively. The difference between the Strong Lemma
and Proposition 1.3 is Property (R.3). The former, when applied to dense hypergraphs,
provides access to triads P set over a vertex set, say, X Ÿ Y Ÿ Z with respect to which
the regularised hypergraphs is pδ3, d, rq-regular. This, in turn, provides ζ-weak regularity
control for ζ “ δ

1{3
3 , by which we mean the ability to control the hyperedge distribution of

the hypergraphs along sets X 1 Ď X, Y 1 Ď Y , and Z 1 Ď Z satisfying |X 1| ě ζ|X|, |Y 1| ě ζ|Y |,
and |Z 1| ě ζ|Z|.

The added Property (R.3), however, provides weak regularity control over vertex sets with
much smaller density. In fact, there the control δ2 is allowed to be a function of ℓ and the
quantification of the Strong Lemma leads to δ3 " ℓ´1.

Organisation. In Section 2, we collect definitions, notation, and results pertaining to the
regularity method. In Section 3, we prove Theorem 1.1. In Section 4, we prove Proposition 1.2,
the aforementioned tuple property for the Strong Lemma. In Section 5, we prove our new
variant of the Strong Lemma, namely Proposition 1.3. Concluding remarks concerning
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alternatives of Proposition 1.2 and discussions pertaining to future research can be found in
Section 6. Finally, the threshold for the property rK

p3q

t Ď HYHp3qpn, pq in dense hypergraphs H
is established in Appendix A.

Notational remark. Throughout, we often write the enumeration of a result in the subscripts
of the constants that it presides over. For instance, the constant t0 in Proposition 1.3
becomes t1.3 and the constant δ3 in the same lemma is written δ

p3q

1.3 and so on. This aids in
keeping track of the various constants encountered throughout the proofs.

§2 Preliminaries

Let V be a finite set. A partition U of V given by V “ U1 Ÿ ¨ ¨ ¨ Ÿ Ur is said to be equitable
if |U1| ď |U2| ď ¨ ¨ ¨ ď |Ur| ď |U1| ` 1. Given an additional partition of V , namely V, of the
form V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vℓ, we say that V refines U , and write V ă U , if for every i P rℓs there
exists some j P rrs such that Vi Ď Uj holds. For k ě 2, write KpkqpUq to denote the complete
|U |-partite k-uniform hypergraph whose vertex set is V and whose edge set is given by all
sets of V pkq “ tK Ď V : |K| “ ku meeting every member of U (termed cluster hereafter) in
at most one vertex. If U “ tU,U 1u consists of only two clusters, then we abbreviate Kp2qpUq

to Kp2qpU,U 1q. We write Kp2qpV q to denote the complete graph whose vertex set is V .

2.1. Graph regularity. Let d, δ ą 0 be given. A bipartite 2-graph G “ pX Ÿ Y,Eq is said
to be pδ, dq-regular if

eGpX 1, Y 1
q “ d|X 1

||Y 1
| ˘ δ|X||Y |

holds1 for every X 1 Ď X and Y 1 Ď Y . If d coincides with the edge density of G, i.e. d “
epGq

|X||Y |
,

then we abbreviate pδ, dq-regular to δ-regular. It follows directly from the definition that G is
a pδ, dq-regular bipartite graph if, and only if, its (bipartite) complement is pδ, 1 ´ dq-regular.

A tripartite 2-graph P with vertex set V pP q “ X Ÿ Y Ÿ Z is said to be a pδ, dq-triad, if
P rX, Y s, P rY, Zs, and P rX,Zs are all pδ, dq-regular. For a 2-graph G, let K3pGq denote the
family of members of V pGqp3q spanning a triangle in G. We shall employ the well known
triangle countling lemma (see, e.g., [29, Fact A]).

Lemma 2.1 (Triangle counting lemma). Let d ą 0, let 0 ă δ ă d{2, and let P be a pδ, dq-triad
with vertex set V pP q “ X Ÿ Y Ÿ Z. Then,

p1 ´ 2δqpd ´ δq3
|X||Y ||Z| ď |K3pP q| ď ppd ` δq3

` 2δq|X||Y ||Z|.

In particular, if d ď 1{2, then

|K3pP q| “ pd3
˘ 4δq|X||Y ||Z| (2.1)

holds. □

1Given x, y, z P R, we write x “ y ˘ z if y ´ z ď x ď y ` z.
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We shall also use the variant of the triangle counting lemma with only two of the bipartite
graphs being regular and its proof is included for completeness.

Lemma 2.2. Let P “ pX ŸY ŸZ,EP q be a tripartite 2-graph such that P rX, Y s and P rX,Zs

are both pδ, dq-regular. In addition, let X 1 Ď X be a set of size |X 1| ě δ|X|. Then,

pd ´ δqd|X 1
|epP rY, Zsq ´ 2δ|X||Y ||Z| ď |K3pP,X 1

q| ď pd ` δqd|X 1
|epP rY, Zsq ` 2δ|X||Y ||Z|

holds, where K3pP,X 1q denotes the set of triangles of P meeting X 1.

Proof. Let Y 1 Ď Y consist of all vertices y P Y satisfying degP py,X 1q ě pd´ δq|X 1|; note that
|Y 1| ě p1 ´ δq|Y | holds by Lemma 2.4. We may then write

|K3pP,X 1
q| ě

ÿ

yPY 1

´

dpd ´ δq|X 1
| degP py, Zq ´ δ|X||Z|

¯

“ dpd ´ δq|X 1
|

˜

ÿ

yPY

degP py, Zq ´
ÿ

yPY ∖Y 1

degP py, Zq

¸

´
ÿ

yPY 1

δ|X||Z|

ě dpd ´ δq|X 1
|epP rY, Zsq ´ dpd ´ δqδ|X||Y ||Z| ´ δ|X||Y ||Z|

ě dpd ´ δq|X 1
|epP rY, Zsq ´ 2δ|X||Y ||Z|.

Next, we prove the upper bound. Let Y 2 Ď Y consist of all vertices y P Y satisfying
degP py,X 1q ď pd ` δq|X 1|; note that |Y 2| ě p1 ´ δq|Y | holds by Lemma 2.4. We may then
write

|K3pP,X 1
q| ď

ÿ

yPY 2

´

dpd ` δq|X 1
| degP py, Zq ` δ|X||Z|

¯

`
ÿ

yPY ∖Y 2

|X 1
||Z|

ď dpd ` δq|X 1
|

˜

ÿ

yPY

degP py, Zq ´
ÿ

yPY ∖Y 2

degP py, Zq

¸

`
ÿ

yPY 2

δ|X||Z| `
ÿ

yPY ∖Y 2

|X||Z|

ď dpd ` δq|X 1
|epP rY, Zsq ` 2δ|X||Y ||Z| . □

The next lemma is commonly referred to as the Slicing Lemma (see, e.g., [39, Fact 1.5]).

Lemma 2.3 (Slicing lemma). Let d “ d2.3, let δ “ δ2.3 ą 0, and let G “ pA Ÿ B,Eq be a
pδ, dq-regular bipartite graph. Let δ ď α “ α2.3 ď 1, and let A1 Ď A and B1 Ď B be sets of
sizes |A1| ě α|A| and |B1| ě α|B|. Then, GrA1, B1s is pδ1, d1q-regular where δ1 “ maxtδ{α, 2δu
and d1 “ d ˘ δ. □

The tuple property of dense regular bipartite graphs, also referred to as the intersection
property, reads as follows (see [39, Fact 1.4]).
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Lemma 2.4 (Tuple lemma for graphs). Let G “ pX Ÿ Y,Eq be a δ-regular bipartite graph of
edge density d ą 0. Then, all but at most 2δℓ|X|ℓ of the tuples tx1, . . . , xℓu Ď X satisfy

|NGpx1, . . . , xℓ, Y
1
q| “ |ty P Y 1 : xiy P EpGq for all i P rℓsu| “ pd ˘ δqℓ

|Y 1
|, (2.2)

whenever Y 1 Ď Y satisfies pd ´ δqℓ´1|Y 1| ě δ|Y |. □

2.2. Hypergraph regularity. A direct generalisation of the notion of δ-regularity, defined
in the previous section for 2-graphs, reads as follows. Let d, δ ą 0. A tripartite hypergraph
H “ pX Ÿ Y Ÿ Z,Eq is said to be pδ, dq-weakly regular if

eHpX 1, Y 1, Z 1
q “ d|X 1

||Y 1
||Z 1

| ˘ δ|X||Y ||Z|

holds whenever X 1 Ď X, Y 1 Ď Y , and Z 1 Ď Z. If d “
epHq

|X||Y ||Z|
, then we abbreviate pδ, dq-weakly

regular to δ-weakly regular.
Given a partition V of a finite set V defined by V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vt, a hypergraph H with

V pHq “ V is said to be δ-weakly regular with respect to V if HrX, Y, Zs2 is δ-weakly regular
with respect to all but at most δ

`

t
3

˘

triples tX, Y, Zu P Vp3q. We state the straightforward
adaptation of Szemerédi’s graph regularity lemma [38,39,59].

Lemma 2.5 (Weak hypergraph regularity lemma). For every δ “ δ2.5 ą 0 and positive
integers s “ s2.5, t “ t2.5, and h “ h2.5 satisfying t ě h, there exist positive integers n0 and
T “ T2.5 such that the following holds whenever n ě n0. Let pH1, . . . , Hsq be a sequence of
n-vertex hypergraphs, all on the same vertex set, namely V , and let U “ U2.5 be a vertex
partition of V given by V “ U1 Ÿ . . . Ÿ Uh. Then, there exists an equitable vertex partition V,
given by V “ V1 Ÿ V2 Ÿ ¨ ¨ ¨ Ÿ Vt1, where t ď t1 ď T , such that V ă U and, moreover, Hi is
δ-weakly regular with respect to V for every i P rss. □

We proceed to the statement of the Strong hypergraph Regularity Lemma for hyper-
graphs following the formulation seen in [58]. Given a 2-graph G, the relative density of a
hypergraph H with vertex set V pHq “ V pGq, with respect to G is given by

dpH|Gq “
|EpHq X K3pGq|

|K3pGq|
. (2.3)

For δ, d ą 0 and a positive integer r, a tripartite hypergraph H “ pX Ÿ Y Ÿ Z,EHq is said to
be pδ, d, rq-regular with respect to a tripartite 2-graph P “ pX Ÿ Y Ÿ Z,EP q if

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r
ď

i“1
pEH X K3pQiqq

ˇ

ˇ

ˇ
´ d

ˇ

ˇ

ˇ

r
ď

i“1
K3pQiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ
ˇ

ˇK3pP q
ˇ

ˇ (2.4)

holds for every family of, not necessarily disjoint, subgraphs Q1, . . . , Qr Ď P satisfying
ˇ

ˇ

ˇ

ˇ

r
ď

i“1
K3pQiq

ˇ

ˇ

ˇ

ˇ

ě δ
ˇ

ˇK3pP q
ˇ

ˇ ą 0 .

2HrX, Y, Zs is the subgraph of H over X Ÿ Y Ÿ Y whose edge set is ttx, y, zu P EpHq : x P X, y P Y, z P Zu.



RAMSEY PROPERTIES OF RANDOMLY PERTURBED HYPERGRAPHS 9

Let V be a finite set and let V be a partition V1 Ÿ . . . Ÿ Vh of V , where h is some positive
integer. Given an integer ℓ ě 1, a partition B of Kp2qpVq is said to be ℓ-equitable with respect
to V if it satisfies the following conditions:

(B.1): every B P B satisfies B Ď Kp2qpVi, Vjq for some distinct i, j P rhs; and
(B.2): for any distinct i, j P rhs, precisely ℓ members of B partition Kp2qpVi, Vjq.

We view partitions of Kp2qpVq as partitions of V p2q under the agreement3 that the set
tKp2qpViq : i P rhsu of complete graphs is added to the former; such an addition of cliques
does not hinder the equitability notion defined in (B.2); it does violate (B.1), but this will
not harm our arguments. Moreover, it is under this agreement that we say that a partition
of V p2q refines a partition of Kp2qpVq.

For distinct indices i, j P rhs, the partition of Kp2qpVi, Vjq induced by B is denoted by

Bij
“ tBij

α “ pVi Ÿ Vj, E
ij
α q : α P rℓsu .

The triads of B are the tripartite 2-graphs having the form

Bijk
αβγ “ pVi Ÿ Vj Ÿ Vk, E

ij
α Ÿ Eik

β Ÿ Ejk
γ q,

where i, j, k P rhs are distinct and α, β, γ P rℓs. Recall that a triad is called a pδ, dq-triad if
each of the three bipartite graphs comprising it is pδ, dq-regular. A hypergraph H with vertex
set V pHq “ V is said to be pδ, rq-regular with respect to B if

ˇ

ˇ

ˇ

ˇ

ˇ

#

ď

1ďiăjăkďh
α,β,γPrℓs

K3pBijk
αβγq : Hijk is not

`

δ, dpH|Bijk
αβγq, r

˘

-regular w.r.t. Bijk
αβγ

+
ˇ

ˇ

ˇ

ˇ

ˇ

ď δ|V |
3 ,

where Hijk “ HrVi Ÿ Vj Ÿ Vks. A formulation of the Strong Lemma [58, Theorem 17] for
hypergraphs, reads as follows.

Lemma 2.6 (Strong hypergraph regularity lemma). For all 0 ă δ3 P R, δ2 : N ÝÑ p0, 1s,
r : N2 ÝÑ N, and s, t, ℓ P N, there exist n0, T P N such that for every n ě n0 and every
sequence of n-vertex hypergraphs pH1, . . . , Hsq, satisfying V “ V pH1q “ ¨ ¨ ¨ “ V pHsq, there
are t1, ℓ1 P N satisfying t ď t1 ď T and ℓ ď ℓ1 ď T , a vertex partition V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vt1,
namely V, and an ℓ1-equitable partition B with respect to V such that the following properties
hold.

(S.1): |V1| ď |V2| ď ¨ ¨ ¨ ď |Vt1 | ď |V1| ` 1;
(S.2): for all 1 ď i ă j ď t1 and α P rℓ1s, the bipartite 2-graph Bij

α is pδ2pℓ1q, 1{ℓ1q-regular; and
(S.3): Hi is pδ3, rpt

1, ℓ1qq-regular with respect to B for every i P rss. □

3We appeal to this agreement in the formulations of Lemmata 5.2 and 5.3.
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§3 Monochromatic expanded cliques

In this section, we prove Theorem 1.1. The required Ramsey properties of Hp3qpn, pq are
collected in Section 3.1 and a proof of Theorem 1.1 can be found in Section 3.2. For an integer
t ě 3, the t vertices of rK

pkq

t having their 1-degree strictly larger than one are called the branch
vertices of rK

pkq

t . Set

vptq “ vp rK
p3q

t q “ t `

ˆ

t

2

˙

and eptq “ ep rK
p3q

t q “

ˆ

t

2

˙

.

3.1. Properties of random hypergraphs. The main goal of this section is to establish
Proposition 3.1 which is an adaptation of [22, Theorem 2.10]. This proposition collects the
Ramsey properties of Hp3qpn, pq that will be utilised throughout our proof of Theorem 1.1.

A k-uniform hypergraph H is said to be balanced if mkpHq “ dkpHq holds; if all proper
subgraphs F of H satisfy mkpF q ă mkpHq, then H is said to be strictly balanced. It is not
hard to verify that expanded cliques are strictly balanced. In particular,

mk

`

rK
pkq

t

˘

“

`

t
2

˘

´ 1
t ` pk ´ 2q

`

t
2

˘

´ k

holds for any k ě 2 and t ě 3. In the special case k “ 3 we obtain

m3
`

rK
pkq

t

˘

“
t2 ´ t ´ 2
t2 ` t ´ 6 “ 1 ´

2t ´ 4
t2 ` t ´ 6 ă 1 , (3.1)

that is, 3-uniformly expanded cliques are sparse. Note that this is in contrast to graph cliques
(on at least 3 vertices) whose 2-density is larger than one. For a simpler notation we define
for any integer t ě 2

mptq “ mp rK
p3q

t q and Mt “ m3p rK
p3q

t q .

Similarly for integers t1, t2 ě 2 we set

Mt1,t2 “ Mt2,t1 “ m3
`

rK
p3q

t1 ,
rK

p3q

t2

˘

.

Let H1 and H2 be two k-uniform hypergraphs, each with at least one edge and such that
mkpH1q ě mkpH2q. If mkpH1q “ mkpH2q, then mkpH1, H2q “ mkpH1q and otherwise

mkpH2q ă mkpH1, H2q ă mkpH1q

holds. The k-uniform hypergraph H1 is said to be strictly balanced with respect to mkp¨, H2q if
no proper subgraph F Ĺ H1 maximises (1.2). For instance, it is not hard to verify that rK

p3q

t

is strictly balanced with respect to m3p¨, rK
p3q

t{2 q, assuming t ě 4 is even.
Let F and F 1 be k-uniform hypergraphs and let µ “ µpnq be given. An n-vertex k-uniform

hypergraph H is said to be pF, µq-Ramsey if HrU s ÝÑ pF q holds for every U Ď V pHq is of
size |U | ě µn. Similarly, H is said to be pF, F 1, µq-Ramsey if HrU s ÝÑ pF, F 1q holds for every
U Ď V pHq of size |U | ě µn. Given F Ď V pHqpvpF qq and F 1 Ď V pHqpvpF 1qq, we say that H is
pF, F 1q-Ramsey with respect to pF ,F 1q if any 2-colouring of EpHq yields a monochromatic
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copy K of F (in the first colour) with V pKq R F or a monochromatic copy K 1 of F 1 (in the
second colour) with V pK 1q R F 1.

Proposition 3.1. For every even integer t ě 4 a.a.s. the binomial random hypergraph
R „ Hp3qpn, pq satisfies the following properties.

(P.1) There are constants γ3.1 “ γ3.1ptq and Cp1q

3.1 “ C
p1q

3.1 ptq such that if F1 Ď V pRqpvptqq and
F2 Ď V pHqpvpt{2qq satisfy |F1| ď γ3.1n

vptq and |F2| ď γ3.1n
vpt{2q, then R is p rK

p3q

t , rK
p3q

t{2 q-
Ramsey with respect to pF1,F2q, whenever p “ ppnq ě C

p1q

3.1n
´1{Mt,t{2.

(P.2) For every fixed µ ą 0, there exists a constant Cp2q

3.1 “ C
p2q

3.1 pµ, tq such that R is p rK
p3q

t´1, µq-
Ramsey, whenever p “ ppnq ě C

p2q

3.1n
´1{Mt´1.

(P.3) For every fixed µ ą 0, there exists a constant Cp3q

3.1 “ C
p3q

3.1 pµ, tq such that R is
p rK

p3q

t , rK
p3q

t{2 , µq-Ramsey, whenever p “ ppnq ě C
p3q

3.1n
´1{Mt,t{2.

Proof. A straightforward albeit somewhat tedious calculation shows that Mt,t{2 ě Mt´1 holds
for every even integer t ě 4. It thus follows that Properties (P.1) and (P.3) are the most
stringent in terms of the bound these impose on p. Hence, if

p “ ppnq ě max
␣

C
p1q

3.1 , C
p3q

3.1
(

¨ n´1{Mt,t{2 ,

then a.a.s. H satisfies Properties (P.1), (P.2), and (P.3) simultaneously. □

Property (P.1) is modelled after [22, Theorem 2.10(i)]; Properties (P.2) and (P.3) are both
specific instantiations of [22, Theorem 2.10(ii)]. The aforementioned results of [22] handle
2-graphs only. Nevertheless, proofs of Properties (P.1-3) can be attained by straightforwardly
adjusting the proofs of their aforementioned counterparts in [22, Theorem 2.10] so as to
accommodate the transition from 2-graphs to hypergraphs. Theorem 2.10 in [22] requires that
the maximal 2-densities of the two (fixed) configurations would both be at least one; this can
be omitted in our setting. Indeed, this condition is imposed in [22, Theorem 2.10] in order to
handle setting (a) in that theorem where the maximal 2-densities of the two configurations
coincide; by (3.1), this is not an issue in our case. The fact that rK

p3q

t is strictly balanced with
respect to m3p¨, rK

p3q

t{2 q is required by setting (b) appearing in [22, Theorem 2.10].

3.2. Proof of Theorem 1.1. We commence our proof of Theorem 1.1 with a few observations
facilitating our arguments; proofs of these observations are included for completeness.

Fact 3.2. Let d P p0, 1s, let G “ pA ŸB,Eq be a bipartite graph with epGq ě d|A||B|, and let
k ď d|B|{2 be a positive integer. Then, |tv P A : degGpvq ě ku| ě d|A|{2.

Proof. Let Ak “ tv P A : degGpvq ě ku and suppose for a contradiction that |Ak| ă d|A|{2.
Then,

epGq ă k|A| ` |Ak||B| ă d|A||B|{2 ` d|A||B|{2 ď epGq

which is clearly a contradiction. □
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The next lemma captures the phenomenon of supersaturation (first4 recorded in [24–26])
for bipartite graphs; to facilitate future references, we phrase this lemma with the host graph
being bipartite as well.

Lemma 3.3. For every bipartite graph K and every d P p0, 1q, there exists a constant
ζ “ ζ3.3 ą 0 and a positive integer n0 such that every n-vertex bipartite graph G “ pA ŸB,Eq

satisfying n ě n0, |A| ď |B| ď |A| ` 1, and epGq ě d|A||B| contains at least ζnvpKq distinct
copies of K. □

Fact 3.4. For every graph K and every d P p0, 1q, there exists a constant ξ “ ξ3.4 ą 0 and an
integer n0 such that the following holds whenever n ě n0. If an n-vertex graph G contains
dnvpKq distinct copies of K, then it contains at least ξn pairwise vertex disjoint copies of K.

Proof. Any given copy of K meets O
`

nvpKq´1˘ copies of K. □

After these preparations we can now present the proof of the main result.

Proof of Theorem 1.1. Given d, t, and for sufficiently large n let H “ Hn be given as in the
premise of Theorem 1.1. We set

0 ă d3 ! d and 0 ă ε ! min
!

d
vpt{2q

3 , γ3.1ptq
)

. (3.2)

Proposition 1.2 applied with t1.2 “ vpt{2q, ε1.2 “ ε, and d
p3q

1.2 “ d3, yields the existence of a
constant

0 ă δ3 “ δ
p3q

1.2pvpt{2q, ε, d3q ! d3 (3.3)
as well as the functions

δ1
2pxq “ δ

p2q

1.2px, t1.2, ε, d3, δ3q and rpxq “ r1.2px, t1.2, ε, d3, δ3q,

where δ1
2 : R ÝÑ p0, 1s and r : N ÝÑ N. Define δ2 : N ÝÑ p0, 1s such that

0 ă δ2pxq ! min
#

δ1
2pxq,

d
2vpt{2q

3
vpt{2q ¨ x6¨p2vpt{2q`1q

+

(3.4)

holds for every x P N. Proposition 1.3, applied with

H1 “ ¨ ¨ ¨ “ Hs “ H, δ
p3q

1.3 “ δ3, δ
p2q

1.3 “ δ2, r1.3 “ r5, ℓ1.3 " d´1
3 , and t1.3 " d´1, (3.5)

yields the existence of constants T1.3, t
1, ℓ P N satisfying t1.3 ď t1 ď T1.3 and ℓ1.3 ď ℓ ď T1.3,

along with partitions V “ V1 Ÿ ¨ ¨ ¨ ŸVt1 “ V pHq and (P ijq1ďiăjďt1 satisfying Properties (R.1-4).
Set auxiliary constants

d2 “ 1{ℓ and η “
d

vpt{2q

3 d
2vpt{2q`1
2
2 (3.6)

4Rademacher (1941, unpublished) was first to prove that every n-vertex graph with tn2{4u ` 1 edges
contains at least tn{2u triangles

5Formally, r is a function of one integer whereas r1.3 is a function of two. However, this “loss of information”
is a technicality that will not hinder our proof.



RAMSEY PROPERTIES OF RANDOMLY PERTURBED HYPERGRAPHS 13

and fix

0 ă µ !
ξ3.4pζ3.3pη{2qq ¨ d

3`2vpt{2q

3 ¨ d
10`4vpt{2q

2
vpt{2q2 ¨ T1.3

. (3.7)

We claim that there exist three distinct clusters X, Y, Z P V along with a pδ2pℓq, d2q-triad
P “ P ijk

αβγ, with i, j, k, α, β, γ appropriately defined, satisfying V pP q “ X Ÿ Y Ÿ Z such that
HrX ŸY ŸZs is δ2pℓq-weakly regular and, moreover, HrX ŸY ŸZs is pδ3, d3, rq-regular with
respect to P . To see this, note first that at most t1

`

rn{t1s

3

˘

ď n3

pt1q2 ! dn3 edges of H reside
within the members of V , where the last inequality relies on t1 ě t1.3 " d´1, supported by (3.5).
Second, by Property (R.3), the number of edges of H captured within δ2pℓq-weakly irregular
triples pVi, Vj, Vkq, where i, j, k P rt1s, is at most δ2pℓq ¨ pt1q3 ¨

`

n
t1 ` 1

˘3
ď 2δ2pℓqn3 ! dn3, where

the last inequality holds by (3.2) and (3.4). Third, by Property (R.4), the number of edges
of H residing6 in pδ3, dpH|P ijk

αβγq, rq-irregular triads P ijk
αβγ is at most δ3n

3 ! dn3, where the last
inequality holds by(3.2)and(3.3). Fourth and lastly, it follows by the Triangle Counting Lemma
(Lemma 2.1) and by (2.3), that the number of edges of H found in pδ2pℓq, d2q-triads P ijk

αβγ,
where i, j, k P rt1s and α, β, γ P rℓs, satisfying dpH|P ijk

αβγq ă d3 is at most

pt1q3ℓ3d3
`

d3
2 ` 4δ2pℓq

˘

´n

t1
` 1

¯3
ď 2d3

`

ℓ3d3
2 ` 4ℓ3δ2pℓq

˘

n3 (3.6)
“ p2 ` 8ℓ3δ2pℓqqd3n

3
! dn3,

where the last inequality holds by (3.2) and (3.4).
It follows that at least dn3{2 edges of H are captured in pδ2pℓq, d2q-triads with respect to

which H is pδ3, d3, rq-regular and such that H is δ2pℓq-weakly regular with respect to the three
members of V defining the vertex sets of these triads. The existence of X, Y, Z P V and P as
defined above is then established. Throughout the remainder of the proof, we identify H with
HrX Ÿ Y Ÿ Zs.

Let F Ď Xpvpt{2qq be the family of all sets tx1, . . . , xvpt{2qu Ď X satisfying
ˇ

ˇ

ˇ

ˇ

č

jPrvpt{2qs

LHpxj, P q

ˇ

ˇ

ˇ

ˇ

ă
`

d
vpt{2q

3 ´ ε
˘

d
2vpt{2q`1
2 |Y ||Z|. (3.8)

Then,

|F | ď ε|X|
vpt{2q

(3.2)
! γ3.1ptq|X|

vpt{2q

holds by (1.3). This application of the Tuple Lemma is supported by our choice ℓ1.3 " d´1
3 ,

seen in (3.5), ensuring that d2 ! d3 holds and thus fitting the quantification of Proposition 1.2.
With foresight (see (C.1) and (C.2) below), let

C “ max
!

C
p1q

3.1 ptq, C
p2q

3.1 pµ, tq, C
p3q

3.1 pµ, tq
)

¨ pt1q1{Mt,t{2

and put
p “ ppnq “ C max

␣

n´1{Mt,t{2 , n´1{Mt´1
(

“ Cn´1{Mt,t{2 .

6 Supported by triangles of such triads.
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Proposition 3.1 then asserts that the following properties are all satisfied simultaneously a.a.s.
whenever R „ Hp3qpn, pq; in the following list of properties, whenever an asymmetric Ramsey
property is stated, the first colour is assumed to be red and the second colour is assumed to
be blue.

(C.1): RrXs is p rK
p3q

t , rK
p3q

t{2 q-Ramsey with respect to p∅,Fq;
(C.2): RrXs is p rK

p3q

t{2 ,
rK

p3q

t q-Ramsey with respect to pF ,∅q;
(C.3): R is p rK

p3q

t´1, µq-Ramsey;
(C.4): R is p rK

p3q

t , rK
p3q

t{2 , µq-Ramsey;
(C.5): R is p rK

p3q

t{2 ,
rK

p3q

t , µq-Ramsey.

Fix R „ Hp3qpn, pq satisfying Properties (C.1-5) and set Γ “ H Y R.
Let ψ be a red/blue colouring of EpΓq and suppose for a contradiction that ψ does not

yield any monochromatic copy of rK
p3q

t . For every v P V pHq, let Lprq

H pvq denote the red link
graph of v in H under ψ, that is, Lprq

H pvq is a spanning subgraph of LHpvq consisting of the
edges of LHpvq that together with v yield a red edge of H under ψ. Similarly, let Lpbq

H pvq

denote the blue link graph of v in H under ψ. Note that, for any fixed vertex v, these two
link subgraphs are edge disjoint.

We say that blue (respectively, red) is a majority colour of ψ in H if

|te P EpHq : ψpeq is blueu| ě |te P EpHq : ψpeq is redu|

(respectively, |te P EpHq : ψpeq is redu| ě |te P EpHq : ψpeq is blueu|).

Claim 3.5. If blue is a majority colour of ψ in H, then e
`

L
prq

H pvq
˘

ď
η

2vpt{2q
¨ |Y ||Z| holds for

every v P X.

Proof. Suppose for a contradiction that there exists a vertex v P X which violates the assertion
of the claim. The Triangle Counting Lemma (Lemma 2.1) coupled with the assumption of
H being pδ3, d3, rq-regular with respect to the pδ2pℓq, d2q-triad P (take Q1 “ ¨ ¨ ¨ “ Qr “ P

in (2.4)) collectively yield

epHq ě pd3 ´ δ3q|K3pP q|

(2.1)
ě pd3 ´ δ3q

`

d3
2 ´ 4δ2pℓq

˘

|X||Y ||Z|

ě
`

d3d
3
2 ´ δ3d

3
2 ´ 4d3δ2pℓq

˘

|X||Y ||Z|

ě
d3d

3
2

2 |X||Y ||Z|, (3.9)

where the last inequality is owing to δ3 ! d3 and δ2pℓq ! d3
2 supported by (3.3) and (3.4),

respectively. Blue being the majority colour implies that at least d3d3
2

4 |X||Y ||Z| of the edges
of H are blue and thus there exists a vertex u P Z satisfying e

`

L
pbq

H puq
˘

ě
d3d3

2
4 |X||Y |; note
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that Lpbq

H puq Ď X ˆ Y . Set

Av “

!

z P Z : deg
L

prq

H pvq
pzq ě t

)

Ď Z and Au “

!

x P X : deg
L

pbq

H puq
pxq ě t

)

Ď X.

Then,

|Av| ě
η

4vpt{2q
|Z|

(3.4)
ě δ2pℓq|Z| and |Au| ě

d3d
3
2

8 |X|
(3.4)
ě δ2pℓq|X| (3.10)

both hold by Fact 3.2. Since H is δ2pℓq-weakly regular, it follows that

eHpAu, Y, Avq
(3.9)
ě

ˆ

d3d
3
2

2

˙

¨ |Au||Y ||Av| ´ δ2pℓq|X||Y |Z|

(3.10)
ě

ˆ

d3d
3
2

2

˙

¨

ˆ

η

4vpt{2q

˙

¨

ˆ

d3d
3
2

8

˙

|X||Y ||Z| ´ δ2pℓq|X||Y |Z|

“

ˆ

d2
3d

6
2η

64vpt{2q
´ δ2pℓq

˙

¨ |X||Y ||Z|

(3.4)
ě

ˆ

d2
3d

6
2η

65vpt{2q

˙

¨ |X||Y ||Z|. (3.11)

If red is a majority colour seen along EHpAu, Y, Avq, then there exists a vertex v1 P Av Ď Z

satisfying
ˇ

ˇ

ˇ
E
´

L
prq

H pv1
q

¯

X pAu ˆ Y q

ˇ

ˇ

ˇ

(3.11)
ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|X||Y | ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|Au||Y |.

Consequently, the set

Au,v1 “

!

x P Au : deg
L

prq

H pv1q
pxq ě t

)

Ď Au Ď X

satisfies

|Au,v1 | ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

|Au|

(3.10)
ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

¨

ˆ

d3d
3
2

8

˙

|X|

ě

ˆ

d3
3d

9
2η

2100vpt{2q

˙

¨

Yn

t1

]

(3.7)
ě µn,

where the first inequality holds by Fact 3.2. We may then write ΓrAu,v1s ÝÑ p rK
p3q

t´1q owing
to R being p rK

p3q

t´1, µq-Ramsey, by Property (C.3). Let K be a copy of rK
p3q

t´1 appearing
monochromatically under ψ within ΓrAu,v1s. Let x1, . . . , xt´1 denote the branch vertices of K.
It follows by the definition of Au,v1 that there are distinct vertices y1, . . . , yt´1 P Y such that
txi, yi, v

1u is a red edge of H for every i P rt ´ 1s. Similarly, since Au,v1 Ď Au, there are
distinct vertices y1

1, . . . , y
1
t´1 P Y such that txi, y

1
i, uu is a blue edge of H for every i P rt ´ 1s.

Therefore, if K is red, then it can be extended into a red copy of rK
p3q

t including v1; if, on the
other hand, K is blue, then it can be extended into a blue copy of rK

p3q

t including u. In either
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case, a contradiction to the assumption that ψ admits no monochromatic copies of rK
p3q

t is
reached.

It remains to consider the complementary case where blue is the majority colour in
EHpAu, Y, Avq. The argument in this case parallels that seen in the previous one with the sole
cardinal difference being that instead of finding a monochromatic copy of rK

p3q

t´1 in a subset of
Au Ď X, such a copy is found in a subset of Av Ď Z. An argument for this case is provided
for completeness. If blue is a majority colour seen along EHpAu, Y, Avq, then there exists a
vertex u1 P Au Ď X satisfying

ˇ

ˇ

ˇ
E
´

L
pbq

H pu1
q

¯

X pY ˆ Avq

ˇ

ˇ

ˇ

(3.11)
ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|Y ||Z| ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|Y ||Av|.

Consequently, the set

Av,u1 “

!

z P Av : deg
L

pbq

H pu1q
pzq ě t

)

Ď Av Ď Z

satisfies

|Av,u1 | ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

|Av|

(3.10)
ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

¨

ˆ

η

4vpt{2q

˙

|Z|

ě

ˆ

d2
3d

6
2η

2

1100vpt{2q2

˙

¨

Yn

t1

]

(3.7)
ě µn,

where the first inequality holds by Fact 3.2. Then, ΓrAv,u1s ÝÑ p rK
p3q

t´1q owing to R being
p rK

p3q

t´1, µq-Ramsey, by Property (C.3). A monochromatic copy of rK
p3q

t´1 appearing in ΓrAv,u1s

can be either extended into a red copy of rK
p3q

t including the vertex v or into a blue such copy
including u1. In either case, a contradiction to the assumption that ψ admits no monochromatic
copy of rK

p3q

t is reached and this concludes the proof of Claim 3.5. ■

The following counterpart of Claim 3.5 holds as well.

Claim 3.6. If red is a majority colour of ψ in H, then e
`

L
pbq

H pvq
˘

ď
η

2vpt{2q
¨ |Y ||Z| holds for

every v P X. ■

Proceeding with the proof of Theorem 1.1, assume first that blue is a majority colour
of ψ in H. By Property (C.1), either there is a red copy of rK

p3q

t (within X) or there is
a blue copy of rK

p3q

t{2 within X not supported on F . If the former occurs, then the proof
concludes. Assume then that K Ď ΓrXs is a blue copy of rK

p3q

t{2 such that V pKq R F , and
write LHpK,P q “

Ş

xPV pKq
LHpx, P q to denote the joint link graph of the members of V pKq
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supported on P . Then,

epLHpK,P qq ě

´

d
vpt{2q

3 ´ ε
¯

d
2vpt{2q`1
2 |Y ||Z|,

holds by (3.8). Remove EpL
prq

H pxqq from EpLHpK,P qq for every x P V pKq; that is, remove
any edge in LHpK,P q that together with a vertex of K gives rise to a red edge of H with
respect to ψ. By Claim 3.5, at most

ÿ

xPV pKq

e
´

L
prq

H pxq

¯

ď vpt{2q ¨
η

2vpt{2q
|Y ||Z| “

η

2 |Y ||Z|

edges are thus discarded from LHpK,P q, leaving at least

´

`

d
vpt{2q

3 ´ ε
˘

d
2vpt{2q`1
2 ´

η

2

¯

|Y ||Z|
(3.2)
ě

´d
vpt{2q

3 d
2vpt{2q`1
2
2 ´

η

2

¯

|Y ||Z|

(3.6)
“

´

η ´
η

2

¯

|Y ||Z|

“
η

2 |Y ||Z|

edges in the residual joint link graph of K, denoted L1
HpK,P q. It follows by Lemma 3.3 and

Fact 3.4 that L1
HpK,P q contains at least

ξ3.4pζ3.3pη{2qq
2n
T1.3

(3.7)
ě µn

vertex disjoint copies of the bipartite graph K1,t{2. Let S Ď V pL1
HpK,P qq consist of the centre

vertices of all said copies of K1,t{2. Property (C.4) coupled with |S| ě µn collectively assert
that

ΓrSs ÝÑ p rK
p3q

t , rK
p3q

t{2 q .

If the first alternative occurs, then there is a red copy of rK
p3q

t and thus the proof concludes.
Suppose then that the second alternative takes place so that a blue copy K 1 of rK

p3q

t{2 arises
in ΓrSs. Let u1, . . . , ut{2 denote the branch vertices of K 1 and let x1, . . . , xt{2 denote the branch
vertices of K. It follows by the definitions of L1

HpK,P q and S that there are t2{4 distinct
vertices twij : i, j P rt{2su Ď V pL1

HpK,P qq ∖ tu1, . . . , ut{2, x1, . . . , xt{2u such that tui, xj, wiju

forms a blue edge of H for every i, j P rt{2s. We conclude that Γ admits a copy of rK
p3q

t which
is blue under ψ.

Next, assume that red is a majority colour seen for ψ in H. Replacing the appeals to
Claim 3.5, Properties (C.1) and (C.4) in the argument above with appeals to Claim 3.6 and
Properties (C.2), and (C.5), respectively, leads to the rise of a monochromatic copy of rK

p3q

t

in Γ under ψ in this case as well. □
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§4 Proof of the tuple lemma

The tuple lemma (Proposition 1.2) follows from a straightforward application of the Cauchy–
Schwarz inequality and the counting lemma of Nagle and Rödl [50, Theorem 9.0.2]. For
a fixed integer t ě 2, let Kp3q

t,1,1 denote the complete 3-partite 3-uniform hypergraph with
one vertex class of order t and the other two classes consisting only of a single vertex each.
Write Dt to denote the hypergraph obtained from taking two copies of Kp3q

t,1,1 and identifying
each of the t vertices in the first class of the first copy with the corresponding vertex in the
second copy. It follows from the aforementioned counting lemma that in a sufficiently regular
triad, the number of copies of Kp3q

t,1,1 and the number of copies of Dt are as ‘expected’; the
Cauchy–Schwarz inequality then implies the conclusion of the tuple lemma for joint links.
A more direct proof of the tuple lemma for joint links, which does not rely on the counting
lemma, can be found in Appendix B of the arXiv version of this article [7].

Proof of Proposition 1.2. Given t ě 2 and ε, d3 ą 0, let δ3 ą 0 be sufficiently small so as to
render the aforementioned counting lemma applicable for Kp3q

t,1,1 and Dt with relative error
γ “ ε3{4. For a given d2 ą 0, an additional appeal to the counting lemma delivers δ2 and r.
Let H “ pX ŸY ŸZ,EHq and P “ pX ŸY ŸZ,Epq satisfy the assumption of Proposition 1.2
and assume, without loss of generality, that EH Ď K3pP q. Write Kt to denote the number of
injective homomorphisms of Kp3q

t,1,1 in H with the t vertices of the first class contained in X

and, similarly, write Dt to denote the number of injective homomorphisms of Dt in H.
With the above definitions in place, observe that

ÿ

px1,...,xtqPXt

ˇ

ˇLHptx1, . . . , xtu, P q
ˇ

ˇ ě Kt

as well as
ÿ

px1,...,xtqPXt

ˇ

ˇLHptx1, . . . , xtu, P q
ˇ

ˇ

2
ď Dt ´ 2|X|

t
|Y ||Z|

`

|Y | ` |Z|
˘

both hold, where the lower order error term in the last inequality accounts for ‘degenerate
copies Dt’ identifying both vertices in Y or Z, which are counted in the sum of squares.

The counting lemma applied to Kp3q

t,1,1 and Dt in H with respect to P asserts that

Kt ě p1 ´ γqdt
3d

2t`1
2 |Y ||Z| ¨ |X|

t and Dt ď p1 ` γq
`

dt
3d

2t`1
2 |Y ||Z|

˘2
¨ |X|

t .

For sufficiently large sets X, Y , and Z,

2|X|
t
|Y ||Z|

`

|Y | ` |Z|
˘

ď γ
`

dt
3d

2t`1
2 |Y ||Z|

˘2
¨ |X|

t

holds; consequently, we arrive at
ÿ

px1,...,xtqPXt

ˇ

ˇLHptx1, . . . , xtu, P q
ˇ

ˇ ě p1 ´ γqdt
3d

2t`1
2 |Y ||Z| ¨ |X|

t (4.1)
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and
ÿ

px1,...,xtqPXt

ˇ

ˇLHptx1, . . . , xtu, P q
ˇ

ˇ

2
ď p1 ` 2γq

`

dt
3d

2t`1
2 |Y ||Z|

˘2
¨ |X|

t . (4.2)

Finally, for B being the number of all those ‘bad’ t-tuples px1, . . . , xtq P X t with
ˇ

ˇ

ˇ

ˇ

ˇLHptx1, . . . , xtu, P q
ˇ

ˇ ´ dt
3d

2t`1
2 |Y ||Z|

ˇ

ˇ

ˇ
ą εdt

3d
2t`1
2 |Y ||Z|,

we infer

B ¨
`

εdt
3d

2t`1
2 |Y ||Z|

˘2
ď

ÿ

px1,...,xtqPXt

´

ˇ

ˇLHptx1, . . . , xtu, P q
ˇ

ˇ ´ dt
3d

2t`1
2 |Y ||Z|

¯2
.

Expanding the quadratic expression and applying the estimates from (4.1) and (4.2) finally
yields

B ¨
`

εdt
3d

2t`1
2 |Y ||Z|

˘2
ď 4γ ¨

`

dt
3d

2t`1
2 |Y ||Z|q

2
¨ |X|

t

and the proposition follows from the choice of γ “ ε3{4. □

§5 A variant of the regularity lemma for hypergraphs

In this section, we prove Proposition 1.3 which is our new variant of the Strong Lemma
(Lemma 2.6). In section 5.1, we lay out a ‘blueprint’ for our proof of Proposition 1.3 and, in
the course of which, collect all results from [58] facilitating our proof. This ‘blueprint’ is then
carried out in Section 5.2, where a detailed proof of Proposition 1.3 is provided.

5.1. Outline of the proof. The proof of Proposition 1.3 follows the lines of Szemerédi’s
proof of the regularity lemma for graphs [59]. In particular, it is based on an index increment
argument along refining partitions. More precisely, we adapt the proof of Lemma 2.6 from [58].
Below we present a detailed outline and along those lines we state several lemmata from [58],
which we shall employ in the proof.

Refinement process. We start by providing an initial pair of partitions (defined below), one
over vertices and the other over (some) pairs of vertices, satisfying Properties (R.1-3). If these
satisfy Property (R.4) as well, then the proof concludes. Otherwise, a refinement process
for these two partitions commences. A single iteration of this process accepts as input a
pair of partitions Π “ pV ,Bq, where V is a vertex partition and B is a partition of Kp2qpVq,
such that Π satisfies Properties (R.1-3) but not (R.4). At the end of the iteration, a pair of
partitions Π1 “ pV 1,B1q satisfying Properties (R.1-3) is produced such that Π1 ă Π, by which
we mean that V 1 ă V and B1 ă B.

The pair Π1 has an additional crucial property. As customary in proofs of regularity lemmata,
a quantity called the index (see (5.2)) is associated with any pair of partitions; in that, certain
quantities, namely indpΠq and indpΠ1q, are associated with Π and Π1, respectively. The
additional key property satisfied by Π1, alluded to above, is that indpΠ1q ě indpΠq ` Ω

δ
p3q

1.3
p1q;
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this inequality embodies the traditional index increment argument that often appears in
proofs of regularity lemmata.

If the pair Π1 satisfies Property (R.4), then the proof concludes; otherwise another iteration
of the refinement process takes place, this time with Π1 assuming the role of Π above. The
index increment argument and the fact that the index of any pair of partitions is bounded
from above by one (see (5.3)), imply that such a refinement process must terminate. Therefore,
within Op1q iterations, a pair of partitions satisfying Properties (R.1-4) is encountered and
Proposition 1.3 is proved. Figure 5.1 provides a bird’s eye view of a single iteration of the
refinement process.

Initial partitions. The first pair of partitions, namely V0 and B0, from which the proof
of Proposition 1.3 commences is defined next. Let V denote the common vertex set of
H1, . . . , Hs1.3 and let V0 be an equitable vertex partition of the form V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vt, with t
some positive integer, such that Hi is δp2q

1.3pℓ1.3q-weakly regular with respect to V0 for every
i P rs1.3s. Such a partition exists by the Weak Lemma (Lemma 2.5) applied with

t2.5 " max
!

pδ
p3q

1.3q
´4, t1.3

)

, (5.1)

δ2.5 “ δ
p2q

1.3pℓ1.3q, the trivial partition U2.5 “ V (i.e., h2.5 “ 1), and the given sequence
H1, . . . , Hs1.3 . In preparation for a subsequent application of Lemma 5.2 (stated below), one
may further assume that t is sufficiently large so as to ensure that epKp3qpV0qq ě p1´δ

p3q

1.3{2q
`

|V |

3

˘

holds (and thus have (5.4), stated below, satisfied).
Let B0 be the partition of Kp2qpV0q defined as follows. For every 1 ď i ă j ď t, let

Bij
1 , . . . , B

ij
ℓ1.3 be a uniform random edge colouring of Kp2qpVi, Vjq using ℓ1.3 colours. That is,

every edge of Kp2qpVi, Vjq is assigned a colour from rℓ1.3s uniformly at random and independ-
ently of all other edges of Kp2qpVi, Vjq. For every k P rℓ1.3s, every pair of indices 1 ď i ă j ď t,
and any pair of subsets X Ď Vi and Y Ď Vj, it holds that

E
“

e
`

Bij
k rX, Y s

˘‰

“
1
ℓ1.3

|X||Y | .

Applying Chernoff’s inequality [34, Theorem 2.1] yields

P
´
ˇ

ˇ

ˇ
e
`

Bij
k rX, Y s

˘

´
1
ℓ1.3

|X||Y |

ˇ

ˇ

ˇ
ą δ

p2q

1.3pℓ1.3q|Vi||Vj|

¯

“ expp´Ωpn2
qq ,

where here we rely on V being equitable, implying that |Vi|, |Vj| “ Ωpnq. A union-bound
over all choices of k, i, j,X, and Y implies that a.a.s. Bij

k is pδ
p2q

1.3pℓ1.3q, ℓ´1
1.3q-regular for every

k P rℓ1.3s and every pair of indices 1 ď i ă j ď t. In particular, B0 is ℓ1.3-equitable.

Index increment. The notion of index, employed in our arguments, is defined next, along
with the index increment machinery alluded to above. Let V be a finite set and let V be
the partition given by V “ V1 Ÿ . . . Ÿ Vh, with h ě 1 some integer. Let B be an ℓ-equitable
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partition with respect to V , for some integer ℓ ě 1. The index of B with respect to V and a
partition H of V p3q is given by

indpBq “
1

|V |3

ÿ

HPH

ÿ

P

d pH|P q
2

¨ |K3pP q|, (5.2)

where the second sum ranges over the triads of B. It is easy to check (see, e.g., [58, Fact 33])
that

indpBq P r0, 1s. (5.3)

The notion of the index, seen in (5.2), fits the case s1.3 “ 1, i.e., the case in which a single
hypergraph H is to be regularised. In this case, the members of the partition H, seen
in (5.2), are H and its complement; this is in accordance with [58] (see the implication
of [58, Theorem 17] from [58, Theorem 23]). Our formulation of Proposition 1.3 supports
s1.3 ą 1; in the terminology of [38], it is a multi-colour regularity lemma.

To support the multi-colour version, the standard approach (see, e.g., [38]) is to define
the above index for each hypergraph (and its complement) being regularised and then define
a new version of the index given by the average of all of the aforementioned indices of the
individual hypergaphs (taking the average ensures that the new index is upperbounded by
one as well).

Remark 5.1. As the transition to the multi-coloured version is considered standard, we
prove Proposition 1.3 under the assumption that s1.3 “ 1. Our proof of Theorem 1.1 does not
employ the multi-colour version.

We shall employ the following index increment lemma [58, Proposition 39].

Lemma 5.2 (Index increment lemma). Let V be a finite set, let V be a partition of V , let H
be a partition of V p3q, and let B be an ℓ-equitable partition of Kp2qpVq. Furthermore, let an
integer r “ r5.2 ě 1 be given and let δ “ δ5.2 ą 0 satisfy

e
`

Kp3q
pVq

˘

ě p1 ´ δ{2q

ˆ

|V |

3

˙

. (5.4)

If there exists an H P H that is pδ, rq-irregular with respect to B, then there exists a partition B1

of V p2q satisfying

(INC.1): B1 ă B,
(INC.2): |B1| ď |B| ¨ 2r|V|ℓ2

ď |V |2ℓ ¨ 2r|V|ℓ2, and
(INC.3): indpB1q ě indpBq ` δ4{2. □

The partitions B and B1, appearing in the premise of Lemma 5.2, are taken over Kp2qpVq

and V p2q, respectively. In Section 2.2, it is explained what is meant by stating that a partition
of V p2q refines a partition of Kp2qpVq.
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Returning to the general scheme of the proof outline, let pV1,B1q be a pair of partitions
from which a single iteration of the refinement process commences; these partitions satisfy
Properties (R.1-3) but they do not satisfy Property (R.4). The Index Increment Lemma
(Lemma 5.2) applied to pV1,B1q produces a pair pV1,B1

1q with B1 and B1
1 satisfying (INC.1-3).

That is, B1
1 refines B1, its size is Op|B1|q “ Op1q, and most importantly satisfies

indpB1
1q ě indpBq ` Ω

δ
p3q

1.3
p1q .

While B1
1 has its index elevated appropriately relative to B1, it may have lost Property (R.2).

Indeed, B1
1 arises from considering the Venn diagram of all witnesses of pδ

p3q

1.3, r1.3q-irregularity
that the sequence pH1, . . . , Hs1.3q has across pV1,B1q; see [58] for further details. The process
then continues with further refinements of pV1,B1

1q so as to regain Property (R.2).

Approximation. The approximation lemma [58, Lemma 25] serves as a key tool through which
we regain Property (R.2). It can be viewed as a generalisation of a result from [10], which
handles the corresponding graph case.

Lemma 5.3 (Approximation lemma). For every pair of integers s “ s5.3 ě 1 and h “ h5.3 ě 1,
every real number ν “ ν5.3 ą 0, and every function ε “ ε5.3 : N ÝÑ p0, 1s, there exist positive
integers t5.3 and n0 such that the following holds whenever n ě n0. Let V be a finite set of
size n, let V be a partition of the form V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vh with all its parts having size Ωpnq,
and let B “ pB1, . . . , Bsq be a partition of V p2q. Then, there exists an equitable partition
tV “ U1 Ÿ ¨ ¨ ¨ Ÿ Ut5.3u ă V, namely U , as well as a partition B1 “ pB1

1, . . . , B
1
sq of V p2q such

that the following holds.

(APX.1): B1
krUi, Ujs is εpt5.3q-regular for every k P rss and every 1 ď i ă j ď t5.3.

(APX.2): |EpBiq△EpB1
iq| ď νn2 for every i P rss. □

The approximation lemma bares its name as it replaces every B P B with a highly regular
bipartite graph B1 of virtually the same density as B (as specified in (APX.2)). However, B1

need not be a subgraph of B and may contain edges not present in B; the latter degrades the
index increment attained by the Index Increment Lemma (Lemma 5.2).

In its original formulation, namely [58, Lemma 25], the approximation lemma also entails a
divisibility condition which in our formulation would read as t5.3! | n. The term t5.3! is a fixed
constant. In the case that t5.3! ∤ n holds, our formulation takes into account any degradation
of all parameters that may be incurred by having to distribute at most t5.3! vertices amongst
the members of U .

Returning to the pair pV1,B1
1q and its potential loss of Property (R.2), the approximation

lemma (Lemma 5.3) is applied to this pair so as to produce a pair pV2,B2q such that V2 ă V1

and B2 approximates B1
1 per (APX.2). That is, modulo some ξn2 exceptional pairs, with

ξ ą 0 being arbitrarily small yet fixed, the partition B2 refines B1
1.
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Utilising the fact that the members of B2 are highly regular, per (APX.1), we proceed to
randomly slice (see Steps I.a and I.b in the proof of Proposition 1.3 for details) the members
of B2 so as to obtain a partition B3 which, modulo some ξ1n2 exceptions, with ξ1 ą 0 being
arbitrarily small yet fixed, refines B2 and such that its members satisfy Property (R.2), in
that all its members are at the ‘correct’ density and regularity as required by Property (R.2).
This stage of the process culminates with the pair pV2,B3q and with having Property (R.2)
regained.

Having B2 essentially refining B1
1 and B3 essentially refining B2 modulo some opn2q exceptions

each time, plays a crucial part in the forthcoming index manipulation arguments appearing
below. Unfortunately, due to the application of the Approximation Lemma (Lemma 5.3), it
is possible that the pair pV2,B3q does not satisfy Property (R.3).

Weak regularity re-established. To regain Property (R.3), the Weak Lemma (Lemma 2.5)
is applied to V2 so as to attain a vertex partition, namely V3, such that V3 ă V2 and such
that H is weakly regular with respect to V3 at the required level. This in turn affects the
regularity of the members of B3 with respect to the members of V3 in the sense that the
satisfaction of Property (R.2) is again in jeopardy. Repeated applications of Lemma 2.3
are then used to regain Property (R.2) once more. The key point at this stage is that the
degradation in the regularity of the members of B3, with respect to V3, can be anticipated
prior to the application of Lemma 5.3 which in turn allows for an application of the latter
with an enhanced regularity threshold, in order to compensate for this eventual degradation.

This stage ends with a pair pV3,B4q, where B4 ă B3 and is the result of the aforementioned
repeated applications of Lemma 2.3. Accurate details regarding this stage can be seen in
Step II of the proof of Proposition 1.3.

Index manipulations. Tracking the index of the various partitions encountered throughout
the process described above, we start with the inequality

indpB1
1q ě indpB1q ` Ω

δ
p3q

1.3
p1q

supported by the index increment lemma (Lemma 5.2). From here on out this index increment
suffers degradation incurred by the refinement process outlined above. Two tools are used to
curb this degradation. The first such tool from [58, Proposition 34], stated below in Lemma 5.4,
is designed to handle the index of partitions produced by the Lemma 5.3. The second is
Lemma 5.5 below, which provides estimates for the index of all partitions encountered with
the exception of the one produced by the approximation lemma (Lemma 5.3).

Lemma 5.4. Let s “ s5.4, h “ h5.4, and t “ t5.4 ě h be positive integers and let ν “ ν5.4 ą 0.
Let V be a set of size n and let V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vh and U “ U1 Ÿ ¨ ¨ ¨ Ÿ Ut be partitions of V
such that U ă V. Let H be a partition of V p3q and let B “ pB1, . . . , Bsq and B1 “ pB1

1, . . . , B
1
sq
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be partitions of Kp2qpVq and Kp2qpUq, respectively, satisfying |EpBiq△EpB1
iq| ď νn2 for every

i P rss. Then,
indpB1

q ě indpBq ´ 9p2sq3ν (5.5)

holds, where indpBq is taken with respect to V and H, and indpB1q is taken with respect to U
and H. □

The partitions B and B1 defined in Lemma 5.4 can both be viewed as partitions of V p2q

(see Section 2.2) so as to fit the formulation of the approximation lemma (Lemma 5.3) and
of [58, Proposition 34]. The latter, fits more general settings than the one appearing in its
adaptation stated in Lemma 5.4.

The partition B2 is produced by the Approximation Lemma (Lemma 5.3) applied to pV1,B1
1q.

Lemma 5.4 coupled with a judicious choice of ν5.3 made upon applying the Approximation
Lemma (and prior to the application of the Index Approximation Lemma), yields

indpB2q ě indpB1
1q ´ ν 1

5.3 ě indpB1q ` Ω
δ

p3q

1.3
p1q ´ ν 1

5.3,

where ν 1
5.3 ą 0 is a constant related to ν5.3 through (5.5). Being able to anticipate this degrad-

ation of the index allows for an appropriate choice of ν5.3 to be passed to the Approximation
Lemma so as to render indpB2q ě indpB1q ` Ω

δ
p3q

1.3
p1q.

The second tool for curbing the degradation of the index, namely the Index Approximation
Lemma, is stated next. Let V be a partition of a finite set V and let B and B1 be partitions
of Kp2qpVq. Given a non-negative real number β, a partition B1 is said to form a β-refinement
of a partition B, denoted B1 ăβ B, if

ř

epB1q ď β|V |2, where the sum is extended over

tB1
P B1 : B1

Ę B for every B P Bu .

The following simple lemma from [58, Proposition 38] asserts that a partition of Kp2qpVq

that β-refines another partition of Kp2qpVq has its index at most β ‘away’ from that of the
partition being refined.

Lemma 5.5 (Index approximation lemma). Let β be a non-negative real number, let V be
a partition of a finite set V , let B and B1 be partitions of Kp2qpVq, and let H be a partition
of V p3q. If B1 ăβ B, then indpB1q ě indpBq ´ β, where here the index is taken with respect
to V and H. □

The next degradation in the index is incurred through the production of the partition B3

from B2 via random slicing. We prove that B3 forms a β-refinement of B2, where β ą 0
is small enough to ensure that indpB3q ě indpB1q ` Ω

δ
p3q

1.3
p1q can still be inferred. The

last partition, namely B4, properly refines B3, i.e. B4 ă0 B3, and thus, by the Index
Approximation Lemma, no index degradation is incurred in the production of B4 culminating
with indpB4q ě indpB1q ` Ω

δ
p3q

1.3
p1q.
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Upon the termination of the entire refinement process, a pair of partitions pV ,Bq satisfying
Properties (R.1-4) is produced. Setting t “ |V | and T1.3 “ |B|, yields t ď T1.3 as well as
ℓ ď T1.3, where ℓ and t are per the premise of Proposition 1.3.

Figure 1. A single iteration of the refinement process

5.2. Proof of the regularity lemma. We now give the details of the proof outlined in §5.1.

Proof of Proposition 1.3. Let δ3 “ δ
p3q

1.3, δ2 “ δ
p2q

1.3, r “ r1.3, ℓ1.3, t1.3, s1.3 and pH1, . . . , Hs1.3q be
as specified in the premise of Proposition 1.3; recall Remark 5.1 where it is stipulated that we
assume that s1.3 “ 1 so that H “ H1 “ ¨ ¨ ¨ “ Hs1.3 . It suffices to prove an index increment
along a single iteration of the refinement process described in Section 5.1. To that end, let V
be the vertex set of H and let V1 be an equitable partition of the form V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vt1 ,
with t1 some positive integer, such that H is δ2pℓ1q-weakly regular with respect to V1, where ℓ1

is some positive integer. Let B1 be an ℓ1-equitable partition of Kp2qpV1q. Assume that

epKp3q
pV1qq ě p1 ´ δ3{2q

ˆ

|V |

3

˙
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holds and that the partitions V1 and B1 satisfy Properties (R.1-3) yet fail to satisfy Prop-
erty (R.4).

The Index Increment Lemma (Lemma 5.2) applied with δ5.2 “ δ3 and r5.2 “ rpt1, ℓ1q, asserts
that there exists a partition B1

1 of Kp2qpV1q refining B1 such that ℓ2 “ |B1
1| ď t21ℓ1 ¨ 2rpt1,ℓ1qt1ℓ2

1

and indpB1
1q ě indpB1q ` δ4

3{2. For future reference, we record that

ℓ2 " δ´4
3 (5.6)

holds; this on account of ℓ2 ě t1
(5.1)
" δ´4

3 .
We proceed with a two stage argument, captured below in Step I and Step II, through

which the pair pV1,B1
1q is further refined so as to obtain a pair of partitions satisfying

Properties (R.1-3) and whose index is appropriately elevated with respect to that of B1.

Step I: Regaining Property (R.2). Let V2 and B2 be the vertex and pair partitions, respectively,
whose existence is guaranteed by the Approximation Lemma (Lemma 5.3) applied to V1

and B1
1 with

s5.3 “ |B1
1| “ ℓ2, h5.3 “ t1, ν “ ν5.3 !

δ4
3

s3
5.3
, ε5.3 “ ε{C1 (5.7)

where C1 " ℓ2
2 is some auxiliary constant and for every t1 P N

εpt1q “ min
"

ℓ´2
2 ,

δ2pℓ2
2q

T 2
2.5pt1, δ2pℓ2

2qq

*

. (5.8)

The partition V2 refines the partition V1 and has the form V “ U1 Ÿ U2 ¨ ¨ ¨ Ÿ Ut2 , where
t2 “ t5.3ph5.3, s5.3, ν, ε5.3q and the last four parameters are as seen in (5.7). Each member
B P B2 has the property that BrUi, Ujs is ε5.3pt2q-regular whenever i, j P rt2s are distinct. In
addition, the members of B2 approximate the densities of the members of B1

1 per (APX.2).
Fix indices 1 ď i ă j ď t2. In what follows, the members of Bij

2 “ tBrUi, Ujs : B P B2u are
sliced so as to yield a collection of ℓ2

2 bipartite graphs such that each of them is pεpt2q, ℓ´2
2 q-

regular. This is attained through randomly slicing each member of Bij
2 so that, with positive

probability, each slice thus produced across all choices for i and j has the specified density
and regularity. All this is carried out in two steps, namely Steps I.a and I.b. In the first step,
the so-called dense members of Bij are sliced; in the second step the so-called sparse members
of Bij are sliced along with leftovers incurred through the slicing of the dense members.

Step I.a: Random slicing of dense parts. Fix indices 1 ď i ă j ď t2 and let

Dij
“
␣

BrUi, Ujs : B P B2 and dpBrUi, Ujsq ě ℓ´2
2
(

denote the members of Bij
2 that are sufficiently dense; note that Dij ‰ ∅ since the members

of Bij
2 partition Kp2qpUi, Ujq and |Bij

2 | “ ℓ2. For every Γ P Dij, there exist an integer
0 ď kΓ ď ℓ2

2 and a real number 0 ď ηΓ ă ℓ´2
2 such that dpΓq “

kΓ
ℓ2

2
` ηΓ. Colour the members
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of EpΓq by assigning each edge a colour from the palette t0, . . . , kΓu, independently from the
rest of the edges, according to the following scheme:

(1) An edge of Γ is assigned the colour 0 with probability ηΓ
dpΓq

.
(2) An edge of Γ is assigned the colour 1 ď i ď kΓ with probability 1

ℓ2
2dpΓq

.

Note that
kΓ

ℓ2
2dpΓq

`
ηΓ

dpΓq
“

1
dpΓq

ˆ

kΓ

ℓ2
2

` ηΓ

˙

“ 1.

Let Γ0,Γ1, . . . ,ΓkΓ denote the random pairwise edge disjoint subgraphs of Γ resulting from
such a colouring. The random subgraph Γ0 is referred to as the trash subgraph.

Set C2 “ C1{2 and note that an appropriate choice of C1 ensures that C2 " ℓ2
2 holds. Fix a

constant ζ satisfying
0 ă ζ ! min

␣

ℓ´2
2 , εpt2q{C1

(

(5.9)

and
Z

1
ℓ´2

2 ´ ζ

^

“ ℓ2
2 “

R

1
ℓ´2

2 ` ζ

V

and ζ ` max
ΓPDij

ηΓ ă ℓ´2
2 . (5.10)

Consider the events

E0pΓq “ tdpΓ0q ď ηΓ ` ζu ,

E1pΓq “
␣

dpΓiq “ ℓ´2
2 ˘ ζ for every 1 ď i ď kΓ

(

,

E2pΓq “
␣

Γi is pεpt2q{C2, ℓ
´2
2 q-regular for every 1 ď i ď kΓ

(

.

Finally, for every k P t0, 1, 2u, let

Ek “ tEkpΓq holds for all Γ P Dij and for all indices 1 ď i ă j ď t2u.

We claim that
PpE0 ^ E1 ^ E2q ą 0 . (5.11)

Note that the number of pairs of indices 1 ď i ă j ď t2 is independent of n. Moreover, |Dij|

is independent of n for any given pair of indices 1 ď i ă j ď t2.
Hence, in order to prove (5.11), it suffices to prove that

P
`

E0pΓq ^ E1pΓq ^ E2pΓq
˘

“ 1 ´ onp1q (5.12)

for every pair of indices 1 ď i ă j ď t2 and every Γ P Dij.
Note that E1 is not part of the formulation of Property (R.2) but rather an auxiliary event

facilitating our arguments seen in Step I.b below. On the other hand, E2 is directly related to
Property (R.2) and is of prime concern in regaining Property (R.2).

As noted above, to conclude Step I.a, it remains to prove (5.12). We begin by noting that
ErepΓ0qs “ ηΓ|Ui||Uj| and that ErepΓhqs “ 1

ℓ2
2
|Ui||Uj| holds for every 1 ď h ď kΓ. Then, owing
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to Chernoff’s inequality [34, Theorem 2.1 and Corollary 2.3], we may write

P
`

epΓ0q ě pηΓ ` ζq|Ui||Uj|
˘

ď exp
ˆ

´
pζ|Ui||Uj|q2

2pηΓ ` ζq|Ui||Uj|

˙

“ exp
`

´ Ωpn2
q
˘

,

P
`
ˇ

ˇepΓhq ´ ℓ´2
2 |Ui||Uj|

ˇ

ˇ ě ζ|Ui||Uj|
˘

ď expp´Ωp|Ui||Uj|qq “ exp
`

´ Ωpn2
q
˘

,

where the last equalities seen for each of the bounds just specified, are owing to V2 being
equitable, leading to |Ui| “ Ωpnq holding for every i P rt2s. In particular, each of the events
E0pΓq and E1pΓq holds asymptotically almost surely.

To estimate the probability that E2pΓq holds, fix X Ď Ui and Y Ď Uj, and recall that

epΓrX, Y sq “ dpΓq|X||Y | ˘ ε5.3pt2q|Ui||Uj|.

For every 1 ď h ď kΓ, it holds that

ErepΓhrX, Y sqs “ ℓ´2
2 |X||Y | ˘

ε5.3pt2q

ℓ2
2dpΓq

|Ui||Uj|

“ ℓ´2
2 |X||Y | ˘

εpt2q

C1ℓ2
2dpΓq

|Ui||Uj|

“ ℓ´2
2 |X||Y | ˘

εpt2q

C1
|Ui||Uj|,

where the last equality holds since Γ P Dij and thus ℓ2
2dpΓq ě 1. It then follows by Chernoff’s

inequality [34, Theorem 2.1] that

P
´

epΓhrX, Y sq ě ℓ´2
2 |X||Y | `

εpt2q

C1
|Ui||Uj| ` ζ|Ui||Uj|

¯

“ expp´Ωpn2
qq

and

P
´

epΓhrX, Y sq ď ℓ´2
2 |X||Y | ´

εpt2q

C1
|Ui||Uj| ´ ζ|Ui||Uj|

¯

“ expp´Ωpn2
qq

both hold. The number of choices for the sets X and Y is at most 22n and the number of
choices for h is kΓ. Since, moreover, C2 “ C1{2 " ℓ2

2 and ζ satisfies (5.9), it follows that
the random subgraph Γh is a.a.s. pεpt2q{C2, ℓ

´2
2 q-regular for every 1 ď h ď kΓ. This shows

that E2pΓq holds a.a.s. and thus concludes the proof of (5.12).

Step I.b: Randomly slicing the trash and sparse members of Bij
2 . Fix indices 1 ď i ă j ď t2.

Expose Γ0,Γ1, . . . ,ΓkΓ for every Γ P Dij . Let M “
Ť

ΓPDij

ŤkΓ
i“1 Γi and L “ Kp2qpUi, Ujq ∖M .

Let k “
ř

ΓPDij kΓ so that one may write M “
Ťk

i“1 Si, where Si is pεpt2q{C2, ℓ
´2
2 q-regular

with density dpSiq “ ℓ´2
2 ˘ ζ for every i P rks. Note that k ď ℓ2

2 holds by the first equality
appearing in (5.10).

Since S1, . . . , Sk are pairwise edge disjoint, M is
`

kεpt2q

C2
, k

ℓ2
2

˘

-regular. The (bipartite) com-
plement of M in Kp2qpUi, Ujq, namely L, is then

`

kεpt2q

C2
,

ℓ2
2´k

ℓ2
2

˘

-regular. Slice L uniformly at
random using c “ ℓ2

2 ´ k colours; let L1, . . . , Lc denote the resulting slices (note that c ą 0
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as L contains Γ0 for every Γ P Dij and is thus dense). To gauge the regularity of Lh, where
h P rcs, note that for a fixed X Ď Ui and Y Ď Uj, one has

EreLh
pX, Y qs “ ℓ´2

2 |X||Y | ˘
kεpt2q

C2 ¨ c
|Ui||Uj| “ ℓ´2

2 |X||Y | ˘
εpt2q

C3
|Ui||Uj|

where C3 “ C2 ¨ c{k; an appropriate choice of C1 ensures that C3 " ℓ2
2 holds. An application of

Chernoff’s inequality (with deviation ζ 1|Ui||Uj|, where 0 ă ζ 1 ! εpt2q{C3), yields that a.a.s. Lh

is pεpt2q{C4, ℓ
´2
2 q-regular, where C4 " ℓ2

2 is some constant. Since c is independent of n, it
follows that a.a.s. all of the aforementioned slices admit this level of regularity.

We conclude Step I by setting B3 to denote the collection of all slices produced in Steps I.a
and I.b. As such, B3 partitions Kp2qpV2q but need not be a refinement of B2 on account of
Step I.b. In addition, B3 is ℓ2

2-equitable (indeed, for every pair of indices 1 ď i ă j P t2, some
k ď ℓ2

2 slices are created in Steps I.a and ℓ2
2 ´ k additional slices are created in I.b) with

each of its members being pεpt2q, ℓ´2
2 q-regular. The pair of partitions pV2,B3q then satisfies

Property (R.2) with the aforementioned parameters.

Step II: Regaining Property (R.3). In this step, we produce an equitable vertex partition V3

such that V3 ă V2 and subsequently a partition B4 of Kp2qpV3q such that the pair pV3,B4q

satisfies Properties (R.1-3) with the correct parameters.
Let V3 be the equitable vertex partition resulting from an application of the Weak Lemma

(Lemma 2.5) with V2 as the initial vertex partition and along with

δ2.5 “ δ2
`

ℓ2
2
˘

and t2.5 “ t2.

Recall that V2 has the form V “ U1 Ÿ ¨ ¨ ¨ Ÿ Ut2 and that V3 ă V2. Since both V2 and V3

are equitable, it follows that the number of members of V3 refining a single cluster of V2 is
uniform across all clusters of V2. For a pair of distinct indices i, j P rt2s, let

Wpiq
“
␣

W
piq
1 , . . . ,W piq

z

(

and Wpjq
“
␣

W
pjq

1 , . . . ,W pjq
z

(

denote the members of V3 refining Ui and Uj, respectively. In addition, let Bij
3 consist of the

members of B3 partitioning Kp2qpUi, Ujq; recall that |Bij
3 | “ ℓ2

2.
Fix some W P Wpiq, W 1 P Wpjq, and Γ P Bij

3 . We claim that ΓrW,W 1s is pδ2pℓ2
2q, ℓ´2

2 q-regular.
Indeed, note first that |W |, |W 1| ě n

T2.5pt2,δ2pℓ2
2qq

and that T2.5pt2, δ2 pℓ2
2qq´1 ě εpt2q, where the

latter inequality holds by (5.8). Hence, an application of the Slicing Lemma (Lemma 2.3) with

d2.3 “ ℓ´2
2 , δ2.3 “ εpt2q, α2.3 “ T2.5pt2, δ2

`

ℓ2
2
˘

q
´1

implies that ΓrW,W 1s is
`

ξ, ℓ´2
2 ˘ δ2.3

˘

-regular, with

ξ “ max
␣

T2.5pt2, δ2
`

ℓ2
2
˘

qδ2.3, 2δ2.3
(

ď
δ2pℓ2

2q

T2.5pt2, δ2 pℓ2
2qq
,
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where the above inequality holds by (5.8). We may then absorb the deviation in the density
by enlarging the error term to deduce that ΓrW,W 1s is pδ2pℓ2

2q, ℓ´2
2 q-regular, as claimed.

We conclude that the members of Bij
3 define ℓ2

2 edge disjoint pδ2pℓ2
2q, ℓ´2

2 q-regular subgraphs,
between every pair of sets W P Wpiq and W 1 P Wpjq. Moreover, these subgraphs partition
Kp2qpW,W 1q. Define B4 to be the partition of Kp2qpV3q whose members are the subgraphs of
the form ΓrW,W 1s, where W P Wpiq, W 1 P Wpjq, and 1 ď i ă j ď t2; note that B4 ă B3.

Index increment. We conclude the proof of Proposition 1.3 by tracking the index of the
various partitions defined throughout the refinement process above and prove that this process
culminates with the last partition, namely B4, satisfying

indpB4q ě indpB1q ` δ4
3{8. (5.13)

The refinement process commences with the Index Increment Lemma (Lemma 5.2) yielding
indpB1

1q ě indpB1q`δ4
3{2, where here the index is taken with respect to V1 and the partition H

whose members are H and its complement. The pair of partitions pV2,B2q is obtained through
an application of the Approximation Lemma (Lemma 5.3) to the pair pV1,B1

1q. It follows that

indpB2q
(5.5)
ě indpB1

1q ´ 9p2sq3ν
(5.7)
ě indpB1q ` δ4

3{4

holds.
The partition B3 need not be a refinement of B2; this is due to the treatment of sparse and

trash subgraphs of B2 seen in Step I.b, where these subgraphs are united and then collectively
sliced. The partition B2 is obtained from partition B1

1 through the approximation lemma
(Lemma 5.3) and thus |B2| “ |B1

1| “ ℓ2 holds. Let A3 “ tB3 P B3 : B3 Ę B2 for every B2 P B2u.
Then,

ÿ

APA3

epAq ď
ÿ

1ďiăjďt2

¨

˝

ÿ

ΓPDij

epΓ0q `
ÿ

ΓPBij
2 ∖Dij

epΓq

˛

‚

ď |B2|

´

ζ ` max
ΓPDij

ηΓ

¯

n2
` |B2| ¨ ℓ´2

2 n2

(5.10)
ď 2ℓ´1

2 n2.

It follows that B3 is a p2ℓ´1
2 q-refinement of B2 and thus

indpB3q ě indpB1q ` δ4
3{4 ´ 2ℓ´1

2
(5.6)
ě indpB1q ` δ4

3{8

holds, by the index approximation lemma (Lemma 5.5).
The last partition, namely B4, is attained from B3 through repeated applications of

Lemma 2.3. As such B4 ă0 B3 and thus indpB4q ě indpB3q holds by the index approximation
lemma (Lemma 5.5). This proves (5.13) as required.
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Conclusion. The fact that the index of a partition is bounded from above by one (see (5.3))
coupled with the index increment obtained in each iteration of the refinement process, lead to
a pair of partitions satisfying Properties (R.1-4) being encountered within Opδ´4

3 q iterations
of this process. This concludes the proof of Proposition 1.3. □

§6 Concluding remarks

6.1. Alternatives to the tuple lemma. In this section, we provide two alternatives to the
tuple property (Proposition 1.2) that avoid using the Strong Lemma (Lemma 2.6), yet fall
shy from being a suitable replacement for the Tuple Lemma in our proof of Theorem 1.1. We
start with the following simple adaptation of [42, Lemma 3.4]. Given a hypergraph H, let

δ1pHq “ mintdegHpvq : v P V pHqu

denote the minimum 1-degree of H.

Lemma 6.1. For every d ą 0, positive integer t, and c1 P p0, 1s, there exist c2, c3 P p0, 1s

and n0 P N such that the following holds whenever n ě n0. Let H be an n-vertex hypergraph
satisfying δ1pHq ě dn2 and let U Ď V pHq be a set of size |U | ě c1n. Then, there exist at
least c2n

t members of U ptq whose joint link graph has size at least c3n
2.

Proof. Fix U Ď V pHq of size |U | ě c1n. Note that
ÿ

tw,vuPV pHqp2q

degHpw, v, Uq “
ÿ

uPU

degHpuq ě |U | ¨ δ1pHq ě d ¨ c1n
3, (6.1)

where
degHpw, v, Uq “ |tu P U : tu, v, wu P EpHqu| .

A double counting argument and an application of Jensen’s inequality imply that
ÿ

XPUptq

epLHpXqq “
ÿ

tw,vuPV pHqp2q

ˆ

degHpw, v, Uq

t

˙

ě

ˆ

n

2

˙

¨

ˆ

`

n
2

˘´1 ř
w,v degHpw, v, U

t

˙

(6.1)
ě

ˆ

n

2

˙

¨

ˆ

`

n
2

˘´1
¨ dc1n

3

t

˙

“

ˆ

n

2

˙

¨

ˆ

c4n

t

˙

ě c5n
t`2, (6.2)

where c4 and c5 are appropriate positive constants. Trivially, epLHpXqq ď n2 holds for every
X P U ptq. The existence of the constants c2 and c3 thus follows by (6.2), concluding the proof
of the lemma. □
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It is evident that Lemma 6.1 offers much weaker control over the joint link graphs of t-tuples
than that which is ensured by our new tuple property (Proposition 1.2); in particular, it is
insufficient for our proof of Theorem 1.1. Indeed, an important step of our proof involves
finding a blue (say) copy K Ď ΓrXs of rKt{2 such that its vertex set forms a good tuple, that
is, the joint link graph of this tuple is sufficiently dense. Alas, the parameters of Lemma 6.1
do not guarantee the existence of such a copy.

A versatile tool, commonly used to replace the Tuple Lemma for graphs (Lemma 2.4),
and consequently avoid the use of the (graph) regularity lemma altogether, is the so-called
dependent random choice [28]. A variant of this tool for hypergraphs was considered before
in [18] by Conlon, Fox and Sudakov; their version, however, is not strictly aligned with the
tuple property we seek. A formulation of the dependent random choice fitting the settings
encountered in our proof of Theorem 1.1 reads as follows.

Proposition 6.2. (Dependent random choice for hypergraphs) Let a,m, n, r be positive
integers and let H be an n-vertex hypergraph. If there exists a positive integer t such that

n1´2tδ1pHq
t

´

ˆ

n

r

˙ˆ

2m
npn ´ 1q

˙t

ě a (6.3)

holds, then there exists a subset U Ď V pHq of size |U | ě a such that epLHpSqq ě m for every
S P U prq.

Proof. Fix a positive integer t satisfying(6.3)and let tb1 “ tu1, v1u, . . . , bt “ tut, vtuu be t pairs
of vertices each chosen uniformly at random with replacement from V pHqp2q, independently
from one another. For every i P rts let NHpbiq “ tw P V pHq : tui, vi, wu P EpHqu and let

X “ |NHpb1, . . . , btq| “

ˇ

ˇ

ˇ

ˇ

t
č

i“1
NHpbiq

ˇ

ˇ

ˇ

ˇ

.

Then,

ErXs “
ÿ

vPV pHq

P
`

v P NHpbiq for every i P rts
˘

ě
ÿ

vPV pHq

ˆ

degHpvq

n2

˙t

ě n1´2tδ1pHq
t.

Any subset of vertices S Ď V pHq satisfies S Ď NHpb1, . . . , btq with probability at most
´

2epLH pSqq

npn´1q

¯t

. Consequently, ErY s ď
`

n
r

˘

´

2m
npn´1q

¯t

holds, where

Y “
ˇ

ˇ

␣

S P NHpb1, . . . , btq
prq : epLHpSqq ă m

(ˇ

ˇ .

Therefore

ErX ´ Y s ě n1´2tδ1pHq
t

´

ˆ

n

r

˙ˆ

2m
npn ´ 1q

˙t

ě a,

where the last inequality is owing to the assumption that t satisfies (6.3). It follows that the
required set U exists, thus concluding the proof of the proposition. □
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The assertion of Proposition 6.2 includes a restriction imposed on δ1pHq. This restriction
allows us to prove this proposition while avoiding the traditional appeal to Jensen’s inequality,
seen in the proof of the original formulation fitting the graph setting [28].

The following consequence of the dependent random choice for hypergraphs, namely
Proposition 6.2, is more inline with the formulation of the tuple property (Proposition 1.2).

Corollary 6.3. For every α, ϱ ą 0, and positive integer r, there exist n0 P N and β ą 0
such that the following holds whenever n ě n0. Let H be an n-vertex hypergraph satisfying
δ1pHq ě αn2. Then, there exists a subset U Ď V pHq of size |U | ě βn such that every member
S P U prq satisfies epLHpSqq ě n2´ϱ.

Proof. Set m “ n2´ϱ and t “ rr{ϱs. Then,

n1´2tδ1pHq
t

´

ˆ

n

r

˙ˆ

2m
npn ´ 1q

˙t

ě n1´2tαtn2t
´

ˆ

n

r

˙ˆ

3n2´ϱ

n2

˙t

ě αtn ´ Opnr´ϱt
q ě βn,

where β ą 0 is an appropriate constant. The assertion of Corollary 6.3 thus follows by
Proposition 6.2. □

We have attempted to replace the tuple property (Proposition 1.2) with Corollary 6.3 in the
proof of Theorem 1.1. This, however, has resulted in a higher edge probability for the random
perturbation. The main cause for this problem is an adaptation of [22, Theorem 2.10(iii)]
mandating that the random perturbation H „ Hp3qpn, pq a.a.s. satisfy the property by which
there exist constants β “ βptq ą 0 and C “ Cptq ą 0 such that H is p rK

p3q

t , rK
p3q

t{2 , n
´β1

q-Ramsey,
whenever 0 ă β1 ď β and p “ ppnq ě Cn´p1´β1q{Mt,t{2 .

6.2. Further research. As mentioned in the introduction, we conjecture that Theorem 1.1
uncovers the threshold for the emergence of monochromatic expanded cliques in randomly
perturbed dense hypergraphs and can be complemented as follows.

Conjecture 6.4. For every even integer t ě 6 there exist constants d, c ą 0, and there exists
a sequence of 3-uniform n-vertex hypergraphs pHnqnPN with epHnq ě dn3 for every n P N

such that
lim

nÝÑ8
P
`

Hn YHp3q
pn, pq ÝÑ p rK

p3q

t q
˘

“ 0 ,

whenever p ď cn´1{M for M “ m3
`

rK
p3q

t , rK
p3q

t{2
˘

.

Conjecture 6.4 may hold for t “ 4 as well. However, this value is excluded due to the distinct
behaviour seen in the graph case [22,53]. The proof of Theorem 1.1 presented here extends
for the asymmetric Ramsey property H ÝÑ p rK

p3q

t , rKp3q
s q for sufficiently large integers t ě s

and M replaced by m3
`

rK
p3q

t , rK
p3q

rs{2s

˘

. It seems plausible that the corresponding generalisation
of Conjecture 6.4 may also hold.
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[37] Y. Kohayakawa, M. Schacht, and R. Spöhel, Upper bounds on probability thresholds for asymmetric Ramsey
properties, Random Structures Algorithms 44 (2014), no. 1, 1–28, DOI 10.1002/rsa.20446. MR3143588
Ò1.1

[38] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, The regularity lemma and its applications
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Appendix A. Expanded cliques in randomly perturbed dense hypergraphs

In this section, we determine the threshold for the property rK
p3q

t Ď H Y Hp3qpn, pq,
whenever H is a dense hypergraph and show that it is smaller than n´1{mp rK

p3q

t q.

Proposition A.1. For every every integer t ě 4 the following holds.
(a ) For every d ą 0 and every sequence of 3-uniform n-vertex hypergraphs pHnqnPN with

epHnq ě dn3 for every n P N we have

lim
nÝÑ8

P
`

rK
p3q

t Ď H YHp3q
pn, pq

˘

“ 1 ,

whenever p " n´ 1
mprt{3sq .

(b ) There exists a constant d ą 0 and there exists a sequence of 3-uniform n-vertex
hypergraphs pHnqnPN with epHnq ě dn3 for every n P N such that

lim
nÝÑ8

P
`

rK
p3q

t Ď Hn YHp3q
pn, pq

˘

“ 0 ,

whenever p ! n´ 1
mprt{3sq .

A key tool in our proof of Proposition A.1 is a well-known result by Janson, regarding
random variables of the form X “

ř

APS IA. Here, S is a family of non-empty subsets of some
ground set Ω and IA is the indicator random variable for the event A Ď Ωp, where Ωp is the
so-called binomial random set arising from including every element of Ω independently at
random with probability p. For such random variables, set λ “ ErXs, and define

∆ “
1
2

ÿ

A,BPS
A‰B and AXB‰∅

ErIAIBs .

Janson’s inequality (see, e.g., [34, Theorem 2.18]) upper bounds the probability of nonexistence.

Theorem A.2. For X, λ, and ∆ as above we have PpX “ 0q ď exp
`

´ λ2

λ`2∆

˘

. □

Proof of Proposition A.1. Starting with the 0-statement in part (b ) of Proposition A.1. Let
t ě 4 be an integer and for every integer n, let Hn be the complete tripartite n-vertex
hypergraph with vertex set V1 Ÿ V2 Ÿ V3, where |V1| ď |V2| ď |V3| ď |V1| ` 1. Clearly Hn

satisfies the density assumption for d “ 1{27. If Hn Y Hp3qpn, pq contains a copy K of rKt,
then one of the parts of Hn, say V1, must contain at least rt{3s ě 2 of the branch vertices
of K. Since Hn is tripartite, any edge which connects any two branch vertices of K which are

https://doi.org/10.1017/s0963548307008553
http://www.ams.org/mathscinet-getitem?mr=2351688
http://www.ams.org/mathscinet-getitem?mr=540024
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both in V1, must be in Hp3qpn, pq. It follows that Hp3qpn, pq contains a copy of rKrt{3s. However,
the probability of the latter event is at most

ˆ

n

vp rKrt{3sq

˙

pep rKrt{3sq
“ op1q.

Next, we prove the 1-statement from part (a ) of Proposition A.1. Let r “ rt{3s, let H “ Hn

be a sufficiently large n-vertex dense hypergraph, and let R „ Hp3qpn, pq. Set s “ t2 and
let T s denote the complete tripartite hypergraph with each of its partition classes having
size s.

Claim A.3. Let T be a copy of T s with veretex-set V pT q “ V1 Ÿ V2 Ÿ V3. For every i P r3s,
let Ki be a copy of rKr satisfying V pKiq Ď Vi. Then, T YK1 YK2 YK3 contains a copy of rK3r.

Proof. For i P r3s, let vi
1, . . . , v

i
r denote the branch vertices of V pKiq and let Ai “ Vi ∖ V pKiq.

For every 1 ď i ă j ď 3, let kij denote the unique element of r3s ∖ ti, ju. For every
1 ď i ă j ď 3, let ψij : tvi

1, . . . , v
i
ru ˆ tvj

1, . . . , v
j
ru ÝÑ Akij

be an injection; such a function
exists since |Akij

| “ s ´ pr `
`

r
2

˘

q ě r2. For every 1 ď i ă j ď 3, let

Eij “
␣

tvi
a, v

j
b , ψijpvi

a, v
j
bqu : pa, bq P rrs ˆ rrs

(

.

Then, the sub-hypergraph of T Y K1 Y K2 Y K3, with edge set

EpK1q Y EpK2q Y EpK3q Y E12 Y E13 Y E23 ,

forms a copy of rK3r. ■

Claim A.4. Let γ ą 0 be a constant, let N ě γn3s be an integer, and let T1, . . . , TN be
pairwise distinct copies of T s in H. For every i P rN s, let V i

1 Ÿ V i
2 Ÿ V i

3 denote the vertex set
of Ti. Then, a.a.s. there exists an i P rns such that rKr Ď RrV i

j s for every j P r3s.

Proof. Let K3
n denote the complete 3-graph with vertex set rns. Let F be the 3-graph

consisting of three pairwise vertex disjoint copies of rKr; note that mpF q “ mp rKrq. Let F be
the family of labelled copies F 1 of F in K3

n for which there exists an index i P rN s such that
rKr Ď F 1rV i

j s for every j P r3s; in this case F 1 is said to be included in Ti. Note that, for every
i P rN s, at least one element of F is included in Ti. Moreover, every member of F is included in
at most

`

n
s´vp rKrq

˘3
“ Opn3s´3vp rKrqq of the Ti’s. We conclude that |F | “ Θpn3vp rKrqq “ ΘpnvpF qq.

For every F 1 P F , let ZF 1 be the indicator random variable for the event F 1 Ď Hp3qpn, pq. For
the random variable XF “

ř

F 1PF ZF 1 we aim to prove that PpXF “ 0q “ op1q. Note that

λ “ EpXF q “
ÿ

F 1PF
pepF 1q

“ |F |pepF q
“ ΘpnvpF qpepF q

q “ ωp1q.
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Writing Fi „ Fj whenever pFi, Fjq P F ˆ F are distinct and not edge disjoint, we obtain

∆pF q “
ÿ

pFi,FjqPFˆF
Fi„Fj

ErZFi
ZFj

s “
ÿ

pFi,FjqPFˆF
Fi„Fj

pepFiq`epFjq´epFiXFjq

“
ÿ

JĹF
epJqě1

ÿ

pFi,FjqPFˆF
FiXFj–J

p2epF q´epJq
“ OF

˜

n2vpF qp2epF q
¨
ÿ

JĹF
epJqě1

n´vpJqp´epJq

¸

“ opλ2
q , (A.1)

where the last equality follows since nvpJqpepJq “ ωp1q holds for every J Ĺ F with at least one
edge, by the choice of p and the definition of mpF q “ mp rKrq.

It then follows by Theorem A.2 that

PpXF “ 0q ď exp
ˆ

´
λ2

λ ` ∆pF q

˙

“ op1q ,

which concludes the proof of Claim A.4 ■

Returning to the main thread of the proof of the 1-statement of Proposition A.1, note
that H is dense and the Turán density of T s is zero (see, e.g., [27,35]). Hence, H admits Ωpn3sq

distinct copies of T s. Therefore, it follows by Claim A.4 that a.a.s. there exists a copy T of T s

in H, with vertex set V1 Ÿ V2 Ÿ V3, such that RrVis contains a copy Ki of rKr for every i P r3s.
It then follows by Claim A.3 that rKt Ď rK3r Ď T Y K1 Y K2 Y K3. □
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