
TIGHT HAMILTONICITY FROM DENSE LINKS OF TRIPLES

RICHARD LANG, MATHIAS SCHACHT, AND JAN VOLEC

Abstract. We show that for all k ě 4, ε ą 0, and n sufficiently large, every k-uniform
hypergraph on n vertices in which each set of k ´3 vertices is contained in at least p5{8`εq

`

n
3
˘

edges contains a tight Hamilton cycle. This is asymptotically best possible.

§1 Introduction

Our starting point is Dirac’s theorem, which states that any graph G on n ě 3 vertices and
minimum degree δpGq ě n{2 contains a Hamilton cycle. Moreover, the constant 1{2 is best
possible as exhibited by simple constructions.

Over the past twenty-five years, this result has been extended to the hypergraph setting.
Formally, a k-uniform hypergraph (k-graph for short) G has a set of vertices V pGq and a set of
edges EpGq, where each edge consists of k vertices, and we denote the number of edges |EpGq|

by epGq. For 1 ď d ď k ´ 1, the minimum d-degree of G, denoted δdpGq, is the maximum
m such that every set of d vertices is contained in at least m edges. A tight cycle C Ď G

is a subgraph whose vertices are cyclically ordered such that every k consecutive vertices
form an edge. Moreover, C is Hamilton if it spans all the vertices of G. We define the Dirac
constant ℏpkq

d as the (asymptotic) minimum d-degree threshold for tight Hamiltonicity. More
precisely, ℏpkq

d is the infimum ς P r0, 1s such that for every ε ą 0 and n sufficiently large,
every n-vertex k-graph G with δdpGq ě pς ` εq

`

n´d
k´d

˘

contains a tight Hamilton cycle. So for
example, Dirac’s theorem implies that ℏp2q

1 “ 1{2.
Minimum d-degree thresholds for tight Hamilton cycles were first investigated by Katona

and Kierstead [14], who observed that ℏpkq

k´1 ě 1{2 for all k ě 2 and conjectured this to be
tight (see Figure 1). This conjecture was resolved by Rödl, Ruciński, and Szemerédi [22,23] by
introducing the absorption method in this setting. Since then the focus has shifted to degree
types d below k´1. After advances for nearly spanning cycles by Cooley and Mycroft [3], it was
shown by Reiher, Rödl, Ruciński, Schacht, and Szemerédi [21] that ℏp3q

1 “ 5{9, which resolves
the case of d “ k ´ 2 when k “ 3. Subsequently, this was generalised to k “ 4 [19] and finally,
Polcyn, Reiher, Rödl, and Schülke [20] and, independently, Lang and Sanhueza-Matamala [15]
established ℏpkq

k´2 “ 5{9 for all k ě 3.
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Figure 1. The picture shows a 3-graph on the left and a 4-graph on the right. Both
hypergraphs have their vertex sets partitioned into two parts of equal size. The drawn edges
indicate that the graphs contain all edges of this type. The colours highlight the respective
tight components. Since any tight cycle is either red or blue, neither of the hypergraphs
admits a tight Hamilton cycle. This gives a lower bound for the corresponding minimum
degree thresholds. Indeed, the 3-graph has a relative minimum 2-degree close to 1{2, while
the 4-graph has relative minimum 1-degree close to 5{8.

We focus on the case d “ k ´ 3. Han and Zhao [12] provided a construction that shows
ℏpkq

k´3 ě 5{8 (see Figure 1), which is believed to be optimal. Our main result confirms this
conjecture.

Theorem 1.1. For every k ě 4 and ε ą 0, there is n0 such that every k-graph G on n ě n0

vertices with δk´3pGq ě p5{8 ` εq
`

n
3

˘

contains a tight Hamilton cycle.

In the following section, we give an outline of the argument and reduce Theorem 1.1 to two
lemmata, whose proofs are given in Sections 3 and 4. We conclude with a discussion and a
few open problems in Section 5.

§2 From Dirac to Erdős–Gallai

Let us recall two classic problems from extremal combinatorics. The first one is Erdős’
Matching Conjecture [4], which predicts the size of a largest matching we are guaranteed to
find in a k-graph with a given number of vertices and edges. A matching is a subgraph with
pairwise disjoint edges.

Conjecture 2.1. Let G be a k-graph on n vertices that does not contain a matching of more
than s edges. Then

epGq ď max
"ˆ

ps ` 1qk ´ 1
k

˙

,

ˆ

n

k

˙

´

ˆ

n ´ s

k

˙*

.

The conjecture was resolved by Erdős and Gallai [5] for k “ 2 and for k “ 3 by  Luczak and
Mieczkowska [18] (when n is large) and Frankl [7] (for all n). The second problem concerns
the Erdős–Gallai Theorem [5], which tells us the size of a longest cycle in a graph of given
density. This problem has a natural extension to tight cycles in hypergraphs, and it was first
studied by Győri, Katona, and Lemons [11] and Allen, Böttcher, Cooley, and Mycroft [1].
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How are these questions related to Dirac-type problems? The idea is to study the internal
structure of the neighbourhoods. Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [2]
showed that the problem of determining the minimum d-degree threshold for k-uniform perfect
matchings can be reduced to a special case of Erdős’ Matching Conjecture for pk ´ dq-graphs,
applied to the pk ´ dq-uniform link hypergraphs. Analogously, it was shown by Lang and
Sanhueza-Matamala [15] that the problem of determining the minimum d-degree threshold
for k-uniform tight Hamilton cycles can be reduced to an Erdős–Gallai-type question for
pk ´ dq-uniform link hypergraphs.

Using a standard machinery [1], we can decompose the problem further. For a k-graph G,
let G∗ be the dual graph on the vertex set EpGq with an edge ef whenever |e X f | “ k ´ 1. A
subgraph H Ď G without isolated vertices is said to be tightly connected if EpHq induces a
connected subgraph in G∗. Moreover, we refer to edge maximal tightly connected subgraphs
as tight components.

Theorem 2.2 (Lang and Sanhueza-Matamala [15, Theorem 11.5]). Suppose for every ε ą 0,
there are γ ą 0 and n0 such that every 3-graph G on n ě n0 vertices with epGq ě p5{8 ` εq

`

n
3

˘

contains a subgraph C Ď G such that
(i ) C is tightly connected,

(ii ) epCq ě p1{2 ` γq
`

n
3

˘

, and
(iii ) C has a matching of size at least p1{4 ` γqn.

Then ℏpkq

k´3 “ 5{8 for every k ě 4. □

Against this backdrop, our argument proceeds as follows. Let G be an n-vertex 3-graph
with epGq ě p5{8 ` εq

`

n
3

˘

. In a first step, we establish the existence of a tight component
C Ď G that satisfies conditions (i ) and (ii ) of Theorem 2.2.

Lemma 2.3 (Connection). For all ε ą 0, there exists n0 such that every 3-graph G on n ě n0

vertices with epGq ě p5{8 ` εq
`

n
3

˘

contains a tight component C Ď G with epCq ě p1{2 ` εq
`

n
3

˘

.

We then show that any such tight component C provided by Lemma 2.3 contains a large
matching satisfying condition (iii ) of Theorem 2.2.

Lemma 2.4 (Matching). For all ε ą 0, there exist γ ą 0 and n0 such that every 3-graph G on
n ě n0 vertices with epGq ě p5{8`εq

`

n
3

˘

and a tight component C Ď G with epCq ě p1{2`εq
`

n
3

˘

contains a matching M Ď C of size at least p1{4 ` γqn.

The proof of Lemma 2.3 can be found in the next section. It is an easy consequence
of a Kruskal–Katona-type result obtained, independently, by Frankl, Kato, Katona, and
Tokushige [8] and by Huang, Linial, Naves, Peled, and Sudakov [13]. For the proof of
Lemma 2.4, presented in Section 4, we adapt a strategy of  Luczak and Mieczkowska [18] from
their proof of Erdős’ Matching Conjecture for 3-graphs.
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§3 The connection lemma

We start by stating the aforementioned Kruskal–Katona-type result of Frankl, Kato, Katona,
and Tokushige [8] and Huang, Linial, Naves, Peled, and Sudakov [13]. We denote the complete
graph on n vertices by Kn.

Theorem 3.1. For every ε ą 0, there exists n0 such that for every n ě n0 the following holds.
Suppose that the edges of a subgraph of Kn are coloured red and blue such that there are at
least

`

n
3

˘

{8 monochromatic triangles in each colour. Then there are fewer than p5{8 ` εq
`

n
3

˘

monochromatic triangles all together. □

Below we derive Lemma 2.3 from Theorem 3.1.

Proof of Lemma 2.3. For given ε ą 0, we set n0 according to Theorem 3.1. Let G be a
3-graph on n ě n0 vertices with epGq ě p5{8 ` εq

`

n
3

˘

. Without loss of generality, we may
assume ε ă 1{16 and epGq ď p5{8 ` 2εq

`

n
3

˘

.
Let C1, . . . , Cℓ be the tight components of G with epC1q ě ¨ ¨ ¨ ě epCℓq. Aiming for a

contradiction, we impose that epC1q ă p1{2 ` εq
`

n
3

˘

. We shall group the tight components
of G into a partition R Ÿ B “ EpGq such that

max
␣

|B|, |R|
(

ă

´1
2 ` ε

¯

ˆ

n

3

˙

(3.1)

and no edge of R intersects with any edge of B in more than one vertex. Indeed, considering
the smallest integer i such that

epC1q ` ¨ ¨ ¨ ` epCiq ě

´1
2 ` ε

¯

ˆ

n

3

˙

and recalling the upper bound on epGq tells us

epCi`1q ` ¨ ¨ ¨ ` epCℓq ď

´1
8 ` ε

¯

ˆ

n

3

˙

.

Note that epCiq ă p3{8q
`

n
3

˘

, since otherwise the monotonicity of epCjq combined with the upper
bound epGq ď p5{8 ` 2εq

`

n
3

˘

implies i “ 1, which contradicts the choice of i. Consequently,
R “ EpC1q Y ¨ ¨ ¨ Y EpCi´1q and B “ EpCiq Y ¨ ¨ ¨ Y EpCℓq form the desired partition
R Ÿ B “ EpGq.

Now observe that inequality (3.1) and the given lower bound epGq ě p5{8 ` εq
`

n
3

˘

yields

1
8

ˆ

n

3

˙

ď min
␣

|B|, |R|
(

.

From this, we derive an edge-colouring of Kn by giving an edge colour red if it is contained
in a triple of R and colour blue if it is contained in a triple of B. (The remaining edges
are coloured arbitrarily.) By Theorem 3.1 it follows that there are fewer than p5{8 ` εq

`

n
3

˘

monochromatic triangles. But this contradicts the assumption that epGq ě p5{8 ` εq
`

n
3

˘

. □



TIGHT HAMILTONICITY FROM DENSE LINKS OF TRIPLES 5

§4 The matching lemma

In this section, we establish Lemma 2.4. We proceed by studying the extremal function
for matchings hosted by a largest tight component in a 3-graph G. If G has edge density
above 5{8, then we are guaranteed by Lemma 2.3 a tight component C of density at least 1{2.
Applying Erdős’ Matching Conjecture (Conjecture 2.1) to C gives a matching of size at least
p1 ´ 2´1{3qn « 0.206n, which does not suffice for the aspirations set in Lemma 2.4. However,
this näıve approach turns out to be suboptimal, because there might be edges in G that lie
outside of C, which contribute indirectly to the size of a largest matching by obstructing
the space. The extremal constructions arising from these restrictions are no longer captured
by Erdős’ Matching Conjecture, and we thus require a more nuanced analysis to deduce
Lemma 2.4.

In Section 4.1 we formulate the corresponding extremal problem, and we reduce Lemma 2.4
to it (see Lemma 4.2). The rest of Section 4 is devoted to the proof of Lemma 4.2. The
proof is based on the approach of  Luczak and Mieczkowska [18] to show the Erdős’ Matching
Conjecture for 3-graphs. In particular, we also employ the shifting technique, which is
described in Section 4.2.

4.1. Extremal function for matchings in tight components. We write mpRq for the
size of a largest matching in a 3-graph R. We call 3-graphs R and B distinguishable if the
edges of R and B only intersect in single vertices. So in particular, distinct tight components
are distinguishable.

Definition 4.1. We define Gpn, s, tq as the family of all pairs pR, Bq such that R and B are
distinguishable 3-graphs on the vertex set t1, . . . , nu with mpRq ď s and epRq ą t.

Moreover, we define the extremal number

µpn, s, tq “ max
␣

epR Y Bq : pR, Bq P Gpn, s, tq
(

,

and we denote the family of extremal pairs by

Mpn, s, tq “
␣

pR, Bq P Gpn, s, tq : epR Y Bq “ µpn, s, tq
(

.

In view of Lemma 2.4, we are interested in µpn, s, tq for s « n{4 and t «
`

n
3

˘

{2, which is
rendered by the main lemma of this section.

Lemma 4.2. For each γ ą 0, we have µ
`

n, n{4,
`

n
3

˘

{2
˘

ď p5{8 ` γq
`

n
3

˘

for sufficiently large n.

Below we deduce Lemma 2.4 as a simple consequence of Lemma 4.2 and, consequently, for
the proof of Theorem 1.1 it then only remains to establish Lemma 4.2.

Proof of Lemma 2.4. For a given ε ą 0, we set γ “ ε{11 and let n0 be sufficiently large.
Given G and a tight component C satisfying the assumptions of Lemma 2.4, we first fix an
arbitrary matching M 1 Ď C of size γn.
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Set R “ C ´ V pM 1q, and let B be obtained from G ´ V pM 1q by deleting all edges of R.
After adding isolated vertices, we can assume that R and B are 3-graphs on the vertex
set t1, . . . , nu with epRq ą epBq and

epR Y Bq ě epGq ´ 3γn ¨

ˆ

n

2

˙

ě

´5
8 ` ε ´ 10γ

¯

ˆ

n

3

˙

“

´5
8 ` γ

¯

ˆ

n

3

˙

for sufficiently large n. Moreover, R and B are distinguishable, since C is a tight component.
It follows that R contains a matching M2 of size n{4 by Lemma 4.2 and M “ M 1 Y M2 is
the desired matching in C. □

4.2. Shifting. For a k-graph G with i, j P V pGq, the pi, jq-shift of G, denoted by ShiÑjpGq,
is obtained from G by replacing each edge e P EpGq with

f “ pe ∖ tiuq Y tju

provided that
i P e , j R e and f R EpGq .

We mainly consider 3-graphs here. However, we will also study the shadow BG of a 3-graph G,
defined as the 2-graph on V pGq containing an edge e P EpBGq whenever there is a triple
f P EpGq with e Ď f . In our analysis for the proof of Lemma 4.2, we shall use the relation
of shifted 3-graphs and its shadow, and for that we defined the pi, jq-shift for k-graphs in
general. Below we collect the basic facts about shifted 3-graphs for our proof. For a more
comprehensive review we refer to the survey of Frankl [6] and the monograph of Frankl and
Tokushige [9].

Lemma 4.3. For every 3-graph G with i, j P V pGq and distinguishable subgraphs R, B Ď G,
the following holds:

(a ) epShiÑjpGqq “ epGq,
(b ) mpShiÑjpGqq ď mpGq, and
(c ) ShjÑipRq and ShiÑjpBq are distinguishable.

Proof. Assertion (a ) follows from the definition of an pi, jq-shift and property (b ) is a well
known fact [18, Lemma 3].

For the proof of (c ), we assume by contradiction that there are edges e P EpShjÑipRqq and
f P EpShiÑjpBqq with |e X f | ě 2. Since R and B are distinguishable, we may assume by
symmetry that e R EpRq, writing e “ uvi and e1 “ uvj P EpRq.

If uv Ď f , then there would be an edge uvw P EpBq for some w P V pGq, which contradicts
the distinguishness of R and B. Consequently, without loss of generality we have f “ u1vi

for some u1 ‰ u. If u1 “ j, then f is also an edge of B, and f and e1 contradict the
distinguishability of R and B. In the remaining case u1 ‰ j, we arrive at u1vj P EpBq, which
again contradicts the assumed distinguishedness. □
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As usual we shall study 3-graphs (and their shadow), which are fully shifted in one direction.
More precisely, we say a k-graph G on the vertex set t1, . . . , nu is left-shifted if ShjÑipGq “ G

for all i ă j and, similarly, it is right-shifted if ShiÑjpGq “ G for all i ă j. It is easy to
see that we can obtain a left-shifted k-graph from any given G after a finite sequence of
pj, iq-shifts with i ă j. Combining this fact with Lemma 4.3 tells us that there are shifted
extremal examples in Mpn, s, tq.

Corollary 4.4. For all integers n, s, and t there is a pair pR, Bq P Mpn, s, tq such that R

and BR are left-shifted, while B and BB are right-shifted.

Proof. Consider an arbitrary pair pR1, G1q P Mpn, sq and let 1 ď i ă j ď n. It follows
from Lemma 4.3 (a )–(c ) that

`

ShjÑipR
1q, ShiÑjpB1q

˘

is also in Mpn, s, tq. Since the degree
of the vertex j in ShjÑipR

1q is smaller than in R1 if R1 ‰ ShjÑipR
1q and, similarly, the

degree increases in ShiÑjpB1q if B1 ‰ ShiÑjpB1q, it follows that after a finite sequence of
such simultaneous pj, iq- and pi, jq-shifts in the respective subgraphs, we arrive at a pair
pR, Bq P Mpn, s, tq with R being left-shifted and B being right-shifted.

Finally, let us argue that BR is left-shifted. To this end, consider i ă j and vj P EpBRq.
Consequently, there is some vertex u such that uvj P EpRq. Since R is left-shifted, we have
either have u “ i or uvi P EpRq, but in both cases we arrive at vi P EpBRq, and this shows
that BR is left-shifted indeed. The argument for BB follows analogously. □

4.3. Integrality. In the proof of Lemma 4.2, we consider weighted graphs and the case
analysis will be simplified by moving from arbitrary weights to integer weights. For that we
shall appeal to Kőnig’s theorem for bipartite graphs in the form stated below. A fractional
independent set in a graph F is a function ι : V pF q ÝÑ r0, 1s such that ιpuq ` ιpvq ď 1 for
all edges uv of F . The size of ι is

ř

vPV pF q
ιpvq. We denote by α˚pF q the maximum size

of a fractional independent set in F . Since every independent set in F can be interpreted
as a fractional independent set taking integral values, it follows that α˚pF q is at least the
independence number αpF q. For bipartite graphs, this turns out to be tight.

Theorem 4.5 (Kőnig’s theorem). Every bipartite graph F has α˚pF q “ αpF q. □

4.4. Optimisation. In the proof of Lemma 4.2 we repeatedly evaluate a certain function.
To this end, we formulate the following remark that can be easily verified.

Fact 4.6. For σ ą 0, let β “ 1{σ ´ 3 and fs,p,tpσq “ σ3 pβ3 ` sβ2 ` pβ ` tq. We have
fs,p,tpσq ď 5{8 for 1 ´ 2´1{3 ď σ ď 1{4 and any triple of coefficients ps, p, tq among p6, 10, 23q,
p6, 11, 22q, p6, 12, 21q, p7, 8, 21q, p9, 3, 27q, p9, 7, 21q, and p9, 9, 17q.

4.5. Proof of Lemma 4.2. For a (not necessarily uniform) hypergraph H and subsets S,
W Ď V pGq, we denote by degHpS; W q the number of edges S Y Y in H with Y Ď W . To
emphasise (or specify) the uniformity of an edge in a hypergraph, we sometimes speak of an
(unordered) triple, pair or singleton.
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Proof of Lemma 4.2. Given γ ą 0, let n be sufficiently large and consider a distinguishable
pair pR, Bq P Mpn, n{4,

`

n
3

˘

{2q. We have to show that epR Y Bq ď p5{8 ` γq
`

n
3

˘

.
By Corollary 4.4 we can assume that R, BR are left-shifted, while B, BB are right-

shifted. We refer to the edges of R, BR and B, BB as red and blue, respectively. Let
M “ tpiℓ, jℓ, kℓq : 1 ď ℓ ď su be a largest matching in R with iℓ ă jℓ ă kℓ for each ℓ. By the
solution of Erdős’ Matching Conjecture (Conjecture 2.1) for 3-graphs [7, 18], we can assume
that s “ σn for some σ satisfying

`

1 ´ 2´1{3˘
ď σ ď

1
4 .

We partition the vertex set of M into three parts

V pMq “ I Y J Y K

such that for every edge pi, j, kq P M , we have i P I, j P J , and k P K. A set of vertices is
called crossing if it contains at most one vertex of every matching edge of M . (This includes
singletons, naturally.)

The remainder of the argument proceeds by analysing the local configurations of the
matching M . More precisely, we give an upper bound to the number of edges each triple of
matching edges may intersect with. By double counting, this allows us to bound the number
of edges in R Y B.

We define an auxiliary hypergraph H as follows. Denote by W the set of vertices that are
not covered by M . Obviously, none of the edges of R are contained in W . Let H be the
(non-uniform) hypergraph on V pMq with edge set M Y E1 Y E2 Y E3, where

E1 “ tu : degRpu; W q ě 20nu ,

E2 “ tuv : uv is crossing and degRpuv; W q ě 20u ,

E3 “ tuvw : uvw is crossingu .

Note that since R is left-shifted, the hypergraphs with edges E1, E2, and E3 are each left-
shifted as well, due to the monotonicity of the degrees. So for instance, i1j2 P E2 implies that
i1i2 P E2. We call an edge e of R supported if e X V pMq P EpHq. Observe that the number
of unsupported edges of R is at most quadratic in n. Hence, this number can be bounded
by γ

3

`

n
3

˘

for sufficiently large n, which allows us to ‘ignore’ the unsupported edges. We shall
track the following relative degrees

degRpuq “
degRpu; W q

`

|W |

2

˘ , degRpuvq “
degRpuv; W q

|W |
,

degBpuq “
degBpu; W q

`

|W |

2

˘ , degBpuvq “
degBpuv; W q

|W |
.

Now consider a triple T of matching edges from M . We denote the crossing subsets of V pT q

by crpT q. Observe that every singleton of V pMq appears in exactly
`

|M |´1
2

˘

such triples, while
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every crossing pair of V pMq appears in exactly |M | ´ 2 such triples. Moreover, every crossing
triple appears of course only in a single triple. This leads to the following definitions

e1pT q “

`

|W |

2

˘

`

|M |´1
2

˘

ÿ

uPcrpT q

degRpuq ` degBpuq ,

e2pT q “
|W |

|M | ´ 2
ÿ

uvPcrpT q

degRpuvq ` degBpuvq ,

e3pT q “ |crpT q X EpR Y Bq| .

Given this setup, we double count the edges of R Y B along the triples T of matching edges
from M to obtain

epR Y Bq ď
ÿ

T PpM
3 q

`

e1pT q ` e2pT q ` e3pT q
˘

`

ˆ

|W |

3

˙

`
γ

3

ˆ

n

3

˙

“
ÿ

T PpM
3 q

ˆ

e1pT q ` e2pT q ` e3pT q `

`

|W |

3

˘

`

|M |

3

˘

˙

`
γ

3

ˆ

n

3

˙

ď
ÿ

T PpM
3 q

ˆ

e1pT q ` e2pT q ` e3pT q `

´ 1
σ

´ 3
¯3
˙

`
γ

2

ˆ

n

3

˙

,

where we used |M | “ σn and |W | “ p1 ´ 3σqn in the last inequality.
For the remainder, it suffices to show that e1pT q`e2pT q`e3pT q`p1{σ´3q3 ď p5{8 ` γ{3q {σ3

for every triple T of matching edges in M . Indeed, for sufficiently large n, this leads to our
desired bound

epR Y Bq ď

ˆ

5
8 `

γ

3

˙

1
σ3

ˆ

|M |

3

˙

`
γ

2

ˆ

n

3

˙

ď

ˆ

5
8 `

5
6γ

˙ˆ

n

3

˙

. (4.1)

Unfortunately, not every triple of matching edges abides, since some of them may exhibit a
rather extrovert degree structure. We capture this by calling a triple T expanding, if V pT q

contains three pairwise disjoint edges of H whose union intersects I in at most 2 vertices,
and steady otherwise. Fortunately, it turns out that there cannot be too many expanding
triples due to the maximality of the matching, which was already observed by  Luczak and
Mieczkowska [18, Claim 4]. We note that they call expanding triples bad and steady triples
good. For the sake of completeness, let us spell out their argument.

Claim 4.7. No three disjoint triples are expanding.

Proof. Suppose that there exist 9 disjoint edges tpiℓ, jℓ, kℓq : 1 ď ℓ ď 9u Ď M such among
their vertices one can find a set of 9 pairwise disjoint edges H 1 Ď H, which do not cover the
vertices i3, i6, and i9.

Without loss of generality we may assume that i3 is the minimum among i3, i6, and i9.
So in particular, we have i6 ă i9 ă j9 ă k9. Since e “ i9j9k9 is an edge of the left-shifted
hypergraph R, it follows that e1 “ i6i9j9 is also an edge of R by considering an pk9, i6q-shift
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for e. Similarly, the fact that i3 ă i6 ă i9 ă j9 and considering an pj9, i3q-shift of e1 tells us
that e2 “ i3i6i9 is in R. Therefore, we find 10 pairwise disjoint edges H2 “ H 1 Y te2u Ď H.

Furthermore, since edges from E1 Y E2 have large degrees, all edges from H2 which belong
to E1 Y E2 can be simultaneously extended to disjoint edges of R by adding to them vertices
from W . But this would lead to a matching M 1 of size |M | ` 1 in R contradicting the
assumption pR, Bq P M3pn, n{4,

`

n
2

˘

{2q. □

As a consequence of Claim 4.7, there exist six or fewer edges in the matching M such that
each expanding triple contains one of these edges. Given the slack in our estimate (4.1), we
can hence focus on steady triples. For the remainder of the argument, we may therefore fix a
steady triple

T “ tM1, M2, M3u

of matching edges in M that maximises the sum e1pT q ` e2pT q ` e3pT q and reaffirm our goal
to show

σ3`e1pT q ` e2pT q ` e3pT q
˘

` p1 ´ 3σq
3

ď
5
8 `

γ

3 . (4.2)

We begin with two structural observations. The first is a simple consequence of shiftedness.

Claim 4.8. Every crossing pair of I Y J is an edge of BR. Moreover, for any two matching
edges piℓ, jℓ, kℓq and pip, jp, kpq of M with kℓ ă kp, the edges of BB between the two form a
star centred in kp.

Proof. Since kℓ ă kp, the edge jpkℓ is in BR. (Otherwise, we could perform a pkp, kℓq-shift
on BR replacing jpkp with jpkℓ.) Since BR is left-shifted, it follows that jℓjp, iℓjp, ipjℓ, and iℓip

are also in BR. Note that this implies in particular that the only possible edges of BB are
incident to kp. □

The next observation, proved by  Luczak and Mieczkowska [18, Claim 5], is a consequence
of steadiness.

Claim 4.9. The singletons of H are in I. Moreover, H has at most 5 pairs between any two
matching edges of T with equality if and only if all 5 pairs intersect I.

Proof. For the first part, let j1 ă j2 ă j3 and assume that E1 X V pT q is not a subset of I.
Then, since the singletons of H are shifted to the left, i1, j1 P E1, and T is an expanding
triple because of the edges i1, j1, and i2j2k2, a contradiction.

Let us assume by contradiction that 6 pairs of H are contained in ti1, j1, k1, i2, j2, k2u. Then
j1j2 P E2 and at least one of the edges i1k2 or i2k1 is in E2, say it is i1k2. Then, T is expanding
because of the edges j1j2, i1k2, and i3j3k3. □

Next, we argue that the relative degrees appearing in the expressions e1pT q and e2pT q

can be assumed to take integral values (see Claim 4.11 below). To this end, we record the
following constraints, which come from the fact that R and B are distinguishable.
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Claim 4.10. For u, v, w P V pT q, we have

degRpuq ` degBpvq ď 1 , degRpuvq ` degBpuq ď 1 ,

degRpuq ` degBpuwq ď 1 , degRpuvq ` degBpuwq ď 1 .

Proof. We focus on the first case, the others follow similarly. Note that since R and B are
distinguishable, there are no two vertices x, y such that uxy is in R and vxy is in B. So in
particular, degRpu; W q ` degBpv; W q ď

`

|W |

2

˘

, which gives degRpuq ` degBpvq ď 1. □

To simplify the analysis, we assume that the functions degRp¨q and degBp¨q only have
to satisfy the constraints of Claim 4.10. Moreover, in the case that degRpuvq|W | ă 20
or degRpuq

`

|W |

2

˘

ă 20n, we set these two values to be zero. To account for the error arising
from this perturbance, we mildly amplify our ambitions to bounding the right side of (4.2)
with 5{8 ` γ{4.

Claim 4.11. We can assume that degRp¨q and degBp¨q take values 0 and 1.

Proof. Let us introduce a bipartite graph F that captures the constraints of Claim 4.10. The
vertices of F consist of red and blue copies of each crossing pair and vertex of T . We put
an edge between a red and a blue vertex in F , if the corresponding objects in T are related
via one of the constraints of Claim 4.10. Define a function ι : V pF q ÝÑ r0, 1s by setting
ιpxq “ degRpxq for red vertices and ιpxq “ degBpxq for blue vertices. Note that ι is a fractional
independent set in F . We conclude the argument by Kőnig’s theorem (Theorem 4.5). □

For the remainder of the proof, we assume that degRp¨q and degBp¨q take integral values.
In preparation for the conclusive structural analysis, we define a red and blue edge-coloured
(non-uniform) hypergraph Q on vertex set V pT q whose edges are contained in the crossing
singletons, pairs, and triples of T . Specifically, a singleton u is red if degRpuq “ 1 and blue if
degBpuq “ 1. Similarly, a pair uv is red if degRpuvq “ 1 and blue if degBpuvq “ 1. Lastly, a
triple uvw is red if uvw P EpRq and blue if uvw P EpBq.

For 1 ď r ď 3, we denote the number of edges of uniformity r in Q, regardless of their
colour, by erpQq. So in particular, e3pQq “ e3pT q. Note that the red edges of Q are shifted to
the left, and the blue edges of Q are shifted to the right. Let us emphasise that red and blue
triples in Q intersect in at most one vertex. Moreover, Claim 4.10 translates to the following
observation.

Remark 4.12. Red and blue pairs do not intersect at all, red singletons are not contained in
blue pairs (same with reversed colours) and Q cannot have both a red and a blue singleton.

Recall the definitions of e1pT q, e2pT q, and e3pT q. We set

β “
1 ´ 3σ

σ
ě 1 ,

where the lower bound follows from σ ď 1{4.
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Since |M | “ σn, |W | “ p1 ´ 3σqn, and n is large, we may approximate
`

|W |

2

˘

`

|M |´1
2

˘ ď β2
`

γ

8 ¨ 9 and |W |

|M | ´ 2 ď β `
γ

8 ¨ 27 .

We therefore have e1pT q ` e2pT q ` e3pT q ď β2e1pQq ` βe2pQq ` e3pQq ` γ{4, and this allows
us to recontextualise our mildly amplified goal (4.2) to

σ3 `β3
` β2e1pQq ` βe2pQq ` e3pQq

˘

ď
5
8 . (4.3)

We count the edges of Q by focusing on the structure between two matching edges at a
time. For a pair pMi, Mjq of distinct matching edges in T , let QpMi, Mjq be the subgraph
of Q on vertex set Mi Y Mj , which only contains those singletons of Q that are in Mi and all
pairs of Q between Mi and Mj. Then

epQq “ epQpM1, M2qq ` epQpM2, M3qq ` epQpM3, M1qq ` e3pQq .

To study these terms, let us denote Mℓ “ piℓ, jℓ, kℓq for 1 ď ℓ ď 3.

Claim 4.13. We have epQpMi, Mjqq ď 6 for each i ‰ j.

Proof. We focus on the pair pM1, M2q and abbreviate Q1 “ QpM1, M2q. By Claim 4.9, there
are at most 5 red pairs between in Q1, while the only possible red singleton of Q1 is i1 (due
to the one-sided definition). Moreover, by Claim 4.8 the blue pairs form a star centered
in k1 or k2. So in particular k1k2 is a blue pair if Q1 has at least one blue pair, due to
right-shiftedness. Moreover, there are at most 3 blue pairs and (trivially) at most 3 blue
singletons in Q1. We also note that due to Remark 4.12, there is no red pair that intersects
with a blue pair and all singletons of Q1 have the same colour.

Suppose first that all pairs of Q1 are monochromati Should they be blue, then we have
epQ1q ď 3`3 by the above. If they are red, then we are done as long as Q1 has only 1 singleton
as there are at most 5 red pairs. On the other hand, if Q1 has 2 or 3 singletons (which then
must be blue), it follows that Q1 has at most 3 or 0 red edges, respectively.

So we can assume that there is a red pair and a blue pair and, in particular, 3 blue singletons
are impossible. Due to shiftedness, it follows that i1i2 is red and k1k2 is blue. So there are at
most 4 red pairs, all of which are contained in I Y J . If Q1 has at most 1 singleton, we are
done. On the other hand, if Q1 has 2 singletons (which then must be blue), it follows that Q1

has at most 2 red edges and at most 2 blue edges and this completes the proof. □

Without loss of generality, we assume for the rest of the proof that k1 ă k2 ă k3.

Claim 4.14. Each of the blue triples of Q contains both k2 and k3. In particular, Q has at
most 3 blue triples.

Proof. By Claim 4.8 all edges of BB between pairs of M1, M2, and M3 are incident with k2

or k3. So a blue triple that does contain only one of k2 and k3 would yield a blue shadow
edge that contradicts this. □
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Claim 4.15. We have the following:
(1 ) If BB has at least 2 pairs in T , then e3pQq ď 22.
(2 ) If BB has at least 3 pairs in T , then e3pQq ď 21.
(3 ) If BB has at least 8 pairs in T , then e3pQq ď 17.

Proof. The claim follows by simply counting how many red triples are forbidden by a blue
shadow pair. Obviously, one such pair excludes 3 red triples and two such pairs exclude 5 or 6
red triples depending on whether the blue pairs are contained in a crossing triple of vertices
or not, and part (1 ) follows.

The same reasoning reveals that three blue shadow pairs exclude at least 7 red triples.
Consequently, in case there is at most one blue triple, then we have at most 27 ´ 7 ` 1 “ 21
crossing triples in Q in total. In the other case, when at least two blue triples are present,
then Claim 4.14 and shiftedness tells us that k3, k2, k1 together with some vertex from J

span two blue triples. It is easy to check that the corresponding 5 underlying pairs of BB

prohibit 11 red crossing triples. In view of Claim 4.14, this leads to e3pQq ď 27 ´ 11 ` 3 “ 19
and part (2 ) follows.

For the proof of part (3 ), we appeal to Claim 4.8 and infer that there is at least one blue
star of size 3 centred at k3. This star excludes 9 red triples. Moreover, all three pairs of the
triangle k1k2, k1k3, and k2k3 must be present in the blue shadow (with one of them contained
in the star already). It is easy to check that the union of the star and the triangle forbids 13
red triples and combined with Claim 4.14, assertion (3 ) follows. □

For the remainder of the argument, we assume by contradiction that inequality (4.3) fails.
We start by excluding the situation when very many red triples are present.

Claim 4.16. There are at most 23 red triples in Q.

Proof. Suppose there are at least 24 red triples in Q. Consequently, the vertices J Y K host
at least 5 triples. It follows that there are two disjoint red triples e and f that together
cover J Y K.

Now suppose that Q has a red singleton. Then the red singleton is in I, since the singletons
of Q are shifted to the left. Consequently, T is expanding as witnessed by that singleton
together with e and f , which is absurd.

Similarly, if Q spans a red pair, then one such pair is contained in I and together with e

and f we arrive at the same contradiction that T is expanding. Moreover, since Q contains at
most 9 (blue) singletons and at most 1 (blue) pair (see assertion (1 ) of Claim 4.15), we arrive
contrary to our assumption at the bound (4.3) by evaluating Fact 4.6 for ps, p, tq “ p9, 3, 27q.
This concludes the proof of the claim, if there is no blue triple and in the other case it follows
trivially from assertion (2 ) of Claim 4.15. □

The remainder of the analysis is separated into two cases depending on whether Q is
governed by many or few blue pairs.
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First Case. Each of pM1, M2q, pM2, M3q, and pM3, M1q contains a crossing pair of BB.
In particular k1k2, k2k3, and k3k1 are in BB due to right-shiftedness. Here we proceed in

two steps.

Claim 4.17. There are at most 7 pairs of BB in T .

Proof. Otherwise, part (3 ) of Claim 4.15 yields e3pQq ď 17. Meanwhile, Claim 4.13 tells us
e1pQq ` e2pQq ď 18. Since β ě 1 the term

σ3 `β3
` β2e1pQq ` βe2pQq ` e3pQq

˘

is maximised for e1pQq “ e2pQq “ 9. Therefore, the claim follows from Fact 4.6 applied for
ps, p, tq “ p9, 9, 17q. □

By Claim 4.15, the assumption of the case yields e3pQq ď 21. This allows us to restrict the
number of singletons.

Claim 4.18. There are at most 6 singletons in Q.

Proof. Suppose that there are at least 7 singletons, which must be blue by Claim 4.9 and the
fact that all singletons have the same colour. In view of Remark 4.12, Q contains at most one
red pair using the two possible non-blue vertices. In case there is no red pair, then we can
appeal to Claim 4.17 and the claim follows from Fact 4.6 applied for ps, p, tq “ p9, 7, 21q.

Hence, we assume that Q contains exactly one red pair and exactly 7 blue singletons. Again
the claim follows from Claim 4.17 combined with Fact 4.6 applied for ps, p, tq “ p7, 8, 21q. □

Finally, we recall that Claim 4.13 tells us e1pQq ` e2pQq ď 18 and in light of Claim 4.18
and β ě 1, Fact 4.6 applied for ps, p, tq “ p6, 12, 21q concludes the discussion of the First Case.
Second Case. The pair pM1, M2q contains no crossing pair of BB.

Note that in this case there are no blue triples in Q. Again we make a few observations
regarding the number of singletons and pairs. We start with the following déjà vu.

Claim 4.19. There are at most 6 singletons in Q.

Proof. Let us assume that there are at least 7 singletons, which must be blue by Claim 4.9.
In view of Remark 4.12, this implies that there is at most one red pair in Q. By Claim 4.13
and the assumption of the case that pM1, M2q does not contain a blue pair of BpBq, it follows
that there are at most 6 blue pairs in Q. So e2pQq ď 7. If there are at most 21 red triples
in Q, then the claim follows from Fact 4.6 for ps, p, tq “ p9, 7, 21q.

So together with Claim 4.16, we can assume that there are 22 or 23 red triples in Q. But
then Claim 4.15 tells us that Q has at most two blue pairs. So in this situation the claim
easily follows from Fact 4.6 for ps, p, tq “ p9, 3, 27q. □

We recall again that Claim 4.13 implies e1pQq ` e2pQq ď 18 and that β ě 1. If there are at
most 21 red triples, then we are done by Claim 4.19 and Fact 4.6 for ps, p, tq “ p6, 12, 21q.
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Consequently, we may assume that there are at least 22 red triples. Since at most 19
triples contain a vertex from I and the red triples are left-shifted, this implies that the red
triple j1j2j3 must be present in Q.

Claim 4.20. Each QpMi, Mi`1q contains at most 4 red pairs.

Proof. If there are at least 5 red pairs between, say, M1 and M2, then the pairs i1k2 and i2k1

must be red in QpM1, M2q by Claim 4.9. Together with the triple j1j2j3 this yields the
contradiction that T is expanding. □

Claim 4.21. We have epQpM1, M2qq ď 5 and e1pQq ` e2pQq ď 17.

Proof. In view of Claim 4.13, it suffices to show that epQpM1, M2qq ď 5. This is immediate
from Claim 4.20, if QpM1, M2q contains at most one singleton. If it contains two singletons,
these must be blue by Claim 4.9, and hence there are at most 3 red pairs in QpM1, M2q by
Remark 4.12. □

If there are exactly 22 red triples in Q, then the fact that β ě 1, Claim 4.19 and Claim 4.21
conclude the case by Fact 4.6 for ps, p, tq “ p6, 11, 22q.

In view of Claim 4.16, it remains to address the situation, when there are exactly 23 red
triples in Q. In this case, our aim is to sharpen Claim 4.21 and show

e1pQq ` e2pQq ď 16 . (4.4)

Note that establishing inequality (4.4) completes the proof of the Second Case by another
reference to Fact 4.6 — this time with ps, p, tq “ p6, 10, 23q.

For the proof of inequality (4.4), we show that in addition to Claim 4.21, we also have
epQpM2, M3qq ď 5. Since we have 23 red triples, part (1 ) of Claim 4.15 tells us that there
is at most one blue pair in Q, and without loss of generality we may assume that this lies
in QpM1, M3q. In particular, QpM2, M3q contains no blue pair and as argued in the proof of
Claim 4.21, we obtain epQpM2, M3qq ď 5. This bound combined with epQpM1, M2qq ď 5 from
Claim 4.21 yields inequality (4.4) and this concludes the proof of Lemma 4.2. □

§5 Conclusion

We determined the minimum d-degree threshold for k-uniform Hamilton cycles when
d “ k ´ 3 by studying an extension of the Erdős–Gallai Theorem for 3-graphs. We believe
that a similar approach could be used to tackle the thresholds ℏpkq

d for k ´ d ě 4, as suggested
by Lang and Sanhueza-Matamala [15, Conjecture 11.6]. This echoes a conjecture of Polcyn,
Reiher, Rödl, and Schülke [20] — namely ℏpkq

d being determined by k ´ d. In the remainder,
we discuss two further avenues of research that appear to be worth exploring.
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Connectivity. An important part of our proof concerns connectivity in dense hypergraphs.
Originally an auxiliary concept, the structure and interplay of tight components has become
an object of study on its own over the recent years [10, 16, 17]. We therefore suggest to
further investigate the extremal behaviour of the function ckpλq, which we define as the limes
supremum of the edge density a k-graph on n vertices may have without containing a tight
component on more than λ

`

n
k

˘

edges. By Lemma 2.3 and the construction in Figure 1, we
have c3p1{2q “ 5{8. We believe for odd k that ckp1{2q is attained by the k-graphs defined
as follows: the vertex set consists of disjoint sets X and Y with |X| ě |Y | and its edges are
all k-sets but those with tk{2u vertices in X and rk{2s vertices in Y . In light of the proof of
Lemma 2.3, a plausible approach to this problem would be to study hypergraph versions of
Theorem 3.1, which is a natural question in itself.

Cycles. What is the maximal number of edges a k-graph on n vertices may have that does
not contain a tight cycle of length at least ℓ? For k “ 2, this was answered by Erdős and
Gallai [5], and the extremal construction turns out to be a union of cliques of order at most
ℓ ´ 1. In the hypergraph setting, a similar result was shown by Allen, Böttcher, Cooley, and
Mycroft [1] for ℓ “ opnq. However, when ℓ becomes large enough new extremal constructions
appear (see Figure 1). The study of this phenomenon strikes us as interesting.

Let us define the function eg3pλq as the limes supremum of the edge density a 3-graph
on n vertices may have without containing a cycle of length λn. Using the approach of
Allen, Böttcher, Cooley, and Mycroft [1], we can distill the fact that eg3p3{4q “ 5{8 from
Lemmata 2.3 and 2.4 combined with the construction of Figure 1. We are convinced that
a more careful analysis of our proof should disclose that this type of construction is sharp
for all λ ě 3{5. In particular, in this regime we expect at most two tight components in the
extremal constructions. For smaller λ however, a more complex picture emerges, since more
tight components may arise. Consider for instance the complement of the canonical extremal
construction for Turán’s conjecture for the tetrahedron.
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[1] P. Allen, J. Böttcher, O. Cooley, and R. Mycroft, Tight cycles and regular slices in dense hypergraphs, J.
Combin. Theory Ser. A 149 (2017), 30–100.

[2] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov, Large matchings in uniform
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