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Abstract. Rödl and Ruciński [Threshold functions for Ramsey properties, J. Amer.
Math. Soc. 8 (1995)] established Ramsey’s theorem for random graphs. In particular, for
fixed integers r, ℓ ě 2 they proved that p̂Kℓ,rpnq “ n´ 2

ℓ`1 is a threshold for the Ramsey
property that every r-colouring of the edges of the binomial random graph Gpn, pq yields a
monochromatic copy of Kℓ. We investigate how this result extends to arbitrary colourings
of Gpn, pq with an unbounded number of colours. In this context, Erdős and Rado [A
combinatorial theorem, J. London Math. Soc. 25 (1950)] proved that any edge-colouring
of a sufficiently large complete graph contains one of four canonical colourings of Kℓ – a
monochromatic, or rainbow, or min or max colouring; a min-colouring of Kℓ is a colouring
in which two edges have the same colour if and only if they have the same minimal vertex.
We transfer the Erdős–Rado theorem to the random graph Gpn, pq and show that both
thresholds coincide when ℓ ě 4. As a consequence, the proof yields Kℓ`1-free graphs G

for which every edge colouring contains a canonically coloured Kℓ.
The 0-statement of the threshold is a direct consequence of the corresponding statement

of the Rödl–Ruciński theorem and the main contribution is the 1-statement. The proof of
the 1-statement employs the transference principle of Conlon and Gowers [Combinatorial
theorems in sparse random sets, Ann. of Math. (2) 184 (2016)].

§1 Introduction

In the last three decades, extremal and Ramsey-type properties of random graphs were
considered, which led to several general approaches to these questions (see, e.g. [2, 4, 13,
16,25–27] and references therein). We consider Ramsey-type questions for the binomial
random graph Gpn, pq. For graphs G and H and an integer r ě 2, we write

G ÝÑ pHqr

to signify the statement that every r-colouring of the edges of G yields a monochromatic
copy of H. Ramsey’s theorem [21] asserts that for fixed H and r the family of graphs G
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satisfying G ÝÑ pHqr is non-empty. Obviously, this family is monotone∗. Hence, by a well-
known result of Bollobás and Thomason [3], there is a threshold function p̂H,r : N ÝÑ r0, 1s

such that

lim
nÝÑ8

P
`

Gpn, pq ÝÑ pHqr

˘

“

$

&

%

0 , if p ! p̂H,r,

1 , if p " p̂H,r.
(1.1)

As usual we shall refer to any such function as the threshold of that property, even though
it is not unique.

Rödl and Ruciński [24,25] determined the threshold p̂H,r for every graph H and every
fixed number of colours r. We restrict our attention to the situation when H is a clique Kℓ

and state their result for that case only.

Theorem 1.1 (Rödl & Ruciński). For every r ě 2 and ℓ ě 3, the equality p̂Kℓ,rpnq “ n´ 2
ℓ`1

holds. □

In fact, Rödl and Ruciński established a semi-sharp threshold, i.e., the 0-statement
in (1.1) holds as long as ppnq ď cℓ,rn

´ 2
ℓ`1 for some sufficiently small constant cℓ,r ą 0 and,

similarly, the 1-statement becomes true already if ppnq ě Cℓ,rn
´ 2

ℓ`1 for some Cℓ,r. This
was sharpened recently in [10], where the gap between cℓ,r and Cℓ,r was closed. Perhaps
surprisingly, the asymptotic growth of the threshold function p̂Kℓ,rpnq in Theorem 1.1 is
independent of the number of colours r.

We are interested in edge colourings of Gpn, pq which are not restricted to a fixed number
of colours. However, if the number of colours is unrestricted, then this allows injective edge
colourings and, consequently, monochromatic Kℓ-copies might be prevented. Nevertheless,
Erdős and Rado [7], showed that certain canonical patterns† are unavoidable in edge
colourings of sufficiently large cliques. Obviously, the monochromatic and the injective
pattern (in which each edge receives a different colour) must be canonical. Two additional
canonical patterns arise by ordering the vertices of Kn and colouring every edge uv by
mintu, vu or colouring every edge by its maximal vertex. More generally, for finite graphs
G and H with ordered vertex sets, we write

G ∗ÝÑ pHq

if for every edge colouring φ : EpGq ÝÑ N there exists an order-preserving graph embed-
ding ς : H ÝÑ G such that one of the following holds:

(a ) the copy ςpHq of H is monochromatic under φ,
(b ) or φ restricted to EpςpHqq is injective,
(c ) or for all edges e, e1 P EpςpHqq we have φpeq “ φpe1q ðñ minpeq “ minpe1q,

∗that is, closed with respect to adding edges
†A pattern refers to a colouring of the ‘target graph’ Kℓ.
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(d ) or for all edges e, e1 P EpςpHqq we have φpeq “ φpe1q ðñ maxpeq “ maxpe1q.
We call an ordered copy of H in G canonical (with respect to φ) if it displays one of the
four patterns described in (a )–(d ).

Note that for the patterns described in (a ) and (b ) the orderings of the vertex sets have
no bearing. We shall refer to copies exhibiting an injective colouring as rainbow copies of
H (even if |EpHq| ‰ 7). Moreover, we refer to the patterns appearing in (c ) and (d ) as
min-coloured and max-coloured, respectively. In case only the backward implications in (c )
or (d ) are enforced, then we refer to those colourings as non-strict, e.g., if minpeq “ minpe1q

yields φpeq “ φpe1q for all edges e, e1 P EpςpHqq, then ςpHq is a non-strictly min-coloured
copy of H. Obviously, monochromatic copies are also non-strictly min- and max-coloured.

Hereafter, the vertex sets of all graphs considered are ordered. In particular, for cliques
and random graphs we assume

V pKnq “ rns and V pGpn, pqq “ rns .

With this notation at hand, the aforementioned canonical Ramsey theorem of Erdős and
Rado [7] restricted to the graph case asserts that canonical copies are unavoidable.

Theorem 1.2 (Erdős & Rado). For every ℓ ě 3, there exists n such that Kn
∗ÝÑ pKℓq. □

We are interested in a common generalisation of Theorems 1.1 and 1.2. Namely, owing
to Theorem 1.2, for any ordered graph H and sufficiently large n, the fact that Kn

∗ÝÑ pHq

raises the problem of estimating the threshold p̂H : N ÝÑ r0, 1s such that

lim
nÝÑ8

P
`

Gpn, pq ∗ÝÑ pHq
˘

“

$

&

%

0 , if p ! p̂H ,

1 , if p " p̂H .
(1.2)

Unless the vertices of a graph H can be covered by only two edges, the only canonical
colourings of H using at most two colours are monochromatic. Consequently,

p̂H ě p̂H,2

for every such graph H; indeed, a two-colouring of Gpn, pq establishing a lower bound on
p̂H,2 automatically yields a lower bound on p̂H . In particular, for cliques on at least four
vertices, this may suggest that the asymptotics of p̂Kℓ,2 and p̂Kℓ

coincide, and our main
result verifies this.

Theorem 1.3. For every ℓ ě 4, there exists C ą 0 such that for p “ ppnq ě Cn´ 2
ℓ`1 we

have
lim

nÝÑ8
P
`

Gpn, pq ∗ÝÑ pKℓq
˘

“ 1 .

Combining Theorem 1.3 with the corresponding lower bound on p̂Kℓ,2 shows that the
threshold for the canonical Ramsey property is semi-sharp for ℓ ě 4. For ℓ “ 3, we recall
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that the canonical Ramsey threshold is indeed smaller than the Ramsey threshold n´1{2. In
fact, one can check that every edge colouring of K4 yields a canonical copy of the triangle
and, hence, p̂K3 ď n´2{3. We are unaware of the corresponding lower bound on p̂K3 .

Moreover, we note that for p “ Opn´ 2
ℓ`1 q the random graph Gpn, pq is likely to contain

only oppn2q cliques Kℓ`1. In the proof of Theorem 1.3 we can delete an edge from each
such clique. Consequently, we obtain the following statement in structural Ramsey theory,
which can be viewed as a Folkman-type extension of the Erdős–Rado theorem for graphs.

Corollary 1.4. For every ℓ ě 4 there exists a Kℓ`1-free graph G such that G ∗ÝÑ pKℓq.
Moreover, G contains no two distinct copies of Kℓ that share at least three vertices.

In the context of Ramsey’s theorem, the existence of such a graph G was asked for by
Erdős and Hajnal [6]; for two colours this was established by Folkman [8], and for any
fixed number of colours by Nešetřil and Rödl [19]. The graph G in Corollary 1.4 will
be obtained by modifying the random graph and, hence, the proof is non-constructive.
Reiher and Rödl [22] pointed out that the first part of Corollary 1.4 can also be proved
in a constructive manner by means of the partite construction method of Nešetřil and
Rödl [20]. While this approach falls short to exclude Kℓ’s intersecting in triangles, it has
the advantage that it readily extends to k-uniform hypergraphs for every k ě 3.

We conclude this introduction with a short overview of the main ideas of the proof of
Theorem 1.3. Roughly speaking, the proof is inspired by the proof of the canonical graph
Ramsey theorem laid out by Lefmann and Rödl [14] and Alon et al. [1]. This approach
pivots on a case distinction of the edge colouring of the underlying graph Kn. The first
case, when many different colours appear everywhere, which is captured by assuming that
every vertex is incident to only opnq edges of the same colour, leads to rainbow copies of Kℓ.
In the other case, there is a vertex with a monochromatic neighbourhood of size Ωpnq,
which by iterated applications, as in the standard proof of Ramsey’s theorem, leads to a
non-strictly min- or max-coloured Kpℓ´2q2`2. Such a non-strictly min/max-coloured clique
contains a canonical Kℓ by a straightforward application of Dirichlet’s box principle.

Transferring such an approach from Kn to Gpn, pq for p “ Opn´ 2
ℓ`1 q faces several

challenges. Firstly, we shall not use a Kpℓ´2q2`2 in the coloured host graph, as such large
cliques are extremely unlikely to appear in Gpn, pq for that edge probability. Moreover,
in the more challenging second case, when the colouring is unbounded, it is certainly not
sufficient to consider one vertex with a large monochromatic neighbourhood (of size Ωppnq),
as again, this neighbourhood is too sparse to contain any useful structure in Gpn, pq. Thus
we resort to a robust version of the above-mentioned argument, building a large non-strictly
min- or max-coloured subgraph which contains Ωpn2pq edges.

The bounded case, with at most λ edges of every colour incident to any given vertex
of Gpn, pq, is a problem of independent interest. For example, λ “ 1 corresponds to
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studying proper edge colourings of Gpn, pq and anti-Ramsey properties (see, e.g. [11,12,17]
and the references therein). In fact, for ℓ ě 5, there are proper colourings of Gpn, pq

with p “ cn´ 2
ℓ`1 which do not contain a rainbow copy of Kℓ (see [12]), which is an

alternative argument for p̂Kℓ
ě cn´ 2

ℓ`1 and another obstruction for Theorem 1.3. For the
proof of Theorem 1.3 presented here, we will need to guarantee rainbow copies of Kℓ under
the weaker assumption that λ “ oppnq. This can be viewed as a partial extension of the
work of Kohayakawa, Kostadinidis, and Mota [11]. In both cases (bounded and unbounded
colourings) the transference principle for random discrete structures developed by Conlon
and Gowers [4] is an integral part of the proof.

Organisation. In the next section, we present the two main lemmata rendering the case
distinction sketched above, and deduce Theorem 1.3. The proofs of these lemmata are
deferred to Sections 3 and 4, along with the corresponding preliminaries. We conclude with
a discussion of possible generalisations of this work from cliques Kℓ to general graphs H
and of related open problems in Section 5.

§2 Proof of the main result

2.1. Proof of the canonical Ramsey theorem for graphs. The proof of Theorem 1.3
adopts some ideas of the canonical Ramsey theorem for graphs from the work of Lefmann
and Rödl [14] and Alon et al. [1] and below we recall their argument. For ℓ ě 3 we fix

δ “
1

4ℓ3 and n ě 26ℓ2plog2pℓq`1q (2.1)

and first we consider bounded colourings φ : EpKnq ÝÑ N. More precisely, we say such a
colouring is δ-bounded if for every colour c P N and every vertex v P V pKnq we have

dcpvq “
ˇ

ˇNcpvq
ˇ

ˇ “
ˇ

ˇtw P V pKnq : φpvwq “ cu
ˇ

ˇ ď δn . (2.2)

Roughly speaking, bounded colourings have the property that many different colours are
“present everywhere” and this yields rainbow copies of Kℓ. In fact, a simple counting
argument shows that for δ-bounded colourings, at most δn3{2 triples contain two edges
of the same colour and at most δn4{8 quadruples contain two disjoint edges of the same
colour. Consequently, selecting every vertex of Kn independently with probability 2ℓ{n
and removing a vertex from every such triple and every such quadruple, establishes the
existence of ℓ vertices inducing a rainbow Kℓ.

The second part of the proof resembles the standard proof of Ramsey’s theorem for
graphs and iterates along large monochromatic neighbourhoods. Given the observation
above for bounded colourings, we may assume that the edge colouring φ is unbounded in a
hereditary way (meaning that no induced subgraph of order Ωpnq satisfies (2.2)) and this
requires the exponential lower bound (2.1) on n.
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More precisely, assuming that φ fails to induce a rainbow copy of Kℓ gives rise to a
vertex v P V pKnq, a colour c, and a comparability sign ˛ P tă ,ąu such that

d˛
cpvq “

ˇ

ˇN˛
c pvq

ˇ

ˇ “
ˇ

ˇtw P V pKnq : φpvwq “ c and v ˛ wu
ˇ

ˇ ą
δn

2 .

Restricting our attention to the colouring φ on the vertices contained in N˛
c pvq and iterating

this argument L “ 2pℓ ´ 2q2 ` 2 times leads to a sequence pvi, ci, ˛iqiPrLs such that for
every i P rLs we have

ˇ

ˇ

ˇ

ˇ

i
č

j“1
N˛j

cj
pvjq

ˇ

ˇ

ˇ

ˇ

ą

´δ

2

¯i

n . (2.3)

In fact, owing to the choices in (2.1) we can iterate this step L times.
Furthermore, we may assume that there are indices 1 ď i0 ă ¨ ¨ ¨ ă ipℓ´2q2 ă L such

that ˛ij
is ă for all j. Consequently, the correspondingly indexed vertices vi0 , . . . , vi

pℓ´2q2

together with vL induce a non-strictly min-coloured clique on pℓ´ 2q2 ` 2 vertices. Finally,
if one of the colours appears ℓ´ 1 times among ci0 , . . . , ci

pℓ´2q2 , then this yields a monochro-
matic Kℓ among vi0 , . . . , vi

pℓ´2q2 , and vL. Otherwise, at least ℓ ´ 1 distinct colours appear
and we are guaranteed to find a min-coloured Kℓ instead.

2.2. Bounded and unbounded colourings in random graphs. For the proof of
Theorem 1.3 we derive appropriate random versions of the facts above that analyse
bounded and unbounded colourings of Gpn, pq (see Lemmata 2.1 and 2.2 below). We begin
by defining a notion of boundedness central to our proof. Roughly speaking, an edge
colouring of Gpn, pq is bounded if at most oppnq edges of the same colour are incident to
any given vertex. Similar to the proof in the deterministic setting, it will be useful to
define this property for large subsets of vertices, which is made precise as follows.

Given a graph G “ pV,Eq with an edge colouring φ : E ÝÑ N, a subset U Ď V , and
reals δ ą 0, p P p0, 1s we say φ is pδ, pq-bounded on U if for every colour c P N and every
vertex u P U we have

dcpu, Uq “
ˇ

ˇNcpu, Uq
ˇ

ˇ “
ˇ

ˇtw P U : φpuwq “ cu
ˇ

ˇ ď δp|U | .

Lemma 2.1 (stated below) asserts that bounded edge colourings of Gpn, pq for p " n´ 2
ℓ`1

yield rainbow copies of Kℓ asymptotically almost surely, i.e., with probability tending to 1
as n ÝÑ 8.

In view of Corollary 1.4, we define the ℓ-clean subgraph Gℓ of a given graph G on rns as
follows: Consider all edges of G in lexicographic order and remove an edge e in the current
subgraph of G, if the edge e is contained in the intersection of two distinct Kℓ-copies sharing
at least three vertices. Actually, the precise ordering is not relevant for our argument, but
the uniqueness of the ℓ-clean subgraph Gℓ Ď G defined above will be convenient. Note that
Gℓ contains no copy of Kℓ`1, since this would yield two Kℓ’s intersecting in ℓ´ 1 vertices.
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Lemma 2.1. For all integers ℓ ě 4 and every ν ą 0 there is some constant C ą 0 such that
for p “ ppnq ě Cn´ 2

ℓ`1 asymptotically almost surely the following holds for G P Gpn, pq.
If φ : EpGq ÝÑ N is pℓ´5{4, pq-bounded on some U Ď V pGq with |U | ě νn, then U

induces a rainbow copy of Kℓ in G.
Moreover, if in addition we have ppnq ď n

´
2ℓ´5

ℓ2´ℓ´4 {ωpnq for some arbitrary function ω

tending to infinity as n ÝÑ 8, then the ℓ-clean subgraph Gℓ Ď G also contains a rainbow
copy of Kℓ.

Lemma 2.1 strengthens a result of Kohayakawa, Kostadinidis, and Mota [11], where
a more restrictive boundedness assumption is required. The proof of Lemma 2.1 makes
use of the transference principle of Conlon and Gowers [4], which allows us to transfer
the bounded case in the deterministic setting to the random environment. We defer the
proof of Lemma 2.1 to Section 3. The second lemma yields canonical copies in unbounded
colourings.

Lemma 2.2. For all integers ℓ ě 3 and every δ ą 0 there is some constant C ą 0 such that
for p “ ppnq ě Cn´ 2

ℓ`1 asymptotically almost surely the following holds for G P Gpn, pq.
If φ : EpGq ÝÑ N has the property that every U Ď V pGq with size |U | ě δ5ℓ2

n satisfies
ˇ

ˇtu P U : dcpu, Uq ě 8δp|U | for some colour cu
ˇ

ˇ ě
|U |

2 , (2.4)

then G contains a canonical copy of Kℓ.
Moreover, if in addition we have ppnq ď n

´
2ℓ´5

ℓ2´ℓ´4 {ωpnq for some arbitrary function ω

tending to infinity as n ÝÑ 8, then the ℓ-clean subgraph Gℓ Ď G also contains a rainbow
copy of Kℓ.

As in the unbounded case in the deterministic setting, the proof of Lemma 2.2 yields
either a monochromatic, or a min-coloured, or a max-coloured copy of Kℓ. The proof of
Lemma 2.2 is more involved and we give a detailed outline in Section 4.1. We conclude
this section with the short proof of Theorem 1.3 and Corollary 1.4 based on Lemmata 2.1
and 2.2.

Proof of Theorem 1.3 and Corollary 1.4. Given ℓ ě 4 we set δ “ ℓ´5{64 and ν “ δ5ℓ2
{2

and let C be sufficiently large so that we can appeal to Lemma 2.1 with ℓ and ν and to
Lemma 2.2 with ℓ and δ. Owing to the monotonicity of the canonical Ramsey property,
for the proof of Theorem 1.3 we may assume p “ ppnq “ Cn´ 2

ℓ`1 . Since ℓ ě 4 this implies
ppnq ď n

´
2ℓ´5

ℓ2´ℓ´4 {ωpnq for some function ω tending to infinity with n.
Let G P Gpn, pq satisfy the conclusion of both lemmata and consider an arbitrary edge

colouring φ : EpGq ÝÑ N of G.
For every U Ď V pGq we consider its subset of unbounded vertices in U

BpUq “ tw P U : dcpw,Uq ě 8δp|U | for some colour cu .



8 N. KAMČEV AND M. SCHACHT

Owing to Lemma 2.2 we may assume that there is a set U Ď V pGq satisfying |U | ě δ5ℓ2
n

and |BpUq| ă |U |{2. Removing the unbounded vertices from U we arrive at a set

U 1
“ U ∖BpUq with |U 1

| ą
|U |

2 ě νn .

For every vertex u P U 1 and every colour c we have

dcpu, U
1
q ď dcpu, Uq ă 8δp|U | ă 16δp|U 1

| .

In other words, φ is p16δ, pq-bounded on U 1 and Lemma 2.1 yields asymptotically almost
surely a rainbow copy of Kℓ in the ℓ-clean subgraph Gℓ Ď G. □

§3 Rainbow cliques in bounded colourings of random graphs

We shall use the following notation. For a graph G “ pV,Eq, a vertex v, and a set U Ď V

we write dGpv, Uq for the size of the neighbourhood of v in U . For subsets X, Y Ď V we
denote by eGpX, Y q the number of edges with one vertex in X and one vertex in Y , where
edges in X X Y are counted twice, i.e.,

eGpX, Y q “
ˇ

ˇtpx, yq P X ˆ Y : xy P Eu
ˇ

ˇ “
ÿ

xPX

dGpx, Y q .

In particular, eGpXq “ eGpX,Xq. Moreover, for some integer ℓ ě 2 we denote by κℓpGq

the number of (labeled) copies of Kℓ in G. For a family U “ pU1, . . . , Uℓq of mutually
disjoint vertex subsets of V we write GrUs for the ℓ-partite subgraph induced by the sets
U1, . . . , Uℓ.

The proof of Lemma 2.1 is based on the transference principle of Conlon and Gowers [4],
which we use in the following form [5, Theorem 3.2].

Theorem 3.1 (Conlon & Gowers). For all integers ℓ ě 3 and every ε ą 0 there is
some constant C ą 0 such that for p “ ppnq with Cn´ 2

ℓ`1 ď p ď 1{C and every ζ ą 0
asymptotically almost surely the following holds for G P Gpn, pq.

For every family U “ pU1, . . . , Uℓq of mutually disjoint vertex subsets of V pGq and every
ℓ-partite subgraph S of GrUs, there exists an ℓ-partite subgraph D of KnrUs such that

(i ) for all subsets X, Y Ď V pGq we have |eSpX, Y q ´ p ¨ eDpX, Y q| ď εpn2

(ii ) and
ˇ

ˇκℓpSq ´ ppℓ
2q ¨ κℓpDq

ˇ

ˇ ď εppℓ
2qnℓ.

Moreover, we have
(iii ) for every X Ď V pGq all but at most εn vertices v P V pGq satisfy

|dSpv,Xq ´ p ¨ dDpv,Xq| ď εpn

(iv ) and if G1 is obtained from G by removing at most ζpn2 edges, then
ˇ

ˇκℓpG
1
rUsq ´ ppℓ

2q|U1| ¨ ¨ ¨ |Uℓ|
ˇ

ˇ ď pε ` ζqppℓ
2qnℓ . □
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We say the graph D provided by Theorem 3.1 is a dense model for the subgraph S of
the sparse random graph. We remark that in [5], (i) is stated for disjoint subsets X and Y ,
but the bound for all pairs of subsets follows easily from the inclusion-exclusion principle.
Furthermore, the moreover-part is not stated in [5, Theorem 3.2]. However, it easily follows
from (i ) and (ii ) applied with an appropriately chosen ε1 ! ε. In fact, part (iii ) follows
from (i ) applied to X and Y ` being the set of vertices having too high degree in D, and a
second application to X and a similarly defined set Y ´ (see, e.g., proof of Lemma 4.4 in
Section 4.2). Part (iv ) can be deduced by applying (i ) and (ii ) for S 1 “ G1rUs. In fact,
for this choice, part (i ), combined with Chernoff’s inequality and the union bound over
the choices for U , implies that all

`

ℓ
2

˘

bipartite subgraphs D1rUi, Ujs have density close
to 1. More precisely, in this case D1rUs and KnrUs differ by at most p2ε1 ` ζqn2 edges.
Consequently,

ˇ

ˇκℓpD
1q ´ |U1| ¨ ¨ ¨ |Uℓ|

ˇ

ˇ ď p2ε1 ` ζqnℓ, which can be transferred to S 1 “ G1rUs

by (ii ). The two conclusions of the following lemma further strengthen the upper bound of
part (iv ) and can be viewed as a customised version of part (ii ) for our proof of Lemma 2.1.

Lemma 3.2. For all integers ℓ ě 4 and every ε ą 0 there is some constant C ą 0 such
that for p “ ppnq with Cn´1{m2pKℓq ď p ď 1{C asymptotically almost surely the following
holds for G P Gpn, pq.

For every family U “ pU1, . . . , Uℓq of mutually disjoint vertex subsets of V pGq and every
ℓ-partite subgraph S of GrUs the following holds:

(a ) For d12 “
eSpU1,U2q

p|U1||U2|
and d34 “

eSpU3,U4q

p|U3||U4|
we have

κℓpSq ď d12d34 ¨ ppℓ
2q|U1| ¨ ¨ ¨ |Uℓ| ` εppℓ

2qnℓ .

(b ) For c123 “

ř

uPU1
dSpu,U2qdSpu,U3q

p2|U1||U2||U3|
we have

κℓpSq ď c123 ¨ ppℓ
2q|U1| ¨ ¨ ¨ |Uℓ| ` εppℓ

2qnℓ .

Proof. We only prove part (b ), since the proof of (a ) is very similar. Let G P Gpn, pq.
Given ℓ and ε P p0, 2´9q, let C be sufficiently large, so that Theorem 3.1 applies for ℓ and
ε{16.

For the given ℓ-partite subgraph S on partition classes U1, . . . , Uℓ we may assume,
without loss of generality, that |Ui| ě εn{2, since otherwise the bound easily follows
from κℓpSq ď κℓpGq and part (iv ) of Theorem 3.1. Moreover, a standard argument using
Chernoff’s inequality and the union bound implies that

dSpvq ď dGpvq ď 2pn (3.1)

for every vertex v P V pGq.
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Let D be the dense model of S provided by Theorem 3.1. In view of part (ii ) of
Theorem 3.1, it suffices to show that

κℓpDq ď c123 ¨ |U1| ¨ ¨ ¨ |Uℓ| `
ε

2n
ℓ . (3.2)

Let Y ` be the set of vertices u P U1 for which p ¨ dDpu, U2q ą dSpu, U2q ` εpn{16
or p ¨ dDpu, U3q ą dSpu, U3q ` εpn{16. Part (iii ) tells us |Y `| ď εn{8 and combined
with (3.1) it follows

p2
¨
ÿ

uPU1

dDpu, U2qdDpu, U3q ď
ÿ

uPU1

dSpu, U2qdSpu, U3q `

´ε

4 `
ε2

16

¯

p2n3
` |Y `

|p2n2

ď c123 ¨ p2
|U1||U2||U3| `

ε

2p
2n3 .

Consequently, the number of K1,2 in D with center vertex in U1 and leaves in U2 and U3 is
bounded from above by

c123 ¨ |U1||U2||U3| `
ε

2n
3

and (3.2) is obtained by bounding the extension of each of these K1,2 trivially by |U4| ¨ ¨ ¨ |Uℓ|.
□

We conclude this section with the proof of Lemma 2.1, which yields rainbow cliques in
bounded colourings of the random graph.

Proof of Lemma 2.1. Given ℓ ě 4 and ν ą 0 we define the auxiliary constant δ “ ℓ´4{2
and let C be sufficiently large so that the Theorem 3.1 and Lemma 3.2 apply for

ε “

´ ν

2ℓ

¯ℓ

. (3.3)

Suppose G P Gpn, pq satisfies the conclusions of Theorem 3.1 and Lemma 3.2. We may also
assume that for every subsetX Ď V pGq of size at least |X| ě νn

2ℓ
we have dGpv,Xq ď 1.1p|X|

for all but at most n{ logpnq vertices v.
Below we only prove the moreover-part of the lemma for the ℓ-clean subgraph Gℓ Ď G,

since the proof for G without the upper bound on p is identical. Hence, we assume
p “ ppnq ď n

´
2ℓ´5

ℓ2´ℓ´4 {ωpnq for some function ω tending to infinity. From this upper bound
on p it follows by Markov’s inequality that, asymptotically almost surely, the number of
distinct pairs of Kℓ sharing more than two vertices is at most oppn2q and, therefore, we
may assume

ˇ

ˇEpGq ∖ EpGℓq
ˇ

ˇ ď εpn2 . (3.4)

Let φ : EpGq ÝÑ N be an edge colouring, which is pℓ´5{4, pq-bounded on U Ď V pGq of
size at least νn.
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Let U 1
1 Ÿ . . . ŸU 1

ℓ “ U be a balanced partition of U . After removing a few vertices of too
high degree, i.e., vertices u P U 1

i for which dGpu, U 1
jq ą 1.1 p|U 1

j| for some j ‰ i, we arrive
at a collection U “ pU1, . . . , Uℓq of mutually disjoint sets of size m such that

|U1| “ ¨ ¨ ¨ “ |Uℓ| “ m ě
|U |

2ℓ ě
ν

2ℓn

and for every every vertex ui P Ui and j P rℓs we have

dGpui, Ujq ď 2p|Uj| “ 2pm . (3.5)

In addition, the boundedness of φ and the choice of δ ensures for every colour c P N

dcpui, Ujq ď dcpui, Uq ď
1

4ℓ5p|U | ď
1

2ℓ4p|Uj| “ δpm . (3.6)

In view of (3.4), part (iv ) of Theorem 3.1 yields

κℓpGℓrUsq ě p1 ´ 2εqppℓ
2qmℓ

and below we shall bound the number of non-rainbow copies of Kℓ in GrUs Ě GℓrUs.
For that it will be useful to classify the non-rainbow copies according to where the

repeated colour occurs. We consider two cases depending on whether the two edges of
the same colour share a vertex or form a matching. Hence, we consider the number
κℓ pGrUs, φq of copies of Kℓ in GrUs containing edges e P EGpU1, U2q and e1 P EGpU1, U3q

such that φpeq “ φpe1q. Similarly, we define κℓ pGrUs, φq to be those copies with the two
edges of the same colour being from EGpU1, U2q and EGpU3, U4q. We will exploit the
boundedness of φ to deduce the following claim from Lemma 3.2.

Claim 3.3. We have κℓ pGrUs, φq ď 5δppℓ
2qmℓ and κℓ pGrUs, φq ď 5δppℓ

2qmℓ.

Applying the claim to cover all
`

pℓ
2q
2

˘

possibilities where the two identically coloured
edges may appear within the pairs of classes of U yields at least

p1 ´ 2εqppℓ
2qmℓ

´
ℓ4

8 ¨ 5δppℓ
2qmℓ

ą
1
2p

pℓ
2qmℓ

rainbow copies of Kℓ in GℓrUs. Hence, for the proof of Lemma 2.1 it only remains to verify
Claim 3.3. □

Proof of Claim 3.3. We first bound κℓ pGrUs, φq. Note that if each colour occupies δpm2

edges of GrU1, U2s, then the claimed upper bound follows easily from Lemma 3.2 (a ). We
shall reduce the problem to this case.

Fix a partition C1 Ÿ . . . Ÿ Cr “ N of the set of colours such that

r ď
2
δ

and
ˇ

ˇφ´1
pCϱq X EGpU1, U2q

ˇ

ˇ ď 2δpm2 for every ϱ P rrs.
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Note that due to (3.5) and (3.6) such a partition of the colours can be found greedily, by
adding colours to a class Cϱ as long as the bound on the number of edges in the preimage
holds.

For ϱ P rrs let Sϱ be the subgraph obtained from GrUs by restricting the edges
from GrU1, U2s and GrU3, U4s to φ´1pCϱq X EGpU1, U2q and φ´1pCϱq X EGpU3, U4q, i.e.,
to those edges having a colour from Cϱ. Note that every copy counted by κℓ pGrUs, φq is
contained in some Sϱ.

Applying Lemma 3.2 (a ), we obtain

κℓpSϱq ď 2δpm2
¨
ˇ

ˇESϱpU3, U4q
ˇ

ˇ ¨ ppℓ
2q´2mℓ´4

` εppℓ
2qnℓ,

and summing over all ϱ P rrs and recalling (3.5) yields the desired bound

κℓ pGrUs, φq ď 4δppℓ
2qmℓ

` εppℓ
2qnℓ

(3.3)
ď 5δppℓ

2qmℓ .

For the bound on κℓ pGrUs, φq, we will again partition the colours, to reduce it to 2{δ

applications of Lemma 3.2 (b ). However, every vertex in U1 will define its own partition.
For every vertex u P U1 we fix a partition Cu

1 Ÿ . . . Ÿ Cu
ru

“ N such that for every ϱ P rrus

we have
ÿ

cPCu
ϱ

dcpu, U2q ď 2δpm2 .

Again it follows from (3.5) and (3.6) that such a partition exists for some ru ď 2{δ. For
simplicity we allow empty partition classes and, hence, we may assume that ru “ r “ t2{δu

for every vertex u P U1.
For ϱ P rrs this time we let Sϱ be the subgraph obtained from GrUs by restricting the

edges in GrU1, U2s and GrU1, U3s incident to a vertex u P U1 to those, which received a
colour from Cu

ϱ , i.e.,

ESϱpU1, U2q “
ď

uPU1

␣

uv P EpGq : v P U2 and φpuvq P Cu
ϱ

(

and ESϱpU1, U3q is defined in an analogous way. This definition guarantees that every Kℓ

in GrUs containing a monochromatic K1,2 with center in U1 and leaves in U2 and U3 is
contained in Sϱ for some ϱ P rrs.

In view of Lemma 3.2 (b ), we have

κℓpSϱq ď
ÿ

uPU1

2δpm ¨
ÿ

cPCu
ϱ

dcpu, U3q ¨ ppℓ
2q´2mℓ´3

` εppℓ
2qnℓ

“
ˇ

ˇESϱpU1, U3q
ˇ

ˇ ¨ 2δppℓ
2q´1mℓ´2

` εppℓ
2qnℓ .

In view of (3.5), summing over all ϱ P rrs yields the desired bound

κℓ pGrUs, φq ď 4δppℓ
2qmℓ

` εppℓ
2qnℓ

(3.3)
ď 5δppℓ

2qmℓ ,
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which concludes the proof of Claim 3.3 and, hence, Lemma 2.1 is established. □

Remark 3.4. Theorem 3.1 from [5] is more general and applies not only to cliques Kℓ,
but to all strictly balanced graphs H for p ě Cn´

|V pHq|´2
|EpHq|´1 , i.e., for graphs H satisfying

|EpH 1q| ´ 1
|V pH 1q| ´ 2 ă

|EpHq| ´ 1
|V pHq| ´ 2

for all proper subgraphs H 1 Ĺ H on at least three vertices. Starting with this general
version of Theorem 3.1, the arguments from this section can be carried out verbatim for
such graphs H. This yields a version of Lemma 2.1 guaranteeing rainbow copies of strictly
balanced graphs H for pδ, pq-bounded edge colourings of Gpn, pq for p ě Cn´

|V pHq|´2
|EpHq|´1 as

long as δ is sufficiently small and C is sufficiently large depending on H.

§4 Canonical cliques in unbounded colourings of random graphs

This section contains the proof of Lemma 2.2 along with the required prerequisites. We
begin with an overview of the proof.

4.1. Outline of the proof. Again, the main tool in the proof of Lemma 2.2 is the trans-
ference principle developed by Conlon and Gowers. This result asserts that asymptotically
almost surely every subgraph F of Gpn, pq has a dense model (see, e.g., Theorem 3.1 (i )).
Moreover, if p " n´ 2

ℓ`1 , then the dense model D and the subgraph F , have closely related
distributions of the copies of Kℓ, which is made precise in part (ii ) of Theorem 3.1. Roughly
speaking, we may think of F being close to a random subgraph of D whose edges are
sampled independently with probability p.

For mimicking the argument from Section 2 for colourings of Kn, the main obstacle is
that the neighbourhoods in Gpn, pq are of order pn, not allowing the iteration rendered
in (2.3). We circumvent this by considering suitable subgraphs F1, F2, . . . , FL of Gpn, pq

for L “ 2pℓ´1qpℓ´2q`2 and obtain their dense models D1, . . . , DL, which yield linear-sized
sets as neighbourhoods in the dense models. Another challenge is that, for transference to
be useful, the dense model has to contain Ωpnℓq copies of Kℓ, so we also need a robust,
counting version of the argument for the case of unbounded colourings of Kn.

In the proof of Lemma 2.2 the ordering of the underlying vertex set will be important.
For that, we refine the definition of dcpu, Uq for a given edge colouring φ and for ˛ P tă ,ąu

we set
d˛

cpu, Uq “
ˇ

ˇN˛
c pu, Uq

ˇ

ˇ “
ˇ

ˇtw P U : φpuwq “ c and u ˛ wu
ˇ

ˇ .

In Lemma 2.2 we assume that every sufficiently large set U of vertices of the random graph
has the property that half of its vertices u have a large monochromatic neighbourhood. For
simplicity, in the outline below we shall always assume that, in fact, these vertices u always
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lie before their monochromatic neighbourhood, i.e., dă
c pu, Uq ě 4δp|U | for at least |U |{4

vertices.
The subgraphs Fi Ď Gpn, pq for i P rLs will be selected in an iterative manner. For the

definition of F1, let V1 be those n{4 vertices v such that dă
cpvqpvq ě 4δpn for some associated

colour cpvq. The graph F1 is then defined as the union of those edges, i.e.,

EpF1q “ tvw P EpGpn, pqq : v P V1, v ă w, and φpvwq “ cpvqu .

In other words, the colour of each edge e P EpF1q is defined by its starting point minpeq.
The transference principle yields a dense model D1 of F1, and by part (iii ) of Theorem 3.1,
for most v P V1, p ¨ dă

D1pvq is well approximated by dă
F1pvq. Consequently, typically the

neighbourhood of v in D1 defines a subset S1pvq of size at least 3δn.
We continue and define F2 based on the sets S1pv1q for v1 P V1. Again appealing to the

assumption (2.4) of Lemma 2.2 as described above for U “ S1pv1q, we obtain |S1pv1q|{4
pairs pv2, cq P S1pv1q ˆN with

dă
c pv2, S1pv1qq ě 4δp|S1pv1q| “ Ωpδ2pnq . (4.1)

However, the colour c depends on v1 and, similarly, as in the definition of F1 we shall find
a “large” monochromatic neighbourhood of v2 for the definition of F2. On the other hand,
since the degree of v2 is close to pn in Gpn, pq at most 1{δ2 different colours might occur
for different choices of v1. We let cpv2q be the majority colour and restrict to it for the
definition of F2. Moreover, for an appropriately chosen subset V2 Ď

Ť

tS1pv1q : v1 P V1u

and we shall define F2 in such a way that

EpF2q Ď tv2w : v2 P V2, v2 ă w, and φpv2wq “ cpv2qu .

In particular, the colours of the edges in F2 are determined again by their starting point.
For some technical reasons the definition of F2 is a bit more involved and, for example, we
will impose F2 to be bipartite (see Claim 4.5 below for the formal statement). Similar as
before, we obtain a dense model D2 for F2. Owing to (4.1), the vertices in V2 have Ωpδ2pnq

neighbours in F2. Consequently, most vertices in V2 have Ωpδ2nq neighbours in D2. Those
neighbourhoods yield the linear sized sets S2pv2q, which allows us to iterate the argument
to obtain a subgraph F3 Ď Gpn, pq with all edges colours determined by its starting vertex
and a dense model D3 of F3 with linear sized neighbourhoods.

This way we obtain graphs F “ F1 Y ¨ ¨ ¨ Y FL, and D “ D1 Y ¨ ¨ ¨ Y DL. We shall
show that the dense graph D “ contains Ωpnℓq copies of Kℓ by its construction through
“nested neighbourhoods.” Consequently, the transference principle in the form of part (ii )
of Theorem 3.1 tells us that the sparse subgraph F Ď Gpn, pq contains Ωpppℓ

2qnℓq copies
of Kℓ and by the choice of the Fi these copies will be non-strictly min-coloured.



CANONICAL COLOURINGS IN RANDOM GRAPHS 15

It remains to analyse the induced vertex colourings of these non-strictly min-coloured
copies of Kℓ in Gpn, pq. However, those induced vertex colours are not synchronised within
each of the sets V1, . . . , VL, i.e., the edges of Fi are not monochromatic and may induce
different colours for the vertices in Vi. We address this issue by a more careful selection of
the graphs F1, . . . , Fℓ (see (b ) of Claim 4.5 below).

The proof of Lemma 2.2 is based on a more involved application of the transference
principle compared to the proof of Lemma 2.1 in Section 3. In Section 4.2 we review
the required results from [4] and some helpful consequences for the proof of Lemma 2.2
presented in Section 4.3.

4.2. The transference principle. In this section, we present the prerequisites for the
proof of Lemma 2.2. The statements are written for arbitrary strictly balanced graphs H,
although we shall only employ them for H “ Kℓ. For a strictly balanced graph H on at
least three vertices, we can define its 2-density by

m2pHq “
|EpHq| ´ 1
|V pHq| ´ 2 ,

and we note that m2pKℓq “ pℓ ` 1q{2 appears in the exponents of p “ ppnq in the
assumptions of the earlier statements in Sections 1–3. Similarly, below we shall impose that,
for a given strictly balanced graph H on the vertex set rℓs (with ℓ ě 3) and a sufficiently
large constant C, p “ ppnq ě Cn´1{m2pHq.

For some (large) integer n, we shall work within the set of functions from rnsp2q to R,
which naturally corresponds to the set of weighted graphs on the vertex set rns. Therefore,
we often identify a graph F on rns with the indicator function 1F of its edge set and a
dense model d for F is a function d : rnsp2q ÝÑ r0, 1s, which is “close” to p´11F in terms
of its distribution of weighted edges and copies of H. The definitions of edge counts and
vertex degrees extend straightforwardly to functions f : rnsp2q ÝÑ R and for that we set

epfq “
ÿ

uăw

fpuwq , efpU,W q “
ÿ

uPU,wPW

fpuwq , and dfpv, Uq “
ÿ

uPU∖tvu

fpuvq.

With this notation at hand we can define the cut-norm by

}f}
˝

“
1
n2 max

U,W Ďrns
|efpU,W q .|

This norm allows us to compare the edge distributions of two weighted graphs on rns. In
fact, we will consider weighted graphs f and d to be “close,” if }f ´ d}

˝
is “small” (see, e.g.,

Theorem 3.1 (i ) and Theorem 4.1 (i ) below). Similarly, for a graph H with vertex set rℓs

we define its homomorphism density in f by

ΛHpfq “
1
nℓ

ÿ

v1,...,vℓPrns

ź

ijPepHq

fpvivjq ,
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where we use the convention fpvivjq “ 0 in case vi “ vj. Consequently, for cliques the
quantity ΛKℓ

pfq corresponds to the weighted Kℓ-density in f and for f being an unweighted
graph we can recover the notation κℓpfq “ nℓ ¨ ΛKℓ

pfq from Section 3.
As discussed in the outline for the proof of Lemma 2.2, Theorem 3.1 will be applied in

stages to the subgraphs F1, . . . , FL Ď Gpn, pq to obtain dense models D1, . . . , DL. In order
to ensure that D “ D1 Y ¨ ¨ ¨ Y DL is still a useful approximation of F “ F1 Y ¨ ¨ ¨ Y FL,
we need a bit more insight into how these dense models are obtained. Informally, Conlon
and Gowers [4] construct a norm } ¨ } on the set of weighted graphs Rrnsp2q so that the
following holds: If 1F is the characteristic function of the edges of some F Ď Gpn, pq

and }p´11F ´ d} is sufficiently small for some dense model d with }d}8 ď 1, then p´11F

and d have a “similar” distribution of edges and copies of H. A major contribution of [4]
is precisely finding a norm which is sufficiently weak to allow a dense model which is
arbitrarily close to p´11F , and sufficiently strong to preserve the relevant properties of F .
However, the norm } ¨ } actually depends on the random graph Gpn, pq in the sense that
asymptotically almost surely G P Gpn, pq has the property that there is a norm } ¨ } with
the aforementioned properties for every subgraph F Ď G. Theorem 4.1 below is a version
of the transference principle of Conlon and Gowers, which is tailored for our proof of
Lemma 2.2. It is implicit in the work in [4] and in the Appendix we discuss in more detail
how it can be extracted.

Theorem 4.1. For every strictly balanced graph H with V pHq “ rℓs and every ε ą 0 there
is some constant C ą 0 such that for p “ ppnq with Cn´1{m2pHq ď p ď 1{C asymptotically
almost surely the following holds for G P Gpn, pq.

There exists a norm } ¨ } on the set of weighted graphs Rrnsp2q such that for every F Ď G,
there is a dense model dF : rnsp2q ÝÑ r0, 1s with }p´11F ´ p1 ` εqdF } ă ε and

(i ) for all functions f, d : rnsp2q ÝÑ R with }f ´ p1 ` εqd} ă ε we have

}f ´ d}
˝

ď 2ε .

(ii ) for every function d : rnsp2q ÝÑ r0, 2ℓs with }p´11F ´ p1 ` εqd} ď ε we have

ΛHpdq ď p´|EpHq|ΛHpF q ` p4ℓqℓ2
¨ ε .

We emphasise that, while (i ) applies to any weighted graph f, part (ii ) only applies to the
subgraphs F of the random graph. Anyhow, in our intended application we have f “ p´11F .
Theorem 4.1 is closely related to Theorem 3.1 where S and D in Theorem 3.1 take the rôle
of F and dF in Theorem 4.1. In fact, applying (i ) and (ii ) with d “ dF and f “ p´11F in
Theorem 4.1 yields closely related statements (i ) and (ii ) of Theorem 3.1.
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It will be convenient to move from the dense weighted graphs d back to unweighted
graphs D sampled by the edge weights of d. The following lemma follows directly from
Chernoff’s inequality and the union bound.

Lemma 4.2. For every ε ą 0 and any sequence of functions d : rnsp2q ÝÑ r0, 1s asymptoti-
cally almost surely we have }1D ´ d}

˝
ď ε for the random graph D on rns with every edge

e appearing independently with probability dpeq. □

We will also use the following counting lemma comparing the number of subgraphs of two
graphs in terms of the cut-norm. This can be viewed as the global counting lemma for the
weak regularity lemma of Frieze and Kannan [9] and it can be found in [15, Lemma 4.1].

Lemma 4.3. For every graph H and all functions f, d : rnsp2q ÝÑ r0, 1s we have
ˇ

ˇΛHpfq ´ ΛHpdq
ˇ

ˇ ď 2epHq ¨ }f ´ d}
˝

□

We conclude this section with the following fact that the cut-norm controls most vertex
degrees into given subsets (see, e.g., the deduction of (iii ) of Theorem 3.1 from (i )).

Lemma 4.4. For every ε ą 0 and all functions f, d : rnsp2q ÝÑ r0, 1s with }f ´ d}
˝

ď ε the
following holds. For all U Ď rns with |U | ą 2ε1{3n, all but at most ε1{3n vertices v P rns

satisfy
|dfpv, Uq ´ ddpv, Uq| ď ε1{3

|U | .

Proof of Lemma 4.4. Let S be the set of vertices v with dfpv, Uq ´ ddpv, Uq ě ε1{3|U |. We
have

n2
}f ´ d}

˝
ě

ÿ

vPS

dfpv, Uq ´ ddpv, Uq ě ε1{3
|U ||S| ě 2ε2{3n|S|

and |S| ď ε1{3n{2 folllows. Similarly, one can show that there are at most ε1{3n{2 vertices v
such that ddpv, Uq ´ dfpv, Uq ě ε1{3|U | and the claimed bound follows. □

4.3. Proof of Lemma 2.2. Given ℓ ě 3 and δ ą 0, we fix auxiliary constants

L “ 2pℓ ´ 1qpℓ ´ 2q ` 2 , ν “
δ4ℓ4`2ℓ2

104ℓ2 , α “
ν

8ℓ2 , and ζ “ δ10ℓ2`2 .

Moreover we fix auxiliary constants ε1 and ε2 and the desired C to satisfy the hierarchy‡

δ , ℓ´1
" ν, ζ " α " ε2 " ε1 " C´1 .

Assume that G P Gpn, pq satisfies the conclusion of Theorem 4.1 and Theorem 3.1 (iv ) for
ε “ ε1. Let } ¨ } denote the norm given by Theorem 4.1. Moreover, we may assume that all
vertices in G have degree p1 ˘ ε1qpn, since all these properties hold asymptotically almost
surely.

‡Here, x " y means that for a given x, y is taken sufficiently small so that all the following claims hold.
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For the moreover-part of the lemma, we have in addition p “ ppnq ď n
´

2ℓ´5
ℓ2´ℓ´4 {ωpnq for

some function ω tending to infinity. Similarly as in the proof of Lemma 2.1 this allows us
to assume

ˇ

ˇEpGq ∖ EpGℓq
ˇ

ˇ ď ζpn2 . (4.2)

By our choice of ζ, this implies that the crucial assumption (2.4) for G in Lemma 2.2
extends to Gℓ at the price of a small change of the constants. Namely, every U Ď V pGℓq

with size |U | ě δ5ℓ2
n satisfies

ˇ

ˇtu P U : dGℓ,cpu, Uq ě 7.9δp|U | for some colour cu
ˇ

ˇ ě 0.49|U | ,

and the proof given below can be carried out in Gℓ as well.
Hence, let us return to the proof in the original graph G. For a comparability sign

˛ P tă, ąu set

B˛
pUq “ tv P U : d˛

cpv, Uq ě 4δp|U | for some colour cu .

The assumption (2.4) implies that for every set U with |U | ě δ5ℓ2
n, we have

|Bă
pUq| ě

|U |

4 or |Bą
pUq| ě

|U |

4 . (4.3)

The condition (4.3) will be iterated to inductively build some structures in G, as detailed
in the following claim. We will build subgraphs Ft of G for t P rLs, which are non-strictly
min-coloured or max-coloured and relatively dense to G. Moreover, we consider the dense
models Dt of those Ft given by Theorem 4.1. The hypergraph H is used to keep track of
cliques in

Ť

t Dt. In the statement and proof, we usually identify a hypergraph H with its
set of edges. In particular, |H| is the number of edges in H.

Claim 4.5. For every t P rLs there is a set of vertices Vt disjoint from V1 Y ¨ ¨ ¨ Y Vt´1 with
|Vt| ě 1

25αδ
2tn, a comparability sign ˛t P tă, ąu, and a colour index ψt P N Ÿ t‹u such that

the following holds:

(a ) Each v P Vt is assigned a colour cpvq and there is a graph Ft Ď G whose edges vu
satisfy v P Vt and u P N˛t

cpvq
pvq ∖ pV1 Y ¨ ¨ ¨ Y Vtq.

(b ) If ψt P N, then cpvq “ ψt for all v P Vt. Otherwise, if ψt “ ‹, then we have
|tv P Vt : cpvq “ ju| ď α|Vt| for every colour j P N.

(c ) There is a function dt : rnsp2q ÝÑ r0, 1s with

}p´11Ft ´ p1 ` ε1qdt} ď ε1 ,

and a graph Dt with

}Dt ´ dt}˝
ď 7ε1 and

›

›Dt ´ p´11Ft

›

›

˝
ď 9ε1 .
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(d ) There is a t-partite t-uniform hypergraph Ht on V1 Y ¨ ¨ ¨ Y Vt with

|Ht| ě 10´2tδt2
|V1| ¨ ¨ ¨ |Vt|

and for any pv1, . . . , vtq P Ht, there is a set Spv1, . . . , vtq disjoint from V1, . . . , Vt

of size at least δtn such that for i ď t,

NDi
pviq Ě tvi`1, . . . , vtu Y Spv1, . . . , vtq .

Proof of Claim 4.5. We start the induction with t “ 1. Let B “ B˛1pV pGqq be the set
of n{4 vertices given by (4.3). For v P B, let cpvq be a colour in which

d˛1
cpvq

pvq ě 4δpn.

Moreover, we wish to transfer a bipartite graph F1. To this end, let each vertex of B be
placed into a set Z1 independently at random with probability 1{2, and let Y1 “ V pGq∖Z1.
We may assume that |Z1| ě n{10, and each v P Z1 satisfies

d˛1
cpvq

pv, Y1q ě 1.5δpn (4.4)

as this happens asymptotically almost surely.
If there is a colour j such that |c´1pjq XZ1| ě α|Z1|, then we set V1 “ c´1pjq and ψ1 “ j.

Otherwise take V1 “ Z1 and set ψ1 “ ‹. Note that in either case,

|V1| ě
αn

10 .

Let F1 be the subgraph of G with

EpF1q “ tvu : v P V1 , u P Y1 , v ˛1 u , and φpvuq “ cpvqu .

Let 1F1 be the characteristic function of F1. By Theorem 4.1, there is a weighted graph
d1 : rnsp2q ÝÑ r0, 1s with }p´11F1 ´ p1 ` ε1qd1} ď ε1. In particular, }p´11F1 ´ d1}

˝
ď 2ε1

by Theorem 4.1 (i ).
Let d1

1 “ d1æV1ˆprns∖V1q. Passing to a restriction of d1 is just a technicality to circumvent
small overlaps between d1, . . . , dt, and we will now show that }d1 ´ d1

1}
˝

ď 6ε1. Denote
f1 “ p´11F1 . To bound d1 ´ d1

1, notice that, by definition of d1
1 and since all edges of F1 lie

in V1 ˆ prns ∖ V1q,
1
n2

ˇ

ˇed1
1
prnsq ´ ef1prnsq

ˇ

ˇ “
2
n2 |ed1pV1, rns ∖ V1q ´ ef1pV1, rns ∖ V1q| ď 2 }d1 ´ f1}

˝
ď 4ε1 .

Hence ed1prnsq´ed1
1
prnsq “ ed1prnsq´ef1prnsq`ef1prnsq´ed1

1
prnsq ď 6ε1n

2. Since d1 ´d1
1 ě 0

(pointwise), we have

}d1 ´ d1
1}

˝
“

1
n2 ped1prnsq ´ ed1

1
prnsqq ď 6ε1.

Moreover,
›

›d1
1 ´ p´11F1

›

›

˝
ď 8ε1
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using the triangle inequality.
Let D1 be a graph sampled from d1

1. Asymptotically almost surely, }1D1 ´ d1
1}

˝
ď ε1 by

Lemma 4.2. Therefore, using the triangle inequality, we may assume that

}1D1 ´ d1}
˝

ď 7ε1 and
›

›1D1 ´ p´11F1

›

›

˝
ď 9ε1 .

Let H1 be the set of vertices v P V1 with

dD1pv, Y1q ě δn .

By Lemma 4.4, using (4.4), }1D1 ´ p´11F1}
˝

ď 9ε1, and taking ε1 ă ε4
2, we have that

|H1| ě |V1| ´ ε2n ě
|V1|

2 . This completes the case t “ 1.
Suppose the Claim holds for 1, 2, . . . , t ´ 1. Let X “ rns ∖ pV1 Y ¨ ¨ ¨ Y Vt´1q. For

pv1, . . . , vt´1q P Ht´1, consider the set Spv1, . . . , vt´1q Ď X as stated in (d ). Specifically,
|Spv1, . . . , vt´1q| ě δt´1n. Denote ξ “ ξptq :“ δt´1. Applying the assumption (4.3), we
obtain a set B˛pSpv1, . . . , vt´1qq of order at least ξn

10 for some ˛ “ ˛pv1, . . . vt´1q such that
for every v P B˛pSpv1, . . . , vt´1qq and some colour c “ cpv1, . . . , vt´1, vq,

d˛
cpv, Spv1, . . . , vt´1qq ě 4δξpn . (4.5)

The next step is to remove the dependency of ˛ and c on pv1, . . . , vt´1q. Firstly, let H1
t´1

be a subhypergraph of Ht´1 of order at least 1
2 |Ht´1| such that ˛pv1, . . . vt´1q “ ˛t for all

pv1, . . . , vt´1q P H1
t´1.

Now form an auxiliary bipartite graph J with parts H1
t´1 and X ˆN as follows: an edge

ppv1, v2, . . . vt´1q, pv, cqq in J means that v P Spv1, . . . , vt´1q and

d˛t
c pv, Spv1, . . . , vt´1qq ě 4δξpn . (4.6)

Since every pv1, . . . vt´1q P H1
t´1 is contained in at least ξn{10 edges in J (one for each

element of B˛tpv1, . . . , vt´1q), we have

|J | ě
1
2 |Ht´1| ¨

ξn

10 .

Let X 1 Ă X be the set of vertices v such that some pv, cq is incident to an edge of J ,
and note that for each v, there are at most p3δξq´1 such colours c – this follows from
dcpvq ě 4δξpn and dGpvq ď p1 ` ε1qpn. For each v P X 1, let cpvq be the colour which
maximises the degree of pv, cq in J . Form J 1 from J by deleting all the vertices pv, c:q with
c: ‰ cpvq; we have

|J 1
| ě |J | ¨ 3δξ ě

3
20 |Ht´1|δξ2n .

Since now each vertex v P X 1 is associated with a unique colour cpvq, we may assume that
one vertex part of J 1 is just X 1.
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We wish the graph Ft to be bipartite, so let us split the set X 1 as follows. Let Wt Ď X 1

consist of vertices sampled from X 1 independently at random with probability 1{2. Let
Yt “ X ∖Wt. With positive probability,

|J 1
rEpH1

t´1q,Wts| ě
3
50 |Ht´1|δξ2n ,

and for each ppv1, . . . , vt´1q, vq P J 1 (recalling (4.6)),

d˛t

cpvq
pv, Yt X Spv1, . . . , vt´1qq ě 1.5δξpn , (4.7)

where we used Chernoff bounds and the union bound. Thus we may assume that these
two inequalities are satisfied.

Now, let Zt Ď Wt be the set of vertices of degree at least 1
50 |Ht´1|δξ2 in J 1, and let J∗ be

the induced subgraph of J 1 on pEpH1
t´1q, Ztq. Since the vertices in Wt ∖ Zt were incident

to at most 1
50 |Ht´1|δξ2n edges in total, we have

|J∗
| ě

1
25 |Ht´1|δξ2n .

Recalling that J∗ is a bipartite graph on the vertex sets pEpH1
t´1q, Ztq, we have the lower

bound
|Zt| ě

|J∗|

|Ht´1|
ě

1
25δξ

2n “
1
25δ

1`2pt´1qn ě
1
25δ

2tn . (4.8)

Now, to ensure (b ), if there is a colour j such that

Zt,j “ tv P Zt : cpvq “ ju

contains at least α|Zt| vertices, let Vt “ Zt,j and set ψt “ j (recalling that α ! δ, ℓ´1 is a
constant). Otherwise, set Vt “ Zt and ψt “ ‹. Using the minimum degree of the vertices
from Vt, we have

ˇ

ˇJ∗
rEpH1

t´1q, Vts
ˇ

ˇ ě
1
50 |Ht´1|δξ2

|Vt| .

Moreover, |Vt| ě α|Zt| ě 1
25αδ

2tn, as required by the claim.
Let Ft be the subgraph of G with

EpFtq “ tvy : v P Vt, y P Yt, v ˛t y, and φpvyq “ cpvqu .

Recall that if ppv1, . . . , vt´1q, vtq P J∗, then by (4.7),

dFtpvt, Spv1, . . . , vt´1q X Ytq ě 1.5δξpn “ 1.5δtpn . (4.9)

Let ft “ p´11Ft . By Theorem 4.1, there is a function dt : rnsp2q ÝÑ r0, 1s such that

}ft ´ p1 ` ε1qdt} ď ε1 .

Let d1
t “ dtæVtˆprns∖pV1Y...Vtqq, and let Dt be a graph sampled from d1

t. By the same argument
as in the induction basis, we may assume that

}Dt ´ dt}˝
ď 7ε1 and

›

›Dt ´ p´11Ft

›

›

˝
ď 9ε1 ,
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where Dt stands for the indicator function 1Dt .
Let Ht consist of t-tuples pv1, . . . , vtq such that vt P NJ∗pv1, . . . , vt´1q and

dDtpvt, Spv1, . . . , vt´1q X Ytq ě δtn . (4.10)

Using Lemma 4.4 and (4.9), for each pv1, . . . , vt´1q P H1
t´1, there are at most ε2n vertices

vt P NJ∗pv1, . . . , vt´1q violating (4.10) (recalling that ε2 ą ε4
1), so indeed

|Ht| ě |J∗
rEpH1

t´1q, Vts| ´ ε2n
t

ě
1

100 |Ht´1|δξ2
|Vt|

ě 10´2tδpt´1q2`2t´1
|V1| . . . |Vt|

“ 10´2tδt2
|V1| . . . |Vt| ,

where we used the inductive hypothesis in the second line.
Finally, we set Spv1, . . . vtq “ NDtpvtq XSpv1, . . . , vt´1q XYt to obtain a set which satisfies

asserting (d ) of Claim 4.5. □

For the remainder of the proof, we do not need properties (c ) and (d ), but only the
following consequences. We remark that it is crucial that the relative density of K|M |-copies
mentioned in (A ) (denoted ν) does not depend on α, but only on δ and ℓ. On the other
hand |Vi|{n may depend on α.

For every subset M Ď rLs below we show

(A ) The graph
Ť

iPM Di contains at least νn
ś

iPM |Vi| copies of K|M |`1.

(B ) If |M | ď ℓ, then

p´pℓ
2q ¨ ΛKℓ

ˆ

ď

iPM

Fi

˙

ě ΛKℓ

ˆ

ď

iPM

Di

˙

´ ε2 .

We first show that part (d ) of Claim 4.5 implies (A ). Fix any pv1, . . . , vLq P HL, and
let |V ∗

L`1| “ Spv1, . . . , vLq, so |V ∗
L`1| ě δLn. Now, for each vL`1 P V ∗

L`1, the vertices
tvi : i P Mu Y tvL`1u form a clique in

Ť

iPM Di, since NDi
pviq contains vj for j ą i by (d ).

The number of choices for pvi : i P Mq contained in some edge pv1, . . . , vLq P HL is at least

|HL|

˜

ź

iPrLs∖M

|Vi|

¸´1

ě 10´2LδL2 ź

iPM

|Vi|.

Putting these two bounds together, we obtain at least nδL ¨ 10´2LδL2 ś

iPM |Vi| copies
of K|M |`1, which implies (A ) since L ď 2ℓ2.

Secondly, we claim that the Di satisfy (B ). Let D “
Ť

iPM Di, d “
ř

iPM di, and
F “

Ť

iPM Fi, so that 1F “
ř

iPM 1Fi
. By the triangle inequality and part (c ) of Claim 4.5,
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we have
›

›

›
p´11F ´ p1 ` ε1q

ÿ

iPM

di

›

›

›
ď ε1ℓ.

Hence, by Theorem 4.1 (applied with ε “ ε1ℓ), and taking ε1 sufficiently small depending
on ε2, we have

ΛKℓ
pp´11F q ě ΛKℓ

pdq ´ ε1ℓ
3ℓ2

ě ΛKℓ
pdq ´

ε2

2 .

Moreover, }dt ´ Dt}˝
ď 7ε1 for t P rLs, so using Lemma 4.3, we have ΛKℓ

pdq ě ΛKℓ
pDq´ ε2

2 .

It follows that
ΛKℓ

pp´11F q ě ΛKℓ
pDq ´ ε2 ,

as required for the proof of (B ).
We now complete the proof of Lemma 2.2. Let I 1 Ă rLs be a set of order L{2 such that ˛

is constant on I 1 and, without loss of generality, we may assume that ˛i “ă for i P I 1.
Moreover, let I Ă I 1 be a set of order ℓ ´ 1 such that

(i ) either ψi ‰ ‹ for i P I and ψ is constant or injective on I,
(ii ) or ψi “ ‹ for i P I.

Let
ϑ “

ź

iPI

|Vi|

n
, F “

ď

iPI

Fi and D “
ď

iPI

Di ,

and note that ϑ is bounded from below by a constant depending on α, δ, ℓ, due to the
lower bound on |Vi| in Claim 4.5. By assertion (A ), D contains at least νϑnℓ copies of Kℓ.
Hence, owing to (B ) and ε2 ď 1

10νϑ, the graph F contains at least 1
2νϑn

ℓppℓ
2q copies of Kℓ.

All these copies are non-strictly min-coloured by construction of F (i.e., φpuvq “ cpuq for
u ă v, uv P F ), and now we will use (b ) and the choice of I to show that there is actually
a strictly min-coloured or a monochromatic copy. We first show that each copy of Kℓ in F
has exactly one vertex in Vi for i P I. Let v1 ă v2 ă ¨ ¨ ¨ ă vℓ be the vertex set of a Kℓ in F ,
and recall the property (a ) of Claim 4.5 for F . Since all the edges in F have the starting
point in

Ť

iPI Vi, we have that tv1, . . . , vℓ´1u Ď
Ť

iPI Vi. But each Vi is an independent set
in F , so it contains at most one (and hence exactly one) vertex from tv1, . . . , vℓ´1u.

If ψi ‰ ‹ for i P I, any copy of Kℓ in F is min-coloured (in case ψ is injective on I) or
monochromatic (in case ψ is constant on I); to see this, recall that by (b ) of Claim 4.5, if
uv P EpFiq, φpuvq “ ψi.

Suppose that ψi “ ‹ for i P I. For i, j P I, let Kij be the collection of Kℓ-copies containing
vertices vi P Vi and vj P Vj with cpviq “ cpvjq. We will show that for all i ‰ j P I

|Kij| ď 3αϑppℓ
2qnℓ. (4.11)

(This follows easily from Theorem 3.1 (ii ) when each colour class in Vi is of size α|Vi|, but
we need to be slightly more careful about smaller vertex classes.)
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Partition the colours in crVis into clusters 1, . . . ,m with m ď 2α´1 such that for each
k P rms, the proportion of vertices in cluster k in Vi lies in rα, 2αs. Note that such a
partition exists since |crVis| ď α|Vi| by (b ) of Claim 4.5. For each cluster k P rms, let βpkq

(resp. γpkq) be the proportion of vertices v in Vi (resp. Vj) such that cpvq is in cluster k, so
α ď βpkq ď 2α. By Theorem 3.1 (ii ), the number of Kℓ-copies with vertices in cluster k in
both Vi and Vj is at most

pβpkqγpkqϑ ` ε1qppℓ
2qnℓ

ď p2αγpkqϑ ` ε1qppℓ
2qnℓ.

Summing over k P rms, corresponding to clusters 1, . . . ,m, and using
ř

kPrms
γpkq ď 1, we

obtain
|Kij| ď

ÿ

kPrms

p2αγpkqϑ ` ε1qppℓ
2qnℓ

ď p2αϑ ` 2α´1ε1qppℓ
2qnℓ.

Taking ε1 ď 1
3α

2ϑ implies (4.11).
The bound (4.11) holds for any i, j, so taking α ă ν{p8ℓ2q, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ď

iăjPI

Kij

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3ℓ2αϑppℓ
2qnℓ

ď
3
8νϑp

pℓ
2qnℓ.

Recalling that F contains at least 1
2νϑp

pℓ
2qnℓ copies of Kℓ, it follows that there is a copy

outside
Ť

iăjPI Kij, which is then strictly min-coloured.
This completes the proof of Lemma 2.2. □

Remark 4.6. The fact that Kℓ is a clique was only used to show that each copy of Kℓ

in F has at most one vertex in each Vi for i P I. In the concluding remarks, we will discuss
to what extent our proof extends to general graphs H.

§5 Concluding remarks

5.1. Thresholds for canonical Ramsey properties for general graphs. Recall that
for an ordered graph H, we defined p̂H as the threshold for the property Gpn, pq ∗ÝÑ pHq

and Theorem 1.3 establishes p̂Kℓ
“ n´ 2

ℓ`1 . The problem of determining the threshold p̂H

for ordered graphs H which are not complete is still open, but there are some partial
results.

Firstly, Alvarado, Kohayakawa, Morris, and Mota [18] studied a closely related problem
for even cycles C2ℓ. Their result implies that for p “ Cn´1{m2pC2ℓq log n, any colouring
of Gpn, pq contains a canonical copy of the cycle C2ℓ. However, in their work the ordering
of the random graph Gpn, pq is determined after the colouring.

Secondly, for a strictly balanced graph H, our proof guarantees for p " n´1{m2pHq a
canonical copy of H, but one cannot require a specific vertex ordering of H. This statement
is shown using the following modification of Theorem 4.1, which actually slightly simplifies
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the present proof of Lemma 2.2 for Kℓ as well, but at the expense of introducing some
additional formalism. For a collection of functions f “ pfeqePH , define

Λ:
ppfeqePHq “

ÿ

u1,...,uℓ

ź

ijPH

fijpui, ujq,

that is, the density of H-copies in which the image of each edge e P H is weighted by fe.
A small modification of Corollary 3.7 in [4] (which appears in [5, page 17] in order to prove
Theorem 3.1) implies that if }fe´de} “ op1q for e P EpHq, then |Λ:ppfeqePHq´Λ:ppdeqePHq| “

op1q. Hence, our proof can be carried out with the following modification. Assume that
we have found our desired set of ℓ ´ 1 indices I, and that ˛i “ă for i P I; we may relabel
so that I “ rℓ ´ 1s. Then we can define fij “ Fi for ij P EpHq with i ă j. Now, any
embedding β : H ÝÑ G generated by the proof has the property that for ij P EpHq with
i ă j, ζpiqζpjq lies in Fi, so its colour is determined by minpζpiq, ζpjqq.

Returning to the issue of vertex ordering, when a pair ij is not an edge of H, the proof
does not guarantee that ζpiq ă ζpjq.

5.2. Canonical colourings in random hypergraphs. Furthermore, it would be in-
teresting to investigate extensions of Theorem 1.3 to k-uniform hypergraphs for k ě 3.
Namely, in their original work Erdős and Rado [7] established a canonical Ramsey theorem
for k-uniform hypergraphs. However, their proof for k-uniform hypergraphs used Ramsey’s
theorem for 2k-uniform hypergraphs and this seems to be an obstacle for transferring it
to random hypergraphs at the right threshold. Hence, for transferring their result to the
random setting, it seems necessary to start with a proof which avoids the use of hypergraphs
with larger uniformity. Such proofs can be found in [23,28].

Appendix A. Transference

First we informally outline the proof of Theorem 9.3 from [4], which corresponds to our
Theorem 3.1. Then we state the formal claims that we need from [4], and show how they
are applied to deduce Theorem 4.1. The proof of this theorem is entirely contained in [4],
but some elements which we use (the norm }¨} and the dense model d) are only defined
within of Theorem 4.5 in [4]. For an informal discussion of the Conlon–Gowers approach,
we also refer the interested reader to [5, Section 3].

The statements whose proofs we would like to expound are Theorem 9.3, and its
corresponding deterministic result, Theorem 4.10. Unfortunately, these two proofs are not
actually spelled out in [4]. Instead, the authors prove Theorem 9.1 and Theorem 4.5, which
are Szemerédi-type results for random sets, and say that the proofs of Theorem 9.3 and
Theorem 4.10 are ‘much the same’. Moreover, their setting is much more general – they
work with random subsets of a set X, which for us is just the set of edges of a complete
graph Kn. In particular, for us, |X| “

`

n
2

˘

.
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Theorem 9.3 from [4] states that asymptotically almost surely, any subgraph F of Gpn, pq

with p “ Cn´1{m2pHq can be approximated by a dense model D which asymptotically
matches the edge distribution and the number of H-copies in F .

As mentioned, instead of graphs, we work with functions from rnsp2q to R, or weighted
graphs. For a random graph G P Gpn, pq, the associated measure of G is defined as
µ “ µG “ p´11G. Given an m-tuple of functions µ “ pµ1, . . . , µmq P Rrnsp2q (which will
later be taken as the associated measures of m independent copies of Gpn, p‹q), Conlon
and Gowers introduce the set of pµ, 1q-basic anti-uniform functions Φµ,1, which have the
key property that the number of H-copies in a weighted graph f ď m´1pµ1 ` ¨ ¨ ¨ ` µmq can
be bounded in terms of the inner products

max t|xf, φy| : φ P Φµ,1u .

The norm }¨} is defined as

}f} “ max t|xf, φy| : φ P Φµ,1u Y t}f}˝u ,

where the term }f}˝ is just appended to ensure that }¨} also controls the edge distribution
of a weighted graph. This corresponds to Definitions 3.6 and 4.9 from [4].

One caveat in this description is that }¨} only controls the number of H-copies under
certain deterministic conditions on µ1, . . . , µm. In the context of graphs, these condi-
tions, denoted (P0)–(P31) in [4, Section 4], imply the property that the corresponding
random graphs have a sufficiently homogeneous edges distribution, which is a well-known
necessary condition for all similar counting results in sparse random graphs. To prove The-
orem 3.1, Conlon and Gowers show three statements. Firstly, asymptotically almost surely,
the associated measures µ1, . . . , µm of Gpn, p‹q with p‹ “ Cn´1{m2pHq satisfy (P0)–(P31).
Secondly, assuming (P0)–(P31), for any f ď m´1pµ1 ` ¨ ¨ ¨ ` µmq there is a dense model
d : rnsp2q ÝÑ r0, 1s with

}f ´ p1 ` εqd} ď ε .

Thirdly, again assuming (P0)–(P31), d is a useful approximation for f in our context,
since }¨} controls the edge distribution and the number of H-copies in f and d. We have
decided not to state properties (P0)–(P31) since this would require some further definitions
and notation.

These three statements imply that asymptotically almost surely, any such function
f ď m´1pµ1 ` ¨ ¨ ¨ ` µmq has a suitable dense model. To reach the same conclusion for
subgraphs of Gpn, pq, a small additional step is needed (cf. Proof of Theorem 9.1 in [4]).
Given m independent samples of Gpn, p‹q with p‹ “ Cn´1{m2pHq, let G be the union
of U1, U2, . . . , Um. Then G is distributed as Gpn, pq with p “ 1 ´ p1 ´ p‹qm, which is
slightly smaller than p‹m. Thus the hypothesis f ď p´11G does not quite imply that
f ď m´1p´1

‹ p1U1 ` ¨ ¨ ¨ ` 1Umq “ m´1pµ1 ¨ ¨ ¨ ` . . . µmq. Still, since p “ p‹mp1 ` op1qq, this
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caveat can be resolved by slightly rescaling f, which we do at the start of the proof. We
remark that this strategy of exposing Gpn, pq in m copies (for a large constant m) is used
in [4] in order to be able to (define and) verify properties (P0)–(P31).

Now we formally state the claims which are used for deducing Theorem 4.1, and where
they can be found in [4]. Say that µ1, . . . , µm satisfy the property Ppη, λ, d,mq if they
satisfy properties (P0)–(P31) stated in [4, Section 4]. The following statement can be found
in the proof of Theorem 9.1 in [4].

Lemma A.1. Given η, λ, d,m, there is C such that for p‹ “ Cn´1{m2pHq the following
holds. If U1, . . . , Um P Gpn, p‹q are mutually independent and µi “ p´1

‹ 1Ui
is the associated

measure of Ui for i P rms, then µ1, . . . , µm satisfy Ppη, λ, d,mq asymptotically almost surely.

The following lemma can be deduced from the proof of Theorem 4.5 in [4]. In their
proof, the dense model d1 is denoted by g.

Lemma A.2. Given ε ą 0, there are sufficiently small constants η, λ ą 0 and large
integers d,m such that if µ1, . . . , µm satisfy Ppη, λ, d,mq and f ď m´1pµ1 ` . . . µmq, then
the following holds.

(i ) There is d1 : rnsp2q ÝÑ R with 0 ď d1 ď 1 and }f ´ p1 ` ε{4qd1} ď ε
2 .

(ii ) If d : rnsp2q ÝÑ R is a function with 0 ď d ď 1 and }f ´ p1 ` εqd} ď ε, then

ΛHpfq ě ΛHpdq ´ 4|EpHq| ¨ ε.

Now we can deduce our desired result.

Proof outline for Theorem 4.1. Given ε ą 0, let η, λ, d and m be as required for the
conclusion of Lemma A.2 to hold. The random graph G will be sampled in m rounds – that
is, we set p‹ “ Cn´1{m2pHq and p “ 1 ´ p1 ´ p‹qm ě p1 ´ ε{4q p‹m for sufficiently large n.
Following the notation of Conlon and Gowers, let U1, . . . , Um be m mutually independent
random graphs sampled independently with edge probability p‹, where C is a sufficiently
large constant. Our random graph G with edge probability p will then be sampled by
taking the union of U1, . . . , Um, which indeed has the claimed distribution. For i P rms,
let µi “ p´1

‹ 1Ui
be the associated measure of Ui, and define µ “ m´1pµ1 ` ¨ ¨ ¨ ` µmq.

Assume that pµiqiPrms satisfy the property P “ Ppη, λ, d,mq. By Lemma A.1, this occurs
asymptotically almost surely.

We will apply Lemma A.2 to deduce the existence of dF and part (ii ). Let F be a
subgraph of G, so 0 ď 1F ď 1G ď

ř

iPrms
1Ui

. Define

f̃ “ p´11F and f “
1 ` ε{4
1 ` ε

p´11F . (A.1)
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We claim that f ď µ. Indeed, recalling that p ě p1 ´ ε{4q p‹m, and hence

p´1
¨

1 ` ε{4
1 ` ε

ď pmp‹q
´1

for large n, we have

f “
1 ` ε{4
1 ` ε

p´11F ď
1 ` ε{4
1 ` ε

p´1
ÿ

iPrms

1Ui
ď pmp‹q

´1
ÿ

iPrms

1Ui
“ m´1

ÿ

iPrms

µi “ µ .

Thus we can apply the above-mentioned claims.
Lemma A.2 (i ) applied to f “ f gives a function dF “ d1 such that }f´ p1 ` ε{4qdF } ď ε

2 .
Multiplying by 1`ε

1`ε{4 and recalling (A.1), we obtain

}̃f ´ p1 ` εqdF } ď ε ,

as required.
To see (ii ), take d with }p´11F ´ p1 ` εqd} ď ε and 0 ď d ď 2ℓ. We have

›

›

›

›

1F

2ℓp ´
p1 ` εqd

2ℓ

›

›

›

›

ď
ε

2ℓ ă ε .

We may apply Lemma A.2 (ii ) with f “
1F

2ℓp
ď µ and d replaced by d

2ℓ
ď 1 to obtain

ΛH

ˆ

1F

2ℓp

˙

ě ΛH

ˆ

d

2ℓ

˙

´ 4|EpHq| ¨ ε .

Using the fact that ΛHpαf1q “ α|EpHq|ΛHpf1q for any constant α ě 0 and any f1 : rnsp2q ÝÑ R,
it follows that

p´|H|ΛHpF q ě ΛHpdq ´ 4ε|H|p2ℓq|EpHq|
ě ΛHpdq ´ 4εp2ℓqℓ2

,

as required.
Statement (i ) follows from d ď 1, the definition of } ¨ }

˝
and the triangle inequality. That

is,
}f ´ d}

˝
ď }f ´ p1 ` εqd}

˝
` }εd}

˝
ď }f ´ p1 ` εqd}

˝
` ε ď 2ε . □
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