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Abstract. The regularity method was pioneered by Szemerédi for graphs and is an important
tool in extremal combinatorics. Over the last two decades, several extensions to hypergraphs
were developed which were based on seemingly different notions of quasirandom hypergraphs.
We consider the regularity lemmata for 3-uniform hypergraphs of Frankl and Rödl and of
Gowers, and present a new proof that the concepts behind these approaches are equivalent.

§1 Introduction

Szemerédi [12] introduced the regularity method for graphs, which became an important
tool in extremal graph theory. The regularity lemma asserts that every large graph G “ pV, Eq

can be approximated by a bounded number of quasirandom bipartite subgraphs that are
induced by a partition of V . This approximation allows the use of results on quasirandom
graphs for the analysis of G, which is a key feature in the success of the regularity method.

Szemerédi’s regularity lemma was extended from graphs to k-uniform hypergraphs by Rödl
et al. [2,7,11] and Gowers [3,4]. For a fixed k-uniform hypergraph H “ pV, Eq, these regularity
lemmata provide well-structured partitions P of V pk´1q “ tX Ď V : |X| “ k ´ 1u where for
most edges e P E, the hypergraph H is quasirandom on the unique family of classes from P ,
each containing a pk ´ 1q-element subset from e. By quasirandom, we follow either uniform
edge distribution [2, 7, 11] or deviation [3, 4].

For graphs it is well known that both concepts are equivalent quasirandom properties and
for 3-uniform hypergraphs a similar equivalence was obtained in joint work with Poerschke [5].
The proof from [5] invokes two applications of the hypergraph regularity lemma. Here, we
present a conceptually simpler proof using a single application of the regularity lemma.
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1.1. Quasirandom bipartite graphs. We begin our discussion with the notion of quasiran-
domness that is central to Szemerédi’s regularity lemma. For ε ą 0 and d P r0, 1s, we say a
bipartite graph G “ pX Ÿ Y, Eq is pε, dq-regular if all subsets X 1 Ď X and Y 1 Ď Y satisfy

ˇ

ˇepX 1, Y 1
q ´ d |X 1

||Y 1
|
ˇ

ˇ ď ε |X||Y | , (1)

where epX 1, Y 1q denotes the number of edges between X 1 and Y 1. Note that (1) ensures a
fairly uniform edge density across the large induced bipartite subgraphs of G, which is a
property holding almost surely in the binomial random bipartite graph.

The second notion of quasirandomness considers induced subgraphs on only four vertices.
For δ ą 0 and d P r0, 1s, we say G “ pX Ÿ Y, Eq is pδ, dq-conformant∗ if

ÿ

x0,x1PX

ÿ

y0,y1PY

ź

λ,µPt0,1u

fG,dpxλ, yµq ď δ |X|
2
|Y |

2 ,

where fG,d : X ˆ Y ÝÑ r´1, 1s is the d-shifted indicator of E given by

fG,dpx, yq “ 1Epx, yq ´ d .

Note that when d “ dpX, Y q is the density of G above, fG,d sums to 0 over X ˆ Y .
The aforementioned equivalence is made precise by the following two statements:

(i ) For all d P r0, 1s and ε ą 0, there exists δ ą 0 such that every pδ, dq-conformant
bipartite graph is pε, dq-regular.

(ii ) For all d P r0, 1s and δ ą 0, there exists ε ą 0 such that every sufficiently large
pε, dq-regular bipartite graph is pδ, dq-conformant.

We briefly sketch the well known proofs of (i ) and (ii ).
The proof of the implication in (i ) starts with the identity

epX 1, Y 1
q ´ d |X 1

||Y 1
| “

ÿ

xPX 1

ÿ

yPY 1

fG,dpx, yq “
ÿ

xPX

ÿ

yPY

1X 1pxq1Y 1pyqfG,dpx, yq .

With two applications of the Cauchy–Schwarz inequality, to separate the indicator functions
involving vertices from X and from Y , one can show that

ˇ

ˇepX 1, Y 1
q ´ d |X 1

||Y 1
|
ˇ

ˇ

4
ď |X 1

|
2

¨ |Y 1
|
2

¨
ÿ

x0,x1PX

ÿ

y0,y1PY

ź

λ,µPt0,1u

fG,dpxλ, yµq

and the pε, dq-regularity follows from the assumed pδ, dq-conformity when δ ď ε4.
The proof of implication (ii ) makes use of the following bounds (see (2) below) on the

number of induced copies of subgraphs of the 4-cycle C4 “ K2,2. Let F be a spanning subgraph
∗We remark that this concept is often called deviation. However, referring to such well-behaved graphs as

pδ, dq-deviant seemed to be a mismatch and that is why we chose a different name here.
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of K2,2 with vertex partition tx0, x1u Ÿ ty0, y1u. We say a function φ : V pF q ÝÑ V pGq is an
induced homomorphism when xy P EpF q if, and only if, φpxqφpyq P EpGq. If in addition, φ

satisfies φpx0q, φpx1q P X and φpy0q, φpy1q P Y , then φ is a partite induced homomorphism
of F into G, and we denote the number of such homomorphisms by ihompF, Gq.

If G “ pX Ÿ Y, EGq is an pε, dq-regular bipartite graph, then the counting lemma for graphs
implies

ˇ

ˇ

ˇ
ihompF, Gq ´ d|EpF q|

p1 ´ dq
4´|EpF q|

|X|
2
|Y |

2
ˇ

ˇ

ˇ
ď 4ε |X|

2
|Y |

2 . (2)

The proof of (ii ) then follows immediately for ε ď δ{64 from the identity
ÿ

x0,x1PX

ÿ

y0,y1PY

ź

λ,µPt0,1u

fG,dpxλ, yµq “
ÿ

F ĎC4

p1 ´ dq
|EpF q|

p´dq
4´|EpF q| ihompF, Gq .

by 16 applications of (2), one for every labeled spanning subgraph F Ď K2,2, and by appealing
to the binomial theorem.

1.2. Quasirandom tripartite hypergraphs. We continue the discussion above for 3-
uniform hypergraphs. In the context of the 3-uniform hypergraph regularity lemma, we
consider 3-partite 3-uniform hypergraphs H “ pV, EHq, where EH is a subset of the triangles
of an underlying graph G “ pV, EGq on the same vertex set V . To make this precise, we
denote by K3pGq the set of triples of vertices, which span a graph triangle K3 in G. We say
that G “ pV, EGq underlies H “ pV, EHq when EH Ď K3pGq. Also, for a subgraph J Ď G, we
write EHpJq “ EH X K3pJq for the set of hyperedges matching triangles of J , and we set

eHpJq “
ˇ

ˇEH X K3pJq
ˇ

ˇ .

The following notion of a complex plays a similar rôle in the hypergraph regularity lemma as
a bipartite graph does in the graph regularity lemma.

Definition 1.1 (complex). For all reals ε2, d2 ą 0 and every n P N, an pε2, d2, nq-complex
H “ ppX, Y, Zq, G, Hq is a triple satisfying the following properties:

(a ) X, Y , and Z are pairwise disjoint vertex sets with |X| “ |Y | “ |Z| “ n;
(b ) G “ pX ŸY ŸZ, EGq is a 3-partite graph where each of the induced bipartite subgraphs

GrX, Y s, GrX, Zs, and GrY, Zs is pε2, d2q-regular;
(c ) H “ pX Ÿ Y Ÿ Z, EHq is a 3-uniform hypergraph which G underlies, i.e., EH Ď K3pGq.

More simply, we refer to G as a triad and H as a complex.

We now introduce analogues of regularity and conformity for complexes.
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Definition 1.2 (regular complex). Let H “ ppX, Y, Zq, G, Hq be an pε2, d2, nq-complex. For
ε3 ą 0 and d3 P r0, 1s, we say H is pε3, d3q-regular if all subgraphs J Ď G satisfy

ˇ

ˇeHpJq ´ d3 |K3pJq|
ˇ

ˇ ď ε3 ¨ d3
2n

3 .

In Definition 1.2, the quantity d3
2n

3 approximates the number of triangles of G (cf. (b ) of
Definition 1.1). Similarly, the quantity d12

2 n6 below approximates the number of K2,2,2’s.

Definition 1.3 (conformant complex). Let H “ ppX, Y, Zq, G, Hq be an pε2, d2, nq-complex.
For δ3 ą 0 and d3 P r0, 1s, we say H is pδ3, d3q-conformant if

ÿ

x0,x1PX

ÿ

y0,y1PY

ÿ

z0,z1PZ

ź

λ,µ,νPt0,1u

fH,d3pxλ, yµ, zνq ď δ3 ¨ d12
2 n6 ,

where fH,d3 : X ˆ Y ˆ Z ÝÑ r´1, 1s is defined by

fH,d3px, y, zq “ 1K3pGqpx, y, zq ¨ p1EH
px, y, zq ´ d3q . (3)

Note that when d3 is the relative density of H

dpH |Gq “

$

&

%

eH pGq

|K3pGq|
, if K3pGq ‰ ∅,

0, otherwise,

then fH,d3 sums to 0 over X ˆ Y ˆ Z.
It was proven in [5] that Definitions 1.2 and 1.3 are equivalent. We will give an alternative

proof of this equivalence. First, we will show that conformity implies regularity.

Proposition 1.4. For all δ3, d3, d2 ą 0, there exists ε2 ą 0 so that the following holds for
all n P N. If H is a pδ3, d3q-conformant pε2, d2, nq-complex, then H is pp2δ3q1{8, d3q-regular.

Proposition 1.4 follows from three standard applications of the Cauchy–Schwarz inequality
(similar to those in the proof of (i ) in Section 1.1).

Second, we will show that regularity implies conformity.

Theorem 1.5. For all δ3, d3 ą 0, there exists ε3 ą 0 so that for every d2 ą 0, there exist
ε2 ą 0 and n0 P N so that the following holds. If H is an pε3, d3q-regular pε2, d2, nq-complex
with n ě n0, then H is pδ3, d3q-conformant.

The new proof of Theorem 1.5 is the main contribution here. The main challenge is that
its quantification allows for

ε2 ! d2 ! ε3 ! δ3, d3 ,

whereby the density d2 of the sparse underlying graph G is smaller than the parameter ε3,
which governs the regularity of the hypergraph H. However, this quantification matches



EQUIVALENT REGULAR PARTITIONS OF 3-UNIFORM HYPERGRAPHS 5

the environment obtained by the hypergraph regularity lemmas from [2, 3] and cannot be
completely avoided. To overcome this challenge, in [5] two applications of the regularity
lemma for hypergraphs were used. We present a simpler proof using only one such application.
We close with the following remark.

Remark 1.6. The proof of Theorem 1.5 presented here extends verbatim to the environment
of the k-uniform hypergraph regularity lemma from [10, Theorem 2.3]. As a direct consequence
for every k, the corresponding counting lemma [9, Theorem 1.3] remains valid for r “ 1
already, by virtue of the counting lemma from Gowers [4, Corollary 5.3].

Organisation. In Section 2, we prove Proposition 1.4. The proof of Theorem 1.5 is based on
estimates similar to (2), where in a regular 3-uniform complex we estimate the number of
induced copies of all 3-partite subhypergraphs on vertex classes of size two. Theorem 3.1 of
Section 3 provides these bounds, and we deduce Theorem 1.5 in that section. In Section 5, we
prove Theorem 3.1. This proof is based on the regularity method for 3-uniform hypergraphs,
which we review in Section 4.

§2 Proof of Proposition 1.4: Conformity implies Regularity

The proof of Proposition 1.4 is based on three applications of the Cauchy–Schwarz inequality,
and follows lines similar to the proof of piq in Section 1.1. Let H “ ppX, Y, Zq, G, Hq be a
pδ3, d3q-conformant pε2, d2, nq-complex, where ε2 “ ε2pd2q ą 0 satisfies

pd2 ` ε2q
4

¨ pd2
2 ` 2ε2q

2
¨ pd4

2 ` 4ε2q ď 2d12
2 . (4)

Fix a subgraph J Ď G. Since fH,d3px, y, zq in (3) is 1EpHqpx, y, zq ´ d3 on xyz P K3pJq†, the
quantity eHpJq ´ d3|K3pJq| equals

ÿ

xyzPK3pJq

fH,d3px, y, zq“
ÿ

xPX

ÿ

yPY

1EJ
px, yq

ÿ

zPZ

1EJ
px, zq1EJ

py, zqfH,d3px, y, zq .

A first application of the Cauchy–Schwarz inequality yields
ˇ

ˇeHpJq ´ d3 |K3pJq|
ˇ

ˇ

2
ď

ÿ

xPX

ÿ

yPY

12
EJ

px, yq ¨
ÿ

xPX

ÿ

yPY

ˆ

ÿ

zPZ

1EJ
px, zq1EJ

py, zqfH,d3px, y, zq

˙2

“ eJpX, Y q
ÿ

z0,z1PZ

ÿ

xPX

ź

νPt0,1u

1EJ
px, zνq

ÿ

yPY

ź

νPt0,1u

1EJ
py, zνqfH,d3px, y, zνq .

†For simplicity, if there is no danger of confusion we sometimes omit parentheses, braces, and commas for
2-element and 3-element sets. In particular, we denote edges tu, vu, hyperedges tu, v, wu, or the vertex set of
a graph triangle tx, y, zu by uv, uvw, and xyz, respectively.
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A second application of the Cauchy–Schwarz inequality bounds |eHpJq ´ d3 |K3pJq||4 by

eJpX, Y q
2

¨
ÿ

z0,z1PZ

ÿ

xPX

ˆ

ź

νPt0,1u

1EJ
px, zνq

˙2

¨
ÿ

z0,z1PZ

ÿ

xPX

ˆ

ÿ

yPY

ź

νPt0,1u

1EJ
py, zνqfH,d3px, y, zνq

˙2

ď eJpX, Y q
2

¨ hom
`

K1,2, JrX, Zs
˘

¨
ÿ

y0,y1PY

ÿ

z0,z1PZ

ź

µ,νPt0,1u

1EJ
pyµ, zνq

ÿ

xPX

ź

µ,νPt0,1u

fH,d3px, yµ, zνq ,

where hompK1,2, JrX, Zsq denotes the number of (partite) graph homomorphisms of K1,2 into
JrX, Zs. A third application of the Cauchy–Schwarz inequality yields

ˇ

ˇeHpJq ´ d3 |K3pJq|
ˇ

ˇ

8
ď eJpX, Y q

4
¨ hom

`

K1,2, JrX, Zs
˘2

¨ hom
`

K2,2, JrY, Zs
˘

¨
ÿ

x0,x1PX

ÿ

y0,y1PY

ÿ

z0,z1PZ

ź

λ,µ,νPt0,1u

fHpxλ, yµ, zνq , (5)

where hompK2,2, JrY, Zsq is defined analogously to hompK1,2, JrX, Zsq. Now, the pε, d2q-
regularity of GrX, Y s, GrX, Zs, and GrY, Zs guarantees (see, e.g., (2))

eJpX, Y q ď eGpX, Y q ď pd2 ` ε2qn2 ,

hom
`

K1,2, JrX, Zs
˘

ď hom
`

K1,2, GrX, Zs
˘

ď pd2
2 ` 2ε2qn3 ,

and hom
`

K2,2, JrY, Zs
˘

ď hom
`

K2,2, GrY, Zs
˘

ď pd4
2 ` 4ε2qn4 .

Applying these bounds and the pδ3, d3q-conformity of H to (5) implies
ˇ

ˇeHpJq ´ d3 |K3pJq|
ˇ

ˇ

8
ď pd2 ` ε2q

4n8
¨ pd2

2 ` 2ε2q
2n6

¨ pd4
2 ` 4ε2qn4

¨ δ3d
12
2 n6 (4)

ď 2δ3d
24
2 n24 ,

which concludes the proof of Proposition 1.4. □

§3 Proof of Theorem 1.5: Regularity implies Conformity

Theorem 1.5 is a consequence of Theorem 3.1 below, which extends (2) to regular complexes
H “ ppX, Y, Zq, G, Hq. In particular, Theorem 3.1 asserts that H admits around the expected
number of labeled induced copies of any spanning subhypergraph F of the octahedron K

p3q

2,2,2:

V pK
p3q

2,2,2q “ tx0, x1u Ÿ ty0, y1u Ÿ tz0, z1u and EpK
p3q

2,2,2q “
␣

xλyµzν : λ, µ, ν P t0, 1u
(

.

For this, a map φ : V pF q ÝÑ V pGq is a partite homomorphism of F into H when

(1) φpx0q, φpx1q P X, φpy0q, φpy1q P Y , and φpz0q, φpz1q P Z;
(2) φpxλqφpyµqφpzνq P K3pGq for all λ, µ, ν P t0, 1u;
(3) φpxλqφpyµqφpzνq P EpHq whenever xλyµzν P EpF q.

When, additionally, φ satisfies
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p31q φpxλqφpyµqφpzνq P EpHq if, and only if, xλyµzν P EpF q,

we say that φ is a partite induced homomophism of F into H. In these contexts, we denote by
hompF, Hq (ihompF, Hq) the number of partite (induced) homomorphisms of F into H.

Theorem 3.1. For all η ą 0 and d3 P r0, 1s, there exists ε3 ą 0 so that for every d2 ą 0,
there exist ε2 ą 0 and n0 ě 1 so that the following holds for every spanning subhypergraph F

of K
p3q

2,2,2. If H is an pε3, d3q-regular pε2, d2, nq-complex with n ě n0, then
ˇ

ˇ

ˇ
ihompF, Hq ´ d

|EpF q|

3 p1 ´ d3q
8´|EpF q|d12

2 n6
ˇ

ˇ

ˇ
ď η ¨ d12

2 n6 . (6)

We defer the proof of Theorem 3.1 to Section 5.

Proof of Theorem 1.5. For any given δ3, d3 ą 0 we set η “ δ3{256 and for d2 ą 0, let
H “ ppX, Y, Zq, G, Hq be an pε3, d3q-regular pε2, d2, nq-complex with n ě n0, where ε3 “

ε3pδ3, d3, ηq ą 0, ε2 “ ε2pδ3, d3, η, d2q ą 0, and n0 “ n0pδ3, d3, η, d2, ε2q P N are those parame-
ters guaranteed by Theorem 3.1. It follows from (3) that

ÿ

x0,x1PX

ÿ

y0,y1PY

ÿ

z0,z1PZ

ź

λ,µ,νPt0,1u

fH,d3pxλ, yµ, zνq “
ÿ

F

p1 ´ d3q
|EpF q|

p´d3q
8´|EpF q|

¨ ihompF, Hq ,

where the sum on the right-hand side runs over all 256 labeled spanning subhypergraphs
of K

p3q

2,2,2. Applying Theorem 3.1 to all such F bounds the left-hand side from above by

256ηd12
2 n6

`
ÿ

F

p´1q
8´|EpF q|

¨ d8
3p1 ´ d3q

8d12
2 n6

“ 256ηd12
2 n6,

and the pδ3, d3q-conformity of H follows from the choice of η. □

§4 Regularity Method for 3-uniform Hypergraphs

In this section, we state a regularity lemma from [2] (Theorem 4.2 below) and a counting
lemma from [6] (Theorem 4.4 below) which we need for proving Theorem 3.1. These require
the following notion of a regular complex, which is somewhat stronger than Definition 1.2.

Definition 4.1 (r-regular complex). Let H “ ppX, Y, Zq, G, Hq be an pε2, d2, nq-complex.
For ε3 ą 0, d3 P r0, 1s, and an integer r ě 1, we say H is pε3, d3, rq-regular if all sequences
J “ pJ1, . . . , Jrq of subgraphs of G satisfy

ˇ

ˇeHpJq ´ d3 |K3pJq|
ˇ

ˇ ď ε3 |K3pGq| ,

where eHpJq “
ˇ

ˇ

Ťr
i“1 EHpJiq

ˇ

ˇ and K3pJq “
Ťr

i“1 K3pJiq. Moreover, we say H is pε3, rq-regular
when it is pε3, d3, rq-regular for d3 “ dpH |Gq.
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We remark that for r “ 1, Definition 4.1 reduces to Definition 1.2. Otherwise, Definition 4.1
is stronger than Definition 1.2, and for large r it is stronger than Definition 1.3 (see [1]).

The following regularity lemma for complexes is adapted from [2] (see, e.g., [10, Lemma 4.1]).

Theorem 4.2 (Regularity Lemma). For all constants d2, ξ3 ą 0, integers ℓ0, t0 ě 1, and
functions ξ2 : p0, 1s ÝÑ p0, 1s and r : p0, 1s ˆ N ÝÑ N, there exist a constant ε2 ą 0 and
integers L0, T0, and N0 so that the following hold.

Let H “ ppX, Y, Zq, G, Hq be an pε2, d2, nq-complex with n ě N0, where T0! divides n.
There exist integers ℓ and t with ℓ0 ď ℓ ď L0, t0 ď t ď T0, vertex partitions

Ť

¨ iPrts
Xi “ X,

Ť

¨ jPrts
Yj “ Y , and

Ť

¨ kPrts
Zk “ Z, edge-partitions

ď

¨

i,jPrts

ď

¨

αPrℓs

P ij
α “ EpGrX, Y sq ,

ď

¨

i,kPrts

ď

¨

βPrℓs

Qik
β “ EpGrX, Zsq , and

ď

¨

j,kPrts

ď

¨

γPrℓs

Rjk
γ “ EpGrY, Zsq ,

and complexes Hijk
αβγ “ ppXi, Yj, Zkq, Gijk

αβγ, H ijk
αβγq for every pi, j, k, α, β, γq P rts3 ˆ rℓs3, where

Gijk
αβγ “

`

Xi Ÿ Yj Ÿ Zk, P ij
α Ÿ Qik

β Ÿ Rjk
γ

˘

and H ijk
αβγ “

`

Xi Ÿ Yj Ÿ Zk, EpHq X K3
`

Gijk
αβγ

˘˘

,

satisfying the following properties:

(a ) all Hijk
αβγ above are pξ2pd2{ℓq, d2{ℓ, n{tq-complexes;

(b ) all but ξ3t
3ℓ3 many Hijk

αβγ above are pξ3, rpd2{ℓ, tqq-regular.

We call the graphs Gijk
αβγ of Theorem 4.2 the triads of the regular partition.

In Theorem 4.4 below, we consider a special case of the counting lemma from [6], tailored for
counting subhypergraphs of the octahedron K

p3q

2,2,2 within the following octahedral complexes.

Definition 4.3 (octahedral complex). For ξ2, d ą 0 and m P N, an octahedral pξ2, d, mq-
complex O “ ppX0, X1, Y0, Y1, Z0, Z1q, G, Hq is a triple satisfying the following properties:

(i ) X0, X1, Y0, Y1, Z0, and Z1 are pairwise disjoint vertex sets of common size m;
(ii ) G is a 3-partite graph with vertex classes X0 Y X1, Y0 Y Y1, and Z0 Y Z1, and H is a

3-partite 3-uniform hypergraph which G underlies;
(iii ) for each λ, µ, ν P t0, 1u, the complex

Oλµν
“
`

pXλ, Yµ, Zνq, Gλµν
“ GrXλ, Yµ, Zνs, Hλµν

˘

,

where EpHλµνq “ EpHq X K3pGλµνq, is a pξ2, d, mq-complex.

Moreover, for ξ3 ą 0 and an integer r ě 1, we say O is pξ3, rq-regular when all λ, µ, ν P t0, 1u

satisfy that Oλµν is pξ3, rq-regular.
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Fix a spanning subhypergraph F of the octahedron K
p3q

2,2,2 on the fixed vertex partition

V pF q “ tx0, x1u Ÿ ty0, y1u Ÿ tz0, z1u,

and fix an octahedral complex O “ ppX0, X1, Y0, Y1, Z0, Z1q, G, Hq. A map φ : V pF q ÝÑ V pGq

is a partite homomorphism of F into O when all λ, µ, ν P t0, 1u satisfy the following properties:

(1) φpxλq P Xλ, φpyµq P Yµ, and φpzνq P Zν ;
(2) φpxλqφpyµqφpzνq P K3pGq;
(3) φpxλqφpyµqφpzνq P EpHq whenever xλyµzν P EpF q.

We denote by hompF, Oq the number of partite homomorphisms of F into O.

Theorem 4.4 (Octahedral Counting Lemma). For every ϑ ą 0, there exist ξ3 ą 0 and
functions ξ2 : p0, 1s ÝÑ p0, 1s, r : p0, 1s ÝÑ N, and m0 : p0, 1s ÝÑ N such that for all d P p0, 1s,
the following holds.

For every real constant d P p0, 1s, for every pξ3, rpdqq-regular octahedral pξ2pdq, d, mq-complex
O “ ppX0, X1, Y0, Y1, Z0, Z1q, G, Hq with m ě m0pdq, and for every spanning subhypergraph
F of K

p3q

2,2,2, we have
ˇ

ˇ

ˇ
hompF, Oq ´ d12m6

ź

xλyµzνPEpF q

dpH | Gλµν
q

ˇ

ˇ

ˇ
ď ϑd12m6 .

The essential difference between Theorems 3.1 and 4.4 (aside from counting induced versus
non-induced homomorphisms) is the assumed regularity of the given complex. In Theorem 3.1,
the given complex H is pε3, d3q-regular, while in Theorem 4.4, the given octahedral complex O
satisfies the stronger property of being pξ3, rq-regular for some large integer r depending on
the density of the underlying graph G.

§5 Proof of Theorem 3.1

In this section, we prove Theorem 3.1 in a non-induced but equivalent form.

Theorem 5.1. For all η ą 0 and d3 P r0, 1s, there exists ε3 ą 0 so that for every d2 ą 0,
there exist ε2 ą 0 and n0 ě 1 so that the following holds for every spanning subhypergraph F

of K
p3q

2,2,2. If H is an pε3, d3q-regular pε2, d2, nq-complex with n ě n0, then
ˇ

ˇ

ˇ
hompF, Hq ´ d

|EpF q|

3 d12
2 n6

ˇ

ˇ

ˇ
ď η ¨ d12

2 n6 .

Up to the error η, Theorems 3.1 and Theorems 5.1 are equivalent. Indeed, fixing F above,

hompF, Hq “
ÿ

F 1

ihompF 1, Hq and ihompF, Hq “
ÿ

F 1

p´1q
|EpF 1q|´|EpF q| hompF 1, Hq ,
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where we sum over all spanning subhypergraphs F 1 satisfying F Ď F 1 Ď K
p3q

2,2,2, and where we
use the elementary identities

d
|EpF q|

3 “
ÿ

F 1

d
|EpF 1q|

3 p1 ´ d3q
8´|EpF 1q| and d

|EpF q|

3 p1 ´ d3q
8´|EpF q|

“
ÿ

F 1

p´1q
|EpF 1q|´|EpF q|d

|EpF 1q|

3 .

In the proof of Theorem 5.1, we invoke the regularity method from Section 4. We also use
the following standard consequence of the counting lemma for graphs.

Fact 5.2 (counting/extension lemma for graphs). For all tripartite graphs G “ pXŸY ŸZ, EGq

with GrX, Y s, GrX, Zs, and GrY, Zs being pε, dq-regular we have

(a )
ˇ

ˇ|K3pGq| ´ d3|X||Y ||Z|
ˇ

ˇ ď 3ε|X||Y ||Z|

(b ) and all but 4ε1{4|X||Y ||Z| many triangles of G extend to at most
`

d9 ` 4ε1{4˘|X||Y ||Z|

partite homomorphisms of K2,2,2 into G.

Similarly, given a tripartite graph G “ pX Ÿ Y Ÿ Z, EGq with vertex classes X “ X0 Y X1,
Y “ Y0 Y Y1, and Z “ Z0 Y Z1 with GrXλ, Yµs, GrXλ, Zνs, and GrYµ, Zνs being pε, dq-regular
for all λ, µ, ν P t0, 1u we have

(c )
ˇ

ˇ hompK2,2,2, Gq ´ d12|X0||X1||Y0||Y1||Z0||Z1|
ˇ

ˇ ď 12ε|X0||X1||Y0||Y1||Z0||Z1|, where in
hompK2,2,2, Gq we only consider those homomorphisms φ from V pK2,2,2q “ tx0, x1u Ÿ

ty0, y1u Ÿ tz0, z1u such that φpx0q P X0, . . . , φpz1q P Z1. □

Note that Fact 5.2 (c ) also applies in a situation when for example X0 and X1 are not disjoint.

Proof of Theorem 5.1. We start by defining all involved constants. Following the quantification
of the theorem for given η ą 0 and d3 P r0, 1s we define

ε3 “
η

213 . (7)

Let d2 ą 0 be given. To define the corresponding constant ε2 ą 0, we assemble constants and
functions suitable for applications of Theorems 4.2 and 4.4. To that end, set

ϑ “
η

212 . (8)

Let ξ3 ą 0 and functions ξ2 : p0, 1s ÝÑ p0, 1s, r : p0, 1s ÝÑ N and m0 : p0, 1s ÝÑ N be those
parameters guaranteed by Theorem 4.4. W.l.o.g., we may assume that

ξ3 ď
η

215
(7)
“

ε3

4 , and ξ2pζq ď
η

3 ¨ 212 ζ12 for all ζ P p0, 1s , (9)

and that m0pxq decreases in x. With constants d2, ξ3 ą 0 fixed above, with fixed integers

t0 “

Q212

η

U

(10)
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and ℓ0 “ 1, and with functions ξ2p¨q and rp¨q fixed above, Theorem 4.2 guarantees a constant
ε1

2 ą 0 and positive integers L0, T0, and N0. We define the promised constant

ε2 “ min
!

ε1
2 ,

ˆ

ηd12
2

12 ¨ 210

˙4

,
d12

2
12T0

)

, (11)

and we take the integer n0 to be sufficiently large whenever needed.
Let H “ ppX, Y, Zq, G, Hq be an pε3, d3q-regular pε2, d2, nq-complex with n ě n0, where ε3,

ε2, and n0 are defined above. It suffices to assume that T0! divides n since removing up to T0!
vertices from each of X, Y , and Z decreases hompF, Hq by only 6T0!n5 “ Opn5q while still
resulting in a p2ε3, d3q-regular p2ε2, d2, nq-complex.

For every fixed spanning subhypergraph F Ď K
p3q

2,2,2 we shall establish
ˇ

ˇ

ˇ
hompF, Hq ´ d

|EpF q|

3 d12
2 n6

ˇ

ˇ

ˇ
ď

2|EpF q|

28 η ¨ d12
2 n6 . (12)

Note that (12) holds when F is the empty (spanning) subhypergraph of K
p3q

2,2,2, since then
hompF, Hq “ hompK2,2,2, Gq, for which (c ) of Fact 5.2 yields

ˇ

ˇ hompF, Hq ´ d0
3 ¨ d12

2 n6ˇ
ˇ ď 12ε2n

6 (11)
ď

20

28 η ¨ d12
2 n6 .

We assume, for a contradiction, that there exists an edge-minimal non-empty spanning
subhypergraph F of K

p3q

2,2,2 for which (12) fails. W.l.o.g., we assume that x0y0z0 P EpF q and
we set F ´ “ F ´ x0y0z0 to be the subhypergraph of F obtained by removing the hyperedge
x0y0z0. Since (12) fails for F but holds for F ´, we deduce that

ˇ

ˇ hompF, Hq ´ d3 ¨ hompF ´, Hq
ˇ

ˇ ą
2|EpF q| ´ d3 ¨ 2|EpF ´q|

28 η ¨ d12
2 n6

ě
η

28 ¨ d12
2 n6 . (13)

We shall use the discrepancy in (13) to establish the existence of a subgraph J0 Ď G violating
the regularity of H:

ˇ

ˇeHpJ0q ´ d3 |K3pJ0q|
ˇ

ˇ ą ε3 ¨ d3
2n

3 . (14)

The proof of the existence of J0 consist of four steps. First, we apply Theorem 4.2 and locate
a triad in the regular partition where (13) carries over (in an appropriately scaled way) to
copies of F ´ and F that extend hyperedges supported by that triad (see (18) below).

Step 1: Applying the regularity lemma. We apply Theorem 4.2 to H with the chosen parameters
d2, ξ3, ℓ0, t0, ξ2p¨q and rp¨q. Theorem 4.2 guarantees integers ℓ0 ď ℓ ď L0 and t0 ď t ď T0,
vertex partitions

Ť

¨ iPrts
Xi “ X,

Ť

¨ jPrts
Yj “ Y , and

Ť

¨ kPrts
Zk “ Z, edge-partitions

ď

¨

i,jPrts

ď

¨

αPrℓs

P ij
α “ EpGrX, Y sq ,

ď

¨

i,kPrts

ď

¨

βPrℓs

Qik
β “ EpGrX, Zsq , and

ď

¨

j,kPrts

ď

¨

γPrℓs

Rjk
γ “ EpGrY, Zsq ,
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and complexes Hijk
αβγ, pi, j, k, α, β, γq P rts3 ˆ rℓs3, where

Gijk
αβγ “

`

Xi Ÿ Yj Ÿ Zk, P ij
α Ÿ Qik

β Ÿ Rjk
γ

˘

and H ijk
αβγ “

`

Xi Ÿ Yj Ÿ Zk, EpHq X K3pGijk
αβγq

˘

,

which satisfy properties (a ) and (b ) of its conclusion. We set

m “
n

t
, ξ2 “ ξ2

´d2

ℓ

¯

, and r “ r
´d2

ℓ

¯

and note that m ě n{T0 ě m0pd2{ℓq and by (9) we have

ξ2 ď
η

3 ¨ 212 ¨

´d2

ℓ

¯12
. (15)

We remove hyperedges xyz from H when they belong to some H ijk
αβγ for which Hijk

αβγ is not
pξ3, rq-regular, and we let H 1 and H1 denote the resulting hypergraph and complex. By (b ) of
Theorem 4.2 and (a ) of Fact 5.2,

|EpHq ∖ EpH 1
q| ď ξ3t

3ℓ3
¨ ppd2{ℓq

3m3
` 3ξ2m

3
q

(15)
ď 2ξ3d

3
2n

3 . (16)

Consequently, (b ) of Fact 5.2 applied to G and (16) implies
ˇ

ˇ hompF, H1
q ´ d3 ¨ hompF ´, H1

q
ˇ

ˇ

ě
ˇ

ˇ hompF, Hq ´ d3 ¨ hompF ´, Hq
ˇ

ˇ ´
`

2ξ3d
3
2n

3
¨ pd9

2n
3

` 4ε
1{4
2 n3

q ` 4ε
1{4
2 n3

¨ n3˘ .

Thus, inequality (13) can be transferred from H to H1 by
ˇ

ˇ hompF, H1
q ´ d3 ¨ hompF ´, H1

q
ˇ

ˇ ą
η

28 d12
2 n6

´ 2ξ3d
12
2 n6

´ 12ε
1{4
2 n6 (9),(11)

ě
η

29 ¨ d12
2 n6 . (17)

Next we shall find a triad Gijk
αβγ such that a similar (appropriately scaled) inequality like (17)

holds for the homomorphisms of F and F ´ in H 1 that map the three vertices x1, y1, z1

to K3pGijk
αβγq and the other three vertices x0, y0, z0 (which span the additional hyperedge

in F ) outside Xi, Yj, and Zk. For that we denote by hompF, H1 | Gijk
αβγq (respectively by

hompF ´, H1 | Gijk
αβγq) the number of those injective partite homomorphisms. It follows from (c )

of Fact 5.2 that are at most

3t5ℓ12
¨
`

pd2{ℓq
12m6

` 12ξ2m
6˘ (15)

ď
4
t0

¨ d12
2 n6 (10)

ď
η

210 ¨ d12
2 n6

homomorphism from K2,2,2 in G with two vertices contained in the same vertex class from the
vertex partitions

Ť

¨ iPrts
Xi,

Ť

¨ jPrts
Yj, or

Ť

¨ kPrts
Zk. Consequently, summing hompF, H1 | Gijk

αβγq

over all t3ℓ3 triads Gijk
αβγ of the regular partition yields

ÿ

i,j,kPrts

ÿ

α,β,γPrℓs

hompF, H1
| Gijk

αβγq ě hompF, H1
q ´

η

210 ¨ d12
2 n6
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and the same inequality holds for F ´. Therefore, (17) implies
ˇ

ˇ

ˇ

ˇ

ÿ

i,j,kPrts

ÿ

α,β,γPrℓs

hompF, H1
| Gijk

αβγq ´ d3 ¨
ÿ

i,j,kPrts

ÿ

α,β,γPrℓs

hompF ´, H1
| Gijk

αβγq

ˇ

ˇ

ˇ

ˇ

ą
η

210 ¨ d12
2 n6 .

Since there are t3ℓ3 triads, by the pigeonhole principle there exists a triad Gijk
αβγ such that

ˇ

ˇ hompF, H1
| Gijk

αβγq ´ d3 ¨ hompF ´, H1
| Gijk

αβγq
ˇ

ˇ ą
η

210 ¨
d12

2 n6

ℓ3t3 . (18)

We may assume that i “ j “ k “ t and α “ β “ γ “ ℓ and this concludes the first step.

Step 2: Further restricting the considered copies of F ´ and F . In the second step, we further
restrict the set of copies of F and F ´ that we consider in (18). For that, fix 1 ď i ď t ´ 1. We
wish to select a fixed bipartite graph P it

αi
among the ℓ such with vertex bipartition Xi Ÿ Yt.

More generally, for all i, j, k P rt ´ 1s we wish to respectively select

P it
αi

, P tj
α1

j
, Qit

βi
, Qtk

β1
k

, and Rjt
γj

, Rtk
γ1

h

from the partition of pairs. To make these selections, for áa “ p
áα, áα1,

á

β,
á

β 1, áγ, áγ 1q P rℓs6pt´1q

where

áα “ pα1, . . . , αt´1q ,
á

β “ pβ1, . . . , βt´1q , áγ “ pγ1, . . . , γt´1q ,

áα1
“ pα1

1, . . . , α1
t´1q ,

á

β 1
“ pβ1

1, . . . , β1
t´1q , áγ 1

“ pγ1
1, . . . , γ1

t´1q ,

we denote by hompF, H1 | Gttt
ℓℓℓ,

áaq (respectively hompF ´, H1 | Gttt
ℓℓℓ,

áaq) the number of partite
homomorphisms φ from F (resp. F ´) to H1 that satisfy

φpx1q P Xt , φpy1q P Yt , φpz1q P Zt , φpx1qφpy1qφpz1q P K3pGttt
ℓℓℓq (19)

(as before), and also that for some fixed indices i, j, k P rt ´ 1s,

φpx0q P Xi , φpy0q P Yj , φpz0q P Zk , (20)

and

φpx0qφpy1q P P it
αi

, φpx0qφpz1q P Qit
βi

, φpy0qφpz1q P Rjt
γj

,

φpx1qφpy0q P P tj
α1

j
, φpx1qφpz0q P Qtk

β1
k

, φpy1qφpz0q P Rtk
γ1

k
.

Homomorphisms φ satisfying (19) alone are counted by hompF, H1 | Gttt
ℓℓℓq, and for each such

there are precisely ℓ6pt´2q vectors áa P rℓs6pt´1q so that φ also satisfies (20). Consequently,

hompF, H1
| Gttt

ℓℓℓq ¨ ℓ6pt´2q
“

ÿ

áaPrℓs6pt´1q

hompF, H1
| Gttt

ℓℓℓ,
áaq
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and the same identity holds for F ´. Applying these identities to (18) yields

1
ℓ6pt´2q

ˇ

ˇ

ˇ

ˇ

ÿ

áaPrℓs6pt´1q

´

hompF, H1
| Gttt

ℓℓℓ,
áaq ´ d3 ¨ hompF ´, H1

| Gttt
ℓℓℓ,

áaq

¯

ˇ

ˇ

ˇ

ˇ

ą
η

210 ¨
d12

2 n6

ℓ3t3 ,

and applying the triangle inequality further yields

ÿ

áaPrℓs6pt´1q

ˇ

ˇ hompF, H1
| Gttt

ℓℓℓ,
áaq ´ d3 ¨ hompF ´, H1

| Gttt
ℓℓℓ,

áaq
ˇ

ˇ ą
η

210 ¨
d12

2 n6

ℓ3t3 ¨ ℓ6pt´2q.

Averaging over the ℓ6pt´1q terms above yields some vector áa P rℓs6pt´1q that satisfies

ˇ

ˇ

ˇ
hompF, H1

| Gttt
ℓℓℓ,

áaq ´ d3 ¨ hompF ´, H1
| Gttt

ℓℓℓ,
áaq

ˇ

ˇ

ˇ
ą

η

210 ¨
d12

2 n6

ℓ3t3 ¨
ℓ6pt´2q

ℓ6pt´1q
“

η

210 ¨
d12

2 n6

ℓ9t3 . (21)

In Step 1, we fixed the triad Gttt
ℓℓℓ to satisfy (18), and in Step 2, we fixed the vector áa to

satisfy (21). We now observe that every triad Gijk
αβγ with i, j, k P rt ´ 1s determines a unique

octahedral complex (see Definition 4.3)

Oijk
αβγ “

`

pXi, Xt, Yj, Yt, Zk, Ztq, Ĝijk
αβγ, Ĥ ijk

αβγ

˘

, (22)

where the edge-set of Ĝijk
αβγ is given by the edges of the graph

P ij
α Ÿ P it

1 Ÿ P tj
1 Ÿ P tt

ℓ Ÿ Qik
β Ÿ Qit

1 Ÿ Qtk
1 Ÿ Qtt

ℓ Ÿ Rjk
γ Ÿ Rjt

1 Ÿ Rtk
1 Ÿ Rtt

ℓ ,

and where EpĤ ijk
αβγq “ EpH 1q X K3pĜijk

αβγq. It follows by these constructions that

hompF, H1
| Gttt

ℓℓℓ,
áaq “

ÿ

i,j,kPrt´1s

ÿ

α,β,γPrℓs

hompF, Oijk
αβγq ,

and the same identity holds for F ´. We may therefore rewrite (21) to say
ˇ

ˇ

ˇ

ˇ

ÿ

i,j,kPrt´1s

ÿ

α,β,γPrℓs

´

hompF, Oijk
αβγq ´ d3 ¨ hompF ´, Oijk

αβγq

¯

ˇ

ˇ

ˇ

ˇ

ą
η

210 ¨
d12

2 n6

ℓ9t3 . (23)

In Step 3, we will invoke Theorem 4.4 to evaluate the differences above.

Step 3: Applying the octahedral counting lemma. Theorem 4.4 expresses each hompF, Oijk
αβγq

and hompF ´, Oijk
αβγq in (23) as products of densities of triads of Oijk

αβγ . We express these same
densities in terms of the following piece-wise defined weight function w : V pGqYEpGq ÝÑ r0, 1s.
First, we weight all vertices v P V pGq and edges e P EpGq incident to Xt Ÿ Yt Ÿ Zt with
wpvq “ wpeq “ 1. Then, we weight remaining vertices and edges of G systematically by the
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following constant functions: for each pi, j, k, α, β, γq P rt ´ 1s3 ˆ rℓs3, set

w|Xi
”

$

&

%

dpH 1 | Gitt
11ℓq if x0y1z1 P EpF q ,

1 otherwise,

w|Yj
”

$

&

%

dpH 1 | Gtjt
1ℓ1q if x1y0z1 P EpF q ,

1 otherwise,

w|Zk
”

$

&

%

dpH 1 | Gttk
ℓ11q if x1y1z0 P EpF q ,

1 otherwise,

w|P ij
α

”

$

&

%

dpH 1 | Gijt
α11q if x0y0z1 P EpF q ,

1 otherwise,

w|Qik
β

”

$

&

%

dpH 1 | Gitk
1β1q if x0y1z0 P EpF q ,

1 otherwise,

and w|Rjk
γ

”

$

&

%

dpH 1 | Gtjk
11γq if x1y0z0 P EpF q ,

1 otherwise.

Finally, we define the weight of the triad Gijk
αβγ by the product of the six values given to its

vertex classes and edge sets, i.e., we set

wpGijk
αβγq “ wpXiqwpYjqwpZkqwpP ij

α qwpQik
β qwpRjk

γ q . (24)

The number of copies of F (resp. F ´) in Oijk
αβγ also depends on dpH 1 | Gttt

ℓℓℓq if x1y1z1 is an
edge of F and we set

w111 “

$

&

%

dpH 1 | Gttt
ℓℓℓq if x1y1z1 P EpF q ,

1 otherwise.

We can now use the weights defined above to rewrite (23). Since H 1 is pξ3, rq-regular w.r.t.
every triad of the regular partition we obtain from Theorem 4.4

ˇ

ˇ

ˇ

ˇ

hompF, H1
| Gttt

ℓℓℓ,
áaq ´

ÿ

i,j,kPrt´1s

ÿ

α,β,γPrℓs

dpH 1
| Gijk

αβγqwpGijk
αβγqw111 ¨

´d2

ℓ

¯12
m6

ˇ

ˇ

ˇ

ˇ

ď pt ´ 1q
3ℓ3

¨ ϑ
´d2

ℓ

¯12
m6

ď ϑ
d12

2 n6

ℓ9t3 .
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Similarly, for F ´ we arrive at
ˇ

ˇ

ˇ

ˇ

hompF ´, H1
| Gttt

ℓℓℓ,
áaq ´

ÿ

i,j,kPrt´1s

ÿ

α,β,γPrℓs

wpGijk
αβγqw111 ¨

´d2

ℓ

¯12
m6

ˇ

ˇ

ˇ

ˇ

ď ϑ
d12

2 n6

ℓ9t3 .

This way we can rewrite (21) and after dividing both sides with pd2{ℓq9m3 we obtain
ˇ

ˇ

ˇ

ˇ

ÿ

i,j,kPrt´1s

ÿ

α,β,γPrℓs

`

dpH 1
| Gijk

αβγq´d3
˘

wpGijk
αβγqw111 ¨

´d2

ℓ

¯3
m3

ˇ

ˇ

ˇ

ˇ

ą

´ η

210 ´2ϑ
¯

¨d3
2n

3 (8)
ě

η

211 ¨d3
2n

3 .

It follows that w111 ą 0 and, since by definition w111 ď 1, we may divide both sides by w111

and, owing to another application of (a ) of Fact 5.2 for every triad Gijk
αβγ considered in the

sum, we can replace pd2{ℓq3m3 by |K3pGijk
αβγq| ˘ 3ξ2m

3. This way we obtain
ˇ

ˇ

ˇ

ˇ

ÿ

i,j,kPrt´1s

ÿ

α,β,γPrℓs

`

dpH 1
| Gijk

αβγq ´ d3
˘

wpGijk
αβγq

ˇ

ˇK3pGijk
αβγq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą
η

211 ¨ d3
2n

3
´ 3pt ´ 1q

3ℓ3ξ2m
3

(15)
ě

η

212 ¨ d3
2n

3 (7)
“ 2ε3 ¨ d3

2n
3 .

Rewriting the left-hand side by summing over all triangles of G1 “ GrX∖Xt, Y ∖Yt, Z∖Zts

instead over all triads Gijk
αβγ Ď G1 and expanding wpGijk

αβγq according to (24) tells us
ˇ

ˇ

ˇ

ˇ

ÿ

xyzPK3pG1q

`

1EpH 1qpx, y, zq ´ d3
˘

wpxqwpyqwpzqwpxyqwpxzqwpyzq

ˇ

ˇ

ˇ

ˇ

ą 2ε3 ¨ d3
2n

3 . (25)

Step 4: Determining the promised subgraph J0 Ď G. Inequality (25) shows that there exists
a weighted subgraph of G1 such that the weighted version of Definition 1.2 fails. Since all
weights are in r0, 1s, we may view them as a probability distribution over all subgraph of
J Ď G1 and the left-hand side of (25) corresponds the expected value of |eH 1pJq ´ d3 |K3pJq||.
Consequently, there exists a concrete subgraph J Ď G1 Ď G such that

ˇ

ˇeH 1pJq ´ d3 |K3pJq|
ˇ

ˇ ą 2ε3 ¨ d3
2n

3 .

Finally, (16) allows us to move back from H 1 to H and we get the desired inequality

ˇ

ˇeHpJq ´ d3 |K3pJq|
ˇ

ˇ ě
ˇ

ˇeH 1pJq ´ d3 |K3pJq|
ˇ

ˇ ´ 2ξ3d
3
2n

3 (9)
ą ε3 ¨ d3

2n
3 ,

which yields the desired contradiction to the pε3, d3q-regularity of the pε2, d2, nq-complex H
and concludes the proof of Theorem 3.1. □
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