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Abstract. We prove that for all k ě 4 and 1 ď ` ă k{2, every k-uniform hypergraph H
on n vertices with δk´2pHq ě

´

4pk´`q´1
4pk´`q2 ` op1q

¯

`

n
2
˘

contains a Hamiltonian `-cycle if
k ´ ` divides n. This degree condition is asymptotically best possible. The case k “ 3
was addressed earlier by Buß et al.

§1. Introduction

A k-uniform hypergraph H is a pair pV,Eq with vertex set V and edge set E such that
each edge is a subset of k vertices. Given a k-uniform hypergraph H “ pV,Eq and S P

`

V
s

˘

,
we denote by degpSq the number of edges of H containing S and we denote by NpSq the
pk ´ sq-element sets T P

`

V
k´s

˘

such that T Ÿ S is an edge of E, so degpSq “ |NpSq|. We
define the minimum s-degree of H, denoted by δspHq, as the minimum of degpSq over all
s-vertex sets S P

`

V
s

˘

.
We say that a k-uniform hypergraph is an `-cycle if there exists a cyclic ordering of

its vertices such that every edge is composed of k consecutive vertices, two (vertex-wise)
consecutive edges share exactly ` vertices, and every vertex is contained in an edge. If the
ordering is not cyclic, we call it an `-path and we say that the first and last ` vertices are
the ends of the path.

We are interested in the problem of finding minimum degree conditions that ensure the
existence of Hamiltonian cycles, i.e. cycles containing all vertices of the given hypergraph.
Problems of this type attracted considerable attention in the literature over the last two
decades (see, e.g., [13,18] and the references therein). This problem was first studied by
Katona and Kierstead in [8]. They posed a conjecture, which was confirmed by the following
result of Rödl, Ruciński, and Szemerédi [14, 15]: For every k ě 3, if H is a k-uniform
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n-vertex hypergraph with δk´1pHq ě p1{2` op1qqn, then H contains a Hamiltonian pk´1q-
cycle. Their proof introduces the so-called Absorbing Method, which we will use in our
proof as well. In [12] Kühn and Osthus investigated a similar question for 1-cycles, proving
that 3-uniform hypergraphs H with δ2pHq ě p1{4` op1qqn contain a Hamiltonian 1-cycle.
This result was generalized to arbitrary k and `-cycles with 1 ď ` ă k{2 by Hàn and
Schacht [5] (see also [9]).

Theorem 1. For all integers k ě 3 and 1 ď ` ă k{2 and every γ ą 0 there exists
an n0 such that every k-uniform hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with
n P pk ´ `qN and

δk´1pHq ě
ˆ

1
2pk ´ `q ` γ

˙

n

contains a Hamiltonian `-cycle. �

To see the asymptotic optimality of the minimum degree condition, we consider the
following well-known example. Let Hk,` “ pV,Eq be a k-uniform hypergraph on n vertices
such that E is the set of all edges with at least one vertex from A Ă V , where |A| “
Q

n
2pk´`q ´ 1

U

. Note that an `-cycle on n vertices contains n{pk ´ `q edges and for ` ă k{2
every vertex is contained in at most two edges of any `-cycle. So the hypergraph Hk,` does
not contain a Hamiltonian `-cycle and has δk´1pHk,`q “

Q

n
2pk´`q ´ 1

U

. In [6] Han and Zhao
proved a version of Theorem 1 with this sharp degree condition.

Kühn, Mycroft, and Osthus [11] generalized Theorem 1 to 1 ď ` ă k ´ 1, solving
the problem of finding minimum pk ´ 1q-degree conditions that ensure the existence of
Hamiltonian `-cycles in k-uniform hypergraphs.

A natural question is to ask for minimum d-degree conditions forcing the existence of
Hamiltonian `-cycles for d ă k ´ 1. In this direction Buß, Hàn, and Schacht proved the
following asymptotically optimal result in [2].

Theorem 2. For all γ ą 0 there exists an n0 such that every 3-uniform hypergraph
H “ pV,Eq on |V | “ n ě n0 vertices with n P 2N and

δ1pHq ě
ˆ

7
16 ` γ

˙

n

contains a Hamiltonian 1-cycle. �

Note that the asymptotic optimality again follows from the hypergraph Hk,` considered
above for k “ 3 and ` “ 1. The sharp bound for δ1pHq was proved by Han and Zhao in [7].
We generalize Theorem 2 to k-uniform hypergraphs and give an asymptotically optimal
bound on the minimum pk ´ 2q-degree for the existence of Hamiltonian `-cycles for all
1 ď ` ă k{2.
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Theorem 3 (Main result). For all integers k ě 4 and 1 ď ` ă k{2 and every γ ą 0 there
exists an n0 such that every k-uniform hypergraph H “ pV,Eq on |V | “ n ě n0 vertices
with n P pk ´ `qN and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ` γ

˙ˆ

n

2

˙

contains a Hamiltonian `-cycle.

The hypergraph Hk,` motivates the following notion of extremality. Let k ě 3 and ` ě 1
be integers and let 0 ă ξ ă 1. A k-uniform hypergraph H “ pV,Eq is called p`, ξq-extremal
if there exists a set B Ă V such that |B| “

X2pk´`q´1
2pk´`q n

\

and epBq ď ξ
`

n
k

˘

, where epBq
stands for the number of edges in the subhypergraph of H induced by B. Our main result
follows directly from the following theorem.

Theorem 4. For any 0 ă ξ ă 1 and all integers k ě 4 and 1 ď ` ă k{2, there exists γ ą 0
such that the following holds for sufficiently large n. Suppose H is a k-uniform hypergraph
on n vertices with n P pk ´ `qN such that H is not p`, ξq-extremal and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

n

2

˙

.

Then H contains a Hamiltonian `-cycle.

We remark that for k “ 3 and ` “ 1, the corresponding version of Theorem 4 appeared
in the so-called non-extremal case of the sharp version of Theorem 2 in [6]. As a result, it
will be sufficient to address the extremal case for a sharp version of Theorem 3 and we
shall return to this in the near future [1]. For details about this approach see [6, 7]. It
is easy to check that if δk´2pHq ě

´

4pk´`q´1
4pk´`q2 ` γ

¯

`

n
2

˘

, then there exists ξ “ ξpk, `, γq ą 0
such that H is not p`, ξq-extremal. Consequently, Theorem 3 follows from Theorem 4.

§2. Main lemmas

2.1. Outline of the proof of Theorem 4. The proof follows the Absorbing Method
introduced by Rödl, Ruciński, and Szemerédi in [14]. For this, we derive the following
lemmas: the Absorbing Lemma (Lemma 7), the Reservoir Lemma (Lemma 6), and the
Path-Tiling Lemma (Lemma 16).

We call an `-path A Ď H a β-absorbing path for a k-uniform hypergraph H if for every
subset U Ă V pHq of size at most βn there exists an `-path Q such that V pQq “ V pAq YU
and Q has the same ends as A, for some β ą 0. The Absorbing Lemma (Lemma 7)
ensures the existence of a β-absorbing path A. This reduces the problem of finding a
Hamiltonian `-cycle to that of finding an almost spanning `-cycle that contains A.
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To obtain an almost spanning `-cycle, we first find a bounded number (independent
of |V pHq|) of `-paths covering almost all vertices of V pHq r A and then connect them
using only vertices from a small set, a so-called reservoir set that we fix beforehand. The
Reservoir Lemma (Lemma 6) shows that it is possible to find this reservoir set R such that
any bounded number of disjoint `-paths can be connected to an `-cycle, only using vertices
from R.

We can choose the sizes of A and R small enough, so that the remaining hypergraph
satisfies almost the same degree condition as H. Then the Path-Tiling Lemma (Lemma 16)
ensures the existence of a collection of `-paths covering almost all vertices of V pHqr pAYRq.
This is the only point in the proof where we use the exact value of the degree condition and
the non-extremality of H. (In fact, a proof for the corresponding version of the Path-Tiling
Lemma for a direct proof of Theorem 3, which allows us to utilise a slightly larger degree
condition, is a bit simpler.)

As mentioned before, the paths from the Path-Tiling Lemma and A can be connected by
using vertices from R to an almost spanning `-cycle containing A. Since this `-cycle contains
almost all vertices of H, the absorbing property of A allows us to absorb the leftover
vertices, i.e. vertices that are not contained in any of the `-paths and vertices that were
not used to connect the `-paths. The resulting `-cycle is the desired Hamiltonian `-cycle.

2.2. Connecting. In order to construct an almost spanning `-cycle of a k-uniform hyper-
graph H, we first find some `-paths and connect them at their ends. Recall that, given an
`-path P “ v1 ¨ ¨ ¨ vt in H, the ends of P are the sets tv1, . . . , v`u and tvt´``1, . . . , vtu. As
usual, the size of an `-path is the number of its edges. For a collection of 2m mutually
disjoint sets of ` vertices Xi, Yi we say that a set of `-paths T1, . . . , Tm connects pXi, YiqiPrms
if all paths are vertex-disjoint and Xi and Yi are the ends of Ti, for all i P rms. The
connections for a given collection of disjoint `-paths are given by the following lemma.
In addition the lemma allows to restrict the edges used for the connection to a given
“well-connected” subset R of vertices.

Lemma 5 (Connecting Lemma). Let η ą 0 and let k ě 4, 1 ď ` ă k{2, and m ě 1
be integers. Let H “ pV,Eq be a k-uniform hypergraph and R Ă V with |R| “ r ě

32km{η3. For every collection of 2m mutually disjoint sets Xi, Yi P
`

V
`

˘

the following holds
for V 1 “

Ť

iPrmspXi Y Yiq YR.
If
ˇ

ˇNpKq X
`

R
2

˘
ˇ

ˇ ě η
`

r
2

˘

for all K P
`

V 1

k´2

˘

, then there exist `-paths T1, . . . , Tm of size at
most four connecting pXi, YiqiPrms, which contain vertices from V 1 only.

Proof. Given η ą 0 and integers k ě 4, 1 ď ` ă k{2 and m ě 1, let H “ pV,Eq, R Ď V ,
and Xi, Yi for i P rms satisfy the assumptions of the lemma.
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Figure 1. The path connecting pXj, Yjq.

Suppose we have constructed `-paths T1, . . . , Tj´1 each of size at most four connecting the
pairs pXi, YiqiPrj´1s for some j ď m using only vertices from

Ť

iPrmspXi Y Yiq YR. We want
to construct a path Tj with ends Xj and Yj . We define Fj “

Ť

iPrmspXiYYiqY
Ť

iPrj´1s V pTiq
as the set of forbidden vertices for Tj.

If k´2 ě 2` “ |XjYYj|, fix a set Z of size k´2´2` from RrFj . Since |R| “ r ě 32km{η3,
we know that

ˇ

ˇ

ˇ

ˇ

NpXj Y Yj Y Zq X

ˆ

R

2

˙
ˇ

ˇ

ˇ

ˇ

ě η

ˆ

r

2

˙

ą

ˆ

r

2

˙

´

ˆ

r ´ 4km
2

˙

ě

ˆ

r

2

˙

´

ˆ

|Rr Fj|

2

˙

.

Hence, there exists a hyperedge Xj Y Yj YZ
1 with Z 1 Ď Rr Fj , which realizes the path Tj .

It is left to consider the case that 2` “ k ´ 1. See Figure 1 for a drawing of the path we
will construct in this case. For a set A Ď V , let NApSq “ NpSq X

`

A
k´|S|

˘

.

Observation. For any Z P tXj, Yju and L P
`

RrFj

`´1

˘

, there are at least ηr{4 many vertices
z P Rr pFj Y Lq with |NRrFj

pZ Y LY tzuq| ě ηr{4.

To see the observation note that we can consider NRrFj
pZ Y Lq as the edge set of a

2-graph with vertex set R r pFj Y Lq. Since r ě 32km{η3, it follows from the degree
condition of H into the set R that this graph has edge density at least η{2 and the
observation follows.

Let L P
`

RrFj

`´1

˘

and let x, y P R r pFj Y Lq be distinct. We say that px, L, yq is an
extendable triple in Rr Fj if

|NRrFj
pXj Y LY txuq| ě ηr{4 and |NRrFj

pYj Y LY tyuq| ě ηr{4.

The observation yields at least pηr{4qpηr{4´ 1q ą pηr{8q2 extendable triples px, L, yq for
any fixed L P

`

RrFj

`´1

˘

.
Given S P

`

RrFj

`´2

˘

and an extendable triple px, L, yq disjoint from S, S Y LY tx, yu is a
pk ´ 2q-element set. Consequently, the minimum degree condition of the lemma yields at
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least η
`

r
2

˘

pairs M P
`

R
2

˘

such that SYM YLYtx, yu is an edge of H. Moreover, similarly
as in the proof of the observation at least pη{2q

`

|RrFj |

2

˘

of these pairs avoid Fj. Since
this is true for every extendable triple and there are at least

`

|RrFj |

`´1

˘

pηr{8q2 extendable
triples, there exists an M P

`

RrFj

2

˘

that, together with S, forms an edge of H with at
least pη{2qpηr{8q2

`

|RrFj |

`´1

˘

extendable triples. Since r ě 32km{η3, this is more than the
number of triples that any single extendable triple can intersect with, so there exist two
completely disjoint extendable triples px, L, yq and px1, L1, y1q that form an edge of H
together with M 1 “M Y S.

By the definition of extendable triples we have

ˇ

ˇNRrFj
pXj Y LY txuq

ˇ

ˇ ě ηr{4 ą k ` 1 “
ˇ

ˇM 1
Y L1 Y tx1, y1, yu

ˇ

ˇ

and

ˇ

ˇNRrFj
pYj Y L

1
Y ty1uq

ˇ

ˇ ě ηr{4 ą k ` 2 “
ˇ

ˇM 1
Y LY tx, y, x1u

ˇ

ˇ` 1.

Consequently there are v, v1 P Rr Fj such that the hyperedges

tXj Y LY tv, xuu, tM 1
Y LY tx, yuu, tM 1

Y L1 Y tx1, y1uu, and tYj Y L
1
Y ty1, v1uu

are edges of H, which form a path of size 4 connecting pXj, Yjq. �

In the main proof we will connect `-paths to an almost spanning `-cycle. The Reservoir
Lemma (stated below) ensures the existence of a small set R such that we can connect an
arbitrary collection of at most 2m many `-sets, only using vertices of R.

Lemma 6 (Reservoir Lemma). Let η, ε ą 0 and let k ě 4, 1 ď ` ă k{2, and m ě 1 be
integers. Then for every sufficiently large k-uniform hypergraph H “ pV,Eq on n vertices
with δk´2pHq ě η

`

n
2

˘

there is a set R Ă V with |R| ď εn such that the following holds.
For every collection Xi, Yi for i P rjs of 2j mutually disjoint sets of ` vertices, where

j ď m, there exist `-paths T1, . . . , Tj of size at most 4 connecting pXi, YiqiPrjs that, moreover,
contain vertices from

Ť

iPrjspXi Y Yiq YR only.

Lemma 6 is a consequence of Lemma 5, since one can show that with high probability
a suitably sized random subset R Ď V inherits an appropriately scaled minimum degree
condition from H. As a consequence such a set satisfies the assumptions of Lemma 5 (with
η{2) and the lemma yields the conclusion of Lemma 6 (see, e.g. [2, Lemma 6] for a very
similar argument).
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2.3. Absorption. Given a k-uniform hypergraph H and U Ă V with |U | P pk ´ `qN, we
say that an `-path A absorbs U if there exists an `-path Q with the same ends as A and
V pQq “ V pAq Y U . At the end of the main proof we will absorb all vertices outside of an
almost spanning `-cycle to obtain a Hamiltonian `-cycle using an absorbing path A, i.e.
a path that can absorb any set U of small linear size. The existence of such a path A is
given by the following lemma.

Lemma 7 (Absorbing Lemma). For every η, ζ ą 0 and all integers k ě 4 and 1 ď ` ă k{2
there exists ε ą 0 such that the following holds for sufficiently large n. Let H “ pV,Eq

be a k-uniform hypergraph on n vertices that satisfies δk´2pHq ě η
`

n
2

˘

. Then there is an
`-path A with |V pAq| ď ζn such that for all subsets U Ă V r V pAq of size at most εn with
|U | P pk ´ `qN there exists an `-path Q Ă H with V pQq “ V pAq Y U such that A and Q
have the same ends.

Proof. Let η, ζ ą 0 and let k ě 4 and 1 ď ` ă k{2 be integers, and assume w.l.o.g. that
η, ζ ď 1. Fix auxiliary constants

rη “
η

4k! and q “ 3k ´ 2`

and set
ε “

ζrη10

56kq2 .

Let n be sufficiently large and let H “ pV,Eq be a k-uniform hypergraph on n vertices
that satisfies δk´2pHq ě η

`

n
2

˘

. First, we will show that for any S P
`

V
k´`

˘

there exist many,
i.e. Ωpnqq, 3-edge `-paths that absorb S (see Claim 8 below). For that we will use the
following consequence of the minimum degree condition. Let A,B Ă V pHq be disjoint sets
of vertices with |A| ď k ´ 2 and |B| ď q ` k. Then,

degHrV rBspAq ě
pn´ |A|q ¨ ¨ ¨ ¨ ¨ pn´ k ` 3q

pk ´ |A|q! ¨ η

ˆ

n

2

˙

´ |B|nk´|A|´1
ě rηnk´|A|. (1)

Claim 8. For every S P
`

V
k´`

˘

there exist at least rη5nq many 3-edge `-paths that absorb S.

Proof. Let S1 Y S2 “ S be chosen in some way such that

|S1| ě |S2| ě |S1| ´ 1 and maxt0, 3`´ ku ď |S1 X S2| ă ` (2)

and set s1 “ |S1|, s2 “ |S2|, and s3 “ |S1 X S2|. Clearly, we have

s1 ` s2 ´ s3 “ |S| “ k ´ `. (3)

It follows from the choices above that s1 ` s2 ě 2`. Indeed, since s3 ě 3` ´ k we have
k´` “ s1`s2´s3 ď s1`s2´3``k and, hence, s1`s2 ě 2`. Furthermore, s1 ě s2 ě s1´1
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yields
s1 ě s2 ě `. (4)

Consequently, |S1| ą |S1 X S2| (see (2)) and s1 ă k ´ ` by (3). We then select the
following sets. See Figure 2 for a drawing of the chosen sets and edges containing them.
In each step, we will only select sets that are disjoint from S and everything chosen in
previous steps.

(i ) Since s1 ď k ´ ` ´ 1 ď k ´ 2, by (1) there exist rηnk´s1 choices for a pk ´ s1q-set
X such that f1 “ X Ÿ S1 is an edge of H. Since |X| “ k ´ s1

(3)
“ ` ` s2 ´ s3

it follows from (4) that we may partition X “ L1 Ÿ F Ÿ F1 such that |L1| “ `,
|F | “ `´ s3

(2)
ą 0, and |F1| “ s2 ´ ` ě 0.

(ii ) Since k ě 4 we have k´ ` ě 3 and, consequently, s1 ě rpk´ `q{2s ě 2. Thus, by (1)
and |S2 Y F | “ s2 ` `´ s3 “ k ´ s1, there exist rηns1 choices for a set Y of size s1

such that f2 “ S2 Ÿ F Ÿ Y is an edge of H. Again owing to (4) we may partition
Y “ L2 Ÿ F2 such that |L2| “ ` and |F2| “ s1 ´ ` ě 0.

(iii ) Fix L11 Ă L1 and L12 Ă L2 subsets of size `´ 1. Note that

|L11 Ÿ L
1
2 Ÿ F Ÿ F1 Ÿ F2| “ |X| ` |Y | ´ 2 “ k ´ 2.

Therefore, there exist at least rηn2 choices for a pair of vertices tx1, x2u such that
e2 “ tx1, x2u Ÿ L

1
1 Ÿ L

1
2 Ÿ F Ÿ F1 Ÿ F2 is an edge of H.

(iv ) Since k ě 4 we have `` 1 ď k ´ 2. Therefore, there exist rηnk´p``1q choices each for
two disjoint edges e1 and e3 such that tx1u Ÿ L1 Ă e1 and tx2u Ÿ L2 Ă e3.

By construction we have

e1 X e2 “ tx1u Ÿ L
1
1 and e2 X e3 “ tx2u Ÿ L

1
2,

so the edges e1, e2, and e3 form an `-path P in H. Moreover, since

e1 X f1 “ L1, |f1 X f2| “ |pS1 X S2q Y F |
(i )
“ `, and f2 X e3 “ L2,

the edges e1, f1, f2, and e3 form an `-path P 1. Since k ´ ` ´ 1 ě `, we may select for P
and P 1 the same ends in e1 and e3. Moreover, V pP 1q “ V pPq Y S and, therefore, the
`-path P absorbs S. From (i )–(iv ) it is clear that there are at least rη5nq choices for P . �

Following the scheme from [14], let F Ă V pHqq be a family of ordered q-sets of vertices
such that each of these sets are selected from V pHqq independently with probability

p “
4ε

rη5nq´1 .

An `-path in V pHqq is an ordered set pv1, . . . , vqq of vertices such that

e1 “ tv1, . . . , vku, e2 “ tvk´``1, . . . , v2k´`u, and e3 “ tv2k´2``1, . . . , v3k´2`u



LOOSE HAMILTONIAN CYCLES FORCED BY pk ´ 2q-DEGREE 9

S1 S2

F1 F2F
x1 x2

L11L1 L12 L2
e1

e2
e3

f1 f2

Figure 2. The path P , consisting of e1, e2, and e3, that absorbs S.

are edges in H. Using Chernoff’s inequality, with high probability we have

|F | ď 2pnq “ 8ε
rη5n.

By Claim 8, for each set S of size k ´ `, at least rη5nq `-paths in V pHqq absorb S. By
Chernoff’s inequality, w.h.p. for all S P

`

V
k´`

˘

, there are at least 2εn `-paths in F that
absorb S. The expected value of the number of intersecting pairs of q-sets in F is at most

q2nn2q´2p2
“ q2n2q´1

ˆ

4ε
rη5nq´1

˙2

“ εn
16ζ
56k ď

1
2εn.

So by Markov’s inequality, the number of intersecting pairs of q-sets in F is at most εn
with probability at least 1{2.

Let F be a family that satisfies the above conditions. For each of the intersecting pairs
in F , delete one of the q-sets and let F 1 Ă F be the remaining family. We want to use
Lemma 5 with R “ V , which is sufficiently large as the following calculation shows:

|F 1
| ď

8ε
rη5n “

8ζrη5

q256kn “
8ζη5

q256kp4k!q5
n ď

η3

32kn “
η3

32k |R|.

So we can connect all `-paths in F 1 to an `-path A with

|V pAq| ď |F 1
| ¨ p4k ` qq ď 2pnq ¨ 7k “ 56k

rη5 εn ď ζn

and this path absorbs all sets U Ă V r V pAq with |U | P pk ´ `qN and |U | ď εn. �

2.4. Path-Tiling. In this part we will find a path-tiling of `-paths in H that covers all but
a small fraction of the vertices of H. For that purpose we use the so-called weak regularity
lemma for hypergraphs, which is the straightforward extension of Szemerédi’s regularity
lemma for graphs [17]. Roughly speaking, we will show that there exists a fractional
C`-tiling, a so-called β-hompC`q-tiling in the resulting reduced hypergraph R of H, where C`
is the k-uniform “cherry” consisting of two hyperedges that share exactly 2` vertices. The
fractional C`-tiling of R will transfer to a path-tiling of H.
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First, we introduce the standard notation for the regularity lemma. Let H “ pV,Eq be
a k-uniform hypergraph and let V1, . . . , Vk be non-empty, mutually disjoint subsets of V .
We denote the number of edges with one vertex in each Vi by eHpV1, . . . , Vkq and define
the density of H w.r.t. pV1, . . . , Vkq by

dHpV1, . . . , Vkq “
eHpV1, . . . , Vkq

|V1| ¨ ¨ ¨ |Vk|
.

For ε ą 0 and d ą 0, a k-tuple pV1, . . . , Vkq of mutually disjoint subsets of vertices is
called pε, dq-regular if for all k-tuples pA1, . . . , Akq of subsets Ai Ď Vi with |Ai| ě ε|Vi|, we
have

|dHpA1, . . . , Akq ´ d| ď ε.

Moreover, the tuple pV1, . . . , Vkq is called ε-regular if it is pε, dq-regular for some d ą 0.
Below we state the weak hypergraph regularity lemma (see, e.g. [3, 4, 16]).

Lemma 9 (Weak regularity lemma). For all integers k ě 2 and t0 ě 1 and for every ε ą 0,
there exists T0 “ T0pk, t0, εq such that for every sufficiently large k-uniform hypergraph
H “ pV,Eq on n vertices, there exists a partition V “ V0 Ÿ V1 Ÿ . . . Ÿ Vt satisfying

(i ) t0 ď t ď T0,
(ii ) |V1| “ ¨ ¨ ¨ “ |Vt| and |V0| ď εn, and
(iii ) for all but at most ε

`

t
k

˘

many k-subsets ti1, . . . , iku Ă rts, the k-tuple pVi1 , . . . , Vikq
is ε-regular.

A vertex partition of a hypergraph H satisfying (i )–(iii ) of the conclusion of Lemma 9
will be referred to as an ε-regular partition. For ε ą 0 and d ą 0, we define the reduced
hypergraph R “ Rpε, dq of H w.r.t. such a partition as the k-uniform hypergraph on the
vertex set rts and

ti1, . . . , iku P EpRq ðñ pVi1 , . . . , Vikq is pε, d1q-regular, for some d1 ě d.

In typical applications of the regularity lemma, the reduced hypergraph inherits some
key features of the given hypergraph H. In fact, the following observation shows that the
reduced hypergraph inherits approximately the minimum degree condition of the original
hypergraph. A similar result can be found in [5, Proposition 16] and for completeness we
include its proof below.

Lemma 10. Given c, ε, d ą 0 and integers k ě 3 and t0 ě 2k{d, let H be a k-uniform
hypergraph on n ě t ě t0 vertices such that

δk´2pHq ě c

ˆ

n

2

˙

.
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If H has an ε-regular partition V0 Ÿ V1 Ÿ . . . Ÿ Vt with reduced hypergraph R “ Rpε, dq,
then at most

?
ε
`

t
k´2

˘

many pk ´ 2q-subsets K of rts violate

degRpKq ě pc´ 2d´
?
εq

ˆ

t

2

˙

.

Proof. Let D “ Dpdq and N “ N pεq be the hypergraphs with vertex set rts and

‚ EpDq consists of all sets ti1, . . . , iku such that dpVi1 , . . . , Vikq ě d,
‚ EpN q consists of all sets ti1, . . . , iku such that pVi1 , . . . , Vikq is not ε-regular.

Note that the reduced hypergraph Rpε, dq is the hypergraph with vertex set rts and edge
set EpDqr EpN q. For an arbitrary K “ ti1, . . . , ik´2u P

`

rts
k´2

˘

we will show that

degDpKq ě pc´ 2dq
ˆ

t

2

˙

. (5)

Let n{t ě |Vij | “ m ě p1 ´ εqn{t be the size of the partition classes and let x be the
number of edges in H that intersect each Vij in exactly one vertex for each j P rk ´ 2s. By
the condition on δk´2pHq and t ě t0 ě 2k{d, we obtain

x ě mk´2
ˆ

c

ˆ

n

2

˙

´ pk ´ 2qmn
˙

ě pc´ dqmk´2
ˆ

n

2

˙

.

If (5) did not hold, then we would find for x the upper bound

x ă pc´ 2dq
ˆ

t

2

˙

mk
`

ˆ

t

2

˙

dmk
ď pc´ dqmk´2

ˆ

n

2

˙

contradicting the lower bound for x.
Next we observe that at most

?
ε
`

t
k´2

˘

many pk ´ 2q-sets K satisfy degN pKq ď
?
ε
`

t
2

˘

since the number of non-ε-regular k-tuples in R is at most ε
`

t
k

˘

. Consequently, it follows
from the degree conditions on D and N that all but at most

?
ε
`

t
k´2

˘

many pk ´ 2q-sets K
satisfy

degRpKq ě
`

c´ 2d´
?
ε
˘

ˆ

t

2

˙

.

�

We will find a suitable fractional C`-tiling in the reduced hypergraph R, where the
cherry C` is the k-uniform hypergraph with vertex set r2k ´ 2`s and edges t1, . . . , ku and
tk ´ 2`` 1, . . . , 2k ´ 2`u.

Definition 11. Let C and R be k-uniform hypergraphs, β ą 0, and let Φ be a multiset of
hypergraph homomorphisms from C to R. A function h : Φ Ñ taβ : a P Ną0u is called a
β-hompCq-tiling if the weight whpvq of a vertex v satisfies

whpvq “
ÿ

uPV pCq

ÿ

ϕPΦ:v“ϕpuq
hpϕq ď 1
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for all v P V pRq. We call

wphq “
ÿ

vPV pRq

whpvq “
ÿ

ϕPΦ
hpϕq|V pCq|

the weight of the tiling.

The following building block allows us to easily define a tiling on a single edge.

Fact 12. Given an edge e “ tv1, . . . , vku, there exists a 1
2pk´`´1q-hompC`q-tiling h that is

non-zero only on e, such that whpviq “ 1 for i P rk ´ 2s and whpvk´1q “ whpvkq “
k´2

2pk´`´1q .
Note that we may scale the weight of h by any q P p0, 1s and obtain a q

2pk´`´1q-hompC`q-tiling
with whpviq “ q for i P rk ´ 2s and whpvk´1q “ whpvkq “

qpk´2q
2pk´`´1q . Similarly, for any

q P p0, 1s there exists a q
2pk´`q-hompC`q-tiling with whpviq “ q for i P rks.

Proof. For this consider the homomorphism that maps C` to e such that v1, . . . , v2`´2, vk´1

and vk are the image of the intersection of the two edges of C`. By cyclically shifting the
image of the first 2`´ 2 vertices of the intersection and appropriate scaling, we obtain all
homomorphisms for the required tiling. We obtain the even weight distribution for the last
part of the fact by cyclically shifting the whole image k times. �

The following lemma is the main part of the proof of the Path-Tiling Lemma. For this
we introduce a fractional notion of extremality. We say that a k-uniform hypergraph R
on t vertices is β-fractionally p`, ξq-extremal if there is a function b : V pRq Ñ t0u Y rβ, 1s
with

ÿ

vPV pRq

bpvq ě
2pk ´ `q ´ 1

2pk ´ `q t and
ÿ

ePEpRq

ź

vPe

bpvq ď ξ

ˆ

t

k

˙

.

Note that the function b can be viewed as a set of weighted vertices, which plays the rôle
of the vertex set B in the definition of extremality.

Lemma 13. For all integers k ě 3 and 1 ď ` ă k{2, there exist C and γ0 such that for
all α ą 0 and γ P p0, γ0q, there exist β ą 0 and ε ą 0 such that the following holds for
sufficiently large t. Let R be a k-uniform hypergraph on t vertices that is not β-fractionally
p`, Cγq-extremal and

degpKq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

t

2

˙

(6)

holds for all but at most ε
`

t
k´2

˘

sets K P
`

V pRq
k´2

˘

. Then there exists a β-hompC`q-tiling h
with weight at least p1´ αqt.

Proof. Clearly, it is sufficient to prove the lemma for small values of α. Consequently the
quantification of the lemma allows us to fix the parameters and auxiliary constants C 1
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and c to satisfy the following hierarchy of constants
1
k
,
1
`
"

1
C 1
"

1
C
" γ0 ě γ " α " c, ε, (7)

where “" x” denotes that x is chosen sufficiently small with regard to all constants to its
left. Moreover, we fix β inductively such that

1 “ β0 " β1 " ¨ ¨ ¨ " βt1{cu “ β and 16 ¨ k! divides βi

βi`1
,

and let t be sufficiently large such that c, ε, β " 1{t. Note that any βi-hompC`q-tiling is
also a β-hompC`q-tiling as βi is a multiple of β. To prove the lemma, we show that given
a βi-hompC`q-tiling h with weight wphq ă p1 ´ αqt, there exists a βi`1-hompC`q-tiling h1

with weight wph1q ě wphq ` ct. We can begin with the trivial 1-hompC`q-tiling with weight
zero and hence, after at most 1{c steps, we obtain a β-hompC`q-tiling with weight at least
p1´ αqt.

For the rest of the proof fix a βi-hompC`q-tiling h with weight wphq ă p1 ´ αqt and
assume for a contradiction that there is no βi`1-hompC`q-tiling with weight wphq ` ct. It
follows from the upper bound on the weight that there are at least αt{2 vertices v P V pRq
with whpvq ă 1´ α{2 and we may fix a subset W of them of size αt{2.

We view Φ, the set of homomorphisms from C` to R, as a multiset, where we include ϕ
with multiplicity hpϕq

βi
, so that we can assume h : Φ Ñ tβiu. For our argument, we will need

copies of C` to cover most of the hypergraph R apart from W . So choose Ψ, a multiset of
functions from C` to V pRqrW , such that for all vertices v P V pRq

βi ¨
ÿ

iPr2k´2`s
p|tϕ P Φ : v “ ϕpiqu| ` |tϕ P Ψ : v “ ϕpiqu|q ď 1,

and

p1´ 2αq t

βivpC`q
ď |ΦYΨ| ă p1´ αq t

βivpC`q
. (8)

The right hand side of (8) holds for empty Ψ and to see that Ψ satisfying the inequality
on the left can be chosen, note that one may simply take constant functions that map C`
to single vertices v P V pRqr W for which whpvq ă 1´ α. Let

Ξ “ ΦYΨ

and identify a function ϕ in Ξ with the – not necessarily distinct – vertices pv1, . . . , v2k´2`q

in its image, where vi “ ϕpiq so that tv1, . . . , vku and tvk´2``1, . . . , v2k´2`u form edges in R
if ϕ P Φ. We refer to the elements of Ξ as cherries C P Ξ.

Consider the pk ´ 2q-sets in W that satisfy the degree condition (6) of the lemma. Since
ε ! α, among those pk´2q-sets we find a collection W whose elements are pairwise disjoint
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and cover at least |W |{2 vertices. For later reference we note

|W | ě
|W |

2pk ´ 2q ą
αt

4k . (9)

For K P W we consider the link graph LK of K in R, which is the (2-uniform) graph
containing all edges e such that K Y e P EpRq. At most t

βi

`

vpC`q

2

˘

ď γ
`

t
2

˘

edges have both
ends in the same C P Ξ and at most αt2{2 ď γ

`

t
2

˘

edges contain a vertex from W , so let L1K
be the graph obtained from LK by removing all these edges. Combined with the degree
condition (6) we have

epL1Kq ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2

´ 3γ
˙ˆ

t

2

˙

(10)

for every such pk ´ 2q-set K P W .
We will find pairs C, C 1 P Ξ that allow us to locally improve the tiling h. For this we only

want to consider edges in the bipartite induced link graph LKpC, C 1q. Formally the vertex
classes of LKpC, C 1q are given by two disjoint copies of r2k ´ 2`s. In particular, LKpC, C 1q
has 4k´ 4` vertices even when C and C 1 intersect or when C or C 1 are not given by injective
functions from C`. Moreover, two vertices i and j from different classes are adjacent in
LKpC, C 1q if tvi, v1ju is an edge in the link graph LK , where vi is the image of i P V pC`q in
C and v1j is the image of j in C 1. However, similarly as above we canonically identify the
vertices of LKpC, C 1q with the vertices of C and C 1.

We show in the following that for most K P W the bipartite link graph between most C
and C 1 has a very specific structure. We call pC, C 1q P Ξ2 an extremal pair for K if there exist
special vertices u P C and u1 P C 1 such that LKpC, C 1q contains exactly all edges incident to
these two vertices. In particular, in such a case LKpC, C 1q has 4pk ´ `q ´ 1 edges.

Claim 14. Either there exists a βi`1-hompC`q-tiling h1 with wph1q ą wphq` ct, or for every
C P Ξ there exists uC P C such that the following holds. For all but at most γ|W | sets
K P W all but at most C 1γ|Ξ|2 pairs pC, C 1q P Ξ2 are extremal for K with special vertices uC

and uC1.

Proof. The proof of the claim consists of three steps. First we show that if for a given pk´2q-
tuple K P W and some pair of cherries C, C 1 P Ξ the induced bipartite link graph LKpC, C 1q
contains a matching of size three or two vertices in C each neighbour to two distinct vertices
in C 1, then there is a local improvement of the tiling by a weight of at least βi{4. In a
second step we shall bound the number of possible local improvements, as otherwise we
could combine them to arrive at a desired tiling h1 with a weight increased by ct, which
would conclude the proof. With some foresight, we remark that every cherry C P Ξ may be
used at most once for a local improvement. In the last step we utilise this bound on the
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number of local improvements to show that “typically” LKpC, C 1q contains only 4pk´ `q´ 1
edges and displays the structural conditions stated in the claim.

Let K P W and pC, C 1q P Ξ2 be such that whpvq ď 1´ βi for all vertices v P K. For the
first step we consider two cases. Suppose that there is a matching with three edges in
LKpC, C 1q. Recall that LKpC, C 1q is a bipartite graph with partition classes of size 2pk ´ `q.
We set h1pCq “ p1´ k´2

6pk´`´1qqβi if C P Φ and similarly h1pC 1q “ p1´ k´2
6pk´`´1qqβi if C 1 P Φ. If

one or both of C, C 1 are in Ψ, their vertices were not saturated by the βi-hompC`q-tiling h and
otherwise we have reduced their weight by k´2

6pk´`´1qβi. So we can assign weight k´2
6pk´`´1qβi

to the vertices of the matching edges and weight βi to the vertices of K. This defines a
valid βi`1-hompC`q-tiling h1 by applying Fact 12 (with q “ 1

3βi) to the three edges in R
corresponding to the matching edges in the link graph. Note that the weights on the 6
vertices of the matching edges remain unchanged, and by considering the vertices on which
the weight has changed, it is easy to see that

wph1q “ wphq `

ˆ

k ´ 2´ p4k ´ 4`´ 6q ¨ k ´ 2
6pk ´ `´ 1q

˙

βi ě wphq `
1
3βi ,

which yields a local improvement in this case.
For the next case suppose that there are two vertices in C each incident to two edges

such that all four neighbours in C 1 are distinct. Set h1pCq “ p1´ k´2
4pk´`´1qqβi if C P Φ and

h1pC 1q “ p1 ´ k´2
8pk´`´1qqβi if C 1 P Φ. On the vertices of the four edges described above we

put weights k´2
8pk´`´1qβi and βi on the vertices of K. Again, this defines a tiling h1 with

wph1q “ wphq `

ˆ

k ´ 2´ p2k ´ 2`´ 2q ¨ k ´ 2
4pk ´ `´ 1q ´ p2k ´ 2`´ 4q ¨ k ´ 2

8pk ´ `´ 1q

˙

βi

ě wphq `
k ´ 2

4 βi ě wphq `
1
4βi . (11)

This establishes a local improvement for this case and concludes the discussion of the first
step.

For the second step suppose that there is a subset W 1 Ă W of size at least γ|W |{2, such
that for each K P W 1 we can define a local improvement for γ|Ξ|2 cherry pairs. We apply
these local improvements greedily, only using each cherry C P Ξ at most once (over all
K P W 1), to increase the weight of the tiling. This procedure may end, either when every
K P W 1 contains a saturated vertex, in which case we enlarge the total weight by at least

α

2 ¨ |W
1
| ě

α

2 ¨
γ

2 |W |
(9)
ě
α

2 ¨
γαt

8k ,

or when for at least one K P W 1 for each of the γ|Ξ|2 pairs of cherries at least one
cherry was used for some local improvement already. Any two cherries are contained in
at most 4|Ξ| ordered pairs so the latter case would imply that we applied γ|Ξ|{4 local
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improvements before. In summary, we can aggregate local improvements leading to a
βi`1-hompC`q-tiling h2 with weight at least

wph2q ě wphq `min
!α

2 ¨
γαt

8k ,
βi
4 ¨

γ

4 |Ξ|
) (7),(8)
ą wphq ` ct,

which would conclude the proof of Claim 14.
Consequently, for the third step we only need to consider those K P W for which we can

define a local improvement for less than γ|Ξ|2 of its cherry pairs. In particular, for those K
most pairs induce no matching of size three in LKpC, C 1q and by König’s theorem [10]
LKpC, C 1q spans at most 4pk´`q edges. If it contains exactly 4pk´`q edges, the second local
improvement considered in the first step would be possible, so indeed these pairs contain
at most 4pk ´ `q ´ 1 edges. On the other hand, in view of (8) the degree condition (10) of
K P W translates to an average number of edges of at least 4pk´`q´1´4p3γ`4αqpk ´ `q2

in the link graphs. So, as C 1 was chosen big enough, all but pC 1´ 1qγ|Ξ|2 cherry pairs C, C 1

induce exactly 4pk ´ `q ´ 1 edges in LKpC, C 1q. Since in addition these pairs allow no local
improvement as considered in (11), there must be a vertex on each side that has a complete
neighbourhood on the other side, so most pairs are indeed extremal.

It remains to show that typically the special vertex u P C in an extremal pair LKpC, C 1q
is independent of K and C 1. So assume for a moment that there are two vertices u and v
in C P Ξ such that u is a special vertex for an extremal pair LKpC, C 1q and v is special for
an extremal pair LK1pC, C2q for some (possibly non-distinct) K, K 1 P W and C 1, C2 P Ξ.
In this case we can define a local improvement by “splitting” the case with four edges
above. Indeed choose four edges incident with u in LKpC, C 1q and four for v in LK1pC, C2q.
Assign weights 1

2βi to the vertices of K and K 1, and k´2
16pk´`´1qβi to the vertices of the eight

chosen edges. Set h1pCq “ p1 ´ k´2
4pk´`´1qqβi if C P Φ and reduce the weights on C 1 and C2

by k´2
16pk´`´1qβi if they are in Φ (or by k´2

8pk´`´1qβi in case C 1 “ C2). Similar calculations as
in (11) lead to a local improvement of βi{4 involving the three cherries C, C 1, and C2.

For each cherry C fix uC P C as the vertex that occurs most often as a special vertex over
all extremal pairs LKpC, C 1q. Assume for a moment that at least for γ|W |{2 many K P W
for at least γ|Ξ|2 extremal pairs C, C 1 the special vertex in C is not uC. In particular for
each such K we find γ|Ξ|{4 such pairs none of which share a cherry. By the choice of uC

there exist K 1, C2 as above that allow us to define a local improvement as long as we
have not applied more than γ|Ξ|{12 local improvements. So we can aggregate the local
improvements as in the second step. Otherwise the chosen uC satisfy the statement of the
claim. �

We call C P Ξ good if it is contained in at least 1
2 |Ξ| extremal pairs for at least 1

2 |W |

many K P W and bad otherwise. As a βi`1-hompC`q-tiling h1 with wph1q ą wphq` ct would
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complete the proof of Lemma 13, Claim 14 implies that there are at most pC 1` 1qγ|W ||Ξ|2

triples pK, C, C 1q P W ˆ Ξ2 such that C, C 1 are not extremal for K. So at most 5C 1γ|Ξ|
cherries are bad as we would have

5C 1γ|Ξ| ¨ 1
2 |W | ¨

1
2 |Ξ| ą pC

1
` 1qγ|W ||Ξ|2

such triples otherwise. Moreover, for every vertex v P V we denote by Ξbadpvq the set of
bad cherries C P Ξ that contain it.

To complete the proof of Lemma 13 we will show that we find a large matching M
in R such that every vertex v P e P M is contained in “many” good cherries. For each
good cherry C P Ξ there are a lot of choices for C 1 and K P W such that C and C 1 are
an extremal pair for K. We will redistribute the weights to transfer weight from the
non-special vertices of C (and C 1) to K, which will reduce the weight on v (since we will
ensure that v is a non-special vertex). Repeating this for every v P e will allow us to obtain
a local improvement for the tiling by adding weight on e and repeating this for sufficiently
many hyperedges e PM leads to the desired global improvement.

We define the function a : V pRq Ñ r0, 1s by v ÞÑ βi ¨
ř

CPΞ 1tvupuCq, which assigns to a
vertex the sum of weights of cherries that use it as a special vertex. As any cherry contains
2pk ´ `q vertices, it is clear that

ř

vPV pRq apvq ď
t

2pk´`q and, therefore, we can utilise the
β-fractional non-extremality of R for bp¨q “ 1´ ap¨q and obtain

ÿ

ePEpRq

ź

vPe

bpvq ě Cγ

ˆ

t

k

˙

.

Since there are at most 5C 1γ|Ξ| bad cherries, they contribute at most

βi
ÿ

vPV pRq

ˇ

ˇΞbadpvq
ˇ

ˇ ď βivpC`q ¨ 5C 1γ|Ξ|
(8)
ď 5C 1γt (12)

to the overall weight of the βi-hompC`q-tiling h. We shall only use good cherries to
redistribute weights for the desired βi`1-hompC`q-tiling, so we consider the function
b1 : V pRq Ñ r0, 1s given by

b1pvq “ max
 

0, bpvq ´ βi ¨ |Ξbadpvq|
(

and in view of (12) and C 1 ! C (cf. (7)) we have
ÿ

ePEpRq

ź

vPe

b1pvq ě
C

2 γ
ˆ

t

k

˙

.

We will use an averaging argument to obtain a matching M in EpRq with a suitable lower
bound on

ř

ePM

ś

vPe b
1pvq. Consider all maximal matchings (of size tt{ku) in the complete
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k-uniform hypergraph Kt on t vertices. Any given edge is contained in a tt{ku{
`

t
k

˘

fraction
of those matchings, and so by averaging there is a matching M 1 Ă EpKtq with

ÿ

ePM 1XEpRq

ź

vPe

b1pvq ě
C

2 γ ¨
Z

t

k

^

ě
C

3 γ ¨
t

k
.

Set M “M 1 X EpRq. Since b1pvq P r0, 1s we have
ÿ

ePM

k ¨min
vPe
tb1pvqu ě

ÿ

ePM

k
ź

vPe

b1pvq ě
C

3 γt. (13)

In particular, we may assume that minvPetb1pvqu ą 0 for every e P M , since this has no
effect on inequality (13). Moreover, from the definition of the function b1p¨q it then follows
that minvPetb1pvqu ě βi for every e PM .

For each vertex v P
Ť

M , we consider good cherries that contain v as a non-special
vertex. Assume that we have K P W and an extremal pair C, C 1 such that v is a non-special
vertex in C. Recall that LKpC, C 1q contains all edges incident to the two special vertices.
We define a local weight shift: If C P Ψ, we can increase the weight at the vertex v by βi, if
C P Φ we will shift the weight as follows. Assign weights 1

2pk´`q´1 ¨
k´2

4pk´`´1qβi to the vertices
of all edges incident with exactly one of the special vertices, βi to the vertices of K and set
h1pCq “ p1´ k´2

4pk´`´1qqβi and h
1pC 1q “ p1´ k´2

4pk´`´1qqβi if C P Φ. By similar calculations as
before, this defines a valid βi`1-hompC`q-tiling h1 with wph1q “ wphq. On the other hand,
the weight of the vertex v is reduced by k´2

4pk´`q´2βi, i.e.

wh1pvq “ whpvq ´
k ´ 2

4pk ´ `q ´ 2βi .

It follows from the definition of b1pvq that we have at least b1pvq{βi many good cherries
that contain v as a non-special vertex and we shall apply at most minuPetb1puqu{βi local
weight shifts for a vertex v P e PM .

For every edge e PM we would like to apply these local weight shifts for every vertex
v P e, where we cycle through all k vertices and apply one shift at a time. In other words,
we evenly reduce the weights on the vertices of e. Note that we can apply these local
weight shifts using K, C, and C 1 unless we have saturated the vertices in K or used one of
the cherries before. The procedure stops as soon as we reach a vertex for which no local
weight shift is possible.

We first discuss the ideal case that this procedure does not stop, i.e. for every e PM and
every v P e we applied minuPetb1puqu{βi local weight shifts. In this case, for every e P M
we reduced the weight of all vertices v P e by at least

1
βi

min
uPe
tb1puqu ¨

k ´ 2
4pk ´ `q ´ 2βi “

k ´ 2
4pk ´ `q ´ 2 min

uPe
tb1puqu.
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Consequently, we may appeal to Fact 12 to increase the tiling on the edge e by the same
amount. Repeating this for all e PM , we obtain a βi`1-hompC`q-tiling h2 satisfying

wph2q ě wphq `
ÿ

ePM

k ¨
k ´ 2

4pk ´ `q ´ 2 min
uPe
tb1puqu

(13)
ě wphq `

Cγt

3 ¨
k ´ 2

4pk ´ `q ´ 2
(7)
ě wphq ` ct,

which would conclude the proof of Lemma 13 in this case.
In the case that the procedure stops, there is some v P V pMq and a good cherry C

for v such that C cannot be used for a local weight shift for v. This means, since C is a
good cherry, that either 1

2 |W | many K P W contain a saturated vertex or that at least
1
2 |Ξ| cherries were used in local weight shifts before. In the case that 1

2 |W | many K P W
contain a saturated vertex, each of these vertices was used in at least α

2βi
local weight shifts,

so in total we have applied
1
2 |W | ¨

α

2βi
(9)
ě
αt

8k ¨
α

2βi
local weight shifts. If on the other hand all 1

2 |Ξ| possible cherries C 1 were used in local
weight shifts before, then we have applied at least 1

4 |Ξ| local weight shifts. As in the ideal
case, using Fact 12, we conclude that we can increase the tiling on the edges in M and
obtain a βi`1-hompC`q-tiling h2 with

wph2q ě wphq `
´

min
! α2t

16kβi
,
|Ξ|
4

)

´ k
¯

¨
pk ´ 2qβi

4pk ´ `q ´ 2
(7),(8)
ě wphq ` ct,

which concludes the proof of Lemma 13. �

Next we want to transfer the β-hompC`q-tiling of R into a path-tiling of H. For that
purpose we will use the following lemma from [6, Lemma 2.7].

Lemma 15. Fix k ě 3, 1 ď ` ă k{2 and ε, d ą 0 such that d ą 2ε. Let m ą k2

ε2pd´εq
.

Suppose V “ pV1, . . . , Vkq is an pε, dq-regular k-tuple with

|V1| “ ¨ ¨ ¨ “ |V2`| “ m and |V2``1| “ ¨ ¨ ¨ “ |Vk| “ 2m.

Then there are at most 2k
pd´εqε

vertex disjoint `-paths that together cover all but at most
2kεm vertices of V. �

Finally, by using Lemma 15 on the edges of the β-hompC`q-tiling of R given by Lemma 13,
we obtain a path-tiling from H of the desired size.

Lemma 16 (Path-Tiling Lemma). For all integers k ě 3 and 1 ď ` ă k{2, there exist
C, γ0 ą 0 such that for all α ą 0, γ ď γ0 there exists an integer s such that the following
holds for all sufficiently large n. Let H be a k-uniform hypergraph on n vertices and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

n

2

˙

.
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Then either there is a family of at most s disjoint `-paths that cover all but at most αn
vertices of H or H is p`, Cγq-extremal.

Proof. Let k ě 3 and 1 ď ` ă k{2 be given. Let C 1 and γ10 be the constants given by
Lemma 13 for k and `. Set C “ 6C 1 and γ0 “

γ10
4 , and let α ą 0 and γ ď γ0. Following the

quantification of Lemma 13 with α
2 and γ we obtain β and ε1 and a sufficiently large t0.

Let ε be sufficiently small. Then the weak regularity lemma (Lemma 9) for ε0 “
βε
2 ă γ2

and t0 yields T0. Let s be a sufficiently large constant. Let H be a k-uniform hypergraph
on n vertices such that

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2

´ γ

˙ˆ

n

2

˙

and n is sufficiently large. By the weak regularity lemma there exists an ε0-regular
partition V0 Ÿ . . . Ÿ Vt of H with |V1| “ ¨ ¨ ¨ “ |Vt| “ m, |V0| ď ε0n and t0 ď t ď T0 and the
corresponding reduced hypergraph R “ Rpε0, γq on t vertices satisfies, by Lemma 10,

degRpKq ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2

´ 4γ
˙ˆ

t

2

˙

for all but at most ?ε0
`

t
k´2

˘

ď ε1
`

t
k´2

˘

many pk´2q-sets K P
`

rts
k´2

˘

. We split the remainder
of the proof in two cases, depending on whether R is β-fractionally p`, 4C 1γq-extremal.

Suppose that R is not β-fractionally p`, 4C 1γq-extremal, so in particular it is not β-
fractionally p`, C 1γq-extremal. Then Lemma 13 implies that there exists a β-hompC`q-tiling
h of R with weight p1´ α

2 qt. Let Φ` be the set of homomorphisms ϕ from C` to R with
hpϕq ą 0, which implies in fact hpϕq ě β. We will use Lemma 15 to obtain `-paths covering
almost all vertices of H and for this we split the partition classes according to the tiling h:
let tRϕ

1 , . . . , R
ϕ
2k´2`uϕPΦ` be a family such that for all ϕ ‰ ϕ1 P Φ`

‚ Rϕ
i Ă Vϕpiq for all i P r2k ´ 2`s,

‚ Rϕ
i XR

ϕ1

j “ ∅ for all i, j P r2k ´ 2`s,
‚ |Rϕ

i | “ 2t
hpϕqm

2 u for all i P r2k ´ 2`s.

For each ϕ P Φ` and all i P tk ´ 2`` 1, . . . , ku let Sϕi YU
ϕ
i “ Rϕ

i be a partition of Rϕ
i into

two classes of equal size. Note that, since pV ϕ
ϕp1q, . . . , V

ϕ
ϕpkqq and pV

ϕ
ϕpk´2``1q, . . . , V

ϕ
ϕp2k´2`qq

are pβε2 , dq-regular for some d ě γ

pRϕ
1 , . . . , R

ϕ
k´2`, S

ϕ
k´2``1, . . . , S

ϕ
k q and pUϕ

k´2``1, . . . , U
ϕ
k , R

ϕ
k`1, . . . , R

ϕ
2k´2`q

are pε, dq-regular, for some d ě γ, where we used that hpϕq ě β for all ϕ P Φ`. Then, with
Lemma 15 we obtain at most 2k

pγ´εqε
many `-paths that cover all but kε|Rϕ

i | vertices of
Rϕ

1 , . . . , R
ϕ
2k´2`. Applying this to each homomorphism ϕ P Φ` we obtain at most s many

`-paths.
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We claim that the number of vertices in V pHq that are not covered by these `-paths is
less then αn. For this note that the uncovered vertices are the vertices from the partition
class V0, the vertices that are not contained in any Rϕ

i and those vertices in some Rϕ
i that

are not contained in any `-path. At most α
2n vertices are not in any Rϕ

i due to the weight of
the β-hompC`q-tiling h and we lose at most 2t

β
vertices due to the rounding in the definition

of Rϕ
i . The `-paths cover all but a pkεq-fraction of vertices in

Ť

i,ϕR
ϕ
i . Consequently the

total number of uncovered vertices is at most

ε0n`
α

2n`
2t
β
` kεn ă αn.

Now suppose that R is β-fractionally p`, 4C 1γq-extremal. This means by definition that
there is a function b : V pRq Ñ t0u Y rβ, 1s with

ÿ

vPV pRq

bpvq ě
2pk ´ `q ´ 1

2pk ´ `q t and
ÿ

ePEpRq

ź

vPe

bpvq ď 4C 1γ
ˆ

t

k

˙

.

For each i P rts we fix a subset Ai Ď Vi with |Ai| “ tbpiq|Vi|u and define B “
Ť

iPrtsAi.
Thus, we can bound the number of edges on B by those that are in pε0, dq-regular tuples
for some d ě γ, the edges that are in k-tuples which are not dense or not regular and those
that contain two or more vertices from the same Ai:

eHpBq ď
ÿ

ePEpRq

ź

vPe

´

bpvq
n

t

¯

`

ˆ

t

k

˙

γ
´n

t

¯k

` ε0

ˆ

t

k

˙

´n

t

¯k

` t

ˆ

n{t

2

˙ˆ

n

k ´ 2

˙

ď 4C 1γ
ˆ

n

k

˙

` γ

ˆ

n

k

˙

` ε0

ˆ

n

k

˙

`
kpk ´ 1q

2t

ˆ

n

k

˙

ď 5C 1γ
ˆ

n

k

˙

.

Note that

|B| ě

ˆ

2pk ´ `q ´ 1
2pk ´ `q t

˙

p1´ ε0q
n

t
´ t ě

ˆ

2pk ´ `q ´ 1
2pk ´ `q ´ ε0

˙

n.

Therefore, by adding at most ε0n vertices from V r B to B we obtain a set B1 with
|B1| “

Y

2pk´`q´1
2pk´`q n

]

such that

eHpB
1
q ď eHpBq ` ε0n

ˆ

n

k ´ 1

˙

ď 6C 1γ
ˆ

n

k

˙

“ Cγ

ˆ

n

k

˙

,

from which we conclude that H is p`, Cγq-extremal. �

§3. Proof of Theorem 4

Below we give the proof of the main technical result, which details the outline from
Section 2.1 and is based on the lemmas from the last section.
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Proof of Theorem 4. Let 0 ă ξ ă 1 and let k ě 4 and 1 ď ` ă k{2 be integers. Let C
and γ0 be given by the Path-Tiling Lemma (Lemma 16) for k and `. Let γ ă γ0 be a
sufficiently small constant, in particular we may assume Cγ ! ξ. From the Absorbing
Lemma (Lemma 7) for η “ ζ “ γ, k and ` we obtain ε. Following the quantification
of the Path-Tiling Lemma for α “ ε{2 and 5γ we obtain an integer s. We will use the
Reservoir Lemma (Lemma 6) with η “ 4pk´`q´1

4pk´`q2 ´ 3γ, ε1 “ mintε{2, γu, k, and m “ s` 1.
Let n P pk ´ `qN be sufficiently large and let H be a k-uniform hypergraph on n vertices.

Suppose H is not p`, ξq-extremal and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

n

2

˙

.

Let A be the absorbing path obtained with the Absorbing Lemma and let X0 and Y0 be
the ends of A. Then |V pAq| ď γn and A has the following absorption property: for every
subset U Ă V r V pAq with |U | ď εn and |U | P pk ´ `qN there exists an `-path Q Ă H
such that V pQq “ V pAq Y U and Q has the ends X0 and Y0.

Let V 1 “ pV rV pAqqYtX0, Y0u and let H1 “ HrV 1s be the subhypergraph of H induced
by V 1. Note that

δk´2pH1
q ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ 3γ

˙ˆ

n

2

˙

.

The Reservoir Lemma guarantees the existence of a set R Ă V 1 with |R| ď ε1n ď γn such
that for every j ď s ` 1 every family pXi, YiqiPrjs of mutually disjoint pairs of sets of `
vertices can be connected by paths that contain vertices of

Ť

iPrjspXi Y Yiq YR only.
Let V 2 “ V r pV pAq Y Rq and let H2 “ HrV 2s be the subhypergraph of H induced

by V 2. Then

δk´2pH2
q ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ 5γ

˙ˆ

n

2

˙

.

Now we apply the Path-Tiling Lemma to H2 and either we obtain a family of at most s
disjoint `-paths that cover all but at most α|V 2| ď αn vertices of H2, or H2 is p`, 5Cγq-
extremal. Set n2 “ |V 2| and suppose for a contradiction that H2 is p`, 5Cγq-extremal.
Then there exists a set B Ă V 2 such that |B| “

X2pk´`q´1
2pk´`q n

2
\

and epBq ď 5Cγpn2qk. By
adding at most n ´ n2 ď 2γn vertices from V r B to B, we obtain a vertex set B1 Ă V

such that |B1| “
X2pk´`q´1

2pk´`q n
\

and

epB1q ď 5Cγpn2qk ` 2γn
ˆ

n´ 1
k ´ 1

˙

ď ξnk,

a contradiction to the fact that H is not p`, ξq-extremal. Therefore, we may assume that
there exist disjoint `-paths P1, . . . ,Pj with j ď s that cover all but at most α|V 2| ď αn

vertices of H2.
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For all i P rjs, we denote the ends of Pi by Xi and Yi. Let Yj`1 “ Y0. By using the
Reservoir Lemma to connect the family pXi, Yi`1q0ďiďj , we connect the `-paths A,P1, . . . ,Pj

to an `-cycle C Ă H.
Let U “ V r V pCq be the set of vertices not contained in C, i.e. the vertices that were

leftover in the reservoir R or uncovered by the path-tiling. We have |U | ď pε1 ` αqn ď εn.
Furthermore, since C is an `-cycle and n P pk ´ `qN, we have |U | P pk ´ `qN. Therefore,
we can utilise the absorbing property of A to replace A in C by a path Q with the same
ends as A, obtaining a Hamiltonian `-cycle of H. �
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