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ABSTRACT. We prove that for all k£ >4 and 1 < ¢ < k/2, every k-uniform hypergraph H

on n vertices with d;_o(H) > (% + 0(1)) () contains a Hamiltonian (-cycle if

k — ¢ divides n. This degree condition is asymptotically best possible. The case k = 3

was addressed earlier by Buf et al.

§1. INTRODUCTION

A Ek-uniform hypergraph # is a pair (V, E) with vertex set V' and edge set F such that
each edge is a subset of k vertices. Given a k-uniform hypergraph H = (V, E) and S € (‘S/),
we denote by deg(.S) the number of edges of H containing S and we denote by N(S) the
(k — s)-element sets T e (,” ) such that 7' S is an edge of E, so deg(S) = |N(S)|. We
define the minimum s-degree of H, denoted by ds(H), as the minimum of deg(S) over all
s-vertex sets S € (‘5/)

We say that a k-uniform hypergraph is an ¢-cycle if there exists a cyclic ordering of
its vertices such that every edge is composed of k consecutive vertices, two (vertex-wise)
consecutive edges share exactly ¢ vertices, and every vertex is contained in an edge. If the
ordering is not cyclic, we call it an ¢-path and we say that the first and last ¢ vertices are
the ends of the path.

We are interested in the problem of finding minimum degree conditions that ensure the
existence of Hamiltonian cycles, i.e. cycles containing all vertices of the given hypergraph.
Problems of this type attracted considerable attention in the literature over the last two
decades (see, e.g., [13,18] and the references therein). This problem was first studied by
Katona and Kierstead in [8]. They posed a conjecture, which was confirmed by the following

result of Rodl, Ruciriski, and Szemerédi [14, 15]: For every k > 3, if H is a k-uniform
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n-vertex hypergraph with d;_1(H) = (1/2 + o(1))n, then H contains a Hamiltonian (k —1)-
cycle. Their proof introduces the so-called Absorbing Method, which we will use in our
proof as well. In [12] Kithn and Osthus investigated a similar question for 1-cycles, proving
that 3-uniform hypergraphs H with do(H) = (1/4 + o(1))n contain a Hamiltonian 1-cycle.
This result was generalized to arbitrary k and ¢-cycles with 1 < ¢ < k/2 by Han and
Schacht [5] (see also [9]).

Theorem 1. For all integers k > 3 and 1 < ¢ < k/2 and every v > 0 there exists
an ng such that every k-uniform hypergraph H = (V, E) on |V| = n = ng vertices with
ne (k— 0N and

51 (H) > (2(];_@ ; ’y) n

contains a Hamiltonian ¢-cycle. 0

To see the asymptotic optimality of the minimum degree condition, we consider the
following well-known example. Let Hy, = (V, E) be a k-uniform hypergraph on n vertices
such that E is the set of all edges with at least one vertex from A < V, where |A| =
[ﬁ - 1]. Note that an ¢-cycle on n vertices contains n/(k — ¢) edges and for ¢ < k/2
every vertex is contained in at most two edges of any f-cycle. So the hypergraph Hy , does
not contain a Hamiltonian ¢-cycle and has &1 (Hy¢) = [ﬁ - 1]. In [6] Han and Zhao
proved a version of Theorem 1 with this sharp degree condition.

Kihn, Mycroft, and Osthus [11] generalized Theorem 1 to 1 < ¢ < k — 1, solving
the problem of finding minimum (k — 1)-degree conditions that ensure the existence of
Hamiltonian ¢-cycles in k-uniform hypergraphs.

A natural question is to ask for minimum d-degree conditions forcing the existence of
Hamiltonian ¢-cycles for d < k — 1. In this direction Buf};, Han, and Schacht proved the

following asymptotically optimal result in [2].

Theorem 2. For all v > 0 there exists an ng such that every 3-uniform hypergraph
H=(V,E) on |V| =n = ng vertices with n € 2IN and

7
contains a Hamiltonian 1-cycle. 0

Note that the asymptotic optimality again follows from the hypergraph Hy , considered
above for k = 3 and ¢ = 1. The sharp bound for §;(H) was proved by Han and Zhao in [7].
We generalize Theorem 2 to k-uniform hypergraphs and give an asymptotically optimal
bound on the minimum (k — 2)-degree for the existence of Hamiltonian ¢-cycles for all
1<l <k/2.
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Theorem 3 (Main result). For all integers k =>4 and 1 < { < k/2 and every v > 0 there

exists an ng such that every k-uniform hypergraph H = (V, E) on |V| = n = ng vertices

with n € (k— ()N and
= (Nt ) G)

contains a Hamiltonian (-cycle.

The hypergraph Hj, motivates the following notion of extremality. Let £ > 3 and £ > 1
be integers and let 0 < £ < 1. A k-uniform hypergraph H = (V| E) is called (¢, §)-extremal
if there exists a set B < V such that |B| = [ng(gf)eglnj and e(B) < £(}), where e(B)
stands for the number of edges in the subhypergraph of H induced by B. Our main result

follows directly from the following theorem.

Theorem 4. For any 0 < & < 1 and all integers k = 4 and 1 < ¢ < k/2, there exists v > 0
such that the following holds for sufficiently large n. Suppose H is a k-uniform hypergraph

on n vertices with n € (k — 0)IN such that H is not ({,&)-extremal and

Then H contains a Hamiltonian (-cycle.

We remark that for £ = 3 and ¢ = 1, the corresponding version of Theorem 4 appeared
in the so-called non-extremal case of the sharp version of Theorem 2 in [6]. As a result, it
will be sufficient to address the extremal case for a sharp version of Theorem 3 and we
shall return to this in the near future [1]. For details about this approach see [6,7]. It
is easy to check that if 0, _o(H) = (455;_2)_21 - 7) (5), then there exists & = £(k, £,7) > 0
such that H is not (¢, £)-extremal. Consequently, Theorem 3 follows from Theorem 4.

§2. MAIN LEMMAS

2.1. Outline of the proof of Theorem 4. The proof follows the Absorbing Method
introduced by Rodl, Rucinski, and Szemerédi in [14]. For this, we derive the following
lemmas: the Absorbing Lemma (Lemma 7), the Reservoir Lemma (Lemma 6), and the
Path-Tiling Lemma (Lemma 16).

We call an f-path A < H a [-absorbing path for a k-uniform hypergraph H if for every
subset U < V(H) of size at most n there exists an ¢-path Q such that V(Q) = V(A)u U
and Q has the same ends as A, for some § > 0. The Absorbing Lemma (Lemma 7)
ensures the existence of a [-absorbing path A. This reduces the problem of finding a

Hamiltonian ¢-cycle to that of finding an almost spanning ¢-cycle that contains A.
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To obtain an almost spanning ¢-cycle, we first find a bounded number (independent
of [V(H)|) of ¢-paths covering almost all vertices of V(H) ~ A and then connect them
using only vertices from a small set, a so-called reservoir set that we fix beforehand. The
Reservoir Lemma (Lemma 6) shows that it is possible to find this reservoir set R such that
any bounded number of disjoint /-paths can be connected to an ¢-cycle, only using vertices
from R.

We can choose the sizes of A and R small enough, so that the remaining hypergraph
satisfies almost the same degree condition as 7. Then the Path-Tiling Lemma (Lemma 16)
ensures the existence of a collection of (-paths covering almost all vertices of V(H)\ (A U R).
This is the only point in the proof where we use the exact value of the degree condition and
the non-extremality of H. (In fact, a proof for the corresponding version of the Path-Tiling
Lemma for a direct proof of Theorem 3, which allows us to utilise a slightly larger degree
condition, is a bit simpler.)

As mentioned before, the paths from the Path-Tiling Lemma and A can be connected by
using vertices from R to an almost spanning ¢-cycle containing A. Since this /-cycle contains
almost all vertices of H, the absorbing property of A allows us to absorb the leftover
vertices, i.e. vertices that are not contained in any of the /-paths and vertices that were

not used to connect the /-paths. The resulting ¢-cycle is the desired Hamiltonian /-cycle.

2.2. Connecting. In order to construct an almost spanning ¢-cycle of a k-uniform hyper-
graph H, we first find some /-paths and connect them at their ends. Recall that, given an
(-path P = vy - - v, in ‘H, the ends of P are the sets {vy,..., v} and {v;_py1,...,0:}. As
usual, the size of an f-path is the number of its edges. For a collection of 2m mutually
disjoint sets of ¢ vertices X;,Y; we say that a set of ¢-paths 71, ..., T, connects (X, Yi)z‘e[m]
if all paths are vertex-disjoint and X; and Y; are the ends of 7;, for all ¢ € [m]. The
connections for a given collection of disjoint ¢-paths are given by the following lemma.
In addition the lemma allows to restrict the edges used for the connection to a given

“well-connected” subset R of vertices.

Lemma 5 (Connecting Lemma). Let n > 0 and let k > 4, 1 < { < k/2, and m > 1
be integers. Let H = (V,E) be a k-uniform hypergraph and R < V with |R| = r >
32km/n. For every collection of 2m mutually disjoint sets X;, Y; € (‘2) the following holds
Jor V' =Ucpm(Xi 0 Yi) U R.

If \N(K) N (I;)‘ > n(g) for all K € (k‘;), then there exist {-paths T1, ..., Tm of size at

most four connecting (Xi,YZ-)Z.e[ which contain vertices from V' only.

m]’

Proof. Given n > 0 and integers k > 4, 1 </ < k/2and m > 1,let H = (V,E), RV,

and X;,Y; for i € [m] satisfy the assumptions of the lemma.
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FIGURE 1. The path connecting (X;,Y;).

Suppose we have constructed ¢-paths 77, ..., 7;_; each of size at most four connecting the
pairs (X;, Y;);(;_qy for some j < m using only vertices from | J;f,,,(X; v Y;) U R. We want
to construct a path 7; with ends X; and Y;. We define Fj = (., (X VY) UlUiej V(T0)
as the set of forbidden vertices for T;.

Ifk—2 > 20 = | X,;UY}]|, fix aset Z of size k—2—2¢ from R~ F}. Since |R| = r = 32km/n?,

we know that

e (D)) - ()2 ()- (7).

Hence, there exists a hyperedge X; uY; u Z' with Z" < R \ Fj, which realizes the path 7T;.

i€[j—1]

It is left to consider the case that 2¢ = k — 1. See Figure 1 for a drawing of the path we

will construct in this case. For a set A <V, let Nao(S) = N(S) n (kj5|)‘

Observation. For any Z € {X;,Y;} and L € (">'7), there are at least nr/4 many vertices
z€ R~ (Fj u L) with |Nr r,(Z 0 LU {z})| = nr/4.

To see the observation note that we can consider Nz . r;(Z U L) as the edge set of a
2-graph with vertex set R~ (F; u L). Since r > 32km/n?, it follows from the degree
condition of H into the set R that this graph has edge density at least 77/2 and the
observation follows.

Let L € (RE:?) and let z, y € R~ (F; u L) be distinct. We say that (z,L,y) is an
extendable triple in R\ F} if

[Newp; (X o Lud{a})| = nr/4 and  [Np g (Y; 0 Lo {y})] = nr/4.

The observation yields at least (nr/4)(nr/4 — 1) > (nr/8)% extendable triples (z, L,y) for

any fixed L € (PZ? )

Given S € (B;\_?) and an extendable triple (z, L,y) disjoint from S, S u L u {z,y} is a

(k — 2)-element set. Consequently, the minimum degree condition of the lemma yields at



6 J. DE O. BASTOS, G. O. MOTA, M. SCHACHT, J. SCHNITZER, AND F. SCHULENBURG

least 17(;) pairs M € (R) such that Su M U L u {x,y} is an edge of H. Moreover, similarly

2
as in the proof of the observation at least (7]/2)(|R\2F i |) of these pairs avoid Fj. Since

this is true for every extendable triple and there are at least (‘Rg\jj‘) (nr/8)? extendable
triples, there exists an M € (R\QF j) that, together with S, forms an edge of H with at
least (7}/2)(777“/8)2('}2\_? |) extendable triples. Since r > 32km/n?, this is more than the
number of triples that any single extendable triple can intersect with, so there exist two
completely disjoint extendable triples (z, L,y) and (2/, L',y’) that form an edge of H
together with M' = M u S.

By the definition of extendable triples we have

|Npep,(X; oL u{ah)|=znr/a>k+1=|M oL ui{d y, yl
and

|Npep,(V; UL O{y' Y| znr/d>k+2=|M LU {z,yz}+1
Consequently there are v,v" € R\ F} such that the hyperedges
{(X;uLu{v,z}}, {(MouLu{z,yl}, (M oL u{d,y}}, and {Y;ulL u{y, v'}}
are edges of H, which form a path of size 4 connecting (X}, Y;). O

In the main proof we will connect /-paths to an almost spanning ¢-cycle. The Reservoir
Lemma (stated below) ensures the existence of a small set R such that we can connect an

arbitrary collection of at most 2m many /(-sets, only using vertices of R.

Lemma 6 (Reservoir Lemma). Let n,e > 0 and let k >4, 1 < ¢ < k/2, and m > 1 be
integers. Then for every sufficiently large k-uniform hypergraph H = (V, E) on n vertices
with 6,_o(H) = n(}) there is a set R < V with |R| < en such that the following holds.
For every collection X;,Y; for i€ [j] of 27 mutually disjoint sets of ¢ vertices, where
J < m, there exist {-paths Ty, ..., T; of size at most 4 connecting (X;,Y;)ie[;) that, moreover,

contain vertices from J;;)(Xs v Y;) U R only.

Lemma 6 is a consequence of Lemma 5, since one can show that with high probability
a suitably sized random subset R < V' inherits an appropriately scaled minimum degree
condition from . As a consequence such a set satisfies the assumptions of Lemma 5 (with
n/2) and the lemma yields the conclusion of Lemma 6 (see, e.g. [2, Lemma 6] for a very

similar argument).
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2.3. Absorption. Given a k-uniform hypergraph H and U < V with |U| € (k — ()N, we
say that an f-path A absorbs U if there exists an ¢-path Q with the same ends as A and
V(Q) =V(A)uU. At the end of the main proof we will absorb all vertices outside of an
almost spanning /-cycle to obtain a Hamiltonian /-cycle using an absorbing path A, i.e.
a path that can absorb any set U of small linear size. The existence of such a path A is

given by the following lemma.

Lemma 7 (Absorbing Lemma). For everyn, ¢ > 0 and all integers k >4 and 1 < < k/2
there exists € > 0 such that the following holds for sufficiently large n. Let H = (V, E)
be a k-uniform hypergraph on n vertices that satisfies 6x_o(H) = n(}
C-path A with |V (A)| < (n such that for all subsets U < V \V(A) of size at most en with
\U| € (k— )N there exists an -path Q@ < H with V(Q) = V(A) u U such that A and Q

have the same ends.

). Then there is an

Proof. Let n,¢ > 0 and let k > 4 and 1 < ¢ < k/2 be integers, and assume w.l.o.g. that

n,( < 1. Fix auxiliary constants

o — 3k
=10 and ¢ =3k—2(

and set ”
€= 1 )
56kq?

Let n be sufficiently large and let H = (V| E) be a k-uniform hypergraph on n vertices

that satisfies dp_o(H) = 77(’2‘) First, we will show that for any S € (,{X é) there exist many,
i.e. Q(n9), 3-edge ¢(-paths that absorb S (see Claim 8 below). For that we will use the
following consequence of the minimum degree condition. Let A, B < V(H) be disjoint sets
of vertices with |A| < k —2 and |B| < ¢+ k. Then,

(n—|A)- - - (n—k+3) n
degyyp)(A4) = (k — |A])! . (2

> — | Bln* IS > gl (1)

Claim 8. For every S € (k‘ie) there exist at least 7°n? many 3-edge (-paths that absorb S.
Proof. Let S1 U S5 = S be chosen in some way such that
|S1] = |S2] =151 —1 and max{0,3¢ —k} < |S1 N Sa| < ¥ (2)
and set s; = |S1], s2 = |92/, and s3 = |51 N Sy|. Clearly, we have
S1+82—83=|S|=Fk—"(. (3)

It follows from the choices above that s; + s > 2¢. Indeed, since s3 > 3¢ — k we have

k—{ = s1+89—83 < s1+ Sy —3(+k and, hence, s;+ sy = 2¢. Furthermore, s; > so > s1—1
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yields
S1 =89 = 1. (4)
Consequently, |Si| > |S1 n Sa| (see (2)) and s; < k — £ by (3). We then select the
following sets. See Figure 2 for a drawing of the chosen sets and edges containing them.
In each step, we will only select sets that are disjoint from S and everything chosen in
previous steps.
(i) Since s; < k — ¢ —1 < k— 2, by (1) there exist fjn*~! choices for a (k — s1)-set
X such that f; = X v S; is an edge of H. Since | X| = k — s @ { + 89 — S3
it follows from (4) that we may partition X = L; v F' v F such that |L{| = ¢,
|F| = — s3 @0, and |Fy| = sy, — (> 0.

(7) Since k = 4 we have k — ¢ > 3 and, consequently, s; = [(k —¢)/2] = 2. Thus, by (1)
and | Sy U F| = sy + ¢ — s3 = k — s1, there exist 7/n°! choices for a set Y of size s
such that fo = Sy w F v Y is an edge of H. Again owing to (4) we may partition
Y = Ly w F, such that |Ly| = ¢ and |F3| = s; — £ > 0.

(#i) Fix L} < Ly and L}, © Ly subsets of size £ — 1. Note that
|ILiwvlaywFuF vk =|X|+Y|-2=FkF-2.
Therefore, there exist at least 7jn? choices for a pair of vertices {xy, x>} such that
ey = {1, 22} w L) w v FuvF vF,isan edge of H.

(iv) Since k > 4 we have £ + 1 < k — 2. Therefore, there exist 7jn®*~(*1) choices each for

two disjoint edges e; and eg such that {x;} v L1 < e; and {x2} v Ly C e3.

By construction we have
eg ey = {1} wl] and ey;nes={x2}w L),
so the edges ey, e5, and e3 form an ¢-path P in H. Moreover, since
einfi=Li, |finfl=[(SnS)uF2e and fones= Lo,

the edges eq, f1, f2, and e3 form an f-path P’. Since k — ¢ — 1 > ¢, we may select for P
and P’ the same ends in e; and e3. Moreover, V(P') = V(P) u S and, therefore, the
(-path P absorbs S. From (i)—(iv) it is clear that there are at least 7°n? choices for P. [

Following the scheme from [14], let F < V(H)? be a family of ordered g-sets of vertices
such that each of these sets are selected from V(#H)? independently with probability
e
p= Pnal’

An (-path in V(H)? is an ordered set (vq,...,v,) of vertices such that

€1 = {Uh cee ,Uk;}, €2 = {Uk:—e+1, e 7U2k—é}7 and ez = {U2k—24+1, e ,Usk—%}
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F1GURE 2. The path P, consisting of ey, e5, and es, that absorbs S.

are edges in ‘H. Using Chernoft’s inequality, with high probability we have
| F| < 2pn? = %—in
n
By Claim 8, for each set S of size k — /, at least 7°n? (-paths in V(H)? absorb S. By
Chernoft’s inequality, w.h.p. for all S € (k‘i Z), there are at least 2en f-paths in F that
absorb S. The expected value of the number of intersecting pairs of ¢-sets in F is at most

e \? 16¢ 1
2 2¢-2.2 92 9¢-1 _
q nn q pT=qgn q (,’“7“5,”(1—1) = 5”567 < 56”

So by Markov’s inequality, the number of intersecting pairs of ¢-sets in F is at most en
with probability at least 1/2.

Let F be a family that satisfies the above conditions. For each of the intersecting pairs
in F, delete one of the ¢g-sets and let 7/ < F be the remaining family. We want to use
Lemma 5 with R = V| which is sufficiently large as the following calculation shows:

8 8¢n° 8¢ P P
Fl<gn= = < = L |R|.
FI< "= Pk 256k(4k)° " 32k 30 1

So we can connect all f-paths in F’ to an f-path A with

56k

[V(A)| < |F'|-(4k +q) < 2pn? - Tk = ﬁen <(n

and this path absorbs all sets U < V N\ V(A) with |U| € (k — ¢)N and |U| < en. O

2.4. Path-Tiling. In this part we will find a path-tiling of /-paths in H that covers all but
a small fraction of the vertices of H. For that purpose we use the so-called weak reqularity
lemma for hypergraphs, which is the straightforward extension of Szemerédi’s regularity
lemma for graphs [17]. Roughly speaking, we will show that there exists a fractional
Ce-tiling, a so-called S-hom(C,)-tiling in the resulting reduced hypergraph R of H, where C,
is the k-uniform “cherry” consisting of two hyperedges that share exactly 2¢ vertices. The

fractional C,-tiling of R will transfer to a path-tiling of H.
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First, we introduce the standard notation for the regularity lemma. Let H = (V. E) be
a k-uniform hypergraph and let Vi, ..., Vi be non-empty, mutually disjoint subsets of V.
We denote the number of edges with one vertex in each V; by ey (Vi,..., Vi) and define
the density of H w.r.t. (V4,...,Vk) by

67.,5(‘/1, ey Vk)
dy(Vi,..., Vi) =
R APTA
For ¢ > 0 and d > 0, a k-tuple (V4,...,V}) of mutually disjoint subsets of vertices is

called (g, d)-reqular if for all k-tuples (A1, ..., Ag) of subsets A; < V; with |A4;| = ¢|V}|, we

have
|d7'l(A17 cee 7Ak) - d| < E.

Moreover, the tuple (Vi,...,V;) is called e-reqular if it is (g, d)-regular for some d > 0.
Below we state the weak hypergraph regularity lemma (see, e.g. [3,4, 16]).

Lemma 9 (Weak regularity lemma). For all integers k = 2 and ty = 1 and for every e > 0,
there exists Ty = Ty(k,to,e) such that for every sufficiently large k-uniform hypergraph
H=(V, E) on n vertices, there exists a partition V = Vyw Vi v ... vV, satisfying

(Z) t < To,
(1) |V1| = ... = |V| and |Vy| < en, and
(éii) for all but at most €(}) many k-subsets {i1,...,ix} < [t], the k-tuple (V,,...,V;,)

is e-reqular.

A vertex partition of a hypergraph #H satisfying (7)-(7) of the conclusion of Lemma 9
will be referred to as an e-regular partition. For € > 0 and d > 0, we define the reduced
hypergraph R = R(e,d) of H w.r.t. such a partition as the k-uniform hypergraph on the

vertex set [t] and
{i1,...,ix} € E(R) <= (Viy,...,V;,) is (¢,d')-regular, for some d' > d.

In typical applications of the regularity lemma, the reduced hypergraph inherits some
key features of the given hypergraph H. In fact, the following observation shows that the
reduced hypergraph inherits approximately the minimum degree condition of the original
hypergraph. A similar result can be found in [5, Proposition 16] and for completeness we

include its proof below.

Lemma 10. Given c,e,d > 0 and integers k = 3 and ty = 2k/d, let H be a k-uniform
hypergraph on n >t >ty vertices such that

Sra(H) = c(’;)
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If H has an e-regular partition Vo w Vi v ... v V; with reduced hypergraph R = R(e,d),
then at most \/e(,.",) many (k — 2)-subsets K of [t] violate

degr(K) = (c — 2d — /&) (;)

Proof. Let D = D(d) and N' = N (g) be the hypergraphs with vertex set [t] and
e E(D) consists of all sets {iy,...,ix} such that d(V;,,..., Vi) = d,
e E(N) consists of all sets {i1,...,ix} such that (V;,,...,V;,) is not e-regular.

Note that the reduced hypergraph R (e, d) is the hypergraph with vertex set [¢] and edge
set E(D) ~ E(N). For an arbitrary K = {iy,...,i 2} € (k[i]Z) we will show that

2
Let n/t = |V;,| = m = (1 — e)n/t be the size of the partition classes and let x be the

number of edges in H that intersect each Vj, in exactly one vertex for each j € [k —2]. By
the condition on d;_o(H) and ¢t >ty = 2k/d, we obtain

ot (o) 2 5 a2 (2),

If (5) did not hold, then we would find for x the upper bound

r < (c—2d) (;) m" + (;) dm* < (c — d) m*2 (Z)

contradicting the lower bound for x.

Next we observe that at most y/z(,",) many (k — 2)-sets K satisfy degy(K) < /(%)
since the number of non-e-regular k-tuples in R is at most 5(2) Consequently, it follows
from the degree conditions on D and N that all but at most /¢ (kiQ) many (k — 2)-sets K

satisfy

degp(K) = (¢ — 2d) (t) (5)

degr(K) = (c —2d — \/¢) <;>
O

We will find a suitable fractional C,-tiling in the reduced hypergraph R, where the
cherry Cy is the k-uniform hypergraph with vertex set [2k — 2¢] and edges {1,...,k} and
{k—20+1,...,2k— 20}

Definition 11. Let C and R be k-uniform hypergraphs, 5 > 0, and let ® be a multiset of
hypergraph homomorphisms from C to R. A function h: ® — {af: a € N+o} is called a
B-hom(C)-tiling if the weight wy(v) of a vertex v satisfies

wp(v) = Z h(p) <1

ueV (C) ped:v=¢p(u)
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for allve V(R). We call

w(h) =Y, wa(v) = Y h(@)[V(C)]

veV(R) ped

the weight of the tiling.
The following building block allows us to easily define a tiling on a single edge.

Fact 12. Given an edge e = {vy,..., v}, there exists a M—hom(cw—tz’ling h that is

non-zero only on e, such that wy(v;) = 1 for i € [k — 2] and wy(vk_1) = wp(vg) = ﬁ

Note that we may scale the weight of h by any q € (0, 1] and obtain a M—hom((fg)-tilmg

with wp(v;) = q for i € [k — 2] and wy(vk—1) = wp(vg) = 2?1523)1)' Similarly, for any

q € (0,1] there exists a ﬁ—hom(@)—tilmg with wy,(v;) = q fori € [k].

Proof. For this consider the homomorphism that maps C, to e such that vy, ..., vop_9, V51
and v, are the image of the intersection of the two edges of C;. By cyclically shifting the
image of the first 2¢ — 2 vertices of the intersection and appropriate scaling, we obtain all
homomorphisms for the required tiling. We obtain the even weight distribution for the last

part of the fact by cyclically shifting the whole image k& times. O

The following lemma is the main part of the proof of the Path-Tiling Lemma. For this
we introduce a fractional notion of extremality. We say that a k-uniform hypergraph R
on t vertices is B-fractionally (¢, &)-extremal if there is a function b: V(R) — {0} u [5, 1]

with
> b(v)>%t and > Hb(v)éf(li).

veV(R) ecE(R) vEe
Note that the function b can be viewed as a set of weighted vertices, which plays the réle

of the vertex set B in the definition of extremality.

Lemma 13. For all integers k = 3 and 1 < { < k/2, there exist C' and ~yy such that for
all « > 0 and v € (0,7), there exist § > 0 and € > 0 such that the following holds for
sufficiently large t. Let R be a k-uniform hypergraph on t vertices that is not B-fractionally

)= (2t -0) () ©)

holds for all but at most 5(kf2) sets K € (‘2(7732)) Then there exists a (-hom(Cy)-tiling h
with weight at least (1 — a)t.

(¢, Cv)-extremal and

Proof. Clearly, it is sufficient to prove the lemma for small values of a. Consequently the

quantification of the lemma allows us to fix the parameters and auxiliary constants C’
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and c to satisfy the following hierarchy of constants

11 p ! S ! > =y»a» (7)
— = > = > — > a>»ce
k g C/ C IYO ’y Y

where “» x” denotes that x is chosen sufficiently small with regard to all constants to its

left. Moreover, we fix # inductively such that
L=0o>»B1>» > Pl =0 and 16 k! divides ﬁ%ﬂ,

and let ¢ be sufficiently large such that ¢, €, 5 » 1/t. Note that any 5;-hom(C,)-tiling is
also a S-hom(C,)-tiling as (3; is a multiple of 5. To prove the lemma, we show that given
a fi-hom(Cy)-tiling h with weight w(h) < (1 — a)t, there exists a f;1-hom(Cy)-tiling b’
with weight w(h’) = w(h) + c¢t. We can begin with the trivial 1-hom(C)-tiling with weight
zero and hence, after at most 1/c steps, we obtain a 5-hom(C)-tiling with weight at least
(1 —a)t.

For the rest of the proof fix a f;-hom(Cy)-tiling h with weight w(h) < (1 — «)t and
assume for a contradiction that there is no f;1-hom(C,)-tiling with weight w(h) + ct. It
follows from the upper bound on the weight that there are at least at/2 vertices v € V(R)
with wp(v) < 1 — /2 and we may fix a subset W of them of size at/2.

We view @, the set of homomorphisms from C, to R, as a multiset, where we include ¢
with multiplicity %, so that we can assume h: ® — {3;}. For our argument, we will need
copies of C; to cover most of the hypergraph R apart from W. So choose ¥, a multiset of

functions from C, to V(R) ~ W, such that for all vertices v € V(R)
Bi- > ({pe®:v=p@}+{pe¥:v=yp@}) <1,
ie[2k—2(]
and

t t
(1—2&)m<|<I>u\If|<(1—oz)6ﬂ)(C€). (8)

The right hand side of (8) holds for empty ¥ and to see that ¥ satisfying the inequality

on the left can be chosen, note that one may simply take constant functions that map C,

to single vertices v € V(R) \ W for which wy(v) <1 — a. Let

==ouV¥
and identify a function ¢ in = with the — not necessarily distinct — vertices (vy, . .., vUgx_2¢)
in its image, where v; = (i) so that {vy, ..., vx} and {vk_2p41, ..., Vor_2¢} form edges in R

if o € ®. We refer to the elements of = as cherries C € =.
Consider the (k — 2)-sets in W that satisfy the degree condition (6) of the lemma. Since

£ « a, among those (k — 2)-sets we find a collection W whose elements are pairwise disjoint
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and cover at least |W|/2 vertices. For later reference we note

W at

=z > —. 9
WIZ56—9” )
For K € W we consider the link graph Lk of K in R, which is the (2-uniform) graph
containing all edges e such that K ue e E(R). At most é(”(g‘)) < (%) edges have both
;) edges contain a vertex from W, so let L

be the graph obtained from Ly by removing all these edges. Combined with the degree

for every such (k — 2)-set K € W.
We will find pairs C,C’ € = that allow us to locally improve the tiling h. For this we only

ends in the same C € = and at most at?/2 < fy(

condition (6) we have

want to consider edges in the bipartite induced link graph Ly (C,C"). Formally the vertex
classes of L (C,C’) are given by two disjoint copies of [2k — 2¢]. In particular, Ly (C,C’)
has 4k — 4/ vertices even when C and C’ intersect or when C or C" are not given by injective
functions from C,. Moreover, two vertices ¢ and j from different classes are adjacent in
Lk (C,C') if {v;,v}} is an edge in the link graph Ly, where v; is the image of i € V/(C;) in
C and v} is the image of j in C’. However, similarly as above we canonically identify the
vertices of Lk (C,C") with the vertices of C and C'.

We show in the following that for most K € W the bipartite link graph between most C
and C’ has a very specific structure. We call (C,C’) € =2 an extremal pair for K if there exist
special vertices u € C and v’ € C' such that Lk (C,C’) contains exactly all edges incident to

these two vertices. In particular, in such a case L (C,C’) has 4(k — £) — 1 edges.

Claim 14. FEither there ezists a §;41-hom(Cy)-tiling h' with w(h') > w(h) + ct, or for every
C € = there ezists uc € C such that the following holds. For all but at most v|W)| sets
K €W all but at most C'v|Z|* pairs (C,C’) € 2% are extremal for K with special vertices uc

and Uc: .

Proof. The proof of the claim consists of three steps. First we show that if for a given (k—2)-
tuple K € W and some pair of cherries C,C’ € = the induced bipartite link graph Ly (C,C’)
contains a matching of size three or two vertices in C each neighbour to two distinct vertices
in C’, then there is a local improvement of the tiling by a weight of at least ;/4. In a
second step we shall bound the number of possible local improvements, as otherwise we
could combine them to arrive at a desired tiling A’ with a weight increased by ct, which
would conclude the proof. With some foresight, we remark that every cherry C € = may be

used at most once for a local improvement. In the last step we utilise this bound on the
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number of local improvements to show that “typically” L (C,C’) contains only 4(k —¢) — 1
edges and displays the structural conditions stated in the claim.

Let K € W and (C, C') € 22 be such that wy,(v) < 1 — f3; for all vertices v € K. For the
first step we consider two cases. Suppose that there is a matching with three edges in
Lk (C,C"). Recall that Lk (C,C’) is a bipartite graph with partition classes of size 2(k — ¢).
We set h/(C) = (1 — W)BZ if C € ® and similarly #'(C") = (1 — G(k 2 1 )5 if C' e ®. If
one or both of C,C’ are in ¥, their vertices were not saturated by the 8;-hom(Cy)-tiling h and
otherwise we have reduced their weight by ﬁ Bi. So we can assign weight ﬁ Bi
to the vertices of the matching edges and weight [3; to the vertices of K. This defines a
valid f;,1-hom(Cy)-tiling A" by applying Fact 12 (with ¢ = %Bl) to the three edges in R
corresponding to the matching edges in the link graph. Note that the weights on the 6
vertices of the matching edges remain unchanged, and by considering the vertices on which
the weight has changed, it is easy to see that
k—2

w(h’)zw(h)+(k:—2—(4/€—4€—6)'6(k_g_1)

)51’ > w(h) + ;Bia

which yields a local improvement in this case.

For the next case suppose that there are two vertices in C each incident to two edges
such that all four neighbours in C" are distinct. Set A'(C) = (1 — W)Bl if C € ® and
h'(C) = (1— W)@ if C’ € ®. On the vertices of the four edges described above we
put weights k g ) ——=—f; and ; on the vertices of K. Again, this defines a tiling h’ with

w(h’):w(h)+<k—2—(2k—2€—2)'4(kk__52_1)_(%_%_4)'8(/%%—_52—1))@

> wih) + " 205w + 56 (11)
This establishes a local improvement for this case and concludes the discussion of the first
step.

For the second step suppose that there is a subset W' < W of size at least v|WW|/2, such
that for each K € W’ we can define a local improvement for |=Z|? cherry pairs. We apply
these local improvements greedily, only using each cherry C € = at most once (over all
K € W), to increase the weight of the tiling. This procedure may end, either when every
K € W' contains a saturated vertex, in which case we enlarge the total weight by at least
«Q 7ozt
2 8k’

or when for at least one K € W' for each of the 7|Z|* pairs of cherries at least one

[0 (6%
—Wl=C - tw
5 IWl= 3 ||

cherry was used for some local improvement already. Any two cherries are contained in

at most 4|Z| ordered pairs so the latter case would imply that we applied v|=|/4 local
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improvements before. In summary, we can aggregate local improvements leading to a
Bir1-hom(Cy)-tiling h” with weight at least

w(h") = w(h) + min {g g il % E|} ) w(h) + ct,
which would conclude the proof of Claim 14.

Consequently, for the third step we only need to consider those K € W for which we can
define a local improvement for less than «|=|? of its cherry pairs. In particular, for those K
most pairs induce no matching of size three in Ly (C,C’) and by Konig’s theorem [10]
Lk (C,C’) spans at most 4(k—/) edges. If it contains exactly 4(k—¢) edges, the second local
improvement considered in the first step would be possible, so indeed these pairs contain
at most 4(k — ¢) — 1 edges. On the other hand, in view of (8) the degree condition (10) of
K € W translates to an average number of edges of at least 4(k — ) — 1 —4(3~ +4a) (k — £)*
in the link graphs. So, as C’ was chosen big enough, all but (C” —1)|Z|? cherry pairs C, C’
induce exactly 4(k — ¢) — 1 edges in Lk (C,C’). Since in addition these pairs allow no local
improvement as considered in (11), there must be a vertex on each side that has a complete
neighbourhood on the other side, so most pairs are indeed extremal.

It remains to show that typically the special vertex u € C in an extremal pair Ly (C,C’)
is independent of K and C’. So assume for a moment that there are two vertices u and v
in C € Z such that u is a special vertex for an extremal pair Ly (C,C’) and v is special for
an extremal pair Lg/(C,C") for some (possibly non-distinct) K, K’ € W and C', C" € =.
In this case we can define a local improvement by “splitting” the case with four edges
above. Indeed choose four edges incident with w in L K(C C') and four for v in Lg/(C,C").
Assign weights 61 to the vertices of K and K’, and W B; to the vertices of the eight
chosen edges. Set h'(C) = (1 — m)ﬁi if C € ® and reduce the weights on C" and C”
by Wﬁz if they are in ® (or by ﬁﬁl in case C' = C”). Similar calculations as
in (11) lead to a local improvement of 3;/4 involving the three cherries C, C’, and C”.

For each cherry C fix uc € C as the vertex that occurs most often as a special vertex over
all extremal pairs Ly (C,C’). Assume for a moment that at least for v|W|/2 many K e W
for at least v|=|? extremal pairs C, C’ the special vertex in C is not uc. In particular for
each such K we find 7|Z|/4 such pairs none of which share a cherry. By the choice of uc
there exist K’, C” as above that allow us to define a local improvement as long as we
have not applied more than |=|/12 local improvements. So we can aggregate the local
improvements as in the second step. Otherwise the chosen u¢ satisfy the statement of the

claim. O

We call C € Z good if it is contained in at least 1|=| extremal pairs for at least 1| W)
many K € W and bad otherwise. As a (;11-hom(Cy)-tiling A" with w(h') > w(h) + ct would
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complete the proof of Lemma 13, Claim 14 implies that there are at most (C” + 1)y|W||=|?
triples (K,C,C") € W x =% such that C,C’ are not extremal for K. So at most 5C'v|Z|

cherries are bad as we would have
1 1_ —
5CEL 5 5[] > (' + D WIER

such triples otherwise. Moreover, for every vertex v € V' we denote by =g, (v) the set of
bad cherries C € = that contain it.

To complete the proof of Lemma 13 we will show that we find a large matching M
in R such that every vertex v € e € M is contained in “many” good cherries. For each
good cherry C € = there are a lot of choices for C' and K € W such that C and C’ are
an extremal pair for K. We will redistribute the weights to transfer weight from the
non-special vertices of C (and C’) to K, which will reduce the weight on v (since we will
ensure that v is a non-special vertex). Repeating this for every v € e will allow us to obtain
a local improvement for the tiling by adding weight on e and repeating this for sufficiently
many hyperedges e € M leads to the desired global improvement.

We define the function a: V(R) — [0,1] by v — f; - > oz L} (uc), which assigns to a
vertex the sum of weights of cherries that use it as a special vertex. As any cherry contains
2(k — () vertices, it is clear that X, .y (r) a(v) < ﬁ

B-fractional non-extremality of R for b(-) = 1 — a(-) and obtain

3, 0= er(i)

ecE(R) veEe

and, therefore, we can utilise the

Since there are at most 5C"|Z| bad cherries, they contribute at most

B Z |EBAD(U>| < Biv(Cy) - 50’7’4 5cl7t (12)

veV(R)
to the overall weight of the f;-hom(C,)-tiling h. We shall only use good cherries to
redistribute weights for the desired [;;i-hom(Cy)-tiling, so we consider the function
b': V(R) — [0,1] given by
b'(v) = max {0, b(v) — B; - |Zpan(v)|}
and in view of (12) and C" « C (cf. (7)) we have
> [l =5o(;)
eeE(R) vee

We will use an averaging argument to obtain a matching M in F(R) with a suitable lower

bound on Y, [ [, 0'(v). Consider all maximal matchings (of size |t/k|) in the complete
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k-uniform hypergraph K; on ¢ vertices. Any given edge is contained in a [¢t/k]/(}) fraction
of those matchings, and so by averaging there is a matching M’ < E(K,;) with

> [vw= (;7- HJ > gy.k.

eeM'nE(R) vEe

Set M = M" n E(R). Since V/(v) € [0, 1] we have

Z k- min{b'(v)} > Z kznb'(v) > gfyt. (13)

vEE
eeM eeM  veEe

In particular, we may assume that min,.{0'(v)} > 0 for every e € M, since this has no
effect on inequality (13). Moreover, from the definition of the function &'(-) it then follows
that min,e.{t/'(v)} = f; for every e € M.

For each vertex v € | JM, we consider good cherries that contain v as a non-special
vertex. Assume that we have K € W and an extremal pair C, C’ such that v is a non-special
vertex in C. Recall that Lk (C,C’) contains all edges incident to the two special vertices.

We define a local weight shift: If C € ¥, we can increase the weight at the vertex v by ;, if

1 )
—0)—1 " 4(k——1

of all edges incident with exactly one of the special vertices, [3; to the vertices of K and set

(C)=(1- Mkf;ffl))ﬂi and A'(C") = (1 — ﬁ)ﬁi if C € ®. By similar calculations as

(
before, this defines a valid (3;,1-hom(Cy)-tiling A’ with w(h') = w(h). On the other hand,

the weight of the vertex v is reduced by ﬁﬁi, ie.

C € ® we will shift the weight as follows. Assign weights 5Tk ) B; to the vertices

k—2

wy(v) — mﬁi .

wh/(v) =

It follows from the definition of ¥'(v) that we have at least b'(v)/f; many good cherries
that contain v as a non-special vertex and we shall apply at most min,e.{0'(u)}/5; local
weight shifts for a vertex v € e € M.

For every edge e € M we would like to apply these local weight shifts for every vertex
v € e, where we cycle through all & vertices and apply one shift at a time. In other words,
we evenly reduce the weights on the vertices of e. Note that we can apply these local
weight shifts using K, C, and C’ unless we have saturated the vertices in K or used one of
the cherries before. The procedure stops as soon as we reach a vertex for which no local
weight shift is possible.

We first discuss the ideal case that this procedure does not stop, i.e. for every e € M and
every v € e we applied min,e.{b'(u)}/f; local weight shifts. In this case, for every e € M

we reduced the weight of all vertices v € e by at least

1 k—2 k-2 o
Er}}elgl{b (w)} - 00— 50 = 10 2 min{b'(u)}.




LOOSE HAMILTONIAN CYCLES FORCED BY (k — 2)-DEGREE 19

Consequently, we may appeal to Fact 12 to increase the tiling on the edge e by the same

amount. Repeating this for all e € M, we obtain a S;;,-hom(Cy)-tiling h” satisfying

// , (13) C’}/t k—2 (7)
> : >
w(h") 2 k- —€ _21516151{6( u)} = w(h)+ 3 Ah—10) -2 w(h) + ct,

which would conclude the proof of Lemma 13 in this case.

In the case that the procedure stops, there is some v € V(M) and a good cherry C
for v such that C cannot be used for a local weight shift for v. This means, since C is a
good cherry, that either f]W\ many K € W contain a saturated vertex or that at least
:|Z] cherries were used in local weight shifts before. In the case that §|W| many K € W
contain a saturated vertex, each of these vertices was used in at least 5% local weight shifts,

so in total we have applied

9
1|W|- & (>/) at o
20; 8k 20;

local weight shifts. If on the other hand all §|.~| possible cherries C' were used in local

weight shifts before, then we have applied at least i\E\ local weight shifts. As in the ideal
case, using Fact 12, we conclude that we can increase the tiling on the edges in M and
obtain a f3;;1-hom(Cy)-tiling A" with

" . |2 k—2)8; (.8
w(h") = w(h) + (mm{lfo;kﬁ’ U} - k) M 728 w(h) + ct,

which concludes the proof of Lemma 13. 0

Next we want to transfer the S-hom(Cy)-tiling of R into a path-tiling of H. For that

purpose we will use the following lemma from [6, Lemma 2.7].

Lemma 15. Fix k > 3, 1 < ¢ < k/2 and ¢, d > 0 such that d > 2¢. Let m > %.

Suppose V = (V1,..., Vi) is an (g, d)-regular k-tuple with

Vil == [Vae| = m and [Vapsa| = - = [Vi| = 2m.

Then there are at most (di)e vertex disjoint (-paths that together cover all but at most
2kem wvertices of V. O

Finally, by using Lemma 15 on the edges of the S-hom(C,)-tiling of R given by Lemma 13,

we obtain a path-tiling from H of the desired size.

Lemma 16 (Path-Tiling Lemma). For all integers k = 3 and 1 < ¢ < k/2, there exist
C, 7 > 0 such that for all a« > 0, v < vy there exists an integer s such that the following
holds for all sufficiently large n. Let H be a k-uniform hypergraph on n vertices and
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Then either there is a family of at most s disjoint {-paths that cover all but at most an

vertices of H or H is (¢, Cvy)-extremal.

Proof. Let k = 3 and 1 < ¢ < k/2 be given. Let C’ and 7{ be the constants given by
Lemma 13 for k and ¢. Set C' = 6C" and v = %‘3, and let a > 0 and v < 7. Following the

quantification of Lemma 13 with § and v we obtain 3 and &’ and a sufficiently large t,.

— Be
2

and ty yields Tp. Let s be a sufficiently large constant. Let H be a k-uniform hypergraph

> () )

and n is sufficiently large. By the weak regularity lemma there exists an ep-regular
partition Vo w... v V; of H with [Vi| = -+ = |V;| = m, || < eon and ty <t < Tj and the

Let ¢ be sufficiently small. Then the weak regularity lemma (Lemma 9) for gg <72

on n vertices such that

corresponding reduced hypergraph R = R(go,7y) on t vertices satisfies, by Lemma 10,

degr (K) = (W N 47) <;>

for all but at most \/2o(,",) < €'(,.",) many (k—2)-sets K € (k[f]Q) We split the remainder
of the proof in two cases, depending on whether R is S-fractionally (¢,4C"v)-extremal.
Suppose that R is not f-fractionally (¢,4C"y)-extremal, so in particular it is not /-

fractionally (¢, C'v)-extremal. Then Lemma 13 implies that there exists a S-hom(Cy)-tiling
h of R with weight (1 — §)t. Let ®* be the set of homomorphisms ¢ from C; to R with
h(yp) > 0, which implies in fact h(y) = B. We will use Lemma 15 to obtain ¢-paths covering
almost all vertices of H and for this we split the partition classes according to the tiling h:
let {RY, ..., RS, o} g+ Dea family such that for all p # ¢' € ¥

o RY < Vi, for all i € [2k — 2/],

o Rf n R = o forall i,j e [2k — 2],

o |Rf| =2[M9™ for all i € [2k — 20].

For each p € ®" and all i e {k — 20+ 1,... k} let Sf U U = RY be a partition of R} into

two classes of equal size. Note that, since (V7,),..., V) and (Vi g1y -0 Vios_ap)
are (%, d)-regular for some d = 7
(BT, - B o Siapgs -0 SE) and (Ul gppn, - UL REy - RS o)

are (g, d)-regular, for some d > -, where we used that h(p) = g for all p € ®*. Then, with
Lemma 15 we obtain at most ﬁ many (-paths that cover all but ke|RY| vertices of
RY,..., Ry 5, Applying this to each homomorphism ¢ € ®* we obtain at most s many
(-paths.
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We claim that the number of vertices in V' (#) that are not covered by these ¢-paths is
less then an. For this note that the uncovered vertices are the vertices from the partition
class Vj, the vertices that are not contained in any R} and those vertices in some R that
are not contained in any (-path. At most §n vertices are not in any R} due to the weight of
the 3-hom(C))-tiling h and we lose at most % vertlces due to the rounding in the definition
of RY. The (-paths cover all but a (ke)- fract1on of vertices in ( J; , R. Consequently the

total number of uncovered vertices is at most

o 2t
gon + —n + — + ken < an.

2 p
Now suppose that R is f-fractionally (¢,4C"v)-extremal. This means by definition that
there is a function b: V(R) — {0} u [, 1] with
2k — ) — 1 (t
UEVZ(R) b(v (—)Z)t and EEEZ(R) Q b(v) < 4C"y <k)
For each i € [t] we fix a subset 4; < V; with [4;| = [b(¢)|Vi[] and define B = |J,c; 4
Thus, we can bound the number of edges on B by those that are in (g¢, d)-regular tuples

for some d > v, the edges that are in k-tuples which are not dense or not regular and those

that contain two or more vertices from the same A;:

< 3 T1005) + ()0 +al) () () ()

-
< 5C"y <Z) .

B| > (%t) (1- 50)% —t> (% - go) n.

Therefore, by adding at most gon vertices from V ~\ B to B we obtain a set B’ with
|B'| = [ kzké)z) J such that

en(B') < en(B) + gon (k ! 1) <6C™ (Z) = (Z)

from which we conclude that # is (¢, Cy)-extremal. O

Note that

§3. PROOF OF THEOREM 4

Below we give the proof of the main technical result, which details the outline from

Section 2.1 and is based on the lemmas from the last section.
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Proof of Theorem j. Let 0 < £ < 1 and let k > 4 and 1 < ¢ < k/2 be integers. Let C
and - be given by the Path-Tiling Lemma (Lemma 16) for k and ¢. Let v < 79 be a
sufficiently small constant, in particular we may assume Cvy « £. From the Absorbing
Lemma (Lemma 7) for n = ( = «, k and ¢ we obtain €. Following the quantification

of the Path-Tiling Lemma for a = ¢/2 and 5y we obtain an integer s. We will use the
A(k—0)—1
4(k—0)?
Let n € (k — ¢)IN be sufficiently large and let H be a k-uniform hypergraph on n vertices.

Reservoir Lemma (Lemma 6) with n = — 37, ¢ = min{e/2,7}, k, and m = s + 1.

Suppose H is not (¢, §)-extremal and

Let A be the absorbing path obtained with the Absorbing Lemma and let X, and Y be
the ends of A. Then |V(A)| < yn and A has the following absorption property: for every
subset U < V N\ V(A) with |U| < en and |U| € (k — ¢)N there exists an ¢-path Q < H
such that V(Q) = V(A) u U and Q has the ends X, and Yj.

Let V! = (VN V(A)) u {Xo, Yy} and let H' = H[V’] be the subhypergraph of H induced

by V’. Note that
, 4(k—-0) -1 n

The Reservoir Lemma guarantees the existence of a set R < V' with |R| < ¢'n < yn such
that for every j < s + 1 every family (X;,Y;),; of mutually disjoint pairs of sets of ¢

vertices can be connected by paths that contain vertices of Uie[ j](Xi uY;) U R only.
Let V' =V N (V(A) u R) and let H" = H[V"] be the subhypergraph of H induced

by V. Then

Now we apply the Path-Tiling Lemma to H” and either we obtain a family of at most s
disjoint (-paths that cover all but at most «|V”| < an vertices of H", or H" is (¢,5C)-

extremal. Set n” = |V”| and suppose for a contradiction that H” is (¢, 5Cy)-extremal.
Then there exists a set B < V" such that |B| = [Z(Qﬁizln”J and e(B) < 5Cy(n")*. By

adding at most n — n” < 2yn vertices from V \ B to B, we obtain a vertex set B’ < V

such that |B’'| = [Z(Zk(;f)alnj and

-1
e(B') < 5Cy(n")" + 2yn (Z B 1) < én”,

a contradiction to the fact that H is not (¢, §)-extremal. Therefore, we may assume that

there exist disjoint ¢-paths Py, ..., P; with j < s that cover all but at most o|V"| < an

vertices of H".
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For all ¢ € [j], we denote the ends of P; by X; and Y;. Let Y;;; = Y. By using the

Reservoir Lemma to connect the family (X, Yi11)o<i<j, we connect the (-paths A, Py, ..., P;

to an {-cycle C < H.

Let U = V . V(C) be the set of vertices not contained in C, i.e. the vertices that were

leftover in the reservoir R or uncovered by the path-tiling. We have |U| < (¢/ + a)n < en.

Furthermore, since C is an ¢-cycle and n € (k — ¢)IN, we have |U| € (k — ¢)IN. Therefore,

we can utilise the absorbing property of A to replace A in C by a path Q with the same

ends as A, obtaining a Hamiltonian ¢-cycle of H. U
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