## Khovanov homology and invariants of 4-manifolds

Paul Wedrich MPIM / Uni Bonn

#### Joint work with Scott Morrison and Kevin Walker

Hamburg, 2nd February 2021

2 Link homologies

## 3 Break

Towards 4-manifold invariants

#### Algorithm (The Jones polynomial)

- Input: a diagram of an oriented knot or link, for example:
- Step 1: count  $n_+ = \#(\swarrow)$  and  $n_- = \#(\swarrow)$
- Step 2: rewrite  $\leftthreetimes \mapsto$  ) (  $-q \leftthreetimes$  and  $\bigcirc \mapsto q+q^{-1}$
- Output: the coefficient of the empty diagram times  $(-1)^{n_-}q^{n_+-2n_-}$

#### Theorem

Output only depends on the knot or link, not on the diagram.

#### **Open Problem**

Is the unknot  $\bigcirc$  the only knot with Jones polynomial  $q + q^{-1}$ ?

#### Generalization

The  $\mathfrak{gl}_N$  quantum link polynomials  $P_N$ : {framed oriented links}  $\rightarrow \mathbb{Z}[q^{\pm 1}]$ .

#### Algorithm (The Jones polynomial)

- Input: a diagram of an oriented knot or link, for example:
- Step 1: count  $n_+ = \#(\swarrow)$  and  $n_- = \#(\swarrow)$
- Step 2: rewrite  $\leftthreetimes \mapsto$  ) (  $-q \leftthreetimes$  and  $\bigcirc \mapsto q + q^{-1}$
- Output: the coefficient of the empty diagram times  $(-1)^{n_-}q^{n_+-2n_-}$



#### Algorithm (The Jones polynomial)

- Input: a diagram of an oriented knot or link, for example:
- Step 1: count  $n_+ = \#(\swarrow)$  and  $n_- = \#(\swarrow)$
- Step 2: rewrite  $\leftthreetimes \mapsto$  ) (  $-q \leftthreetimes$  and  $\bigcirc \mapsto q+q^{-1}$
- Output: the coefficient of the empty diagram times  $(-1)^{n_-}q^{n_+-2n_-}$

#### Theorem

Output only depends on the knot or link, not on the diagram.

#### **Open Problem**

Is the unknot  $\bigcirc$  the only knot with Jones polynomial  $q + q^{-1}$ ?

#### Generalization

The  $\mathfrak{gl}_N$  quantum link polynomials  $P_N$ : {framed oriented links}  $\rightarrow \mathbb{Z}[q^{\pm 1}]$ .

#### Algorithm (The Jones polynomial)

• Input: a diagram of an oriented knot or link, for example:

- Step 1: count  $n_+ = \#(\swarrow)$  and  $n_- = \#(\swarrow)$
- Step 2: rewrite  $\leftthreetimes \mapsto$  ) (  $-q \leftthreetimes$  and  $\bigcirc \mapsto q+q^{-1}$
- Output: the coefficient of the empty diagram times  $(-1)^{n_-}q^{n_+-2n_-}$

#### Theorem

Output only depends on the knot or link, not on the diagram.



#### Algorithm (The Jones polynomial)

- Input: a diagram of an oriented knot or link, for example:
- Step 1: count  $n_+ = \#(\swarrow)$  and  $n_- = \#(\swarrow)$
- Step 2: rewrite  $\leftthreetimes \mapsto$  ) (  $-q \leftthreetimes$  and  $\bigcirc \mapsto q+q^{-1}$
- Output: the coefficient of the empty diagram times  $(-1)^{n_-}q^{n_+-2n_-}$

#### Theorem

Output only depends on the knot or link, not on the diagram.

Open P Two link diagrams represent the same link if and only if they are related by a finite sequence of Reidemeister moves.

# General The $\mathfrak{gl}_N$

 $(\widehat{b}) \leftrightarrow (\widehat{b}) = (\widehat{b}) \rightarrow (\widehat{b}) = (\widehat{b}) \leftrightarrow (\widehat{b}) = (\widehat{b}) \leftrightarrow (\widehat{b}) = (\widehat{b}) \leftrightarrow (\widehat{b}) = (\widehat{b}) \leftrightarrow (\widehat{b}) = (\widehat{b}) \oplus (\widehat{b}) = (\widehat{b}) \oplus (\widehat{b}) \oplus (\widehat{b}) = (\widehat{b}) \oplus ($ 

#### Algorithm (The Jones polynomial)

- Input: a diagram of an oriented knot or link, for example:
- Step 1: count  $n_+ = \#(\swarrow)$  and  $n_- = \#(\swarrow)$
- Step 2: rewrite  $\leftthreetimes \mapsto$  ) (  $-q \leftthreetimes$  and  $\bigcirc \mapsto q+q^{-1}$
- Output: the coefficient of the empty diagram times  $(-1)^{n_-}q^{n_+-2n_-}$

#### Theorem

Output only depends on the knot or link, not on the diagram.

#### **Open Problem**

Is the unknot  $\bigcirc$  the only knot with Jones polynomial  $q + q^{-1}$ ?

#### Generalization

The  $\mathfrak{gl}_N$  quantum link polynomials  $P_N$ : {framed oriented links}  $\rightarrow \mathbb{Z}[q^{\pm 1}]$ .

Theorem (Khovanov 1999)

The Jones polynomial is the Euler characteristic of a link homology theory.

Example (The Khovanov homology of the Hopf link)



#### Theorem (Khovanov 1999)

The Jones polynomial is the Euler characteristic of a link homology theory.

Example (The Khovanov homology of the Hopf link)



A commutative diagram of 1-manifolds and bordisms

#### Theorem (Khovanov 1999)

The Jones polynomial is the Euler characteristic of a link homology theory.

Example (The Khovanov homology of the Hopf link)



A chain complex of 1-manifolds and bordisms

#### Theorem (Khovanov 1999)

The Jones polynomial is the Euler characteristic of a link homology theory.



Apply TQFT corresponding to  $V = H^*(\mathbb{C}P^1) \cong \mathbb{Z}[x]/\langle x^2 
angle$ 

#### Take $H_* \implies$ Khovanov homology of the Hopf link.

Theorem (Khovanov 1999)

The Jones polynomial is the Euler characteristic of a link homology theory.

Example (The Khovanov homology of the Hopf link)



## Khovanov homology and its cousins

#### Theorem (Khovanov 1999)

These bigraded abelian groups do not depend on the choice of link diagram (up to isomorphism) but only on the underlying link.

A family of link homologies:

 $\operatorname{Kh}(\bigcirc) \cong H^*(\mathbb{CP}^1)$ 

2004: Khovanov–Rozansky homologies categorify the  $\mathfrak{gl}_N$  knot polynomials.

$$\operatorname{KhR}^{N}(\bigcirc) \cong H^{*}(\mathbb{CP}^{N-1})$$

2008: Wu and Yonezawa's colored Khovanov–Rozansky homologies categorify  $\wedge^k V$ -colored  $\mathfrak{gl}_N$  knot polynomials.

$$\operatorname{KhR}^N(\bigcirc^k) \cong H^*(\operatorname{Gr}(k,N))$$

## Link homologies appear in many parts of mathematics

- Imatrix factorization categories, Khovanov-Rozansky, et.al..
- Iie theory, via category O, Mazorchuk–Stroppel, Sussan.
- Scombinatorial TQFT, foam categories, Bar-Natan, Khovanov, et.al.
- algebraic geometry, D<sup>b</sup>Coh, affine Grassmannian, Cautis–Kamnitzer, Hilbert schemes Oblomkov–Rasmussen–Shende
- S higher representation theory Khovanov-Lauda, Rouquier, Webster
- singular Soergel bimodules, Rouquier, Khovanov, Williamson
- symplectic geometry, via Floer homology, Seidel–Smith, Manolescu, Abouzaid, Dowlin
- algebraic combinatorics, shuffle conjectures, Carlsson–Mellit
- string theory, Gromov-Witten theory, Gukov-Schwarz-Vafa, Aganagic-Ekholm-Ng-Vafa, Witten
- motivic Donaldson-Thomas theory à la Kontsevich-Soibelman, Kucharski et.al.

## Link homologies appear in many parts of mathematics

- Imatrix factorization categories, Khovanov-Rozansky, et.al..
- Iie theory, via category O, Mazorchuk–Stroppel, Sussan.
- **o** combinatorial TQFT, foam categories, Bar-Natan, Khovanov, et.al.
- algebraic geometry, D<sup>b</sup>Coh, affine Grassmannian, Cautis-Kamnitzer, Hilbert s Link homologies appear in these contexts due to
- bigher reactions of categorified quantum groups.
- Singular → higher representation theory

ter

- symplectic geometry, via Floer homology, Seidel–Smith, Manolescu, Abouzaid, Dowlin
- algebraic combinatorics, shuffle conjectures, Carlsson–Mellit
- string theory, Gromov-Witten theory, Gukov-Schwarz-Vafa, Aganagic-Ekholm-Ng-Vafa, Witten
- motivic Donaldson-Thomas theory à la Kontsevich-Soibelman, Kucharski et.al.

## Khovanov-Rozansky homology as a functor



Defining KhR<sub>N</sub> requires:

- the data of a chain complex for each link diagram (KhR04)
- the data of a chain map for every elementary movie (KhR04)
- the property of satisfying movie moves (Blanchet10 for N = 2)

Theorem (Ehrig–Tubbenhauer–W. via Robert–Wagner 2017)  $KhR_N$  is a functor making the above diagram commute.

## Khovanov-Rozansky homology as a functor



Paul Wedrich

Khovanov homology and 4-manifolds

## Khovanov-Rozansky homology as a functor



Defining KhR<sub>N</sub> requires:

- the data of a chain complex for each link diagram (KhR04)
- the data of a chain map for every elementary movie (KhR04)
- the property of satisfying movie moves (Blanchet10 for N = 2)

Theorem (Ehrig–Tubbenhauer–W. via Robert–Wagner 2017)  $KhR_N$  is a functor making the above diagram commute.

## Tools and applications

Theorem (Kronheimer–Mrowka 2010)

$$\operatorname{Kh}(K) \cong \operatorname{Kh}(\bigcirc) \implies K = \bigcirc$$

Theorem (Rose–W. 2015)

For each knot K and  $N = \sum N_j \in \mathbb{N}$  there exists a deformation spectral sequence:  $KhR_N(K^k) \rightsquigarrow \bigoplus_{\sum k_j = k} \bigotimes_j KhR_{N_j}(K^{k_j})$ 

Helps with proving the functoriality of  $KhR_N$  E.-T.-W. 2017.

#### Theorem (Rasmussen 2004)

Such spectral sequences give slice genus bounds, concordance invariants.

Toy application: Existence of an exotic  $\mathbb{R}^4$  via the Rasmussen invariant Serious application: the Conway knot is not slice Piccirillo 2018

Paul Wedrich

Khovanov homology and 4-manifolds

#### Break

#### Summary

- Intro: Khovanov's categorification of the Jones polynomial
- Review: Khovanov–Rozansky  $\mathfrak{gl}_N$  link homology KhR<sub>N</sub>
- Theorem:  $KhR_N$  is functorial in  $B^3$

## What's next link homology in $S^3 \longrightarrow 4D$ skein module $\downarrow^{KhR_N} \longmapsto S^0_N(W^4; L) \xrightarrow{7} S_N(W^4; L)$ functorial tangle invariant $\longleftrightarrow$ 4-category

## Starting in dimension 3...

#### Link invariants

The  $\mathfrak{gl}_N$  link polynomial  $P_N$ : {framed, oriented links}  $\to \mathbb{Z}[q^{\pm 1}]$ :  $P_N(\mathfrak{N}) - P_N(\mathfrak{N}) = (q - q^{-1})P_N(\mathfrak{N})$  $P_N(\mathcal{F}) = q^N P_N(\mathcal{F}), \quad P_N(L_1 \sqcup L_2) = P_N(L_1)P_N(L_2)$ 

#### Higher categories

Ribbon category  $C_N := \operatorname{Rep}(U_q(\mathfrak{gl}_N))$ , tangle invariants

 $U^* \otimes U \otimes W$ 

#### Manifold invariants

The  $\mathfrak{gl}_N$  skein module for compact, oriented  $M^3$ ,  $P \subset \partial M^3$  colored points:

$$\mathsf{Sk}_N(M^3; P) := rac{\mathbb{Z}[q^{\pm 1}] \langle \mathcal{C}_N \text{-colored ribbon graphs in } (M^3, P) 
angle}{\langle ext{isotopy, local relations from } \mathcal{C}_N ext{ in } B^3 \hookrightarrow M^3 
angle}$$

Part of a  $0123\varepsilon$ -dimensional TFT. (Fully extended 4D TFT for modular C.)

## ... upgrading to dimension 4

#### Link invariants

The  $\mathfrak{gl}_N$  Khovanov–Rozansky link homology KhR<sub>N</sub>: {links/link cobordisms}  $\rightarrow \mathcal{K}^b(\mathfrak{gr}^{\mathbb{Z}}\mathsf{Vect}), \quad \chi_q \circ \mathsf{KhR}_N = P_N$ 

More recently, in Morrison-Walker-W. 2019:

#### Higher categories

A 'ribbon 2-category' resp. disk-like 4-category categorifying  $\operatorname{Rep}(U_q(\mathfrak{gl}_N))$ .

#### Manifold invariants

A 'skein module'  $S_N(W^4; L)$  for compact, oriented, smooth  $W^4$ ,  $L \subset \partial W^4$ .  $S_N(B^4; L) \cong \operatorname{KhR}_N(L)$ .

Part of a 01234 $\varepsilon$ -dimensional TFT? Morally: a categorification of Crane–Yetter theory over  $\mathbb{Z}[q, q^{-1}]$ .

Paul Wedrich

Khovanov homology and 4-manifolds

2nd February 2021 11 / 19

## Functoriality in $S^3$

For  $S_N(B^4; L) \cong \operatorname{KhR}_N(L)$  we need  $\operatorname{KhR}_N$  for links in  $S^3 = B^3 \cup \{\infty\}$ .

• links in  $S^3$  generically avoid  $\infty$ 

 $\implies$  same chain complexes

• link cobordisms in  $S^3 imes I$  generically avoid  $\infty imes I$ 

 $\implies$  same chain maps

• link cobordism isotopies in  $S^3 \times I^2$  might intersect  $\infty \times I^2$  transversely

 $\implies$  a new movie move to check, non-local if viewed from  $B^3$ 



#### Theorem (M.-W.-W. 2019)

 $KhR_N$  is invariant under the sweeparound move, thus functorial in  $S^3$ .

#### 4-category

## Ribbon 2-category via KhR<sub>N</sub> for tangles



#### Theorem (M.-W.-W. 2019)

There is a braided monoidal (dg) 2-category  $\mathbf{KhR}_{N}$  with

- Objects: tangle boundary sequences
- 1-morphisms: Morse data for tangle diagrams
- 2-morphisms:  $\operatorname{KhR}_N(T_1, T_2) := H^* \operatorname{Ch}^b(N \operatorname{Foam})(\llbracket T_1 \rrbracket_N, \llbracket T_2 \rrbracket_N).$

Think of **KhR**<sub>N</sub> as categorification of Rep $(U_q(\mathfrak{gl}_N))$ .

## Towards derived 4D skein modules & 5D TFT

#### Questions

Is  $\mathbf{KhR}_N$  4-dualizable and SO(4)-fixed in a suitable 5-category of braided monoidal dg 2-categories (with suitable extra structure on the generating object)?

 $\rightsquigarrow$  a local 01234 $\varepsilon$ -D oriented TFT via stratified factorization homology?

Proposed direct construction for the 4 $\varepsilon$  part:

#### Theorem (M.-W. 2019)

KhR<sub>N</sub> controls a disk-like 4-category, determines  $S_N(W^4; L)$  via the blob complex (Morrison–Walker).

Here we simplify even further: just degree zero blob homology.

## What a quantum topologist would do...

In analogy to

$$\mathsf{Sk}_N(M^3; P) := rac{\mathbb{Z}[q^{\pm 1}]\langle \mathsf{framed, oriented tangles in } (M^3, P) 
angle}{\langle \ker RT_N ext{ in } B^3 \hookrightarrow M^3 
angle}$$

we would like to define  $S_N^0(W^4; L)$  as:

$$\frac{\Bbbk\langle \text{framed, oriented surfaces in } (W^4, L)\rangle}{\langle \ker[\![-]\!]_N \text{ in } B^4 \hookrightarrow W^4 \rangle}$$

Problem: Want  $S_N^0(B^4; L) \cong KhR_N(L)$ , but this is not always spanned by images of cobordisms maps.

 $\implies$  consider decorated framed, oriented surfaces.

#### Lasagna algebra

Khovanov-Rozansky homology is an algebra for the lasagna operad



## Khovanov–Rozansky skeins

A lasagna filling of  $W^4$  with a link  $L \subset \partial W^4$  is the data of:



 $\begin{array}{l} B_i^4 : \text{ finitely many disjoint 4-balls in } W^{4^\circ} \\ L_i : \text{ input links in } \partial B_i^4 \\ \Sigma : \text{ f., o. surface in } (W^4 \setminus \sqcup_i B_i^4; L \sqcup_i L_i) \\ v_i \in \text{KhR}_N(\partial B_i^4, L_i) \end{array}$ 

## Definition of $\mathcal{S}^0_N(W^4; L)$

#### Definition

We define the  $\mathbb{Z} \times \mathbb{Z} \times H_2(W^4, L)$ -graded vector space

 $\mathcal{S}^0_N(W^4;L) := \mathbb{k} \langle \text{lasagna fillings of } (W^4,L) \rangle / \sim$ 

where the equivalence relation  $\sim$  is generated by



## To finish, some examples

Example  $(B^4)$  $S_N(B^4; L) \cong S_N^0(B^4; L) \cong KhR(L)$  from the definition.

#### Example $(B^3 \times S^1)$

 $S_2(B^3 \times S^1; L)$  is related to the Hochschild homology of Khovanov's arc algebra and to Rozansky's homology theory for links L in  $S^2 \times S^1$ .

#### Theorem (Manolescu–Neithalath 2020)

If  $W^4$  is a 2-handle body with a single 0-handle,  $L \subset S^3$  the attaching link of the 2-handles, then

 $\mathcal{S}^0_N(W^4;\emptyset)\cong \underline{\mathrm{KhR}}_N(L)$ 

where  $\underline{KhR}_N(L)$  depends on  $KhR_N$  of cables of L.

E.g. dim<sub>q</sub>  $\left(\mathcal{S}^0_N(S^2 \times D^2; \emptyset, 0)\right) = \prod_{k=1}^{N-1} \frac{1}{1-q^{2k}}$ , results for  $\mathbb{C}P^2$  and  $\overline{\mathbb{C}P^2}$ .

19/19