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Recall

Theorem (Reshetikhin-Turaev)

Every semisimple modular tensor category C produces
a topological field theory (constructed via surgery along links)

To a compact oriented surface of genus g with n boundaries,
decorated by objects X1, . . . ,Xn ∈ C, it assigns a vector space

X1

X2 ΣX1,...,Xn
g ,n 7−→ Z(ΣX1,...,Xn

g ,n )

To every 3-manifold M, cobordism between two surface,
and links ending in the Xi , it assigns a linear map Z(Σ1MΣ2)

such that several axioms are fulfilled, in particular glueing



What about non-semisimple categories?

Need proper notion of non-semisimple modular tensor category
(3 equivalent definitions).

We do have Z(M) for special cobordisms, most importantly
a proj. action of the mapping class group Γg ,n on Z(Σg ,n)
such as an action of the modular group SL2(Z) on Z(Σ1,0).

We now discuss this construction by Lyubaschenko (1995).

Then we discuss our work establishing an action of Γg ,n on a
derived version Z•(Σg ,n), examples and current work.

Main Reference: L., Mierach, Schweigert, Sommerhäuser (2019):
Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups
arXiv:2003.06527, to appear in ”Springer Briefs in Mathematical Physics”



Mapping Class Groups

Take Σg ,n. On each boundary circle ρ1, . . . , ρn we fix a marked point.

Definition

The mapping class group Γg ,n is the group of o-preserving
diffeomorphisms of Σg ,n that send marked points to marked points,
up to homotopies that send marked points to marked points.

The pure mapping class group PΓg ,n is the group of o-preserving
diffeomorphism of Σg ,n that fix all boundary circles pointwise,
up to homotopies that fix all boundary circles pointwise.

Lemma

1→ PΓg ,n → Γg ,n → Sn → 1

Note the difference between boundary circles and punctures:
A 360◦ rotation of the boundary circle becomes a trivial element.



Mapping Class Groups

Definition

For a subset S ⊂ Σg ,n define Γg ,n(S) as diffeomorphisms fixing S ,
up to such homotopies. Typical examples are Γg ,n(x) and Γg ,n(ρn).

Lemma (Cap Sequence)

Z −→ Γg ,n+1(ρn+1) −→ Γg ,n(x) −→ 1

The first map (rotations around ρn+1) is injective except g =n =0.

Theorem (Birman sequence)

π1(Σg ,n, x) −→ Γg ,n(x) −→ Γg ,n −→ 1

The first map is called push map, discussed and used later.
The push map is injective, if the Euler characteristic is negative.



Mapping Class Groups

Definition (Dehn twist)

On the annulus Σ0,2 = S1 × [0, 1] we define (φ, t) 7→ (φ+ 2πit, t)

d7−→

On any Σg ,n and for any simple curve γ : S1 → Σg ,n

we define a diffeomorphism dγ , using a tubular neighbourhood.

Definition (Braiding)

On the three-punctured sphere Σ0,3 we define the diffeomorphism

b7−→

On any Σg ,n define a diffeomorphism bi ,j for any 1 ≤ i < j ≤ n.



Mapping Class Groups

For explicit calculations we use the polygon model of Σg ,n:
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Mapping Class Groups

Theorem (Dehn-Lickorish)

The following diffeomorphism classes generate Γg ,n as a group:

ti := dαi , ri := dβi , dk := dρk , bk,k+1, ni := dµi , zk := dζk

µi

ρk

ζk

We further define the diffeomorphism class si := t−1
i r−1

i t−1
i .



Mapping Class Groups

Fact

The group Γg ,n(x) acts on π1(Σg ,n, x) by group automorphisms.

The group Γg ,n acts on π1(Σg ,n, x) by outer automorphism classes.

Recall that the abelianization of π1(Σg ,n) is H1(Σg ,n,Z) = Z2g+n.

Fact

The action of Γg ,n(x) on H1(Σg ,n,Z) factors over Γg ,n. Explicitly

ti =

(
1 1
0 1

)
, ri =

(
1 0
−1 1

)
, si =

(
0 −1
1 0

)
, ni =

(
1 1 0 −1
0 1 0 0
0 −1 1 1
0 0 0 1

)
dk = (1), bk,k+1 =

(
0 1
1 0

)
, zk =

(
1 1 0
0 1 0
0 0 1

)
This is a representation of Γg ,n on Z2g factoring over Sp2g (Z),
where the symplectic form on Z2g is the intersection form on H1



Mapping Class Groups

For the torus the previous action of Γg ,n on Z2g is faithful:

Example

On the torus Σ1,0 the mapping class group is SL2(Z),
which is generated by s, t with relations s4 = 1, sts = t−1st−1.

On the punctured torus Σ1,1 we have a central element s4 = d−1
1 .

Example

On the punctured sphere we have a group homomorphism

Zn n Bn −→ Γ0,n

using Dehn twists dk and braidings bi ,j , with Bn the braid group.
The map is not injective, but factors to an isomorphism, for n > 1

Zn−1 n Bn−1
∼−→ Γ0,n



Modular Tensor Categories

Let (C, 1,⊗, ) be a finite tensor category over a field K.

Definition

Recall: The coend L =
∫ X

F (X ,X ) of a bifunctor F : Cop ⊗C → D
is the universal object L having a dinatural trafo ιX : F (X ,X )→ L

Theorem

The coend L of the bifunctor X ∗ ⊗ X is a Hopf algebra inside C.
(product from ιX⊗Y , unit from ι1, coproduct from coevalX ,X∗ etc.)

Example

If C is semisimple, with simple objects Xi , then L =
⊕

i X ∗i ⊗ Xi

Example

If C is the category of representations of a Hopf algebra H, then
L is the coadjoint representation H∗coad (and transmuted algebra)



Modular Tensor Categories

Let (C, 1,⊗, cX ,Y , θX ) be a finite ribbon category.

Definition (Modular Tensor Category)

Call C modular, if one of the following equivalent conditions holds

The only objects X with cY ,X cX ,Y = id for all objects Y ,

called transparent objects, are trivial X = 1⊕ · · · ⊕ 1.

The map sending an object X to X , cX ,Y and X , c−1
Y ,X

C � Crev → DrinfeldCenter(C)

is an equivalence of braided tensor categories.

The pairing ω : L⊗L→ 1 defined by dinat. maps

(evalX∗,X ⊗ evalY ∗,Y )◦(idX∗ ⊗ cY ∗,X cX,Y ∗ ⊗ idY )

is non-degenerate. It represents the open Hopf link,
and generalizes the matrix Sij for semisimple C.

Definition in Lyubaschenko (1996), equivalence see Müger, Shimizu.



Modular Tensor Categories

Example

Semisimple modular tensor categories, such as VectQA for a (finite)
abelian group A and a nondegenerate quadratic form Q : A→ K×.

Example

Yetter-Drinfeld modules G
GYD of a finite group G over any field K.

Simple/indecomposable/projective objects Oχ[g ] for any conjugacy

class [g ] and simple/indecomposable/projective rep χ of Cent(g).

Example

Rep(H) for a finite-dimensional factorizable ribbon Hopf algebra H,
for example the small (quasi-)quantum group uq(g).



Lyubaschenko’s Modular Functor

Let C be a modular tensor category and ΣX1,...,Xn
g ,n a decorated surface.

Definition (Block space)

Z(ΣX1,...,Xn
g ,n ) := HomC(X1 ⊗ · · · ⊗ Xn, L

⊗g )

Theorem

PΓg ,n acts projectively on Z(ΣX1,...,Xn
g ,n ), and Γg ,n on a resp. sum.

For example, dk acts via θXk
, the braiding bk,k+1 acts via cXk ,Xk+1

,
ti acts via θX on any X ∗⊗X dinaturally, and thereby on the i-th L,
si acts again by a variant of the Hopf link on the i-th L, explicitly

L
id⊗ΛL−−−−−−−−−−−→

integral, Kirby color
L⊗ L

evalX∗,X cY∗,X cX,Y∗−−−−−−−−−−−→
dinatural

L

X∗⊗ X ⊗Y∗⊗ Y



Towards Derived Topological Field Theories

Theorem (L., Mierach, Schweigert, Sommerhäuser 2018)

SL2(Z) acts on the the Hochschild cohomology HH•(H,K)
of a finite-dimensional factorizable ribbon Hopf algebra.

The twisted class functions reappear as HH0(H,K).

Theorem (L., Mierach, Schweigert, Sommerhäuser 2020)

There is an action of the mapping class group PΓg ,n on the spaces

Z•(ΣX1,...,Xn
g ,n ) := Ext•C(X1 ⊗ · · · ⊗ Xn, L

g )

The Lyubaschenko modular functor reappears as degree zero part.

Theorem (Schweigert, Woike 2019, 2020)

There is a homotopy coherent action on PΓg ,n on a suitable
Hochschild complex, in the resp. homotopy theoretic setting.
⇒ A modular functor with values in chain complexes.



Construction and Proof

Take a projective resolution of the tensor unit

1←− P0 ←− P1 ←− P2 ←− · · ·
Functoriality of Lyubaschenko’s Z gives a chain complex

X1

X2

P0

X1

X2

P1

X1

X2

P2

HomC(X1 · · ·Xn⊗P0, L
g ) −→ HomC(X1 · · ·Xn⊗P1, L

g ) −→ HomC(X1 · · ·Xn⊗P2, L
g ) −→



Towards Derived Topological Field Theories: Proof

X1

X2

P0

X1

X2

P1

X1

X2

P2

HomC(X1 · · ·Xn⊗P0, L
g ) −→ HomC(X1 · · ·Xn⊗P1, L

g ) −→ HomC(X1 · · ·Xn⊗P2, L
g ) −→

The mapping class group PΓg ,n+1 acts strictly (but projectively)
on this chain complex by chain maps.

Does this factor to an action of PΓg ,n up to chain homotopy? YES...



Towards Derived Topological Field Theories: Examples

Example (Sphere)

Z•(Σ0,0) = Ext•C(1, 1)

This is an algebra via the cup-product. It acts on any Z•(Σg ,n),
commuting with Γg ,n-action. It plays the role of a new ground ring.

Example (Punctured Sphere)

Z•(ΣX1,...,Xn
0,n ) = Ext•C(X1 ⊗ · · · ⊗ Xn, 1)

This has an action of the (pure) braid group on n strands via cXi ,Xj
.

This action factorizes over the mapping class group Γ0,n,
because θX1⊗···⊗Xn acts trivial up to homotopy, although θPi

6= id



Towards Derived Topological Field Theories: Examples

Example (Genus 1, Torus without punctures)

Z•(Σ1,0) = Ext•C(1, L)

this has an action of the modular group SL2(Z).

It comes from an action of Γ1,1 on L by morphisms in C, where

〈d〉 → Γ1,1 → SL2(Z),

is a central extension with s4 = d−1. The element d acts by θL,
so it acts trivially on HomC(1, L) and all Ext•C(1, L).

For C = Rep(H) we recover our previous result (1707.04032):

Γ1,1 acts on the coadjoint representation L = H∗coad , the quotient
SL2(Z) acts on the Hochschild cohomology Ext•C(1, L) ∼= HH•(H,H),
compatible with cup product by the algebra Ext•C(1, 1) ∼= HH•(H,K).



Towards Derived Topological Field Theories: Examples

Example (Commutative Case)

Suppose that C has the property that L = 1⊕ · · · ⊕ 1 as object.
(for example, representations of a commutative Hopf algebra)

Then Γ1,1 and also Γ1,0 act on Kn = HomC(1, L). PΓg ,n+1 acts on

Hom(X1 ⊗ · · · ⊗ Xn ⊗ Pi , L
⊗g )

= Hom(X1 ⊗ · · · ⊗ Xn ⊗ Pi , 1)⊗K HomC(1, L⊗g )

where the decomposition is preserved by d, b and t, s, n, not z.

This action factorizes to an action of PΓg ,n on

Z•(Σg ,n) = Ext•(X1 ⊗ · · · ⊗ Xn, 1)⊗K (Kn)g

In particular Z•(Σg ,0) is a free module of the Ext-algebra Z•(Σ0,0)
generated by Lyubaschenko’s part in degree zero Z(Σg ,0).



Towards Derived Topological Field Theories: Groups

We now treat a class of nonsemisimple examples more elaborately.
Let G be a finite group, K of arbitrary characteristic, recall:

Definition (Yetter-Drinfeld modules G
GYD)

Objects: G -graded G -representations V with g .(Vh) = Vghg−1

The simple, indecomposable, or projective objects are OV
[h],

parametrized by a conjugacy class [h] of G and a simple,
indecomposable, or projective representations V of Cent(h)

Semisimple iff Rep(G ) is semisimple, i.e. char(K) - |G |.
Braiding vg ⊗ vh 7→ g .vh ⊗ vg .

For example, the symmetric group S3 over K = C has simples

O1
e , Osgn

e , Ostd
e , O±1

[(12)], O
ζk3
[(123)]

In characteristic 2 or 3 the category is nonsemisimple .



Towards Derived Topological Field Theories: Groups

More generally, for every tensor category C we can define a
modular tensor category called Drinfeld center D(C).

The Reshetikhin-Turaev-TFT of D(C) is the Turaev-Viro TFT of C
as a state-sum model (also extended in [FSS]). Recall the example

Example (Dijkgraaf-Witten theory C = G
GYD)

Z(Σg ,0) = HomC(1, (DG )⊗g )

= spanK

{
(a1, b1, ..., ag , bg ) ∈ G 2g |

∏
[ai , bi ]=1)

}adG

= spanK {Homgroup (π1(Σg ,0),G ) /adG}

Z(Σ
Oχ1

[g1]
···Oχn

[gn ]
g ,n ) is roughly the span of G -bundels with prescribed

monodromy gi around ρi ; taking a resp. adG -isotypical component.

For example for G = ZN we get Z(Σg ,0) = H1(Σg ,0,Z) = Z2g
N

The mapping class group Γg ,0 acts via its quotient Sp2g (ZN).



Towards Derived Topological Field Theories: Groups

Let G be a finite group and C = G
GYD. Define the span

Mg := KHomGroup(π1(Σg ,0),G )

It has commuting actions of G -module via conjugation on G ,
and of Γg ,1 via the action of Γg ,0(x) on π1(Σg ,0, x).

Theorem (L., Mierach, Schweigert, Sommerhäuser, to appear soon)

Z•(Σg ,0) = H•Group(G ,Mg )

and similarly for Z•(Σg ,n) with boundaries decorated by Oχ[h].

We recover our main result: The action of Γg ,1 on π1(Σg ,0) does
not factor to an action of Γg ,0 but it does on cohomology. E.g.

H0
Group(G ,M) = MG = KBunG (Σg )



Towards Derived Topological Field Theories: Groups

Example (some Γg -representaitons factoring over Sp2g (Z))

We have Hom(π1(Σg , x),ZN) = Z2g
N , with diagonal action by Z×N ,

define Ωg
ZN

as all vectors with coefficient gcd 1.

If K contains all N-th roots of unity, then we further decompose
the span according to Dirichlet characters χ : ZN → K× as follows

KΩg
ZN

=
⊕
χ

Kχ[ZNP2g−1]

interpreted as sections in line bundles on projective space ZNP2g−1.

The group Sp2g (ZN) acts on Kχ[ZNP2g−1], diagonals acting by χ.

For g = 1 the stabilizers of vectors in K[Ω1
ZN

] and K1[ZNP1] give
a short exact sequence of congruence subgroups of SL2(Z)

Z×N → Γ0(N)→ Γ1(N)

This hints at modular forms, part of a vector valued modular form.



Towards Derived Topological Field Theories: Groups

We give a complete example for G = S3, char(K) = 3:

For the torus we get in this case

Z0(Σ1,0) ∼= K⊕K[F2P1]⊕K[F3P1]

Z i (Σ1,0) ∼=


Kµi/2

0

0

Kµ(i−1)/2ν

⊕


K[F3P1]µi/2

0

0

K[F3P1]µ(i−1)/2ν

⊕


0, i ≡ 0 (4),

Ksgn[F3P1]µ(i−1)/2ν, i ≡ 1 (4),

Ksgn[F3P1]µi/2, i ≡ 2 (4),

0, i ≡ 3 (4),

We find

A large portion is generated from degree zero.
(conjugacy classes of pairs of commuting elements)
Not free as Z•(Σ0,0)-module, K[F2P1] is killed (G -projective).
Ksgn[F3P1] new in degree i ≡ 2, 3, nontrivial Dirichlet character
From Z(Σsgn

1,1 ) cup Z•(Σsgn
0,1 ), as sgn is in the principal block.



Towards Derived Topological Field Theories: Outlook

Ongoing work in computing Z•(Σg ,n) for quantum groups:

For every g and q a primitive `th root of unity,
there exists a small (quasi-)quantum group uq(g),
giving a non-semisimple modular tensor category,
related to g-representations in characteristic `.
Drinfeld Jimbo 1986, Lusztig 1990, Andersen Jantzen Soergel 1996, Kazhdan Lusztig
Creutzig Gainutdinov Runkel 2017, Gainutdinov L. Ohrmann 2018, Negron 2018.

Example

ũq(sl2) = 〈E ,F ,K 〉/(K 2p − 1, [E ,F ] = K−K−1

q−q−1 ) at q2p = 1 has

simple reps X±s of dimension s for 1 ≤ s ≤ p,
nontrivial Ext1(X±s ,X

∓
p−s) = C2 for s 6= p,

and projective covers as follows:

It produces a modular tensor category,
with nontrivial associator from VectQZ2p

.

X±s

E

~~

F

  

X∓p−s

F

  

X∓p−s

E

~~

X±s



Towards Derived Topological Field Theories: Outlook

Ongoing work in computing Z•(Σg ,n) for quantum groups.

For ũq(sl2) the following picture holds resp. should hold:

Gainutdinov L. Schweigert, work in progress, drawing from

Feigin Gainutdinov Semikhatov Tipunin (2005), Farsad Gainutdinov Runkel (2017)

The Ext-ring and one important module are

Ext•(1, 1) =

{
Cn+1, n even

0, n odd

Ext•(1,X−p−1) =

{
0, n even

Cn+1, n odd

which are simple sl2-representations under a categorical action,
and the cup product is the respective leading direct summand in

Cn+1 ⊗ Cm+1 = C(n+m)+1 ⊕ · · ·C|n−m|+1



Towards Derived Topological Field Theories: Outlook

Ongoing work in computing Z•(Σg ,n) for quantum groups.

For ũq(sl2) the following picture holds resp. should hold:

L = (C2′⊗Cp−1) 1 ⊕ (C2′′⊗Cp−1) X−p−1 ⊕ projectives ⊕ other blocks

with commuting actions of sl2 and Γ1,1 factorizing to Γ1,0, acting

on C2′ the standard way and Cp−1 as in the minimal model (ŝl2)p−2.

Hom(1, L) = C2′ ⊗ Cp−1 ⊕ Cp+1

Ext•(1, L) =

{
Cn+1 ⊗ C2′ ⊗ Cp−1, n even

Cn+1 ⊗ C2′′ ⊗ Cp−1, n odd

Hence again Ext•(1, L) should be generated as Ext•(1, 1)-module,
from Lyubaschenko’s degree zero part and a degree one part

Hom(X−p−1, L) = C2′′ ⊗ Cp−1



Towards Derived Topological Field Theories: Outlook

Explicit calculation for p = 2 suggest:
C2′ has trivial sl2 action and standard projective SL2(Z)-action,
C2′′ has standard sl2 action and trivial projective SL2(Z)-action.



Outlook Question

What do these Ext•C(X1 ⊗ · · · ⊗ Xn, L
⊗g ) mean (analytically)

if the modular tensor category C arises as category Rep(V) of
(suitable) representations of a (suitable) vertex operator algebra V?

And can we construct elements in them from Rep(V)-characters?

Recall, very roughly:

A vertex operator algebra V is a graded vector space with
an action of Virasoro algebra and a ”multiplication” map

Y : V ⊗C V → V[[z , z−1]]

If V is C2-cofinite [SM][HLZ] construct a tensor product of
V-modules by the universal property of admitting intertwiner

X ⊗C Y → (X � Y ){z}[log(z)]

and a braiding by continuing this multivalued analytic function
with regular singularity z = 0 from z counterclockwise to −z .

Example: Heisenberg algebra, Lattice algebra, Triplet algebra Wp.



Conformal blocks / Chiral correlators

Elements in HomC(X1 � · · ·� Xn, L
g ) are functions on the space of

complex structures on Σg ,n depending on elements xk ∈ Xk .
Lyubaschenko’s action of Γg ,n (should) match the geometric action.

Examples:

Σ0,n returns matrix elements of composed vertex operators
Y(x1, z1) · · ·Y(xn, zn), transforming under the braid group.

Σ1,0 = C/Z + τZ returns functions in q = e2πiτ . They piece
together to a vectorvalued modular form under Γ1,0 = SL2(Z).

Spanned (for semisimple C) by graded characters of V-irreps.

We surely can consider a projective resolution in Rep(V ), but what
about the additional insertion? (homotopy?) What about traces?



Question (maybe known to some experts?)

Is Ext•C(X1⊗· · ·⊗Xn, L
⊗g ) for C=Rep(V) dual to chiral homology

in [Beilinson-Drinfeld Chp. 4] associated to the chiral algebra of V?

....some sketches on the chiral homology of Virasoro algebra in
respect to the previous discussion, as well as the first chiral
homologies in general following [vEH].






