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Overview

@ Eilenberg-Watts calculus and relative Serre functors
@ A brief recap of Radford’s S* theorem
o Eilenberg-Watts equivalences and Nakayama functors
o Radford's S*-theorem for bimodules
@ Relative Serre functors and pivotal module categories

© Modular tensor categories and two-dimensional local conformal field theories
@ Reminder about two-dimensional conformal field theories
@ Frobenius bulk algebras from pivotal module categories
@ Outlook
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Hopf algebras — conventions and recap

Conventions for this talk:

k is an algebraically closed field.

All vector spaces, algebras, Hopf algebras, modules ... are finite-dimensional
k-vector spaces

Definition

A bialgebra (H,-,1,A€) is ...
A Hopf algebra (H,-,1, A, ¢, S) with antipode S'is .. ..
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Hopf algebras — conventions and recap

Conventions for this talk:

k is an algebraically closed field.

All vector spaces, algebras, Hopf algebras, modules ... are finite-dimensional
k-vector spaces

Definition

A bialgebra (H,-,1,A€) is ...
A Hopf algebra (H,-,1, A, ¢, S) with antipode S'is .. ..

v

@ The category H-mod of left modules over a bialgebra is monoidal.

@ The category H-mod of finite-dimensional left modules over a Hopf
algebra with invertible antipode has left and right duals; action on V* by

p(h)” = p(Sh)"  Vp(h) = p(S™'h)*

N,
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Hopf algebras — conventions and recap

Conventions for this talk:

k is an algebraically closed field.

All vector spaces, algebras, Hopf algebras, modules ... are finite-dimensional
k-vector spaces

Definition

A bialgebra (H,-,1,A€) is ...
A Hopf algebra (H,-,1, A, ¢, S) with antipode S'is .. ..

Facts

| N

@ The category H-mod of left modules over a bialgebra is monoidal.

@ The category H-mod of finite-dimensional left modules over a Hopf
algebra with invertible antipode has left and right duals; action on V* by

p(h)” = p(Sh)"  Vp(h) = p(S™'h)*

Order of antipode is related to homological algebra of H-mod.
E.g. S?=1idy and char(k) fdim H = H and H* are semisimple.

A\
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Radford’s S* theorem, classical statement

@ Since dim H < oo, space of left / right integrals is one-dimensional, e.g.
dimZ; =dim{t € H| ht = ¢(h)t} =1

@ Corollary: t € Z) and h € H, then th € 7, thus th = «(h)t with
«: H — k a morphism of algebras, i.e. a grouplike element in H*,
i.e. a one-dimensional H-module.

@ Dually, there are cointegrals and a grouplike element a € H.
@ Action of H* on H: o — h:= hp){a, h))
with Sweedler notation A(h) = h1y ® hga).
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Radford’s S* theorem, classical statement

@ Since dim H < oo, space of left / right integrals is one-dimensional, e.g.
dimZ; =dim{t € H| ht = ¢(h)t} =1

@ Corollary: t € Z) and h € H, then th € 7, thus th = «(h)t with
«: H — k a morphism of algebras, i.e. a grouplike element in H*,
i.e. a one-dimensional H-module.

@ Dually, there are cointegrals and a grouplike element a € H.
@ Action of H* on H: o — h:= hp){a, h))
with Sweedler notation A(h) = h1y ® hga).

Theorem (Radford, 1976)

For a finite-dimensional Hopf algebra H, the following holds:

S'hy=ala*—~h—a)a'=a'—=(aha')—a Vhe H
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Radford’s S* theorem, classical statement

@ Since dim H < oo, space of left / right integrals is one-dimensional, e.g.
dimZ; =dim{t € H| ht = ¢(h)t} =1

@ Corollary: t € Z) and h € H, then th € 7, thus th = «(h)t with
«: H — k a morphism of algebras, i.e. a grouplike element in H*,
i.e. a one-dimensional H-module.

@ Dually, there are cointegrals and a grouplike element a € H.
@ Action of H* on H: o — h:= hp){a, h))
with Sweedler notation A(h) = h1y ® hga).

Theorem (Radford, 1976)

For a finite-dimensional Hopf algebra H, the following holds:

S'hy=ala*—~h—a)a'=a'—=(aha')—a Vhe H

Consequences:
@ The order of the antipode S is finite.

o If H and H* are unimodular, i.e. a= 1y and a = 14+, then S* = id4.
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Finite tensor categories

Let k be a field.

Definition (Finite category)

A k-linear abelian category C is finite, if

@ C has finite-dimensional k-vector spaces of morphisms.
@ Every object of C has finite length.
@ C has enough projectives.

@ There are finitely many isomorphism classes of simple objects.

Remark

| A

A linear category is finite, if and only if it is equivalent to the category A-mod
of finite-dimensional A-modules over a finite-dimensional k-algebra.

Definition (Finite tensor category)

A finite tensor category is a finite rigid monoidal linear category.

In particular, the tensor product is exact in each argument; any left exact
functor has a left adjoint.
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Eilenberg-Watts calculus

Classical result about finite categories:

Proposition
Let A-mod and B-mod finite categories. Let

G : A-mod — B-mod

be a right exact functor. Then G = G(aAa) ®a —.
The B-A-bimodule G(aAx) is a right A-module via the image of right

multiplication ra : A — A under Enda(A) 5 Endg(G(A)).
A similar statement allows to express left exact functors in terms of bimodules.
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Eilenberg-Watts calculus

Classical result about finite categories:

Proposition

Let A-mod and B-mod finite categories. Let
G : A-mod — B-mod

be a right exact functor. Then G = G(aAa) ®a —.

The B-A-bimodule G(aAx) is a right A-module via the image of right
multiplication ra : A — A under Enda(A) 5 Endg(G(A)).

A similar statement allows to express left exact functors in terms of bimodules.

Morita-invariant formulation: triangle of explicit adjoint equivalences:

AP R B

7N

Lex(A, B) Rex(A, B)
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Ends and coends

Based on the Deligne product and (co)ends.

@ Examples of coends and ends: trace and natural transformations

veEvecty
/ vEF =k i NEE G):/ Homa(F(c), G(c))

ceC
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Ends and coends

Based on the Deligne product and (co)ends.

Remarks

@ Examples of coends and ends: trace and natural transformations

veEvecty
/ vEF =k i NEE G):/ Homa(F(c), G(c))

ceC

@ (Co-)Yoneda lemma: G : D — C linear, then

[ st@Homo(y, )2 6()

and
/Y _G) @ Homp(—,y)" = 6(-)
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Ends and coends

Based on the Deligne product and (co)ends.

@ Examples of coends and ends: trace and natural transformations

veEvecty
/ vEF =k i NEE G):/ Homa(F(c), G(c))

ceC

@ (Co-)Yoneda lemma: G : D — C linear, then

/E G(y) ® Homp(y,—) = G(-)

and
/Y G(y) @ Homo(—,y)" = 6(-)

Theorem (Fuchs, Schaumann, CS)

Peter-Weyl theorem: as A-bimodules

méeA-mod
/ mem =A and / m®em' = A"
méeA-mod
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Eilenberg-Watts calculus

APP K B
w! wr
o! @F
I—Ir
Lex(A, B) Rex(A, B)

Tr
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Eilenberg-Watts calculus

A% R

7N

Lex(A, B)
d)l d).AB:
\Ul \IJ.AB:
O =
Yyt = \U./r4,8 .

Rex(A, B)

APP R B = Lex(A,B),
aX br— Homa(a,—)® b,

Lex(A,B) — AP KB,
Fr— [*“*3R F(a),

A°PP R B = Rex(A, B),
3aX b+—— Homa(—,a) ® b,

Rex(A,B) — AP R B,
G+— [ ,aRG(b)
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Eilenberg-Watts calculus

P'=0d) 5 APPRB — Lex(A,B),
aX b+—— Homu(a,—)® b,

V' =V, Lex(AB) — AP KRB,
Fi— [*“*3R F(a),

P'=0h 5 APPRB - Rex(A B),
aX b+— Homu(—,a)" ® b,

V=V, 50 Rex(A,B) — AP R B,
G— [,..3RG(b)

In particular, id4 € Lex(A,.A) is mapped to the right exact functor

acA
N, ::/ Homa(—, a)" ®a.
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Nakayama functors

acA
N, ::/ Homa(—,a)*®a and N4 ::/ Hom(a,—)® a
acA

For A = A-mod:

Ny = A" @4 — = Homa(—,A)*  and N4 = Homa(A*,—) .
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Nakayama functors

acA
N ::/ Homua(—,a)*®a and N4 ::/ Homu(a,—)® a
acA

For A = A-mod:

Ny = A* ®4 — = Homa(—, A)* and N4y = Homa(A*, —) .

Proof:
Suppose A = A-mod.

@ Since Ny is right exact, the Eilenberg-Watts theorem implies
N = N (aAn) @4 —
@ Thus compute the bimodule N"(aAx):
yeA yEA v
Nx(aAn) = / Homa(A,y)" ® y = / y' @y =(aha)

where in the last step, we used Peter-Weyl.
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Nakayama functors

acA
Ny = / Homu(—,a)*®a and Ny := / Homu(a,—)® a
acA

For A = A-mod:

Ny = A" ®4 — = Homa(—, A)* and N4 = Homa(A*,—) .

For this reason, we call Ny and N'; Nakayama functors.

Proposition

@ The Nakayama functors are adjoints, N’y — N'y.
@ N4 equivalence < N’y equivalence. < A is selfinjective.
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Radford’'s S*-theorem

For linear functors, we have

Theorem (Fuchs, Schaumann, CS)

Let A, B be finite categories. Let F € Lex(A, B) such that F? is left exact so
that F™ exists. Assume that F" is left exact as well. Then there is a natural
isomorphism

ok NgoF=F"onN,

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:

Tensor ideals are bimodule categories. We will only consider (bi)module
categories over finite tensor categories that are finite categories and thus in
particular abelian. The ideal of projectives is not abelian.
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Radford’'s S*-theorem

Apply this to bimodule categories over finite tensor categories:

Definition (Module categories)

Let A and B be linear monoidal categories.

Q A left A-module category is a linear category M with a bilinear functor
®: A X M — M and natural isomorphisms

a:®o(®><idM):)®O(idA><®) )\:®o(id,4><—):>id/\/(
satisfying obvious pentagon and triangle axioms. We write a.m := a® m.

@ Right module categories are defined analogously.

© An A-B bimodule category is a linear category D, with the structure of a

left A and right D-module category and a natural associator isomorphism
(a.d).b = c.(d.b).

@ Module functors, module natural transformations defined in obvious way.

Tensor ideals are bimodule categories. We will only consider (bi)module
categories over finite tensor categories that are finite categories and thus in
particular abelian. The ideal of projectives is not abelian.
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Radford’'s S*-theorem

For linear functors, we have

Theorem (Fuchs, Schaumann, CS)

Let A, B be finite categories. Let F € Lex(A, B) such that F? is left exact so
that F" exists. Assume that F™ is left exact as well. Then there is a natural
isomorphism

ok NioF=F"oN,

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:

Theorem (Fuchs, Schaumann, CS)

Let A, B be finite tensor categories and M an A-B bimodule. Then the
Nakayama functor has the structure of a twisted bimodule functor:

Ni((a.m.b) = 2" N, (m).""b

Tensor ideals are bimodule categories. We will only consider (bi)module
categories over finite tensor categories that are finite categories and thus in
particular abelian. The ideal of projectives is not abelian.
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Recovering Radford's S*-theorem

Ni((a.m.b) = 2" N, (m). Vb
Observe
@ The finite tensor category A is a bimodule over itself.

N4(1) :/ Homa(a,1)® a= Da
acA

is the canonical invertible object of A.
o Compute
Ny(a) = Ni(a®1)=a"v @ N4y(1) =a"Y @ Da
and
Ny(a)=Ni(1®a)=Ny(1)® VWa=Da® VVa

o We recover Radford's S*-theorem in its categorical form
D4®a® Dy = 2"V [ENO, 2004]
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Relative Serre functors

Definition (Fuchs, Schaumann, CS 2016)

Let M be a C-module. A right/left relative Serre functor is an endofunctor
" / S of M together with a family

o

Hom(m,n)” —  Hom(n, Sj((m))
“Hom(m,n) —  Hom(S)(n), m)

of isomorphisms natural in m,n € M.
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Relative Serre functors

Definition (Fuchs, Schaumann, CS 2016)

Let M be a C-module. A right/left relative Serre functor is an endofunctor
" / S of M together with a family

o

Hom(m,n)” —  Hom(n, Sj((m))
“Hom(m,n) —  Hom(S)(n), m)

of isomorphisms natural in m,n € M.

@ Relative Serre functors exist, iff M is an exact module category (i.e. p.m
projective, if p € C projective).

@ Serre functors are equivalences of categories.

@ Serre functors are twisted module functors:

bem : Shu(c.m) — VY. Shu(m) and  Gem: Shu(c.m) — Ve Sh(m)

Let M be an exact A-module. Then

Ny = DaSY and Nj = D;'.Sy
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Pivotal module categories

Serre functors are twisted module functors:

bem: Su(c.m) — V. Su(m) and Gem:  Shi(c.m) — Ve Sh(m).

Definition (Schaumann 2015, Shimizu 2019)

A pivotal structure on an exact module category M over a pivotal finite tensor
category (C,7) is an isomorphism of functors 7 : idaq — Sy such that the
following diagram commutes for all ¢ € C and m € M:

cm ——Tetm oWV S (m)

N 2T

SM(C m
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Pivotal module categories

Serre functors are twisted module functors:

bem: Su(c.m) — V. Su(m) and Gem:  Shi(c.m) — Ve Sh(m).

Definition (Schaumann 2015, Shimizu 2019)

A pivotal structure on an exact module category M over a pivotal finite tensor
category (C,7) is an isomorphism of functors 7 : idaq — Sy such that the
following diagram commutes for all ¢ € C and m € M:

cm ——Tetm oWV S (m)

N 2T

SM(C m

@ For indecomposable exact module categories, the pivotal structure is
unique up to scalar.

@ The algebras Hom(m, m) € C for m in a pivotal module category have the
structure of symmetric Frobenius algebras.
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Frobenius algebras and traces

Proposition

The algebras Hom(m, m) € C for m in a pivotal module category M have the
structure of symmetric Frobenius algebras.

o For an exact module category M, use the Serre functor to define a trace
on internal Homs, twisted by the Serre functor:

A\
tr:  Hom(m,Sh,(m)) = Hom(m, m)¥ =% 1

@ Now suppose that M is pivotal. Then we get a trace on internal Ends:

(

tr

7\'M *
ém: Hom(m,m) ) Hom(m, S(m)) — 1

which endows Hom(m, m) with the structure of a symmetric Frobenius
algebra (Shimizu, 2019).

. . . £ .
@ In particular, given an endomorphism m — m in M, find

1 — Hom(m, m) Loy Hom(m, m) =% 1 .
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The Drinfeld center

For CFT, we need symmetric Frobenius algebras in the Drinfeld center Z(C).

Definition (Half-braiding, Drinfeld center)

Let A be a monoidal category.
A half-braiding for V € A is a natural isomorphism

oy VR —— -V

such that oy (X ® Y) = (idx ® ov(Y)) o (ov(X) ® idy) for all X, Y € C.
The Drinfeld center Z(.A) has pairs (V,ov) as objects.
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The Drinfeld center

For CFT, we need symmetric Frobenius algebras in the Drinfeld center Z(C).

Definition (Half-braiding, Drinfeld center)

Let A be a monoidal category.
A half-braiding for V € A is a natural isomorphism

oy VR —— -V

such that oy (X ® Y) = (idx ® ov(Y)) o (ov(X) ® idy) for all X, Y € C.
The Drinfeld center Z(.A) has pairs (V,ov) as objects.

| 5\

Remarks
@ Z(A) is a braided monoidal category.
@ The forgetful functor Z(A) — A is exact.

Left adjoint L: c — [*“x®c® “x
Right adjoint R:c— [ . x®c®c

© C unimodular & L= R
& R(1) € Z(A) is a (commutative) Frobenius algebra (Shimizu 2017)
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Symmetric Frobenius algebras in the Drinfeld center

For CFT, we need symmetric Frobenius algebras in Z(C).
Let C be a finite tensor category and M and N be C-modules.
The functor category Rexc(M,N) is a module category over Z(C):

(z.F)(m) := z.F(m)
with module functor structure given by half braiding:

(z.F)(c.m) =z.F(c.m) 2 (z®c).F(m) 2 (c® z).F(m) & c.(z.F)(m)
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Symmetric Frobenius algebras in the Drinfeld center

For CFT, we need symmetric Frobenius algebras in Z(C).
Let C be a finite tensor category and M and N be C-modules.
The functor category Rexc(M,N) is a module category over Z(C):

(z.F)(m) := z.F(m)
with module functor structure given by half braiding:

(z.F)(c.m) =z.F(c.m) 2 (z®c).F(m) 2 (c® z).F(m) & c.(z.F)(m)

Theorem (Fuchs, CS 2020)
C a pivotal finite tensor category and M and N exact C-modules.
@ The functor category Rexc(M,N) is an exact module category over Z(C)
with relative Serre functor Ny o (D.—) o Ni\,.

@ IfC is unimodular pivotal and M and N are pivotal C-modules,
then Rexc (M, N) is a pivotal Z(C)-module category.

@ In particular, then Nat(F, F) is a symmetric Frobenius algebra in the
Drinfeld center Z(C) and Nat(ida, ida) has a natural structure of a
commutative symmetric Frobenius algebra.
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Chapter 2

Modular tensor categories and two-dimensional local conformal field theories )
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Modular tensor categories

Definition (Modular tensor category)

A modular tensor category C is a finite ribbon category such that the braiding

is maximally non-degenerate. Various formulations exist and are equivalent
[Shimizu 2016]:

@ Braided equivalence C XIC™ ~ Z(C)

e Coend L := fc UY ® U has non-degenerate Hopf pairing we
e Map Hom(1, L) — Hom(L, 1) induced by wc¢ is isomorphism.
@ C has no transparent objects.

.
Remarks

@ The representation category of suitable vertex algebras or nets of
observable algebras has naturally the structure of a modular tensor
category:

The chiral data of a (finite) conformal field theory are described by a
modular tensor category.

@ From a modular tensor category, one can construct a modular functor
(Lyubashenko, ~ 1995)

A
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Fields in two-dimensional local conformal field theory

@ Fields + OPE ~~ (symmetric Frobenius) algebras.

@ Frobenius algebras in the appropriate monoidal category

b 5%, 40 o ¢ 4 o hh .
IECA - I
B %, ¢ %, ¢f ) W Ty T Ty
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Fields in two-dimensional local conformal field theory

@ Fields + OPE ~~ (symmetric Frobenius) algebras.

@ Frobenius algebras in the appropriate monoidal category

Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.
Boundary

Boundary condition: Object of M

Boundary fields from bc mto n Hom(m, n) € C

OPE composition of inner Homs
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Fields in two-dimensional local conformal field theory

@ Fields + OPE ~~ (symmetric Frobenius) algebras.

@ Frobenius algebras in the appropriate monoidal category

Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.

Boundary
Boundary condition: Object of M
Boundary fields from bc mto n Hom(m, n) € C
OPE composition of inner Homs

@ Modular tensor category C is pivotal.
@ Require M to be a pivotal module category

@ Then Hom(m, m) is a symmetric Frobenius algebra for each m € M.
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Fields in two-dimensional local conformal field theory

o Fields + OPE ~~ (symmetric Frobenius) algebras.

o Frobenius algebras in the appropriate monoidal category

Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.

Boundary
Boundary condition: Object of M
Boundary fields from bc mto = Hom(m, n) € C
OPE composition of inner Homs

@ Modular tensor category C is pivotal.
@ Require M to be a pivotal module category
@ Then Hom(m, m) is a symmetric Frobenius algebra for each m € M.

Bulk algebra: commutative algebra in C X C™ ~ Z(C).
Tasks:

© Obtain bulk Frobenius algebras from boundary data

@ Describe correlators for any surface from OPE
(This talk focuses on bulk fields.)
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Bulk fields and defect fields for a fixed modular tensor category C

Include defects and defect fields:

Poincg)é dual Ml

H M, ghawa d OFT Sk
B Hedks \n

Defects are labelled by right exact C-module functors F, G : M; — M.
For defect field, need an object D¢ in Z(C) ~ C™ K C:
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Bulk fields and defect fields for a fixed modular tensor category C

Include defects and defect fields:

Poincg)é dual Ml

H M, ghawa d OFT Sk
B Hedks \n

Defects are labelled by right exact C-module functors F, G : M; — M.
For defect field, need an object D¢ in Z(C) ~ C™ K C:

Theorem (Fuchs, CS 2020)

Nat(F, G) = / Hom(F(m1), G(m1)) € 2(C)

my EM;y
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Bulk and defect fields Il

DFC = / _,, Hom(F(m). 6(m) € 2(0)

@ Recall natural transformations:

Nat(F, G) = / Hom(F(m), G(m)) C H Hom(F(m), G(m))
mpEM;y mEM;
For C = M = A-mod, get Z(A) = Nat(id,id) = fmle/vtl Hom(mz, my)
o Defect fields = “internalized” natural transformations.
In particular, bulk algebra = fmeM Hom(m, m) = “internalized center”.
@ We have horizontal and vertical compositions of relative natural
transformations. )
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Sewing constraints

vo oo T

(Lewellen, 1992)

R b
Structure morphisms: @ 3 ( = \
o . —\,

— Multiplications and comultiplications “ A
— Component maps Nat(id, id) — Hom(m, m) —
[C)] ’ = l,;1
. 5 W= %
Relations: % v

— (@), (c): bulk and boundary are Frobenius ¥ A

— (e): component map is morphism of algebras © WEJ—[TIO = 0%0«#
— (d) dinaturality of the (co)end component ' '
morphisms

— (b) and (f)=Cardy relation are genus 1 ® \p,@“m%%
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Outlook

© C semisimple: correlators for boundary and defect fields though string nets.

@ Stringnets beyond semisimplicity.
© Bulk algebras and other fields beyond semisimplicity.

© Combination with approximation schemes.
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Correlators for semisimple modular tensor categories via string nets )




CFT correlators through string net models

String net models

Y oriented smooth surface, possibly with boundary
[ unoriented graph on X.

Coloring: C a spherical fusion category
Edge: Object V(€) € C not necessarity simple ~ Vertex: Morphism v € V()



CFT correlators through string net models

String net models

Y oriented smooth surface, possibly with boundary
[ unoriented graph on X.

Coloring: C a spherical fusion category

Edge: Object V(€) € C not necessarity simple ~ Vertex: Morphism v € V()
Define: Graph(X, V) := Set of all graphs on X with boundary value V
VGraph(X, V) := span-Graph(X, V)

Impose local relations via graphical calculus on disks.



CFT correlators through string net models

String net models

Y oriented smooth surface, possibly with boundary
[ unoriented graph on X.
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Edge: Object V(€) € C not necessarity simple ~ Vertex: Morphism v € V()
Define: Graph(X, V) := Set of all graphs on X with boundary value V
VGraph(X, V) := span-Graph(X, V)

Impose local relations via graphical calculus on disks.

Definition

The string net space is the quotient

H*"™ (%, V) := VGraph(Z, V)/N(Z, V)
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String net models

Y oriented smooth surface, possibly with boundary

[ unoriented graph on X.
Coloring: C a spherical fusion category
Edge: Object V(€) € C not necessarity simple ~ Vertex: Morphism v € V()
Define: Graph(X, V) := Set of all graphs on ¥ with boundary value V
VGraph(X, V) := span-Graph(X, V)
Impose local relations via graphical calculus on disks.

The string net space is the quotient

H*""™ (%, V) := VGraph(Z, V)/N(Z, V)

v
Remarks

@ A colored graph T defines a vector (I') € H"™"& (%, V).

o HM&(¥ V) carries a geometric action of the mapping class group of X.

String nets can be used to define a fully-fledged 3-2-1 topological field theory
that is equivalent to the Turaev-Viro-Barrett-Westbury state sum model.
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Consistent systems of correlators

Correlators for bulk fields with bulk object F
=vector vg € tftcrevge(X) for all surfaces X
(since C"" K C ~ Z(C))
=specific vector in the string net space H*"(X) for all ©
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Correlators for bulk fields with bulk object F
=vector vg € tftcrevge(X) for all surfaces X
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=specific vector in the string net space H*"(X) for all ©
@ Boundary value F at each boundary component

vs € Hstring(z7 F)

@ Invariant under mapping class group

o Compatible with sewing
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Consistent systems of correlators

Correlators for bulk fields with bulk object F
=vector vg € tftcrevge(X) for all surfaces X
(since C"" K C ~ Z(C))
=specific vector in the string net space H*"(X) for all ©
@ Boundary value F at each boundary component

vs € Hstring(z7 F)

@ Invariant under mapping class group
o Compatible with sewing
C semisimple and modular, M pivotal. Write M = mod¢c — A. Then

Fa = Nat(id, id) = / Hom(m, m) = Qaci Hom(mama) = GaMa@aMa
meM

no oW -

o
P

3/
H

~
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Correlators from string nets

Theorem (Fuchs, CS, Yang Yang, 2020)

The vector vs specified by the following string net on ¥ is invariant under the
mapping class group:

red lines ~>  canonical color
green lines ~»  Bulk Frobenius algebra Fq
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Proof of the theorem

Cardy case: M =C:

Locally, at the boundary
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Proof of the theore

Cardy case: M =C:

Locally, at the boundary

Globally, on a pair of pants

I\

We get essentially empty string nets that are manifestly invariant under the
mapping class group.
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General pivotal module categories

The string net on the pair of pants reduces to the dual of a triangulation
labelled by the Frobenius algebra A which is famously an invariant under the
mapping class group.
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Outlook

© C semisimple: correlators for boundary and defect fields though string nets.

@ Stringnets beyond semisimplicity.
© Bulk algebras and other fields beyond semisimplicity.

© Combination with approximation schemes.
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