Examples of invariants of ribbon graphs
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Preliminaries

See [Turl0, §§1.2.5, XI.2-3—pp. 39-40, 496-503].

Theorem 1. Given a strict ribbon category (7, ¢, 6, (*, b, d)), there exists a unique covariant
tensor-product-preserving functor F:Ribe, — ¥ such that
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The mirror image diagrams map to the mirror ribbon category 7, in which
Sy = ey By =6y
Given a ribbon Hopf algebra (H,R, v), the category of finite-dimensional left H-
modules, yMod, is a ribbon category. In particular, c = 1R and 8 = v.
1 The Hopflink invariant
See [Turl0, 81.2.7—pp. 42-45].

Lemma 2.

= deV'V*(eV ® ldv)(f‘® Idv)bv = tl”f

Now consider an endomorphism € of an object 1 of Riby,, i.e. a ribbon graph from

M to itself. We find that

"1 = |F(Q) = tr F(Q)

By taking Q = WQV, we obtain the Hopf link invariant

tr(CW,V vaw) = W V



2 Group algebras
See e.g. [Turl0, §X[1.2.1—p. 494].

Let G be a finite group. Consider the group algebra K[G]. We can define a coproduct,
counit, and antipode by

Aigrg®g g1 Sigm g

The group algebra K[G] is cocommutative by definition, so the natural ribbon struc-
ture is topologically trivial. In particular, the natural choice is ¢ = 1, so that ¢ = 1, and
6 = id. The ribbons can pass through one another, and can untwist, so for a framed
link L with components Ly, ..., L, respectively coloured Vi, ...,V

HF Hmdv = Hdlmv

n’

3 Function algebras

See [Turl0, §§X112.2, 3.4.2, [.2.9.5—pp. 494, 502-3, 46].

Let G be a finite abelian group. Consider the algebra of K-valued functions on G,

with Dirac-delta generators {89} . We can define a coproduct, counit, and antipode
9
by
A3 e > 3,88, g3y S:3) -3
heG

[t is is easy to verify that this is cocommutative, but it turns out that a nontrivial
braiding is possible. Suppose that G is endowed with a pairing b:Gx G — K" and a
homomorphism ¢:G — K" s.t Vg € G, q>(92) = 1. Then take

R=> bg.h3,®3, v=> g

g,hEG QEG
For a framed link L with components Ly, ..., L, respectively coloured Vi, ...,V
FiL)= [] (blgs 9blgs gl x [ bloy. 9)"(0)"™ dimV,
I<i<jsm I<ism

where Iy- is the linking number of L. and Lj, and [ is the number of twists in L; (the
framing number). Because of the commutativity of the algebra, the formula follows by

definition of ]y‘, L.



4 Uq(sl(Z)) and the Jones polynomial
See [Oht02, §4.4—pp. 85-93].

Definition 3. Uq(sl(2)) is a Hopf algebra generated by E F, K, k7! with the following
relations:
KE = ¢’EK. Kk'=kk=1
k-k!
g=q

KF = g %FK. EF - FE =

‘ A c S
E| E®k+1®E 0 -Ek™
F |Fel+k'®F 0 -kF
k:tl K:tl 1 KZFI

Note that we may formally regard k* as o,

(For our purposes, we will consider g generic and not consider the root-of-unity

case.)
Uq(SI(Z)) is furthermore a ribbon Hopf algebra, with R-matrix

R= q%(H®H) equ((q ~g)E®F

and ribbon element

(Note that, technically, R and 6 are not in Uq(sl(Z)), unless we take a completion.)

A ribbon invariant
We can obtain a topological invariant FV(Q) of a ribbon graph (2 by choosing some
Ve Uq(sl(Z))MOd and using it to colour all the ribbons (annuli and bands) of €. Consider

the two-dimensional irreducible representation of Uq(sl(Z)):

0 1 0 0 1 0
o®=[y o eet=[] G pem=|s 3

Taking V = C?, we can proceed to calculate oy y-



Using pV(EZ) = pV(FZ) =0,

(py ® py)exp (g~ g E®F)

= oy() ® py(D) + (g = ¢ )py(E) ® py(F)
1 0 0 0

Finally,
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[t is straightforward to verify that the following skein relations are satisfied:

ﬁ_lx —ﬁx =(q—q‘1)> <

-1 _ I\
Vg cyy - \/?icv.lv =(g-gq 1)101\1@\/

A link invariant
To get a link invariant from the ribbon invariant, we must deal with the extra
information contained in a ribbon graph, i.e. the framing. In (51(2))Mod. the twist is
q

Oy = pylv) = Pv(q_%Hz)pv(K_1 +¢(q” - FK™’E)
_[va o [q-1 0}: S
[ 0o gllo 417V
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which happens to be a scalar. For a link diagram Q, the writhe w(C2) is defined as the
number of positive crossings minus negative crossings. The combination

6 FIQ)

then, gives us an invariant of the underlying link L.
Now the skein relations

q‘zx —qZX =(q—q_1>> <

-2 2 -1 —Iy:
q “cuy =g cpy = (9= g Jidygy
are satisfied, which means that, up to a normalization and reparameterization, we have
obtained the Jones polynomial.

5 Modular tensor categories

See [Turl0, 8lL1—pp. 72-78], [Tak0l, §4—pp. 638-640].

Definition 4. An Ab-category is a category 7" in which there is an addition on mor-
phisms, i.e. YV, W € 7", Hom(V, W) is an additive abelian group.

I[f 7" is monoidal, K = End(I) = Hom(1, 1) is a commutative ring, called the ground
ring. Now Hom(V, W) is a left K-module with scalar multiplication kf=k ® f.

Definition 5. An object V of a monoidal Ab-category 7" is called simple if End(V) is

a rank-1 free K-module. In other words, V is simple if scalar multiplication defines a

bijection K — End(V).
For instance,
* 1 is always simple.

* In the category Vecty of vector spaces over a fleld K, the simple objects are the
l-dimensional vector spaces.

Definition 6. A monoidal Ab-category 7 with direct sum @ is called semisimple if
every object can be written as a direct sum of simple objects.

Definition 7. A semisimple ribbon category 7" with a complete basis of simple objects
{V} i1 is a modular category if 5 = [3,], is an invertible matrix, where

Sl}]‘ = tr(c\]i‘vic\]i,v,') - @

Example 8. For example, in the group algebra case, the simple objects just correspond
to elements of G, so

5,;=dimV,dimV; =1,
(using the formula for framed links), which is clearly not bijective (unless G is the trivial
group).



Example 9. In the function algebra case,
5= blgy 9)b(9: 9)9(9:)%(9)).
which form an invertible matrix iff [b(gj, 9,)b(9; gj)] is invertible.

Definition 10. The purpose of modular categories, as far as we are concerned, is to
define invariants of 3-manifolds. To accomplish this goal, we will need to select two
elements of 7.

l. A rank @ is an element of K s.t.

2" = > (dim V)’

i€l

There may be many ranks, or none, and the invariant will depend on the choice
of one.

2. Since V. is simple, 6 acts in V; as a scalar v; € K, which is furthermore invertible.

We define
Ay = vi(dimV) ek

i€l

6 Factorisable Hopf algebras
See [Tak0I, §§2-4—pp. 656-640].

Definition 1Il. For a (finite-dimensional) quasi-triangular Hopf algebra (H,R), we define
the Drinfeld map as

. H — H i)
f o pelid®f)eRyR) (2)

If @ is an isomorphism, H is called factorizable.

Theorem 12. LetH be a semisimple ribbon Hopf algebra over an algebraically closed field
K. IfH is factorizable then yMod is modular.

Example 13. For example, in the group algebra case,
D: fio pe(id® f)o(1®1) = f1)
is clearly not bijective (unless G is the trivial group).

Example 14. In the function algebra case, on a basis element fe€ G

D:fio polid@f)e > (blh gblg. N3, @8, = > bif 9)blg. 3,

9.heG g€

s0 RyiR acts as a matrix, and D is bijective iff [b(h, 9)b(9, h)], jeq is an invertible matrix.
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