
Examples of invariants of ribbon graphs

Ada Masters*

5 October 2020

Contents

1 The Hopf link invariant 2

2 Group algebras 3

3 Function algebras 3

4 Uq(sl(2)) and the Jones polynomial 4

5 Modular tensor categories 6

6 Factorisable Hopf algebras 7

Preliminaries

See [Tur10, §§I.2.5, XI.2–3—pp. 39–40, 496–503].

Theorem 1. Given a strict ribbon category (𝒱, c, θ, (∗, b, d)), there exists a unique covariant
tensor-product-preserving functor F: Rib𝒱 →𝒱 such that

V W ↦ cV,W V ↦ θV

V W ↦ cV∗,W V ↦ bV

V W ↦ cV,W∗ V ↦ dV

V W ↦ cV∗,W∗ f ↦ f
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The mirror image diagrams map to the mirror ribbon category 𝒱, in which

cV,W = (cW,V)
−1 θV = (θV)

−1

Given a ribbon Hopf algebra (H, R, v), the category of finite-dimensional left H–
modules, HMod, is a ribbon category. In particular, c = τR and θ = v.

1 The Hopf link invariant

See [Tur10, §I.2.7—pp. 42–45].

Lemma 2.

f V =

f V

≐ dVcV,V∗ (θV ⊗ idV)(f ⊗ idV)bV = tr f

Now consider an endomorphism Ω of an object η of Rib𝒱, i.e. a ribbon graph from
η to itself. We find that

Ω
⋯

⋯

⋯η ≐ F(Ω) F(η) ≐ tr F(Ω)

By taking Ω = W V, we obtain the Hopf link invariant

tr(cW,VcV,W) ≐ W V
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2 Group algebras

See e.g. [Tur10, §XI.1.2.1—p. 494].

Let G be a finite group. Consider the group algebra K[G]. We can define a coproduct,
counit, and antipode by

Δ: g ↦ g ⊗ g ε: g ↦ 1 S: g ↦ g−1

The group algebra K[G] is cocommutative by definition, so the natural ribbon struc-
ture is topologically trivial. In particular, the natural choice is c = τ, so that c2 = 1, and
θ = id. The ribbons can pass through one another, and can untwist, so for a framed
link L with components L1,… , Ln, respectively coloured V1,… , Vn,

F(L) =
n

∏
i=1

F(L) =
n

∏
i=1

tridVi =
n

∏
i=1

dimVi

3 Function algebras

See [Tur10, §§XI.1.2.2, 3.4.2, I.2.9.5—pp. 494, 502–3, 48].

Let G be a finite abelian group. Consider the algebra of K–valued functions on G,
with Dirac–delta generators {δg}g∈G. We can define a coproduct, counit, and antipode

by
Δ: δg ↦∑

h∈G
δh ⊗ δh−1g ε: g ↦ δg(1G) S: δg ↦ δg−1

It is is easy to verify that this is cocommutative, but it turns out that a nontrivial
braiding is possible. Suppose that G is endowed with a pairing b: G × G → K∗ and a
homomorphism φ: G→ K∗ s.t ∀g ∈ G,φ(g2) = 1. Then take

R = ∑
g,h∈G

b(g, h)δg ⊗ δh v = ∑
g∈G

φ(g)b(g, g)δg

For a framed link L with components L1,… , Lm, respectively coloured V1,… , Vm,

F(L) = ∏
1≤i<j≤m

(b(gj, gi)b(gi, gj))
lij × ∏

1≤i≤m
b(gi, gi)

liφ(gi)
li+1 dimVi

where lij is the linking number of Li and Lj, and li is the number of twists in Li (the
framing number). Because of the commutativity of the algebra, the formula follows by
definition of lij, li.
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4 Uq(sl(2)) and the Jones polynomial

See [Oht02, §4.4—pp. 85–93].

Definition 3. Uq(sl(2)) is a Hopf algebra generated by E, F, K, K−1, with the following
relations:

KE = q2EK, KK−1 = K−1K = 1,

KF = q−2FK, EF − FE = K − K−1

q − q−1

Δ ε S
E E ⊗ K + 1 ⊗ E 0 −EK−1
F F ⊗ 1 + K−1 ⊗ F 0 −KF
K±1 K±1 1 K∓1

Note that we may formally regard K±1 as q±H.

(For our purposes, we will consider q generic and not consider the root–of–unity
case.)

Uq(sl(2)) is furthermore a ribbon Hopf algebra, with R–matrix

R = q 1
2 (H⊗H) expq((q − q

−1)E ⊗ F)

and ribbon element

v = q− 1
2H

2
∞
∑
n=0

1
[n]q!

q
3
2n(n+1)(q−1 − q)nFnK−n−1En

Here, [n]q = qn−q−n
q−q−1 , [n]q! = [n]q[n − 1]q ⋯ [1]q, and

expq(x) =
∞
∑
n=0

1
[n]q!

q
1
2n(n−1)xn

(Note that, technically, R and θ are not in Uq(sl(2)), unless we take a completion.)

A ribbon invariant
We can obtain a topological invariant FV(Ω) of a ribbon graph Ω by choosing some

V ∈ Uq(sl(2))
Mod and using it to colour all the ribbons (annuli and bands) of Ω. Consider

the two–dimensional irreducible representation of Uq(sl(2)):

ρC2 (E) = [0 1
0 0

] ρC2 (F) = [0 0
1 0

] ρC2 (H) = [ 1 0
0 −1]

Taking V = C2, we can proceed to calculate cV,V.

4



Using ρV(E
2) = ρV(F

2) = 0,

(ρV ⊗ ρV) expq((q − q
−1)E ⊗ F)

= ρV(1) ⊗ ρV(1) + (q − q−1)ρV(E) ⊗ ρV(F)

= [
1 0 0 0
0 1 q − q−1 0
0 0 1 0
0 0 0 1

]

(ρV ⊗ ρV)q
1
2 (H⊗H) = q 1

2 (ρV(H)⊗ρV(H))

= q
1
2 [

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]

= [
√q 0 0 0
0 √q−1 0 0
0 0 √q−1 0
0 0 0 √q

]

Finally,

cV,V = τ(ρV ⊗ ρV)R

= √q−1 [
q 0 0 0
0 0 1 0
0 1 q − q−1 0
0 0 0 q

]

It is straightforward to verify that the following skein relations are satisfied:

√q−1 − √q = (q − q−1)

√q−1cV,V − √qc−1V,V = (q − q−1)idV⊗V

A link invariant
To get a link invariant from the ribbon invariant, we must deal with the extra

information contained in a ribbon graph, i.e. the framing. In Uq(sl(2))
Mod, the twist is

θV,V = ρV(v) = ρV(q
− 1

2H
2

)ρV(K
−1 + q2(q−1 − q)FK−2E)

= [√q
−1 0
0 √q−1

] [q
−1 0
0 q−1

] = √q−3I
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which happens to be a scalar. For a link diagram Ω, the writhe w(Ω) is defined as the
number of positive crossings minus negative crossings. The combination

θw(Ω)
V,V FV(Ω)

then, gives us an invariant of the underlying link L.
Now the skein relations

q−2 − q2 = (q − q−1)

q−2cV,V − q2c−1V,V = (q − q−1)idV⊗V
are satisfied, which means that, up to a normalization and reparameterization, we have
obtained the Jones polynomial.

5 Modular tensor categories

See [Tur10, §II.1—pp. 72–78], [Tak01, §4—pp. 638–640].

Definition 4. An Ab–category is a category 𝒱 in which there is an addition on mor-
phisms, i.e. ∀V,W ∈ 𝒱, Hom(V,W) is an additive abelian group.

If 𝒱 is monoidal, K = End(1) = Hom(1,1) is a commutative ring, called the ground
ring. Now Hom(V,W) is a left K-module with scalar multiplication kf = k ⊗ f.
Definition 5. An object V of a monoidal Ab–category 𝒱 is called simple if End(V) is
a rank–1 free K–module. In other words, V is simple if scalar multiplication defines a
bijection K→ End(V).

For instance,

• 1 is always simple.

• In the category VectK of vector spaces over a field K, the simple objects are the
1–dimensional vector spaces.

Definition 6. A monoidal Ab–category 𝒱 with direct sum ⊕ is called semisimple if
every object can be written as a direct sum of simple objects.

Definition 7. A semisimple ribbon category 𝒱 with a complete basis of simple objects
{Vi}i∈I is a modular category if S = [Si,j]i,j∈I is an invertible matrix, where

Si,j = tr(cVj,VicVi,Vj ) ≐ ViVj

Example 8. For example, in the group algebra case, the simple objects just correspond
to elements of G, so

Si,j = dimVi dimVj = 1,

(using the formula for framed links), which is clearly not bijective (unless G is the trivial
group).
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Example 9. In the function algebra case,

Si,j = b(gj, gi)b(gi, gj)φ(gi)φ(gj),

which form an invertible matrix iff [b(gj, gi)b(gi, gj)]i,j is invertible.

Definition 10. The purpose of modular categories, as far as we are concerned, is to
define invariants of 3–manifolds. To accomplish this goal, we will need to select two
elements of 𝒱.

1. A rank 𝒟 is an element of K s.t.

𝒟2 = ∑
i∈I
(dim Vi)

2

There may be many ranks, or none, and the invariant will depend on the choice
of one.

2. Since Vi is simple, θ acts in Vi as a scalar vi ∈ K, which is furthermore invertible.
We define

Δ𝒱 = ∑
i∈I
v−1i (dim Vi)

2 ∈ K

6 Factorisable Hopf algebras

See [Tak01, §§2–4—pp. 636–640].

Definition 11. For a (finite–dimensional) quasi-triangular Hopf algebra (H, R), we define
the Drinfeld map as

Φ: H ∗⟶ H (1)

f ⟼ μ ∘ (id ⊗ f ) ∘ (R21R) (2)

If Φ is an isomorphism, H is called factorizable.

Theorem 12. Let H be a semisimple ribbon Hopf algebra over an algebraically closed field
K. If H is factorizable then HMod is modular.

Example 13. For example, in the group algebra case,

Φ: f ↦ μ ∘ (id ⊗ f ) ∘ (1 ⊗ 1) = f (1)

is clearly not bijective (unless G is the trivial group).

Example 14. In the function algebra case, on a basis element f ∈ G

Φ: f ↦ μ ∘ (id ⊗ f ) ∘ ∑
g,h∈G

(b(h, g)b(g, h)δg ⊗ δh) = ∑
g∈G

b(f, g)b(g, f )δg

so R21R acts as a matrix, and Φ is bijective iff [b(h, g)b(g, h)]g,h∈G is an invertible matrix.
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