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Abstract. We extend Torleif Veen’s calculation of higher topological Hoch-

schild homology THH
[n]
∗ (Fp) from n � 2p to n � 2p + 2 for p odd, and from

n = 2 to n � 3 for p = 2. We calculate higher Hochschild homology HH
[n]
∗ (k[x])

over k for any integral domain k, and HH
[n]
∗ (Fp[x]/xp� ) for all n > 0. We use

this and étale descent to calculate HH
[n]
∗ (Fp[G]) for all n > 0 for any cyclic

group G, and therefore also for any finitely generated abelian group G. We
show a splitting result for higher THH of commutative Fp-group algebras and
use this technique to calculate higher topological Hochschild homology of such

group algebras for as large an n as THH
[n]
∗ (Fp) is known for.

1. Introduction

Given a commutative ring R and an R-moduleM , Jean-Louis Loday introduced
a functor L(R,M) which takes a based simplicial set X. to the simplicial R-module
which consists in degree n of M tensored with one copy of R for each element in
Xn \ {∗}. The homotopy groups of the image of the Loday functor turn out to
be independent of the simplicial structure used for X.; they depend only on its
homotopy type.

Applying this functor to the usual simplicial model of S1 with one non-dege-
nerate 0-cell and one non-degenerate 1-cell, we get the classical Hochschild complex
whose homology is HH∗(R;M). Extending this, the higher topological Hochschild

homology groups HH[n]
∗ (R;M) were defined by Teimuraz Pirashvili [14] as the ho-

motopy groups of L(R,M) evaluated on S
n.

Morten Brun, Gunnar Carlsson, and Bjørn Dundas introduced a topological
version of L(R,M) for a ring spectrum R and an R-module spectrum M [4].

When evaluated on S
n, it yields the spectrum THH[n](R;M), the higher topo-

logical Hochschild homology of R with coefficients in M . For M = R with the
obvious action by multiplication M is omitted from the notation.
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Higher (topological) Hochschild homology features in several different contexts.
There are stabilization maps in the algebraic context

HH[1]
∗ (R) → HH

[2]
∗+1(R) → . . . → HΓ∗−1(R)

starting with Hochschild homology and ending with Gamma homology in the sense
of Alan Robinson and Sarah Whitehouse [15]. In the topological setting they start
with THH(R) and end in topological André-Quillen homology, TAQ(R),

THH[1]
∗ (R) → THH

[2]
∗+1(R) → . . . → TAQ∗−1(R).

The k-invariants of commutative ring spectra live in topological André-Quillen co-
homology [2] and obstructions for E∞-ring structures on spectra live in Gamma
cohomology [10,16], so these two cohomology theories are of great interest.

The evaluation of the Loday functor on higher dimensional tori is the same as it-
erated topological Hochschild homology and this features in the program for detect-
ing red-shift in algebraic K-theory. Calculations of iterated topological Hochschild
homology use higher THH as an important ingredient.

Work of Benoit Fresse [8] identifies Hochschild homology of order n (in the
disguise of En-homology) with the homology groups of an algebraic n-fold bar

construction, thus HH[n]
∗ (R) can be viewed as the homology of an n-fold algebraic

delooping.

In his thesis Torleif Veen [17,18] used a decomposition result for L(R,M) to

calculate THH[n]
∗ (Fp) = π∗(THH

[n](Fp)) for all n � 2p and any odd prime p. For
small n such calculations were earlier done by John Rognes. Veen inductively sets

up a spectral sequence of Hopf algebras calculating THH[n]
∗ (Fp) from THH[n−1]

∗ (Fp)

with the base case THH[1]
∗ (Fp) being known by work of Marcel Bökstedt [3]. Veen

explains why the spectral sequence has to collapse for n � 2p. By a careful analysis
of the structure of the spectral sequence, motivated by computer calculations, we
show that it actually collapses for n � 2p + 2 (Proposition 4.4), thus getting a

calculation of THH[n]
∗ (Fp) for those n. The computer analysis also found potential

nontrivial differentials in the spectral sequence when n = 2p + 3. We actually
believe that the differential will end up vanishing for all n. We intend to return
to this question in a future paper with Maria Basterra and Michael Mandell. At

p = 2 Veen calculates THH[n]
∗ (F2) up to n = 2. We include the n = 3 case and also

show that the generator in THH2(F2) stabilizes to a non-trivial element in the first
topological André-Quillen homology group of F2 (Proposition 5.4).

We prove that for an Fp-algebra A and an abelian group G,

THH[n]
∗ (A[G]) ∼= THH[n]

∗ (A)⊗ HH[n]
∗ (Fp[G]).

Using this, we calculate THH[n]
∗ (Fp[G]) for any finitely generated abelian group

G for n � 2p + 2. To extend this to general abelian groups, observe that higher
Hochschild homology commutes with direct limits. The actual calculations of higher

Hochschild homology that we do are of HH[n]
∗ (Fp[x]) and of HH[n]

∗ (Fp[x]/x
pm

) for
any m.
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2. Comparing the bar construction and its homology
for some basic algebras

We consider the two-sided bar construction B(k,A, k) where k is a commutative
ring and A = k[x] or A = k[x]/xm. The generator x will be allowed to be of any
even degree; if A = k[x]/x2 or 2 = 0 in k, x can be of any degree. Note that
since k is commutative, A is also a graded commutative ring, and so B(k,A, k) is
a differential graded augmented commutative k-algebra, with multiplication given
by the shuffle product.

Our goal in this section is to establish quasi-isomorphisms between B(k,A, k)

and its homology ring TorA∗ (k, k) which are maps of differential graded augmented
k-algebras. (We use the zero differential on the homology ring.) The quasi-
isomorphisms are adapted from [12], where similar maps are studied on the Hoch-
schild complex for variables x which have to be of degree zero, but may satisfy other
monic polynomial equations. The reason that we need these quasi-isomorphisms
is that in Section 8 we will be looking at iterated bar constructions of the form
B(k,B(k,A, k), k). If we know that there is some differential graded algebra C
with quasi-isomorphisms that are algebra maps between B(k,A, k) and C, we
then get quasi-isomorphisms that are algebra maps between B(k,B(k,A, k), k) and

B(k, C, k). In the cases we study, the rings C = TorA∗ (k, k) are very simple, and
in fact involve rings of the form of the A’s we deal with in this section, or tensor
products of them. Thus the B(k, C, k) can again be compared to simpler graded
algebras, and the process can continue.

The following propositions also re-prove what TorA∗ (k, k) is for the A’s we are
interested in, but those are old and familiar results; our motivation is understanding
the bar complex B(k,A, k) as a differential graded algebra, not just its homology
ring.

We will assume that our ground ring k is an integral domain to simplify the
proofs – in this paper we will only use the calculations for k = Fp.

We will use the notation Λ(y) = k[y]/y2 for the exterior algebra on y over k,
and Γ(y) for the divided power algebra on y over k, spanned over k by elements

γi(y), i � 0, with γi(y) · γj(y) =
(
i+j
i

)
γi+j(y).

Proposition 2.1. Let k be an integral domain, and let x be of even degree.
Then there exist quasi-isomorphisms

π : B(k, k[x], k) → Λ(εx)

and

inc : Λ(εx) → B(k, k[x], k)

which are maps of differential graded augmented commutative k-algebras, with |εx| =
|x|+ 1.

Proof. We define the quasi-isomorphisms as follows: Let π : B(k, k[x], k) →
Λ(εx) be given by π(1⊗ 1) = 1,

π(1⊗ xi ⊗ 1) =

{
εx if i = 1,

0 otherwise.
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and π = 0 on Bn(k, k[x], k) for n > 1. Let inc : Λ(εx) → B(k, k[x], k) be given
by inc(1) = 1 ⊗ 1 and inc(εx) = 1 ⊗ x ⊗ 1. Then π and inc are chain maps,
and π ◦ inc = idΛ(εx). Therefore inc∗ induces an isomorphism from Λ(εx) to a

direct summand of H∗(B(k, k[x], k)) = Tork[x]∗ (k, k), and π∗ projects back onto that
summand. But the resolution

0 → Σ|x|k[x]
·x−→ k[x]

of k shows that the rank of Tork[x]∗ (k, k) over k in each degree is equal to that of
Λ(εx), and since k is an integral domain, the direct summand must then be equal to
all of H∗(B(k, k[x], k)). Thus π and inc are quasi-isomorphisms. In this case, both
maps preserve the multiplication because both B(k, k[x], k) and Λ(εx) are graded
commutative, so the square of anything in odd degree must be zero. �

Proposition 2.2. Let k be an integral domain, let m � 2 be an integer, and
let x be of even degree. Then there exist quasi-isomorphisms

π : B(k, k[x]/xm, k) → Λ(εx)⊗ Γ(ϕ0x)

and

inc : Λ(εx)⊗ Γ(ϕ0x) → B(k, k[x]/xm, k)

which are maps of differential graded augmented commutative k-algebras, with |εx| =
|x|+ 1 and |ϕ0x| = 2 +m|x|.

Proof. Let π : B(k, k[x]/xm, k) → Λ(εx)⊗ Γ(ϕ0x) be given by

π(1⊗xa1⊗· · ·⊗xan⊗1) =

{
xa1+a2−m · · ·xan−1+an−m γ(n

2 )(ϕ
0x) n even,

xa1−1xa2+a3−m · · ·xan−1+an−mεx · γ(n−1
2 )(ϕ

0x) n odd,

where 0 � ai < m and where we interpret xs = 0 for s �= 0: for s < 0, this
is because we define it to be so; for s > 0, this is because k[x]/xm acts by first
applying the augmentation. Therefore, if n is even, we get γ(n

2 )(ϕ
0x) if and only if

a1+a2 = m, a3+a4 = m, . . . , an−1+an = m and otherwise we get zero. For odd
n we get εx·γ(n−1

2 )(ϕ
0x) if and only if a1 = 1, a2+a3 = m, . . . , an−1+an = m and

zero otherwise. To see that π is a chain map, we only need to show that it sends
boundaries to zero, which can be checked directly using the stringent conditions
under which a monomial is sent to a nonzero element.

Let inc : Λ(εx)⊗ Γ(ϕ0x) → B(k, k[x]/xm, k) be given by

inc(γi(ϕ
0x)) = 1⊗ (xm−1 ⊗ x)⊗i ⊗ 1 ∈ B2i(k, k[x]/x

m, k)

and

inc(εx · γi(ϕ0x)) = 1⊗ x⊗ (xm−1 ⊗ x)⊗i ⊗ 1 ∈ B2i+1(k, k[x]/x
m, k).

Since xm = 0 and since the augmentation sends x to zero, every face map dj
vanishes on the image of inc, so clearly the boundary vanishes too and inc is a
chain map.

As before, we get that π◦ inc = idΛ(εx)⊗Γ(ϕ0x), and since the periodic resolution

. . . → Σ(m+1)|x|k[x]/xm ·x−→ Σm|x|k[x]/xm ·xm−1

−−−−→ Σ|x|k[x]/xm ·x−→ k[x]/xm

shows that Λ(εx)⊗Γ(ϕ0x) has the same rank over k in each degree as the Tor-groups

Tork[x]/x
m

∗ (k, k) = H∗(B(k, k[x]/x
m, k), by the same argument as in Proposition 2.1,

π and inc are quasi-isomorphisms.
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To show that π is multiplicative, consider π((1 ⊗ xa1 ⊗ · · · ⊗ xa� ⊗ 1) · (1 ⊗
xa�+1 ⊗ · · · ⊗ xa�+n ⊗ 1)) which is the sum over all (�, n)-shuffles σ of

sgn(σ)π(1⊗ xaσ(1) ⊗ · · · ⊗ xaσ(�+n) ⊗ 1).

In the case where � and n are both even, observe that this term is equal to
sgn(σ)γ( �+n

2 )(ϕ
0x) if and only if aσ(1) + aσ(2) = m, . . . , aσ(�+n−1) + aσ(�+n) = m.

If there is some pair 2i − 1, 2i for which σ(2i − 1) is in one of the sets {1, . . . , �},
{� + 1, . . . , � + n} and σ(2i) is in the other, the term associated to σ will can-
cel with the term associated to the permutation which is exactly like σ except
for switching σ(2i − 1) and σ(2i). Thus we will be left with terms associated
with shuffles σ which shuffle pairs of coordinates, and for these it is clear that
π(1⊗xaσ(1) ⊗· · ·⊗xaσ(�+n) ⊗1) �= 0 if and only if both π(1⊗xa1 ⊗· · ·⊗xa� ⊗1) �= 0

and π(1⊗xa�+1⊗· · ·⊗xa�+n⊗1) �= 0. And there will be exactly
(

�+n
2
�
2

)
(�, n)-shuffles

σ with σ(2i) = σ(2i− 1) + 1 for all i.
A similar argument works if � is odd and n is even. Then the terms correspond-

ing to shuffles σ which do not satisfy σ(1) = 1 and σ(2i + 1) = σ(2i) + 1 for all

1 � i < (�+ n)/2 will cancel in pairs, and the terms corresponding to the
( �+n−1

2
�−1
2

)
shuffles which do will be nonzero if and only if the images of both factors will be
nonzero. Commutativity then establishes multiplicativity for the case � even, n
odd. If both � and n are odd then all (�, n)-shuffles σ will have a mixed pair 2i− 1,
2i for which σ(2i− 1) is in one of the sets {1, . . . , �}, {�+1, . . . , �+ n} and σ(2i) is
in the other, so all the terms will cancel and so the product will map to zero, which
is also the product of the images of the factors.

To show that inc is multiplicative, it suffices to show that inc(εx)·inc(γi(ϕ0x)) =
inc(εx · γi(ϕ0x)) and that inc(γi(ϕ

0x)) · inc(γj(ϕ0x)) = inc(γi(ϕ
0x) · γj(ϕ0x)) =(

i+j
i

)
inc(γi+j(ϕ

0x)). The first claim follows from the fact that shuffles which allow
two adjacent x’s from different factors cancel in pairs, leaving only the unique (1, 2i)-
shuffle σ with σ(1) = 1. The second claim follows from the fact that shuffles which

do not preserve the pairs xm−1⊗x cancel in pairs, and there are
(
i+j
i

)
shuffles which

preserve the pairs. Thus both quasi-isomorphisms respect the multiplication. �

Proposition 2.3. Let k be an integral domain, let x be of odd degree and let
ρ0x be an element with |ρ0x| = |x|+ 1. Then there exist quasi-isomorphisms

π : B(k,Λ(x), k) → Γ(ρ0x)

and
inc : Γ(ρ0x) → B(k,Λ(x), k)

which are maps of differential graded augmented commutative k-algebras.

If k = F2, this proposition and its proof also work if x has even degree, and the
result agrees with the result of Proposition 2.2 for m = 2.

Proof. We use the same quasi-isomorphisms as in Proposition 2.2, and the
argument showing that they are quasi-isomorphisms is the same as well, but the
multiplicative structure is different and much easier to analyze. The maps from
Proposition 2.2 give, in the case of m = 2,

π(1⊗ xa1 ⊗ · · · ⊗ xan ⊗ 1) =

{
γn(ρ

0x) if ai = 1 for all 1 � i � n,

0 otherwise
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and
inc(γn(ρ

0x)) = 1⊗ x⊗n ⊗ 1.

Since x is of odd degree,

(1⊗ x⊗i ⊗ 1) · (1⊗ x⊗j ⊗ 1) =

(
i+ j

i

)
(1⊗ x⊗(i+j) ⊗ 1)

for all i, j � 0 and so both π and inc respect multiplication. �

Notation 2.4. (1) If k = Fp, we can decompose the divided power alge-
bra as

Γ(ρ0x) ∼=
⊗
i�0

Fp[γpi(ρ0x)]/(γpi(ρ0x))p

and we will denote the generators γpi(ρ0x) by ρix.
(2) Similarly, if k = Fp

Γ(ϕ0x) ∼=
⊗
i�0

Fp[γpi(ϕ0x)]/(γpi(ϕ0x))p

and ϕix is short for the generator γpi(ϕ0x) of the ith truncated polynomial
algebra.

3. Veen’s spectral sequence and iterated Tors

Our main computational tool is the bar spectral sequence, set up in [18], which
is closely related to the bar constructions we use in Section 8 and calculate the
homology of in Section 2. Let HFp denote the Eilenberg-MacLane spectrum of Fp.
Veen uses the Brun-Carlsson-Dundas [4] model ΛSnHFp for topological Hochschild

homology of order n of HFp, THH
[n](Fp) = HFp ⊗ S

n.

Theorem 3.1. [18, §7] There exists a strongly convergent spectral sequence of
Fp-Hopf algebras

E2
r,s = Tor

π∗(ΛSn−1HFp)
r,s (Fp,Fp) =⇒ πr+s(ΛSnHFp).

Thus this spectral sequence uses THH[n−1]
∗ (Fp) as an input in order to calculate

THH[n]
∗ (Fp). As long as it keeps collapsing at E2, calculating THH[n]

∗ (Fp) is simply a

process of starting with THH∗(Fp) = THH[1]
∗ (Fp) ∼= Fp[μ] with |μ| = 2 (as calculated

by Bökstedt in [3]) and applying Tor−∗ (Fp,Fp) iteratively n− 1 times.

By [18, Theorem 7.6], this is what happens for n � 2p, and so THH[n](Fp) ∼= Bn

for n � 2p, where Bn = TorBn−1(Fp,Fp) is the iterated Tor ring as explained
above and defined in Definition 3.2 below. We will actually show in Section 4 that

THH[n]
∗ (Fp) ∼= Bn up to n � 2p + 2. We believe that it should be possible to use

spectrum analogs of the methods of Section 2 in order to understand the homotopy
type of the iterated Tor spectra rather than just their homotopy rings, and prove

that THH[n]
∗ (Fp) ∼= Bn for all n > 0, and are working on showing that with Maria

Basterra and Michael Mandell.
It is well-known and follows from the calculations of Section 2 that Λ(εx) ∼=

TorFp[x]
∗ (Fp,Fp) with |εx| = 1 + |x|, which would be odd if |x| were even; that

TorΛ[y]
∗ (Fp,Fp) ∼= Γ(ρ0y) if |y| is odd, with |ρ0y| = |y| + 1, and that Λ(εz) ⊗

Γ(ϕ0z) ∼= TorFp[z]/z
m

(Fp,Fp) when |z| is even, with |εz| = |z| + 1 and |ϕ0z| =

2 +m|z|. The latter includes the case TorΛ[y]
∗ (Fp,Fp) if |y| is even, as well as the
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⊗
k�0 Λ(ερ

kεω)

Fp[ω] → Λ(εω) → Γ(ρ0εω) ∼=
⊗

k�0 Fp[ρkεω]/(ρkεω)p

����������������������

������
�����

�����
�����

�
. . .

⊗
k�0 Γ(ϕ

0ρkεω) ∼=
⊗

k,i�0 Fp[ϕiρkεω]/(ϕiρkεω)p

Figure 1. Evolution of elements.

. . .
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⊗
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��

. . .

Figure 2. Schematic overview of iterated Tor-terms.

case of TorΓ(y)∗ (Fp,Fp) for |y| even, since the ground ring is Fp and so Γ(y) ∼=⊗
k�0 Fp[ϕ

k(y)]/(ϕk(y))p.
One can prove that the Tor over a finite tensor product is the tensor product

of the Tor’s directly, using projective resolutions of the single factors and the fact
that Fp is Fp-flat. Calculating Tor with the two-sided bar resolution shows that Tor
respects direct limits also in the ring variable as well as in the module variables.

So we can encode the result of taking iterated Tor−∗ (Fp,Fp) in a flowchart as
in Figure 1 or more schematically as in Figure 2. This notation for elements in
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iterated Tor-terms goes back to Cartan (compare [5, §1]).
Definition 3.2. Let Bn be the algebra generated by all words of length n of

the following form (as illustrated in the flowchart), modulo the relations implied
in the description of the algebras above (free for μ, exterior for εω, polynomial
truncated at the pth power for ρkω or ϕkω for k � 0 and any word ω of length
n− 1):

• The rightmost letter must be μ.
• If there is something to the left of μ, it must be ε.
• If there is something to the left of an ε, it must be a ρk for some k � 0.
• If there is something to the left of a ρk for any k � 0, it must be either
an ε or a ϕj for some j � 0.

• Similarly, if there is something to the left of a ϕk for any k � 0, it must
be either an ε or a ϕj for some j � 0.

Observe, by the discussion above, that Bn is the algebra we get if we apply the
functor Tor−∗ (Fp,Fp) iteratively n− 1 times, starting with the algebra Fp[μ].

Definition 3.3. Let B′
n be defined as the algebra generated by all words of

length n defined as above, except that the rightmost letter must be x rather than
μ; the letter directly to its left, if there is one, should be an ε. This follows the

rules of the flowchart with ω = x, and will be useful in calculating HH[n]
∗ (Fp[x]).

Definition 3.4. Let B′′
n = B′′

n(m) be defined as the algebra generated by all
words of length n ending with ω = x modulo the same relations as before and also
the relation xm = 0. In this case, if there is a letter immediately to the left of x, it
has to be either ε or ϕk for some k � 0. The other rules are unchanged. This will

be used in calculating HH[n]
∗ (Fp[x]/x

m). As the m should usually be clear from the
context, we will omit it from the notation.

When we write such a word in an iterated Tor-term, the leftmost letter in the
word carries the information about what kind of algebra the element corresponding
to that word generates, the one before the last letter remembers what kind of
algebra the generator came from, and so on; exponents remember what component
of a divided power algebra the word came from at a particular stage.

The bidegrees of the words are computed using the following recursive formulas:

• |μ| = 2 for the THH calculation, and |x| = 0 for the HH calculation, as
explained above,

• ||εw|| = (1, |w|),
• ||ρiw|| = pi(1, |w|), and
• ||ϕ�w|| = p�(2, p|w|).

The bidegrees will be important in the THH calculation. Note that when we write
|w| on the right hand side of the formulas, we mean the total degree of w. For the
HH calculations, we will only care about total degrees.

4. Pushing Veen’s bounds

In this section, we will work over Fp and assume that p > 2. In a Hopf algebra,
ψ will denote the comultiplication. The following is a trivial generalization of
[18, Proposition 4.1], adapted to the needs of our calculation. It provides a little
bit more information about the first nontrivial differential one could have in Veen’s
spectral sequence.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ON THE HIGHER THH OF Fp AND COMMUTATIVE Fp-GROUP ALGEBRAS 105

Lemma 4.1. Suppose that Veen’s spectral sequence of Theorem 3.1 collapses at
E2 and has no nontrivial multiplicative extensions for all i < n, so that Bn−1

∼=
π∗(ΛSn−1HFp). Suppose also that in Veen’s spectral sequence for π∗(ΛSnHFp), d

j ≡
0 for all 2 � j < i. If di �≡ 0, then there exists a generator γpk(x) in the E2 = Ei

term such that di(γpk(x)) is a nonzero linear combination of generators of exterior
algebras.

Proof. If di �≡ 0, there exists an a ∈ Ei
∗,∗ such that di(a) �= 0. Choose

such an a of lowest degree. Recall that Ei
∗,∗ is a tensor product of graded exterior

algebras and graded divided power algebras. Writing a as a linear combination of
pure tensors, we see that there must be a pure tensor b such that di(b) �= 0. If
we can write b = b′b′′ (with b′, b′′ of strictly lower degree), then by the Leibniz
rule, di(b) = di(b′)b′′ ± b′di(b′′); by our assumption on the minimality of b’s degree,
this sum must be zero, contradicting the fact that di(b) �= 0. Thus b must be
indecomposable, that is: it must be a constant multiple of a generator. If the
bidegree of b is (k, �), then the bidegree of di(b) must be (k − i, � + i− 1), and for
di(b) to be nontrivial, we must have k � i � 2. Since all generators of an exterior
algebra have bidegree (1, �) for some �, we see that b must be of the form γpk(x)
for some x, and of even degree.

Now consider di(b). It must be primitive: writing ψ(b) = 1⊗b+b⊗1+
∑

j b
′
j⊗b′′j ,

with b′j and b′′j of lower degree, we obtain that

ψ(di(b)) = 1⊗ di(b) + di(b)⊗ 1 +
∑
j

(di(b′j)⊗ b′′j ± b′j ⊗ di(b′′j ))

= 1⊗ di(b) + di(b)⊗ 1.

The only primitive elements of odd degree in Ei
∗,∗ are generators of exterior algebras.

�
Our goal is to show that Veen’s bound of n = 2p can be pushed to n = 2p+ 2

by a further analysis of bi-degrees and the Hopf algebra structure, but no further:
at n = 2p+ 3 there will always be a differential candidate, which we believe will in
fact vanish, but that needs to be established by other methods.

Definition 4.2.
• Let #w denote the length of a word w, that is: the number of letters used
to write w.

• For a word w we write w[n] for the word consisting of w concatenated n
times.

Lemma 4.3. The only word w with #w � 2p + 1 and |w| = 4pk for k � 0 is
equal to ρkεμ.

Proof. Since the total degree |w| is even, w must start with a ρ� or a ϕ�.
Suppose first that w = ρ�εw′. If � < k then |w′| = 4pk−� − 2, so by [18, Lemma 7.2
part 5] we know that w′ equals (ρ0ε)[p−2]μ or starts with (ρ0ε)[p−2]ϕ0 or (ρ0ε)[p−1].
In the first case |w′| = 2p − 2, which is not of the form 4pk−� − 2. In the second
case, the beginning of w′ is of length 2p − 3, but it requires a tail of length 3 or
more, and thus #w′ � 2p, which is not possible. In the third case, the beginning
is of length 2p − 2, and so the only way we could get #w′ = 2p − 1 is by having
w′ = (ρ0ε)[p−1]μ, but then |w′| = 2p �= 4pk−1 and this case is also impossible.

Thus � = k, so that w′ = μ and w = ρkεμ.
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Now suppose that w = ϕ�w′. Then p|w′| = 4pk−� − 2. However, this can only
happen when p = 2, a contradiction. So there are no such possible words w, and
we are done. �

We have the following extension of Veen’s Theorem 7.6:

Proposition 4.4. When n � 2p + 2 there are no non-trivial differentials in
the spectral sequence of Theorem 3.1, and there is an Fp-Hopf algebra isomorphism
π∗(ΛSnHFp) ∼= Bn.

Proof. For n � 2p, [18, Theorem 7.6] gives us exactly the desired result.
Thus we simply need to analyze two cases: n = 2p+ 1 and n = 2p+ 2. In order to
extend Veen’s argument to these cases, we will need to show that

(1) there are no possible non-trivial differentials in the spectral sequence, and
(2) there are no possible multiplicative extensions.

(1) Suppose that there exists a possible nonzero differential. This means that
there exists an indecomposable element α and a primitive element β with
|α| = |β| + 1; as discussed in Lemma 4.1 we can assume that α is of the
form γpk(x), or in other words that it is of the form ρkw or ϕkw for some
admissible word w of length 2p or 2p+ 1, respectively. In order for there
to be a differential which might not be trivial on α, we must have k � 1,
so |α| ≡ 0 (mod 2p).

Then |β| ≡ −1 (mod 2p). As β is primitive it is a linear combina-
tion of words that start with ε. From [18, Lemma 7.2] we know that
a word with such a degree is either equal to ε(ρ0ε)[p−2]μ or starts with
ε(ρ0ε)[p−2]ϕ0 or ε(ρ0ε)[p−1]ρk or ε(ρ0ε)[p−1]ϕk for some k � 1. The first of
these has length 2p − 2 so is not under consideration. The second must
end with a suffix which has length at least 3, so we’ll need to consider it
in both cases. The third and fourth possibilities must end with a suffix of
length at least 2, so we’ll only need to consider them in the 2p+ 2 case.
Case 1: n = 2p+1. All words that can be the target of differentials must
be of the form

β = ε(ρ0ε)[p−2]ϕ0ρkεμ k � 0.

This word has degree 4pk+1+2p−1. Thus any possible differential comes
from a word of degree 4pk+1 + 2p. As α must start with a ρk or a ϕk,
we know that α must equal ϕ1w, where #w = 2p and |w| = 4pk or ρ1εw,
where #w = 2p − 1 and |w| = 4pk. However, both of these cases are
impossible by Lemma 4.3, so there are no possible differentials.
Case 2: n = 2p + 2. We have two possible words that might be targets
of differentials:

β1 = ε(ρ0ε)[p−2]ϕ0ϕkρ�εμ,

β2 = ε(ρ0ε)[p−1]ρk+1εμ.

In both cases, k, � � 0. We have

|β1| = 4pk+�+2 + 2pk+1 + 2p− 1 |β2| = 4pk+1 + 2p− 1.

Thus we have two possibilities for α, with |α1| = 4pk+�+2 + 2pk+1 + 2p
and |α2| = 4pk+1+2p. As α2 must start with a ρk or a ϕk, k � 1, it must
be of the form ρ1εw or ϕ1w for some w of length 2p or 2p+1, respectively,
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with |w| = 4pk or |w| = 4pk−1. But we know (by Lemma 4.3) that this is
impossible, so it remains to consider the first case, where α1 must equal
either ρ1εw with #w = 2p and |w| = 4pk+�+1 + 2pk or ϕ1ρmεw with
#w = 2p− 1 and |w| = 4pk+�−m + 2pk−m−1 − 2.
Case 2a: α1 = ρ1εw. First, note that w �= ρaεw′, because in this case
|w′| = 4pk+�−a+1 + 2pk−a − 2 and #w′ = 2p− 2, and |w′| is either equal
to 4pk+�−a+1 (which is a contradiction by Lemma 4.3 because #w′ =
2p − 2 > p � 3) or equivalent to −2 mod 2p, which demands a word
longer than 2p−2. Thus w = ϕaw′. Then p|w′| = 4pk+�−a+1+2pk−a−2,
which means that a = k and |w′| = 4p�+1. But #w′ = 2p − 1 > 3, a
contradiction by Lemma 4.3, and so w does not exist.
Case 2b: α1 = ϕ1ρmεw. We know that |w| = 4pk+�−m + 2pk−m−1 − 2.
If k = m + 1 then this is equal to 4pk+�−m � 4p, and by Lemma 4.3 we
know that no such w exists. If k > m+1 then |w| ≡ −2 (mod 2p) and we
know by [18, Lemma 3.3.2 part 5] that w must start with (ρ0ε)[p−2]ϕ0 or
(ρ0ε)[p−1]ρk or (ρ0ε)[p−1]ϕk for some k � 1. However, there are no words
of length 2p− 1 that start with any of these prefixes, so w cannot exist.

(2) To solve the multiplicative extension problem we need to determine what
the pth powers of elements can be. Let z be a generator of lowest degree
with zp �= 0. Then we have

ψ(zp) = ψ(z)p = 1⊗ zp + zp ⊗ 1 +
∑

(z′)p ⊗ (z′′)p = 1⊗ zp + zp ⊗ 1,

so zp must be primitive. However, in addition we know that |zp| = p|z|, so
|zp| ≡ 0 (mod 2p). By the proof of [18, Lemma 7.5] the shortest primitive
word with degree equivalent to 0 modulo 2p of degree larger than 2p is
equal to w = (ρ0ε)[p−1]ϕ0ρkεμ for k � 1. Thus it has length 2p+2, so we
do not need to worry about multiplicative extensions in the n = 2p + 1
case.

In the n = 2p+ 2 case, we need some extra care. The degree of w is
|w| = 4pk+1 + 2p, so we see that |z| = 4pk + 2. Therefore z = ρ0εw or
z = ϕ0ρ�w. In the first case we have #w = 2p and |w| = 4pk, so by Lemma
4.3 this cannot happen. In the second case, we can deduce #w = 2p and
|w| = 4pk−�−1 − 1. Note that we must have k − � − 1 > 0, as otherwise
this clearly cannot happen. But then we know that |w| ≡ −1 (mod 2p),
and by [18, Lemma 7.5] it must have length at least 2p+ 1. Thus such a
word does not exist, and we see that there are no multiplicative extensions
when n = 2p+ 2, either.

�

As we mentioned above, it is not possible to continue pushing the bound using
this type of analysis, and while the spectral sequence may continue to collapse
for n > 2p + 2 (as we believe it will) we cannot deduce this purely from degree
considerations:

Proposition 4.5. For n = 2p+ 3 there is a potential non-trivial differential.

Proof. Let

w = ϕ1(ρ0ε)[p−1]ϕ0ρ0εμ and v = ε(ρ0ε)[p−2]ϕ0ρ2ερ0εμ.
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We have

||w|| = (2p, 6p3) and ||v|| = (1, 6p3 + 2p− 2).

Thus we have a differential d2p−1 in the spectral sequence that is potentially non-
trivial. �

Remark 4.6. We do not claim that this is the shortest possible differential. It
may be that for more complicated words there exist shorter possible differentials;
indeed, at n = 2p+ 4 it is easy to find potential differentials of length p− 1.

We found the above potential differential using a computer program written in
Haskell; we include the code in Appendix A.

5. THH[n](F2), up to n = 3 and a stable element

Marcel Bökstedt showed [3] that THH of F2 is isomorphic to a polynomial
algebra on a generator in degree 2, F2[μ]. Using Torleif Veen’s [18] spectral sequence

E2
r,s = TorTHH

[n]
∗ (F2)

r,s (F2,F2) ⇒ THH
[n+1]
r+s (F2)

we obtain

THH[2]
∗ (F2) ∼= F2[β]/β

2

where β is a generator in degree three (see also [17, Proposition 2.3.1]).

Using Proposition 2.3 we get a spectral sequence calculating THH[3]
∗ (F2) with

E2-term

Tor
THH[2]

∗ (F2)
∗,∗ (F2,F2) ∼=

⊗
i�0

F2[γ2i(x)]/γ2i(x)
2, with |x| = 4.

The generators are concentrated in bidegrees of the form (k, 3k) so there are no non-
trivial differentials and the spectral sequence collapses. Also, since the only possible
products are those which are detected by the E∞ term, there are no multiplicative
extension issues, so we get:

Proposition 5.1. Let x denote a generator in degree 4, then

THH[3]
∗ (F2) ∼=

⊗
i�0

F2[γ2i(x)]/γ2i(x)
2.

As

Tor
⊗

i�0 F2[γ2i (x)]/γ2i (x)
2

(F2,F2) ∼=
⊗
i�0

TorF2[γ2i(x)]/γ2i (x)
2

(F2,F2)

we have to understand the single factors first. For each factor of the tensor product,
by Proposition 2.2

TorF2[γ2i (x)]/γ2i(x)
2

(F2,F2) ∼=
⊗
j�0

F2[γ2j (yi)]/γ2j (yi)
2 ∼= ΓF2

(yi)

with the yi’s being elements of bidegree (1, 2i+2). But the E2-term is now a tensor
product of these building blocks

E2
∗,∗

∼=
⊗
i�0

ΓF2
(yi) ∼=

⊗
i�0

⊗
j�0

F2[γ2j (yi)]/γ2j (yi)
2

thus excluding non-trivial differentials is harder.
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Lemma 5.2. The elements in the first column of the spectral sequence

E2
∗,∗ = TorTHH

[3]
∗ (F2,F2) =⇒ THH[4]

∗ (F2,F2)

are not in the image of dr for any r.

Proof. The spectral sequence is a bar spectral sequence and the filtration
that gives rise to it is compatible with the multiplication in the bar construction.
Therefore the spectral sequence is (at least) one of algebras. It therefore suffices
to show that none of the indecomposable elements can hit anything in the first
column. Note that the only elements on the first column are the yi’s.

The bidegree of an element γ2j (yi) is (2
j , 2j · 2i+2) and if a dr(γ2j (yi)) is in the

first column for r � 2 then r = 2j − 1 and the relation in the internal degree forces
2j(2i+1 + 1)− 2 to be of the form 2k+2. Since r � 2, we must have j � 2, but then
2j(2i+1 + 1)− 2 = 2(2j−1(2i+1 + 1)− 1) is not of the form 2k+2.

So no indecomposable element hits anything in the first column. Products of
such elements cannot hit a yi either, because this would decompose yi (the spot
(0, 0) cannot be hit by a differential for degree reasons), so all the yi must survive
to the E∞ term. �

Remark 5.3. Veen [18, Proposition 3.5] describes the stabilization map

σ : THH[n]
∗ (R) → THH

[n+1]
∗+1 (R)

for every commutative ring spectrum R. It sends a class [z] ∈ THH[n]
q (R) to the ele-

ment in THH
[n+1]
q+1 (R) that corresponds to 1⊗[z]⊗1 ∈ B1(π0(R),THH[n]

q (R), π0(R)).

From the first cases we can read off that σ sends μ ∈ THH
[1]
2 (F2) to β ∈ THH

[2]
3 (F2)

and β to x ∈ THH
[3]
4 (F2). We know that the yi’s give rise to non-trivial elements

in THH
[4]
1+2i+2(F2) and that σ(x) = y0 ∈ THH

[4]
5 (F2).

Proposition 5.4. The iterative classes σi(y0) are all non-trivial and therefore
give rise to a non-trivial class in topological André-Quillen homology, TAQ,

TAQ1(F2) := lim−→
n

THH
[n]
1+n(F2).

Proof. We know that the classes σi(y0) are always cycles in the corresponding
spectral sequences, so we have to show that they cannot be hit by any differential.
We do not know whether the γ2j (yi)’s survive but we know that the E∞-term is a

subquotient of the E2-term and hence we get at most elements in THH[4]
∗ (F2) that

have a total degree corresponding to products of the γ2j (yi)’s. By an iteration of
this argument we can calculate possible bidegrees of elements that would arise if
there were no non-trivial differentials. Let � be bigger or equal to two and consider
elements γ2i�+1 (yi1,...,i�) of bidegree

(2i�+1 , 2i�+1(2i� + 2i�+i�−1 + . . .+ 2i�+i�−1+...+i2 + 2i�+i�−1+...+i2+i1+2)).

A product of elements γ2i1,�+1 (yi1,1,...,i1,�) up to γ2im,�+1 (yim,1,...,im,�
) then has ho-

mological degree
∑r

j=1 2
ij,�+1 and internal degree

r∑
j=1

2ij,�+1+ij,� + . . .+
r∑

j=1

2ij,�+1+ij,�+...+ij,2 +
r∑

j=1

2ij,�+1+ij,�+...+ij,2+ij,1+2.
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We know that y0,...,0 = γ20(y0,...,0) has bidegree (1, � − 1 + 4) = (1, � + 3). If
a differential ds hits this element, then it has to start in something of bidegree
(1 + s, �+ 3− s+ 1) = (s+ 1, �+ 4− s). For s � 2 the only possible bidegrees are
(3, �+ 2) up to (�+ 5, 0).

The element γ2(y0,...,0) has bidegree (2, (�− 1)2 + 8) = (2, �+ (�+ 6)) and as �
is at least 2 the internal degree is already larger than �+ 2, so this element cannot
be a suitable source for a nontrivial differential. All other potential bidgrees have
larger internal degree, thus there are no non-trivial differentials. �

Maria Basterra and Michael Mandell calculated TAQ∗(HFp) for every prime
p (see [11, §6] for a written account) and there is precisely one generator in
TAQ1(HFp).

Remark 5.5. For odd primes p it is easy to see that the generator μ ∈
THH2(Fp) stabilizes to a non-trivial class in TAQ1(HFp). The stabilizations of μ
are represented by the words ((ρ0ε)�μ) and (ε(ρ0ε)�μ) in the spectral sequences (for
some �), so we have to show that these elements cannot be hit by any differential.
Both types of elements are of bidegree (1,m) for some m. If dr : Er

s,t → Er
s−r,t+r−1

should hit an element in such a spot, then we get s = r + 1 and t = m − r + 1.
As r is greater or equal to 2, the differential can only start from bidegrees of the
form (3,m− 1), . . . , (m+ 2, 0). If a term arises in the same spectral sequence as a
stabilization of μ with bidegree (1,m), then it is generated by words of length m,
which means that it has internal degree at least m. But such terms cannot hit a
term with bidegree (1,m), so the stabilizations of μ survive.

6. A splitting of THH[n](A[G]) for abelian groups G

If G is an abelian group, then the suspension spectrum of G+ is an E∞ ring
spectrum, so it can be made into a commutative S-algebra S0[G] for instance by the
methods of [7]. If R is another commutative S-algebra, so is R ∧ S0[G]. Applying
the formula for the product of two simplicial objects, we get that for any n and any
commutative S-algebras A and B,

THH[n](A ∧B) � THH[n](A) ∧ THH[n](B),

which in our case yields

THH[n](R ∧ S0[G]) � THH[n](R) ∧ THH[n](S0[G]).

If R is a general S-algebra, we could take R ∧ S0[G] with coordinate-wise product
to be the definition of R[G]. If R = HA is the Eilenberg Mac Lane spectrum of a
commutative ring, this is a model of the Eilenberg Mac Lane spectrum H(A[G]).
This is because HA ∧ S0[G] has only one nontrivial stable homotopy group; HA ∧
S0[G] is the coproduct in the category of commutative S-algebras so the obvious
inclusions induce a map of commutative S-algebras HA∧S0[G] → H(A[G]) which
induces a multiplicative isomorphism on that unique nontrivial homotopy group.
The product on an Eilenberg Mac Lane spectrum is determined by what it does on
the unique nontrivial homotopy group, so we get

(6.1) THH[n](A[G]) � THH[n](A) ∧ THH[n](S0[G]).

As usual, when we talk of the topological Hochschild homology of a ring, we mean
the topological Hochschild homology of its Eilenberg Mac Lane spectrum.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ON THE HIGHER THH OF Fp AND COMMUTATIVE Fp-GROUP ALGEBRAS 111

Proposition 6.1. If A is a commutative Fp-algebra, then for any n � 1 and
any abelian group G,

THH[n]
∗ (A[G]) ∼= THH[n]

∗ (A)⊗ HH[n]
∗ (Fp[G]).

Proof. Recall that for a commutative Fp-algebra A THH[n](A) is an HA-
module, and so its homotopy groups are Fp-vector spaces.

We can rewrite the splitting in (6.1) above as

THH[n](A[G]) � THH[n](A) ∧HFp
HFp ∧ THH[n](S0[G]),

which yields a spectral sequence with E2-term

TorFp
∗,∗(THH

[n]
∗ (A), π∗(HFp∧THH[n](S0[G]))) ∼= THH[n]

∗ (A)⊗H∗(THH
[n](S0[G]);Fp)

converging to THH[n]
∗ (A[G]). Since the spectral sequence is concentrated in the 0th

column, it collapses, yielding

THH[n]
∗ (A[G]) ∼= THH[n]

∗ (A)⊗H∗(THH
[n](S0[G]);Fp) ∼= THH[n]

∗ (A)⊗HH[n]
∗ (Fp[G]),

where the fact that H∗(THH
[n](S0[G]);Fp) ∼= HH[n]

∗ (Fp[G]) follows from the fact
that H∗(S

0[G];Fp) consists only of Fp[G] in dimension zero and the Künneth for-
mula. �

Note that this proof goes through if we replace G by any commutative monoid
M .

7. The higher Bökstedt spectral sequence

The aim of this section is to provide a Bökstedt spectral sequence for THH[n]
∗ .

Notation 7.1. For the remainder of the paper S1 will always denote the stan-
dard model of the 1-sphere with two non-degenerate simplices, one in dimension
zero and one in dimension one. For n � 1 we take the n-fold smash product of this
model as a simplicial model of Sn.

Assume that R is a cofibrant commutative S-algebra (in the setting of [7]).

Then the simplicial spectrum THH[n](R)• has k-simplices

THH[n](R)k =
∧
Snk

R.

The inclusion from the ‘subspectrum’ of degenerate simplices into the simplicial
spectrum (which is actually a map of co-ends, as in [7, p.182]) is a cofibration,
because the degeneracies are induced by the unit of the algebra and the fact that R
is cofibrant as a commutative S-algebra [7, VII Theorem 6.7] guarantees that the
smash product has the correct homotopy type. Therefore the simplicial spectrum

THH[n](R)• is proper.
By [7, X 2.9] properness implies that there is a spectral sequence for any ho-

mology theory E with

E2
r,s = Hr(Es(THH

[n](R)•))

converging to Er+sTHH
[n](R). Note that for every s, Es(THH

[n](R)•) is a simplicial

abelian group; Hr(Es(THH
[n](R)•)) denotes its r’th homology group.

In the following we identify the E2-term in good cases.
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If E∗(R) is flat over E∗, then we get that Es(THH
[n](R)r) is

πs(E ∧S THH[n](R)r) ∼= πs(E ∧
∧
Snr

R) ∼= πs(

E∧
Snr

E ∧R) ∼= (

E∗⊗
Snr

E∗(R))s

where
∧E indicates that the smash product is taken over E. Taking the rth ho-

mology of the corresponding chain complex gives precisely

E2
r,s

∼= HH[n]
r,s(E∗(R))

where r is the homological degree and s the internal one. Therefore the Bökstedt
spectral sequence for higher THH is of the following form.

Proposition 7.2. Let R be a cofibrant commutative S-algebra and let E be a
homology theory such that E∗(R) is flat over E∗. Then there is a spectral sequence

E2
r,s

∼= HH[n]
r,s(E∗(R)) ⇒ Er+s(THH

[n](R)).

For E = HFp we get HH[n]
r,s((HFp)∗(R)) for instance. If we then set R = HFp

as well, we obtain

E2
r,s

∼= HH[n]
r,s((HFp)∗(HFp))

thus we have to calculate Hochschild homology of order n of the dual of the mod-p
Steenrod algebra, A∗(p).

For p = 2 this is a polynomial algebra in classes ξi of degree 2i − 1 and for
i � 1. We can write A∗(2) as

A∗(2) ∼=
⊗
i�1

F2[ξi].

Recall that Pirashvili defines Hochschild homology of order n of a commutative
k-algebra A the homotopy groups of the Loday functor L(A,A) evaluated on a
simplicial model of Sn [14, 5.1]. For a finite pointed set of the form {0, . . . ,m}
with 0 as basepoint L(A,A){0, . . . ,m} is A⊗m+1 and a map of finite pointed sets
f : {0, . . . ,m} → {0, . . . ,M} induces a map of tensor powers by

f∗(a0 ⊗ . . .⊗ am) = b0 ⊗ . . .⊗ bM , bi =
∏

f(j)=i

aj

where the product over the empty set spits out the unit of the algebra A. For a
finite pointed simplicial set X. the Loday functor on X. is then defined to be the
simplicial k-module with m-simplices

L(A,A)(X.)m = L(A,A)(Xm).

Therefore, for any two commutative algebras A,B we have

L(A⊗B,A⊗B) ∼= L(A,A)⊗ L(B,B)

as functors and so

π∗L(A⊗B,A⊗B)(Sn) ∼= π∗(L(A,A)(Sn)⊗ L(B,B)(Sn)).

If all the algebras involved are flat as k-modules, we can identify this with

π∗(L(A,A)(Sn))⊗ π∗(L(B,B)(Sn)).

In our case, where we are working over Fp, we can therefore break down

Bökstedt’s spectral sequence HH[n]
r,s(A∗(p)) into a tensor product of the higher

Hochschild homology of the different tensored factors of A∗(p).
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We know that

HH[n]
∗ (k[x]; k) ∼= H∗(K(Z, n); k)

(see for instance [13, p. 207]). Here HH[n]
∗ (k[x]; k) denotes Hochschild homology of

order n of k[x] with coefficients in k. So we have to understand what difference an
internal grading makes and what changes if we take coefficients in k[x] and not just
in k.

8. Higher Hochschild homology of (truncated) polynomial algebras

In this section we will explain how to compute the higher Hochschild homology

of the rings k[x] over any integral domain k, and Fp[x]/x
p�

over Fp. By varying the
ground ring over which the tensor products in the Loday construction are taken, we
can exhibit higher Hochschild homology as iterated Hochschild homology. Because
we will be varying the ground rings, we introduce the notation Lk(R,M) to indicate
the ground ring k in the Loday construction.

These methods were suggested to us by Michael Mandell based on his work
with Maria Basterra on TAQ computations. Note that most of this section involves
formal constructions that could be applied to augmented commutative HFp-algebra
spectra as well.

Lemma 8.1. Let k be a commutative ring, and let R be a commutative k-algebra.
Then there is an isomorphism of functors from pointed simplicial sets to simplicial
augmented commutative R-algebras

Lk(R,R) ∼= LR(R⊗k R,R),

where R acts on R ⊗k R by multiplying the first coordinate, and the augmentation
map is the multiplication R⊗k R → R.

Proof. We can define a natural transformation Lk(R,R) → LR(R ⊗k R,R)
by mapping R ↪→ R ⊗k R via r 
→ 1 ⊗ r over each simplex other than the base
point, and using the identity over the base point. This map is simplicial, and is an
isomorphism in each simplicial degree. �

Remark 8.2. For any commutative ring R and augmented commutative R-
algebra C, there is an isomorphism of simplicial augmented commutative R-algebras

BR(R,C,R) ∼= LR(C,R)(S1),

where BR denotes the two-sided bar construction with tensors taken over R and
S
1 is the model of the 1-sphere as in 7.1. This is simply because we can map the

two R’s on the sides of the bar complex to the 0th (coefficient) coordinate in the
Hochschild homology complex.

Lemma 8.3. Let R be a commutative ring, and let C be an augmented com-
mutative R-algebra. Let X. and Y. be pointed simplicial sets. Then there is an
isomorphism between the diagonals of the bisimplicial augmented commutative R-
algebras

LR(LR(C,R)(X.), R)(Y.) ∼= LR(C,R)(X. ∧ Y.)

If X. is a pointed simplicial set, then we denote by X̃k the k-simplices of X
that are not the basepoint.
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Proof. In degree k we can identify the diagonal of the bisimplicial sets as⊗
Ỹk

((
⊗
X̃k

C)⊗R)⊗ R ∼=
⊗

X̃k×Ỹk

C ⊗R.

Here, tensor products are all taken over R. The non-basepoint k-simplices in X.∧Y.
are exactly X̃k × Ỹk, and the simplicial face maps in both cases are induced from
those of X. and Y. in the same way. �

Corollary 8.4. For any commutative ground ring k and commutative k-

algebra R, the nth higher Hochschild homology complex of R over k, HH[n](R),
can be written as

HH[n](R) ∼= BR(R,HH[n−1](R), R).

Proof. By Lemmata 8.1 and 8.3 and Remark 8.2,

HH[n](R) = Lk(R,R)(Sn) ∼= LR(R⊗k R,R)(Sn) ∼= LR(LR(R⊗R,R)(Sn−1), R)(S1)

∼= LR(HH[n−1](R), R)(S1) ∼= BR(R,HH[n−1](R), R).

�
Remark 8.5. Our results in Corollary 8.4 are not new. They can be found

in the literature for slightly different settings: For instance, Veen [18] establishes
such an identification for ring spectra and the [4]-model in order to construct his
spectral sequence and Ginot-Tradler-Zeinalian prove in an (∞, 1)-category setting
that the Hochschild functor sends homotopy pushouts on space level to derived
tensor products [9, 3.27 c)].

Now we can calculate HH[n](R) inductively. To work with the bar construction,
observe first that if we calculate BR(R,C,R) for an augmented commutative R-
algebra C and if there is an augmented commutative k-algebra C ′ so that C ∼= R⊗C ′

as an augmented commutative R ⊗ k-algebra (that is, the augmentation C → R
is the tensor product of the identity of R with an augmentation C ′ → k), then by
grouping the R’s together we get

BR(R,C,R) ∼= BR(R,R,R)⊗ Bk(k, C ′, k) ∼= R ⊗ Bk(k, C ′, k)

as simplicial augmented commutative R ∼= R⊗k-algebras. Also, if we have a tensor
product of augmented commutative k-algebras C and D,

Bk(k, C ⊗D, k) ∼= Bk(k, C, k)⊗ Bk(k,D, k)

as simplicial augmented commutative k-algebras.

In [3], Bökstedt used such decompositions to calculate the Hochschild homology
of the dual of the Steenrod algebra. He observed that for any commutative ring k,

k[x]⊗ k[x] ∼= k[x]⊗ C ′,

as augmented commutative algebras, where k[x] is embedded as k[x] ⊗ k ⊂ k[x] ⊗
k[x], and C ′ ⊂ k[x] ⊗ k[x] is the sub-algebra generated over k by the element
x′ = x⊗ 1− 1⊗ x. Note that C ′ = k[x′] ∼= k[x].

Theorem 8.6. Let k be an integral domain. There is an isomorphism of sim-
plicial augmented commutative k-algebras

HH[n](k[x]) ∼= k[x]⊗ B(k,B(k, · · ·B(k︸ ︷︷ ︸
n times

, k[x], k) · · · , k), k)
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where we take the diagonal of the multisimplicial set on the right. This induces an
isomorphism of the associated chain complexes.

Moreover, there is a map of augmented differential graded k-algebras which is
a quasi-isomorphism on the associated chain complexes

HH[n](k[x]) ∼= k[x]⊗ TorTor
···Tork[x](k,k)···(k,k)(k, k)︸ ︷︷ ︸

n times

∼= k[x]⊗B′
n+1,

for B′
n+1 from Definition 3.3.

Here the Tor-expressions and B′
n+1 are viewed as differential graded k-algebras

with respect to the trivial differential; thus it follows automatically that the higher
Hochschild homology groups of k[x] are, respectively, isomorphic to the part of
them which has the appropriate degree.

Proof. The first part of the claim is proved inductively. From Bökstedt’s
decomposition we get

HH[1](k[x]) ∼= Bk[x](k[x], k[x]⊗ C ′, k[x]) ∼= k[x]⊗ B(k, C ′, k) ∼= k[x]⊗ B(k, k[x], k)

as simplicial augmented commutative k-algebras. From this decomposition and

the same kind of splitting, we then get by Corollary 8.4 that HH[2](k[x]) ∼= k[x] ⊗
B(k,B(k, k[x], k), k), and the general statement follows by an iteration of this argu-
ment.

The second part uses the quasi-isomorphisms of differential graded algebras
from Section 2. The point is that we have a multiplicative quasi-isomorphism
B(k, k[x], k) � Λ(εx), which means that we have multiplicative quasi-isomorphisms
B(k,B(k, k[x], k), k) � B(k,Λ(εx), k) � Γ(ρ0εx), and so on. Thus instead of having
a Veen-type spectral sequence, which one can easily get for Hochschild homology
following the method that Veen used for topological Hochschild homology, we have
a complex of algebras. �

Remark 8.7. As mentioned before, we believe that an argument along the
lines of the above proof can show that Veen’s spectral sequence collapses at E2 for
certain commutative ring spectra. To this end one has to establish that the higher
topological Hochschild homology bar constructions of these ring spectra are weakly
equivalent via multiplicative maps to the homotopy rings of the bar construction
(taken over the Eilenberg Mac Lane spectrum of Fp rather than over Fp). Such
an argument would be analogous to our proof that there are multiplicative quasi-
isomorphisms between the bar constructions B(k,A, k) (for certain algebras A) and
their homology algebras as in Section 2.

In low dimensions we can identify HH[n](Fp[x]) as follows: We know that
Hochschild homology of Fp[x], HH∗(Fp[x]) is isomorphic to ΛFp[x](εx) with |εx| = 1.
For Hochschild homology of order two we obtain

HH[2]
∗ (Fp[x]) ∼= ΓFp[x](ρ

0εx), |ρ0εx| = 2.
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In the next step we get

HH[3]
∗ (Fp[x]) ∼= Tor

ΓFp[x](ρ
0εx)

∗,∗ (Fp[x],Fp[x])

∼=

⎛
⎝⊗

k�0

ΛFp[x](ερ
kεx)

⎞
⎠⊗

⎛
⎝⊗

k�0

ΓFp[x](ϕ
0ρkεx)

⎞
⎠ .

Using the flowcharts in Figure 1 and Figure 2 one can explicitly calculate Hochschild
homology of higher order.

Specifying k = Fp and using Bökstedt’s method again, if we consider the ring

Fp[x]/x
p�

we obtain

Fp[x]/x
p� ⊗ Fp[x]/x

p� ∼= Fp[x]/x
p� ⊗ C ′′,

as augmented commutative algebras, where Fp[x]/x
p�

is embedded as Fp[x]/x
p� ⊗

k ⊂ Fp[x]/x
p� ⊗ Fp[x]/x

p�

, and C ′′ ⊂ Fp[x]/x
p� ⊗ Fp[x]/x

p�

is the Fp-sub-algebra

generated by the element x′ = x ⊗ 1 − 1 ⊗ x, with the relation (x′)p
�

= 0 so that

again C ′′ = Fp[x
′]/(x′)p

� ∼= Fp[x]/x
p�

.

We use this to get a calculation of the higher Hochschild homology groups of

Fp[x]/x
p�

. In [14], Pirashvili calculated the nth higher Hochschild homology groups
of k[x]/xa for any a when n is odd and k is a field of characteristic zero using Hodge
decomposition techniques.

Theorem 8.8. There is an isomorphism of simplicial augmented commutative
Fp-algebras

HH[n](Fp[x]/x
p�

) ∼= Fp[x]/x
p� ⊗ B(Fp,B(Fp, · · ·B(Fp︸ ︷︷ ︸

n times

,Fp[x]/x
p�

,Fp) · · · ,Fp),Fp)

where we take the diagonal of the multisimplicial set on the right. This induces an
isomorphism of the associated chain complexes.

Moreover, there is a map of augmented differential graded Fp-algebras which is
a quasi-isomorphism on the associated chain complexes

HH[n](Fp[x]/x
p�

) ∼= Fp[x]/x
p� ⊗ TorTor

···Tor
Fp[x]/xp�

(Fp,Fp)···(Fp,Fp)(Fp,Fp)︸ ︷︷ ︸
n times

∼= Fp[x]/x
p� ⊗B′′

n+1,

for B′′
n+1 from Definition 3.3. The Tor-expressions and B′′

n+1 are again viewed as
differential graded Fp-algebras with a trivial differential.

9. Étale and Galois descent

Ordinary Hochschild homology satisfies étale and Galois descent: Weibel and
Geller [19] showed that for an étale extension A → B of commutative k-algebras
one has

HH∗(B) ∼= HH∗(A)⊗A B

and if A → B is a Galois extension of commutative k-algebras in the sense of
Auslander-Goldman [1] with finite Galois group G, then

HH∗(A) ∼= HH∗(B)G.
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We will show that these properties translate to higher order Hochschild homol-
ogy. In the following let k be again an arbitrary commutative unital ring and let n
be greater or equal to one.

Theorem 9.1.
(1) If A is a commutative étale k-algebra, then HH[n]

∗ (A) ∼= A.
(2) If A → B is an étale extension of commutative k-algebras, then

HH[n]
∗ (B) ∼= HH[n]

∗ (A)⊗A B.

(3) If A → B is a G-Galois extension with G a finite group, then

HH[n]
∗ (A) ∼= HH[n]

∗ (B)G.

Proof. The first claim follows from the second, but we also give a direct proof:
Étale k-algebras have Hochschild homology concentrated in degree zero. Therefore
Veen’s spectral sequence yields

TorHH∗(A)
p,q (A,A) ∼= TorAp,q(A,A) = A

in the p = q = 0-spot and thus we get HH[2]
∗ (A) = A concentrated in degree zero.

An iteration of this argument shows the claim for arbitrary n.
For étale descent we deduce from Corollary 8.4 that

HH[2]
∗ (B) ∼= Tor

HH[1]
∗ (B)

∗ (B,B)

∼= Tor
HH[1]

∗ (A)⊗AB
∗ (A⊗A B,A⊗A B) ∼= Tor

HH[1]
∗ (A)

∗ (A,A)⊗A B

and the latter is exactly HH[2]
∗ (A) ⊗A B. Note that the maps B = HH0(B) →

HH∗(B) and HH∗(A) → HH∗(B) used for the Weibel-Geller isomorphism induce
a map of graded commutative rings HH∗(A) ⊗A B → HH∗(B), and the argument
above shows that our formulas for higher Hochschild homology are ring maps as
well.

Iterating this argument, we get that HH[n]
∗ (B) ∼= HH[n]

∗ (A) ⊗A B for all n as
graded commutative rings.

Any G-Galois extension as above is in particular an étale extension, so we get

HH[n]
∗ (B) ∼= HH[n]

∗ (A)⊗A B.

The G-action on the left hand side corresponds to the G-action on the B-factor on
the right hand side and thus taking G-fixed points yields

HH[n]
∗ (B)G ∼= HH[n]

∗ (A)⊗A (BG) ∼= HH[n]
∗ (A)⊗A A ∼= HH[n]

∗ (A).

�

10. Group algebras of finitely generated abelian groups

The results of the preceding sections allow us to compute THH[n]
∗ of group alge-

bras of finitely generated abelian groups over Fp. If G is a finitely generated abelian

group, then we know from Section 6 that we need to determine HH[n]
∗ (Fp[G]) because

THH[n]
∗ (Fp[G]) is isomorphic to the tensor product of THH[n]

∗ (Fp) and HH[n]
∗ (Fp[G]).

In addition we know that Fp[G] can be written as a tensor product

Fp[G] ∼= Fp[Z]
⊗r ⊗ Fp[Cq

�1
1
]⊗ . . .⊗ Fp[Cq�ss

]
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where r is the rank of G and the C
q
�i
i

’s are the torsion factors of G for some primes

qi. As HH[n]
∗ sends tensor products to tensor products, we only have to determine

the tensor factors HH[n]
∗ (Fp[Z]) and HH[n]

∗ (Fp[Cq
�i
i

]).

Proposition 10.1.
• For the group algebra Fp[Z] ∼= Fp[x

±1] we get

HH[n]
∗ (Fp[Z]) ∼= Fp[x

±1]⊗B′
n+1.

• If q is a prime not equal to p, then HH[n]
∗ (Fp[Cq� ]) ∼= Fp[Cq� ] where the

latter is concentrated in homological degree zero.
• For q = p,

HH[n]
∗ (Fp[Cp� ]) ∼= Fp[x]/x

p� ⊗B′′
n+1.

Proof. The group algebra Fp[Z] ∼= Fp[x
±1] is étale over Fp[x] and therefore

by Theorem 9.1 we obtain

HH[n]
∗ (Fp[Z]) ∼= HH[n]

∗ (Fp[x])⊗Fp[x] Fp[x
±1]

and hence the first statement follows from Theorem 8.6.
The group algebra Fp[Cq� ] is an étale algebra over Fp for q not equal to p, so

Theorem 9.1 also implies the second claim.

We know that Fp[Cp� ] ∼= Fp[x]/x
p�

because Fp[x]/x
p� − 1 = Fp[x]/(x − 1)p

�

.

Thus HH[n]
∗ (Fp[Cp� ]) is determined by Theorem 8.8. �

Thus if we express G as

G = Z
r × Cpi1 × . . .× Cpia × C

q
j1
1

× . . .× C
q
jb
b

with r, a, b � 0, is, jt � 1 and primes qi �= p, then we obtain

THH[n]
∗ (Fp[G]) ∼= THH[n]

∗ (Fp)⊗ HH[n]
∗ (Fp[Z]

⊗r ⊗
a⊗

s=1

Fp[x]/x
pis ⊗

b⊗
t=1

Fp[Cq
jb
b

])

∼= THH[n]
∗ (Fp)⊗

(
HH[n]

∗ (Fp[x])⊗Fp[x]Fp[x
±1]

)⊗r⊗
a⊗

s=1

HH[n]
∗ (Fp[x]/x

pis
)⊗

b⊗
t=1

Fp[Cq
jb
b

].

For instance, unravelling the definitions gives

THH[2]
∗ (F3[Z× Z/6Z])

∼=THH[2]
∗ (F3)⊗ HH[2]

∗ (F3[x])⊗F3[x] F3[x
±1]⊗ F3[C2]⊗ HH[2]

∗ (F3[x]/x
3)

∼=ΛF3
(εy)⊗ (F3[x]⊗B′

3)⊗F3[x] F3[x
±1]⊗ F3[C2]⊗ F3[x]/x

3 ⊗B′′
3

∼=ΛF3
(εy)⊗ F3[x

±1]⊗B′
3 ⊗ F3[C2]⊗ F3[x]/x

3 ⊗B′′
3

with B′
3 and B′′

3 as explained in Definitions 3.3 and 3.4 and where εy is a generator
of degree three.
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Appendix A. Code

Below is the Haskell code for generating possible differentials. The code finds
all admissible words of a given length n that fit into a particular portion of the
E2 page and then looks for words that have consecutive degrees. As the shortest
differential must go from an indecomposable to a primitive, we do not generate
any powers or products of words, as none of these can support a shortest nonzero
differential.

import System.Environment

import Data.List

import qualified Data.Set as S

main = do

(prime:n:limit:_) <- getArgs

putStrLn $ concat $ map pairToString

(possibleD (read n :: Integer)

(read limit :: Integer)

(read prime :: Integer))

-----------------

data VeenWord = M | E VeenWord | Rk VeenWord | Pk VeenWord

type Ppoly = [(Integer, (Integer,Integer))]

-- takes a sum and a list length and makes all lists of the length

-- that add up to at most m; this is the maximum degree of any

-- particular generator

varValueLists 0 m = [[]]

varValueLists 1 m = map (\a -> [a]) [0..m]

varValueLists n m = foldr (\l ls ->

let s = sum l

in (map (\a -> a:l) [0..m-s]) ++ ls)

[] (varValueLists (n-1) m)

makeKey M _ = "u"

makeKey (E w) l = "e" ++ (makeKey w l)

makeKey (Rk w) (a:as) = "r^" ++ (show a) ++ (makeKey w as)

makeKey (Pk w) (a:as) = "l^" ++ (show a) ++ (makeKey w as)

makeKey _ _ = error "Incorrect number of variables"

constantPoly n = [(n,(0,0))]

numVars = foldr (\(a,(_,c)) m -> if a == 0 || c == 0 then m

else if c >= m then c else m) 0

compress p =

let addup x [] = [x]

addup x@(a,pair) ys@((a’,pair’):l) =

if pair == pair’ then (a+a’,pair):l else x:ys

in foldr addup [] p

-- plugs in for variable number 1, shifts other variables down;

-- keep in mind that variable 3 is really the sum of three

-- variables,v1,v2,v3
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plugInV1 p v = compress $ map (\(a,(b,c)) -> if c >= 1

then (a,(b+v,c-1))

else (a,(b,c)))

p

plugInP :: Integer -> Ppoly -> Integer

plugInP prime p =

let a ‘n

| n < 0 = error "Exponent must be positive"

| n == 0 = 1

| otherwise = a * (a ‘(n-1))

in if any (\(_,(_,c)) -> c /= 0) p

then error "To plug in p you need to have no variables"

else sum $ map (\(a,(b,_)) -> a * (prime ‘b)) p

plugInAllVars :: Integer -> Ppoly -> [Integer] -> Integer

plugInAllVars prime p l = plugInP prime (foldl plugInV1 p l)

polyToString :: Ppoly -> String

polyToString =

let monoToString (a,(b,c)) =

(show a) ++ (if (b,c) == (0,0) then ""

else " P^{" ++ (if b /= 0 then (show b) ++ "+" else "")

++ (if c /= 0

then "v_" ++ (show c)

else "") ++ "}")

in (intercalate " + ") . (map monoToString)

addN n ((m,(0,0)):l) = (m+n,(0,0)):l

addN n l = (n,(0,0)):l

shiftBy1 = map (\(a,(b,c)) -> (a,(b+1,c)))

shiftByVar = map (\(a,(b,c)) -> (a,(b,c+1)))

degree :: VeenWord -> Ppoly

degree M = constantPoly 2

degree (E x) = addN 1 (degree x)

degree (Rk x) = shiftByVar $ addN 1 $ degree x

degree (Pk x) = shiftByVar $ addN 2 $ shiftBy1 $ degree x

bidegree :: VeenWord -> (Ppoly, Ppoly)

bidegree M = (constantPoly 0, constantPoly 2)

bidegree (E x) = (constantPoly 1, degree x)

bidegree (Rk x) = (shiftByVar $ constantPoly 1, shiftByVar $ degree x)

bidegree (Pk x) = (shiftByVar $ constantPoly 2, shiftByVar $ shiftBy1 $ degree x)

makeAdmissibleWords n

| n < 1 = error "makeAdmissibleWords needs positive integer"

| n == 1 = [M]

| otherwise =

let words :: VeenWord -> [VeenWord] -> [VeenWord]

words M l = (E M):l

words w@(E _) l = (Rk w):l
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words w@(Rk _) l = (E w):(Pk w):l

words w@(Pk _) l = (E w):(Pk w):l

in foldr words [] (makeAdmissibleWords (n-1))

--this takes a word and a pair of limits (which must be positive

--integers) and a prime p and generates all versions of the word

--and all powers of each version that will fit inside those limits

makeVersions :: VeenWord -> Integer -> Integer -> [(String,(Integer,Integer))]

makeVersions w maxdeg prime =

let maxpow = (log (fromIntegral maxdeg))/(log (fromIntegral prime))

estimate_bounds = floor(maxpow) :: Integer

-- note that hom has at most one variable, which must have the

-- same value as the first variable in inter

(hom, inter) = bidegree w

possibleVarValues = varValueLists (numVars inter) estimate_bounds

in map (\l -> (makeKey w l, plugInAllVars prime hom l,

plugInAllVars prime inter l))

possibleVarValues

generateAllElts n maxdeg prime =

concat $ map (\w -> makeVersions w maxdeg prime)

(makeAdmissibleWords n)

consecutivePairs l =

[ (a,b,x-x’) | a@(_,(x,y)) <- l, b@(_,(x’,y’)) <- l,

x+y == x’+y’+1, x-x’>1]

possibleD n x prime = consecutivePairs $ generateAllElts n x prime

pairToString (a,b,deg) =

let showThis (k,(x,y)) = k ++ (show (x,y))

in (showThis a) ++ " ---> " ++ (showThis b) ++ ": " ++ (show deg) ++ "\n"
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