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CHAPTER 1

Homology theory

1. Chain complexes

Definition 1.1. A chain complex is a sequence of abelian groups, (Cn)n∈Z, together with homomor-
phisms dn : Cn → Cn−1 for n ∈ Z, such that dn−1 ◦ dn = 0.

Let R be an associative ring with unit 1R. A chain complex of R-modules can analoguously be defined
as a sequence of R-modules (Cn)n∈Z with R-linear maps dn : Cn → Cn−1 with dn−1 ◦ dn = 0.

Definition 1.2.
• The dn are differentials or boundary operators.
• The x ∈ Cn are called n-chains.
• Is x ∈ Cn and dnx = 0, then x is an n-cycle.

Zn(C) := {x ∈ Cn|dnx = 0}.

• If x ∈ Cn is of the form x = dn+1y for some y ∈ Cn+1, then x is an n-boundary.

Bn(C) := Im(dn+1) = {dn+1y, y ∈ Cn+1}.

Note that the cycles and boundaries form subgroups of the chains. As dn ◦ dn+1 = 0, we know that the
image of dn+1 is a subgroup of the kernel of dn and thus

Bn(C) ⊂ Zn(C).

We’ll often drop the subscript n from the boundary maps and we’ll just write C∗ for the chain complex.

Definition 1.3. The abelian group Hn(C) := Zn(C)/Bn(C) is the nth homology group of the complex
C∗.

Notation: We denote by [c] the equivalence class of a c ∈ Zn(C).
If c, c′ ∈ Cn satisfy that c− c′ is a boundary, then c is homologous to c′. That’s an equivalence relation.

Examples:

1) Consider

Cn =

{
Z n = 0, 1

0 otherwise

and let d1 be the multiplication with N ∈ N, then

Hn(C) =

{
Z/NZ n = 0

0 otherwise.

2) Take Cn = Z for all n ∈ Z and

dn =

{
idZ n odd

0 n even.

What is the homology of this chain complex?

3) Consider Cn = Z for all n ∈ Z again, but let all boundary maps be trivial. What is the homology of this
chain complex?
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Definition 1.4. Let C∗ and D∗ be two chain complexes. A chain map f : C∗ → D∗ is a sequence of
homomorphisms fn : Cn → Dn such that dDn ◦ fn = fn−1 ◦ dCn for all n, i.e., the diagram

Cn

dC
n //

fn

��

Cn−1

fn−1

��

Dn

dD
n // Dn−1

commutes for all n.

Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an induced map

Hn(f) : Hn(C) → Hn(D)

via Hn(f)∗[c] = [fnc].
There is a chain map from the chain complex mentioned in Example 1) to the chain complex D∗ that is

concentrated in degree zero and has D0 = Z/NZ. Note, that H0(f) is an isomorphism on zeroth homology
groups.

Are there chain maps between the complexes from Examples 2) and 3)?

Lemma 1.5. If f : C∗ → D∗ and g : D∗ → E∗ are two chain maps, then Hn(g) ◦Hn(f) = Hn(g ◦ f) for
all n.

When do two chain maps induce the same map on homology?

Definition 1.6. A chain homotopy H between two chain maps f, g : C∗ → D∗ is a sequence of homo-
morphisms (Hn)n∈Z with Hn : Cn → Dn+1 such that for all n

dDn+1 ◦Hn +Hn−1 ◦ dCn = fn − gn.

. . .
dC
n+2

// Cn+1

Hn+1

ww

dC
n+1

//

fn+1

��

gn+1

		

Cn

Hn

ww

dC
n //

fn

��

gn

		

Cn−1

Hn−1

ww

dC
n−1

//

fn−1

��

gn−1

		

. . .

. . .
dD
n+2

// Dn+1

dD
n+1

// Dn

dD
n // Dn−1

dD
n−1

// . . .

If such an H exists, then f and g are (chain) homotopic: f ≃ g.

We will later see geometrically defined examples of chain homotopies.

Proposition 1.7.
(a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then Hn(f) = Hn(g) for all n.

Proof. (a) If H is a homotopy from f to g, then −H is a homotopy from g to f . Each f is homotopic
to itself with H = 0. If f is homotopic to g via H and g is homotopic to h via K, then f is homotopic to h
via H +K.

(b) We have for every cycle c ∈ Zn(C∗):

Hn(f)[c]−Hn(g)[c] = [fnc− gnc] = [dDn+1 ◦Hn(c)] + [Hn−1 ◦ dCn (c)] = 0.

□

Definition 1.8. Let f : C∗ → D∗ be a chain map. We call f a chain homotopy equivalence, if there is
a chain map g : D∗ → C∗ such that g ◦ f ≃ idC∗ and f ◦ g ≃ idD∗ . The chain complexes C∗ and D∗ are then
chain homotopically equivalent.

Note, that such chain complexes have isomorphic homology. However, chain complexes with isomorphic
homology do not have to be chain homotopically equivalent. (Can you find a counterexample?)
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Definition 1.9. If C∗ and C ′
∗ are chain complexes, then their direct sum, C∗⊕C ′

∗, is the chain complex
with

(C∗ ⊕ C ′
∗)n = Cn ⊕ C ′

n = Cn × C ′
n

with differential d = d⊕ given by

d⊕(c, c
′) = (dc, dc′).

Similarly, if (C
(j)
∗ , d(j))j∈J is a family of chain complexes, then we can define their direct sum as follows:

(
⊕
j∈J

C
(j)
∗ )n :=

⊕
j∈J

C(j)
n

as abelian groups and the differential d⊕ is defined via the property that its restriction to the jth summand
is d(j).

2. Singular homology

Let v0, . . . , vn be n+ 1 points in Rn+1. Consider the convex hull

K(v0, . . . , vn) := {
n∑

i=0

tivi|
n∑

i=0

ti = 1, ti ⩾ 0}.

Definition 2.1. If the vectors v1 − v0, . . . , vn − v0 are linearly independent, then K(v0, . . . , vn) is the
simplex generated by v0, . . . , vn. We denote such a simplex by simp(v0, . . . , vn).

Example. The standard topological n-simplex is ∆n := simp(e0, . . . , en). Here, ei is the vector in Rn+1 that
has a 1 in coordinate i + 1 and is zero in all other coordinates. The first examples are: ∆0 is the point e0,
∆1 is the line segment between e0 and e1, ∆

2 is a triangle in R3 and ∆3 is homeomorphic to a tetrahedron.
The coordinate description of the n-simplex is

∆n = {(t0, . . . , tn) ∈ Rn+1|
∑

ti = 1, ti ⩾ 0}.

We consider ∆n as ∆n ⊂ Rn+1 ⊂ Rn+2 ⊂ . . ..
The boundary of ∆1 consists of two copies of ∆0, the boundary of ∆2 consists of three copies of ∆1. In

general, the boundary of ∆n consists of n+ 1 copies of ∆n−1.
We need the following face maps for 0 ⩽ i ⩽ n

di = dn−1
i : ∆n−1 ↪→ ∆n; (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

The image of dn−1
i in ∆n is the face that is opposite to ei. It is the simplex generated by e0, . . . , ei−1,

ei+1, . . . , en.
Draw the examples of the faces in ∆1 and ∆2!

Lemma 2.2. Concerning the composition of face maps, the following rule holds:

dn−1
i ◦ dn−2

j = dn−1
j ◦ dn−2

i−1 , 0 ⩽ j < i ⩽ n.

Example: face maps for ∆0 and composition into ∆2: d2 ◦ d0 = d0 ◦ d1.

Proof. Both expressions yield

dn−1
i ◦ dn−2

j (t0, . . . , tn−2) = (t0, . . . , tj−1, 0, . . . , ti−2, 0, . . . , tn−2) = dn−1
j dn−2

i−1 (t0, . . . , tn−2).

□

Let X be an arbitrary topological space, X ̸= ∅.

Definition 2.3. A singular n-simplex in X is a continuous map α : ∆n → X.

Note, that α just has to be continuous, not smooth or anything!

Definition 2.4. Let Sn(X) be the free abelian group generated by all singular n-simplices in X. We
call Sn(X) the nth singular chain module of X.
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Elements of Sn(X) are finite sums
∑

i∈I λiαi with λi = 0 for almost all i ∈ I and αi : ∆
n → X.

For all n ⩾ 0 there are non-trivial elements in Sn(X), because we assumed that X ̸= ∅: we can always
take an x0 ∈ X and the constant map κx0 : ∆

n → X as α. By convention, we define Sn(∅) = 0 for all n ⩾ 0.
If we want to define maps from Sn(X) to some abelian group then it suffices to define such a map on

generators.

Example. What is S0(X)? A continuous α : ∆0 → X is determined by its value α(e0) =: xα ∈ X, which is a
point in X. A singular 0-simplex

∑
i∈I λiαi can thus be identified with the formal sum of points

∑
i∈I λixαi

.
For instance if you count the zeroes and poles of a meromorphic function with multiplicities then this gives
an element in S0(X). In algebraic geometry a divisor is an element in S0(X).

Definition 2.5. We define ∂i : Sn(X) → Sn−1(X) on generators

∂i(α) = α ◦ dn−1
i

and call it the ith face of α.

On Sn(X) we therefore get ∂i(
∑

j λjαj) =
∑

j λj(αj ◦ dn−1
i ).

Lemma 2.6. The face maps on Sn(X) satisfy

∂j ◦ ∂i = ∂i−1 ◦ ∂j , 0 ⩽ j < i ⩽ n.

Proof. The proof follows from the one of Lemma 2.2. □

Definition 2.7. We define the boundary operator on singular chains as ∂ : Sn(X) → Sn−1(X), ∂ =∑n
i=0(−1)i∂i.

Lemma 2.8. The map ∂ is a boundary operator, i.e., ∂ ◦ ∂ = 0.

Proof. We calculate

∂ ◦ ∂ = (

n−1∑
j=0

(−1)j∂j) ◦ (
n∑

i=0

(−1)i∂i) =
∑∑

(−1)i+j∂j ◦ ∂i

=
∑

0⩽j<i⩽n

(−1)i+j∂j ◦ ∂i +
∑

0⩽i⩽j⩽n−1

(−1)i+j∂j ◦ ∂i

=
∑

0⩽j<i⩽n

(−1)i+j∂i−1 ◦ ∂j +
∑

0⩽i⩽j⩽n−1

(−1)i+j∂j ◦ ∂i = 0.

□

We therefore obtain the singular chain complex, S∗(X),

. . . //Sn(X)
∂ //Sn−1(X)

∂ // . . .
∂ //S1(X)

∂ //S0(X) //0.

We abbreviate Zn(S∗(X)) by Zn(X), Bn(S∗(X)) by Bn(X) and Hn(S∗(X)) by Hn(X).

Definition 2.9. For a space X, Hn(X) is the nth singular homology group of X.

Note that Z0(X) = S0(X).
As an example of a 1-cycle consider a 1-chain c = α + β + γ where α, β, γ : ∆1 → X such that α(e1) =

β(e0), β(e1) = γ(e0) and γ(e1) = α(e0) and calculate that ∂c = 0.
We need to understand how continuous maps of topological spaces interact with singular chains and

singular homology.
Let f : X → Y be a continuous map.

Definition 2.10. The map fn = Sn(f) : Sn(X) → Sn(Y ) is defined on generators α : ∆n → X as

fn(α) = f ◦ α : ∆n α //X
f
//Y.
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Lemma 2.11. For any continuous f : X → Y we have

Sn(X)
fn //

∂X

��

Sn(Y )

∂Y

��

Sn−1(X)
fn−1

// Sn−1(Y ),

i.e., (fn)n is a chain map and hence induces a map Hn(f) : Hn(X) → Hn(Y ).

Proof. By definition

∂Y (fn(α)) =

n∑
i=0

(−1)i(f ◦ α) ◦ di =
n∑

i=0

(−1)if ◦ (α ◦ di) = fn−1(∂
Xα).

□

Of course, the identity map on X induces the identity map on Hn(X) for all n ⩾ 0 and if we have a
composition of continuous maps

X
f
//Y

g
//Z,

then Sn(g ◦ f) = Sn(g) ◦ Sn(f) and Hn(g ◦ f) = Hn(g) ◦Hn(f). In categorical language, this says precisely
that Sn(−) and Hn(−) are functors from the category of topological spaces and continuous maps into the
category of abelian groups. Taking all Sn(−) together turns S∗(−) into a functor from topological spaces
and continuous maps into the category of chain complexes with chain maps as morphisms.

One implication of Lemma 2.11 is that homeomorphic spaces have isomorphic homology groups:

X ∼= Y ⇒ Hn(X) ∼= Hn(Y ) for all n ⩾ 0.

Our first (not too exciting) calculation is the following:

Proposition 2.12. The homology groups of a one-point space pt are trivial but in degree zero,

Hn(pt) ∼=

{
0, if n > 0,

Z, if n = 0.

Proof. For every n ⩾ 0 there is precisely one continuous map α : ∆n → pt, namely the constant map.
We denote this map by κn. Then the boundary of κn is

∂κn =

n∑
i=0

(−1)iκn ◦ di =
n∑

i=0

(−1)iκn−1 =

{
κn−1, n even,

0, n odd.

For all n we have Sn(pt) ∼= Z generated by κn and therefore the singular chain complex looks as follows:

. . .
∂=0 //Z ∂=idZ //Z ∂=0 //Z.

□

3. H0 and H1

Before we calculate anything, we define a map.

Proposition 3.1. For any topological space X there is a homomorphism ε : H0(X) → Z with ε ̸= 0 for
X ̸= ∅.

Proof. If X ̸= ∅, then we define ε(α) = 1 for any α : ∆0 → X, thus ε(
∑

i∈I λiαi) =
∑

i∈I λi on S0(X).
As only finitely many λi are non-trivial, this is in fact a finite sum.

We have to show that this map is well-defined on homology, i.e., that it vanishes on boundaries. One
possibility is to see that ε can be interpreted as the map on singular chains that is induced by the projection
map of X to a one-point space.
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One can also show the claim directly: Let S0(X) ∋ c = ∂b be a boundary and write b =
∑

i∈I νiβi with

βi : ∆
1 → X. Then we get

∂b = ∂
∑
i∈I

νiβi =
∑
i∈I

νi(βi ◦ d0 − βi ◦ d1) =
∑
i∈I

νiβi ◦ d0 −
∑
i∈I

νiβi ◦ d1

and hence

ε(c) = ε(∂b) =
∑
i∈I

νi −
∑
i∈I

νi = 0.

□

We said that S0(∅) is zero, so H0(∅) = 0 and in this case we define ε to be the zero map.
If X ̸= ∅, then any α : ∆0 → X can be identified with its image point, so the map ε on S0(X) counts

points in X with multiplicities.

Proposition 3.2. If X is a path-connected, non-empty space, then ε : H0(X) ∼= Z.

Proof. As X is non-empty, there is a point x ∈ X and the constant map κx with value x is an element
in S0(X) with ε(κx) = 1. Therefore ε is surjective. For any other point y ∈ X there is a continuous path
ω : [0, 1] → X with ω(0) = x and ω(1) = y. We define αω : ∆

1 → X as

αω(t0, t1) = ω(1− t0).

Then

∂(αω) = ∂0(αω)− ∂1(αω) = αω(e1)− αω(e0) = αω(0, 1)− αω(1, 0) = κy − κx,

and the two generators κx, κy are homologous. This shows that ε is injective. □

From now on we will identify paths w and their associated 1-simplices αw.

Corollary 3.3. If X is of the form X =
⊔

i∈I Xi such that the Xi are non-empty and path-connected,
then

H0(X) ∼=
⊕
i∈I

Z.

In this case, the zeroth homology group of X is the free abelian group generated by the path-components.

Proof. The singular chain complex of X splits as the direct sum of chain complexes of the Xi:

Sn(X) ∼=
⊕
i∈I

Sn(Xi)

for all n. Boundary summands ∂i stay in a component, in particular,

∂ : S1(X) ∼=
⊕
i∈I

S1(Xi) →
⊕
i∈I

S0(Xi) ∼= S0(X)

is the direct sum of the boundary operators ∂ : S1(Xi) → S0(Xi) and the claim follows. □

Next, we want to relate H1 to the fundamental group. Let X be path-connected and x ∈ X.

Lemma 3.4. Let ω1, ω2, ω be paths in X.

(a) Constant paths are null-homologous.
(b) If ω1(1) = ω2(0), then ω1 ∗ ω2 − ω1 − ω2 is a boundary. Here ω1 ∗ ω2 is the concatenation of ω1

followed by ω2.
(c) If ω1(0) = ω2(0), ω1(1) = ω2(1) and if ω1 is homotopic to ω2 relative to {0, 1}, then ω1 and ω2 are

homologous as singular 1-chains.
(d) Any 1-chain of the form ω̄ ∗ ω is a boundary. Here, ω̄(t) := ω(1− t).
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Proof. For a), consider the constant singular 2-simplex α(t0, t1, t2) = x and cx, the constant path on
x. Then ∂α = cx − cx + cx = cx.

For b), we define a singular 2-simplex β : ∆2 → X as follows.

�
�
�
�
�
��

A
A
A

A
A
AK

-
ω1

ω2ω1 ∗ ω2 Q
QQ

Q
Q

Q
QQ

Q
QQ

e0 e1

e2

We define β on the boundary components of ∆2 as indicated and prolong it constantly along the sloped
inner lines. Then

∂β = β ◦ d0 − β ◦ d1 + β ◦ d2 = ω2 − ω1 ∗ ω2 + ω1.

For c): Let H : [0, 1]× [0, 1] → X a homotopy from ω1 to ω2. As we have that H(0, t) = ω1(0) = ω2(0),
we can factor H through the quotient [0, 1]× [0, 1]/{0} × [0, 1] ∼= ∆2 with induced map h : ∆2 → X. Then

∂h = h ◦ d0 − h ◦ d1 + h ◦ d2.

The first summand is null-homologous, because it’s constant (with value ω1(1) = ω2(1)), the second one is
ω2 and the last is ω1, thus ω1 − ω2 is null-homologous.

For d): Consider γ : ∆2 → X as indicated below.

�
�
�
�
�
��

A
A
A

A
A
AK

-
ω̄

ωω(1)

�
�
�
��

�
�
�

��

e0 e1

e2

□

Definition 3.5. Let h : π1(X,x) → H1(X) be the map, that sends the homotopy class of a closed path
ω, [ω]π1 , to its homology class [ω] = [ω]H1 . This map is called the Hurewicz-homomorphism.

Witold Hurewicz: 1904–1956 https://en.wikipedia.org/wiki/Witold_Hurewicz (Mayan pyramids
are dangerous, at least for mathematicians.)

Lemma 3.4 ensures that h is well-defined and

h([ω1][ω2]) = h([ω1 ∗ ω2]) = [ω1] + [ω2] = h([ω1]) + h([ω2]);

thus h is a homomorphism.
Note that for a closed path ω we have that [ω̄] = −[ω] in H1(X).

Definition 3.6. Let G be an arbitrary group, then its abelianization, Gab, is G/[G,G].

Recall that [G,G] is the commutator subgroup of G. That is the smallest subgroup of G containing all
commutators ghg−1h−1, g, h ∈ G. It is a normal subgroup of G: If c ∈ [G,G], then for any g ∈ G the element
gcg−1c−1 is a commutator and also by the closure property of subgroups the element gcg−1c−1c = gcg−1 is
in the commutator subgroup.
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Proposition 3.7. The Hurewicz homomorphism factors through the abelianization of π1(X,x) and
induces an isomorphism

π1(X,x)ab ∼= H1(X)

for all path-connected X.

π1(X,x)
h //

p

��

H1(X)

π1(X,x)ab = π1(X,x)/[π1(X,x), π1(X,x)]

∼=
hab

33

Proof. We will construct an inverse to hab. For any y ∈ X we choose a path uy from x to y. For y = x
we take ux to be the constant path on x. Let α be an arbitrary singular 1-simplex and yi = α(ei). Define
ϕ : S1(X) → π1(X,x)ab on generators as ϕ(α) = [uy0

∗α ∗ ūy1
] and extend ϕ linearly to all of S1(X), keeping

in mind that the composition in π1 is written multiplicatively.
We have to show that ϕ is trivial on boundaries, so let β : ∆2 → X. Then

ϕ(∂β) = ϕ(β ◦ d0 − β ◦ d1 + β ◦ d2) = ϕ(β ◦ d0)ϕ(β ◦ d1)−1ϕ(β ◦ d2).

Abbreviating β ◦ di with αi we get as a result

[uy1
∗ α0 ∗ ūy2

][uy0
∗ α1 ∗ ūy2

]−1[uy0
∗ α2 ∗ ūy1

] = [uy0
∗ α2 ∗ ūy1

∗ uy1
∗ α0 ∗ ūy2

∗ uy2
∗ ᾱ1 ∗ ūy0

].

Here, we’ve used that the image of ϕ is abelian. We can reduce ūy1 ∗ uy1 and ūy2 ∗ uy2 and are left with
[uy0 ∗ α2 ∗ α0 ∗ ᾱ1 ∗ ūy0 ] but α2 ∗ α0 ∗ ᾱ1 is the closed path tracing the boundary of β and therefore it is
null-homotopic in X. Thus ϕ(∂β) = 0 and ϕ passes to a map

ϕ : H1(X) → π1(X,x)ab.

The composition ϕ ◦ hab evaluated on the class of a closed path ω gives

ϕ ◦ hab[ω]π1
= ϕ[ω]H1

= [ux ∗ ω ∗ ūx]π1
.

But we chose ux to be constant, thus ϕ ◦ hab = id.
If c =

∑
λiαi is a cycle, then hab ◦ ϕ(c) is of the form [c + D∂c] where the D∂c-part comes from the

contributions of the uyi
. The fact that ∂(c) = 0 implies that the summands in D∂c cancel off and thus

hab ◦ ϕ = idH1(X). □

Note, that abelianization doesn’t change anything for abelian groups, i.e., whenever we have an abelian
fundamental group, we know that H1(X) ∼= π1(X,x).

Corollary 3.8. Knowledge of π1 gives

H1(Sn) = 0, for n > 1,

H1(S1) ∼= Z,
H1(S1 × . . .× S1︸ ︷︷ ︸

n

) ∼= Zn,

H1(S1 ∨ S1) ∼= (Z ∗ Z)ab ∼= Z⊕ Z,

H1(RPn) ∼=

{
Z, n = 1,

Z/2Z, n > 1,

H1(Fg) ∼= Z2g, for g ⩾ 1,

H1(K) ∼= Z⊕ Z/2Z.

In the last case, K denotes the Klein bottle.

12



4. Homotopy invariance

We want to show that two continuous maps that are homotopic induce identical maps on the level of
homology groups.

Heuristics: If α : ∆n → X is a singular n-simplex and if f, g are homotopic maps from X to Y , then
the homotopy from f ◦ α to g ◦ α starts on ∆n × [0, 1]. We want to translate this geometric homotopy into
a chain homotopy on the singular chain complex. To that end we have to cut the prism ∆n × [0, 1] into
(n+ 1)-simplices. In low dimensions this is easy:

∆0 × [0, 1] is homeomorphic to ∆1, ∆1 × [0, 1] ∼= [0, 1]2 and this can be cut into two copies of ∆2 and
∆2 × [0, 1] is a 3-dimensional prism and that can be glued together from three tetrahedrons, e.g., like

@@

@@

�����

�����
@@�����

�
�
�
��

�
�
�
�
�
�

@@

�����

�
�
�
��

�
�
�
�
�
�
��

@@�����
�
�
�
�
�
�
��

�
�
�

�
�
�

As you might guess now, we use n+ 1 copies of ∆n+1 to build ∆n × [0, 1].

Definition 4.1. For i = 0, . . . , n define pi : ∆
n+1 → ∆n × [0, 1] as

pi(t0, . . . , tn+1) = ((t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1), ti+1 + . . .+ tn+1) ∈ ∆n × [0, 1].

On the standard basis vectors ek we obtain

pi(ek) =

{
(ek, 0), for 0 ⩽ k ⩽ i,

(ek−1, 1), for k > i.

We obtain maps Pi : Sn(X) → Sn+1(X × [0, 1]) via Pi(α) = (α× id) ◦ pi:

∆n+1 pi //∆n × [0, 1]
α×id

//X × [0, 1].

For k = 0, 1 let jk : X → X × [0, 1] be the inclusion x 7→ (x, k).

Lemma 4.2. The maps Pi satisfy the following relations

(a) ∂0 ◦ P0 = Sn(j1),
(b) ∂n+1 ◦ Pn = Sn(j0),
(c) ∂i ◦ Pi = ∂i ◦ Pi−1 for 1 ⩽ i ⩽ n.
(d)

∂j ◦ Pi =

{
Pi ◦ ∂j−1, for i ⩽ j − 2

Pi−1 ◦ ∂j , for i ⩾ j + 1.

Proof. Note that it suffices to check the corresponding claims for the pi’s and dj ’s.
For the first two points, we note that on ∆n we have

p0 ◦ d0(t0, . . . , tn) = p0(0, t0, . . . , tn) = ((t0, . . . , tn),
∑

ti) = ((t0, . . . , tn), 1) = j1(t0, . . . , tn)

and
pn ◦ dn+1(t0, . . . , tn) = pn(t0, . . . , tn, 0) = ((t0, . . . , tn), 0) = j0(t0, . . . , tn).

For c), one checks that pi ◦ di = pi−1 ◦ di on ∆n: both give ((t0, . . . , tn),
∑n

j=i tj) on (t0, . . . , tn).
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For d) in the case i ⩾ j + 1, consider the following diagram

∆n+1

pi

''

∆n

dj

99

pi−1
%%

∆n × [0, 1]

∆n−1 × [0, 1]

dj×id

77

Checking coordinates one sees that this diagram commutes. The remaining case follows from a similar
observation. □

Definition 4.3. We define P : Sn(X) → Sn+1(X × [0, 1]) as P =
∑n

i=0(−1)iPi.

Lemma 4.4. The map P is a chain homotopy between (Sn(j0))n and (Sn(j1))n, i.e., ∂ ◦ P + P ◦ ∂ =
Sn(j1)− Sn(j0).

Proof. We take an α : ∆n → X and calculate

∂Pα+ P∂α =

n∑
i=0

n+1∑
j=0

(−1)i+j∂jPiα+

n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

If we single out the terms involving the pairs of indices (0, 0) and (n, n+1) in the first sum, we are left with

Sn(j1)(α)− Sn(j0)(α) +
∑

(i,j)̸=(0,0),(n,n+1)

(−1)i+j∂jPiα+

n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

Using Lemma 4.2 we see that only the first two summands survive. □

So, finally we can prove the main result of this section:

Theorem 4.5. (Homotopy invariance)
If f, g : X → Y are homotopic maps, then they induce the same map on homology.

Proof. Let H : X × [0, 1] → Y be a homotopy from f to g, i.e., H ◦ j0 = f and H ◦ j1 = g. Set
Kn := Sn+1(H) ◦ P . We claim that (Kn)n is a chain homotopy between (Sn(f))n and (Sn(g))n. Note that
H induces a chain map (Sn(H))n. Therefore we get

∂ ◦ Sn+1(H) ◦ P + Sn(H) ◦ P ◦ ∂ = Sn(H) ◦ ∂ ◦ P + Sn(H) ◦ P ◦ ∂
= Sn(H) ◦ (∂ ◦ P + P ◦ ∂)
= Sn(H) ◦ (Sn(j1)− Sn(j0)) = Sn(H ◦ j1)− Sn(H ◦ j0)
= Sn(g)− Sn(f).

Hence these two maps are chain homotopic and Hn(g) = Hn(f) for all n. □

Corollary 4.6. If two spaces X,Y are homotopy equivalent, then H∗(X) ∼= H∗(Y ). In particular, if
X is contractible, then

H∗(X) ∼=

{
Z, for ∗ = 0,

0, otherwise.

Examples. As Rn is contractible for all n, the above corollary gives that its homology is trivial but in
degree zero where it consists of the integers.

As the Möbius strip is homotopy equivalent to S1, we know that their homology groups are isomorphic.
If you know about vector bundles: the zero section of a vector bundle induces a homotopy equivalence

between the base and the total space, hence these two have isomorphic homology groups.
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5. The long exact sequence in homology

A typical situation is that there is a subspace A of a topological space X and you might know something
about A or X and want to calculate the homology of the other space using that partial information.

But before we can move on to topological applications we need some techniques about chain complexes.
We need to know that a short exact sequence of chain complexes gives rise to a long exact sequence in
homology.

Definition 5.1. Let A,B,C be abelian groups and

A
f
//B

g
//C

a sequence of homomorphisms. Then this sequence is exact, if the image of f is the kernel of g.

Definition 5.2. If

. . .
fi+1

//Ai
fi //Ai−1

fi−1
// . . .

is a sequence of homomorphisms of abelian groups (indexed over the integers), then this sequence is called
(long) exact, if it is exact at every Ai, i.e., the image of fi+1 is the kernel of fi for all i.

An exact sequence of the form

0 //A
f
//B

g
//C //0

is called a short exact sequence.

Examples. The sequence

0 //Z 2· //Z π //Z/2Z //0

is a short exact sequence.

If ι : U → A is a monomorphism, then 0 //U
ι //A is exact. Similarly, an epimorphism ϱ : B → Q

gives rise to an exact sequence B
ϱ
//Q //0 and an isomorphism ϕ : A ∼= A′ sits in an exact sequence

0 //A
ϕ
//A′ //0.

A sequence

0 //A
f
//B

g
//C //0

is exact iff f is injective, the image of f is the kernel of g and g is an epimorphism. Another equivalent
description is to view a sequence as above as a chain complex with vanishing homology groups. Homology
measures the deviation from exactness.

Definition 5.3. If A∗, B∗, C∗ are chain complexes and f∗ : A∗ → B∗, g : B∗ → C∗ are chain maps, then
we call the sequence

A∗
f∗ //B∗

g∗ //C∗

exact, if the image of fn is the kernel of gn for all n ∈ Z.
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Thus such an exact sequence of chain complexes is a commuting double ladder

...

d

��

...

d

��

...

d

��

An+1

fn+1
//

d

��

Bn+1

gn+1
//

d

��

Cn+1

d

��

An
fn //

d

��

Bn
gn //

d

��

Cn

d

��

An−1

fn−1
//

d��

Bn−1

gn−1
//

d��

Cn+1

d��

...
...

...

in which every row is exact.

Example. Let p be a prime, then

0

��

0

��

0

��

Z id //

p

��

Z 0 //

p2

��

0

��

Z
p

//

π

��

Z π //

π

��

Z/pZ

id

��

Z/pZ
p
//

��

Z/p2Z π //

��

Z/pZ

��

0 0 0

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here, π denotes varying
canonical projection maps.

Proposition 5.4. If 0 //A∗
f
//B∗

g
//C∗ //0 is a short exact sequence of chain complexes,

then there exists a homomorphism δ : Hn(C∗) → Hn−1(A∗) for all n ∈ Z which is natural, i.e., if

0 // A∗
f
//

α

��

B∗
g
//

β

��

C∗ //

γ

��

0

0 // A′
∗

f ′
// B′

∗
g′
// C ′

∗
// 0

is a commutative diagram of chain maps in which the rows are exact then Hn−1(α) ◦ δ = δ ◦Hn(γ),

Hn(C∗)
δ //

Hn(γ)

��

Hn−1(A∗)

Hn−1(α)

��

Hn(C
′
∗)

δ // Hn−1(A
′
∗)

The method of proof is an instance of a diagram chase. The homomorphism δ is called connecting
homomorphism. The implicit claim in the proposition above is that δ is not always the zero map.
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Proof. We show the existence of a δ first and then prove that the constructed map satisfies the natu-
rality condition.

a) Definition of δ:
Is c ∈ Cn with d(c) = 0, then we choose a b ∈ Bn with gnb = c. This is possible because gn is surjective.

We know that dgnb = dc = 0 = gn−1db thus db is in the kernel of gn−1, hence it is in the image of fn−1.
Thus there is an a ∈ An−1 with fn−1a = db. We have that fn−2da = dfn−1a = ddb = 0 and as fn−2 is
injective, this shows that a is a cycle.

We define δ[c] := [a].

Bn ∋ b
� gn // c ∈ Cn

An−1 ∋ a
� fn−1

// db ∈ Bn−1

In order to check that δ is well-defined, we assume that there are b and b′ with gnb = gnb
′ = c. Then

gn(b− b′) = 0 and thus there is an ã ∈ An with fnã = b− b′. Define a′ as a− dã. Then

fn−1a
′ = fn−1a− fn−1dã = db− db+ db′ = db′

because fn−1dã = db − db′. As fn−1 is injective, we get that a′ is uniquely determined with this property.
As a is homologous to a′ we get that [a] = [a′] = δ[c], thus the latter is independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary term to c, i.e.,
take c′ = c+ dc̃ for some c̃ ∈ Cn+1. Choose preimages of c, c̃ under gn and gn+1, i.e., b and b̃ with gnb = c

and gn+1b̃ = c̃. Then the element b′ = b+ db̃ has boundary db′ = db and thus both choices will result in the
same a.

Therefore δ : Hn(C∗) → Hn−1(A∗) is well-defined.
b) We have to show that δ is natural with respect to maps of short exact sequences.
Let c ∈ Zn(C∗), then δ[c] = [a] for a b ∈ Bn with gnb = c and an a ∈ An−1 with fn−1a = db. Therefore,

Hn−1(α)(δ[c]) = [αn−1(a)].
On the other hand, we have

f ′n−1(αn−1a) = βn−1(fn−1a) = βn−1(db) = dβnb

and
g′n(βnb) = γngnb = γnc

and we can conclude that by the construction of δ

δ[γn(c)] = [αn−1(a)]

and this shows δ ◦Hn(γ) = Hn−1(α) ◦ δ. □

With this auxiliary result at hand we can now prove the main result in this section:

Proposition 5.5. For any short exact sequence

0 //A∗
f
//B∗

g
//C∗ //0

of chain complexes we obtain a long exact sequence of homology groups

. . .
δ //Hn(A∗)

Hn(f)
//Hn(B∗)

Hn(g)
//Hn(C∗)

δ //Hn−1(A∗)
Hn−1(f)

// . . .

Proof. a) Exactness at the spot Hn(B∗):
We have Hn(g) ◦Hn(f)[a] = [gn(fn(a))] = 0 because the composition of gn and fn is zero. This proves

that the image of Hn(f) is contained in the kernel of Hn(g).

For the converse, let [b] ∈ Hn(B∗) with [gnb] = 0. Then there is a c ∈ Cn+1 with dc = gnb. As gn+1 is
surjective, we find a b′ ∈ Bn+1 with gn+1b

′ = c. Hence

gn(b− db′) = gnb− dgn+1b
′ = dc− dc = 0.

Exactness gives an a ∈ An with fna = b − db′ and da = 0 and therefore fna is homologous to b and
Hn(f)[a] = [b] thus the kernel of Hn(g) is contained in the image of Hn(f).
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b) Exactness at the spot Hn(C∗):
Let b ∈ Hn(B∗), then δ[gnb] = 0 because b is a cycle, so 0 is the only preimage under fn−1 of db = 0.

Therefore the image of Hn(g) is contained in the kernel of δ.

Now assume that δ[c] = 0, thus in the construction of δ, the a is a boundary, a = da′. Then for a
preimage of c under gn, b, we have by the definition of a

d(b− fna
′) = db− dfna

′ = db− fn−1a = 0.

Thus b − fna
′ is a cycle and gn(b − fna

′) = gnb − gnfna
′ = gnb − 0 = gnb = c, so we found a preimage for

[c] and the kernel of δ is contained in the image of Hn(g).

c) Exactness at Hn−1(A∗):
Let c be a cycle in Zn(C∗). Again, we choose a preimage b of c under gn and an a with fn−1(a) = db.

Then Hn−1(f)δ[c] = [fn−1(a)] = [db] = 0. Thus the image of δ is contained in the kernel of Hn−1(f).

If a ∈ Zn−1(A∗) with Hn−1(f)[a] = 0. Then fn−1a = db for some b ∈ Bn. Take c = gnb. Then by
definition δ[c] = [a]. □

6. The long exact sequence of a pair of spaces

Let X be a topological space and A ⊂ X a subspace of X. Consider the inclusion map i : A → X,
i(a) = a. We obtain an induced map Sn(i) : Sn(A) → Sn(X), but we know that the inclusion of spaces
doesn’t have to yield a monomorphism on homology groups. For instance, we can include A = S1 into
X = D2.

We consider pairs of spaces (X,A).

Definition 6.1. The relative chain complex of (X,A) is

S∗(X,A) := S∗(X)/S∗(A).

Alternatively, Sn(X,A) is isomorphic to the free abelian group generated by all n-simplices β : ∆n → X
whose image is not completely contained in A, i.e., β(∆n) ∩ (X \A) ̸= ∅.

Definition 6.2.
• Elements in Sn(X,A) are called relative chains in (X,A)
• Cycles in Sn(X,A) are chains c with ∂X(c) whose generators have image in A. These are relative
cycles.

• Boundaries in Sn(X,A) are chains c in X such that c = ∂Xb+ a where a is a chain in A.

A continuous map f : X → Y with f(A) ⊂ B is denoted by f : (X,A) → (Y,B). Such maps induce
chain maps S∗(f) : S∗(X,A) → S∗(Y,B).

The following facts are immediate from the definition:

(a) Sn(X,∅) ∼= Sn(X).
(b) Sn(X,X) = 0.
(c) Sn(X ⊔X ′, X ′) ∼= Sn(X).

Definition 6.3. The relative homology groups of (X,A) are

Hn(X,A) := Hn(S∗(X,A)).

Theorem 6.4. For any pair of topological spaces A ⊂ X we obtain a long exact sequence

. . .
δ //Hn(A)

Hn(i)
//Hn(X) //Hn(X,A)

δ //Hn−1(A)
Hn−1(i)

// . . .

For a map f : (X,A) → (Y,B) we get an induced map of long exact sequences

. . .
δ // Hn(A)

Hn(f |A)

��

Hn(i)
// Hn(X)

Hn(f)

��

// Hn(X,A)

Hn(f)

��

δ // Hn−1(A)

Hn−1(f |A)

��

Hn−1(i)
// . . .

. . .
δ
// Hn(B)

Hn(i)
// Hn(Y ) // Hn(Y,B)

δ
// Hn−1(B)

Hn−1(i)
// . . .
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Proof. By definition of S∗(X,A) the sequence

0 //S∗(A)
S∗(i)

//S∗(X)
π //S∗(X,A) //0

is an exact sequence of chain complexes and by Proposition 5.5 we obtain the first claim. For a map f as
above the following diagram

0 // Sn(A)

Sn(f |A)

��

Sn(i)
// Sn(X)

Sn(f)

��

π // Sn(X,A)

Sn(f)/Sn(f |A)

��

// 0

0 // Sn(B)
Sn(i)

// Sn(Y )
π // Sn(Y,B) // 0

commutes. □

Example. Let A = Sn−1 and X = Dn, then we know that Hj(i) is trivial for j > 0. From the long exact
sequence we get that δ : Hj(Dn,Sn−1) ∼= Hj−1(Sn−1) for j > 1 and n ⩾ 1.

Proposition 6.5. If i : A ↪→ X is a weak retract, i.e., if there is an r : X → A with r ◦ i ≃ idA, then

Hn(X) ∼= Hn(A)⊕Hn(X,A), 0 ⩽ n.

Proof. From the assumption we get that Hn(r)◦Hn(i) = Hn(idA) = idHn(A) for all n and hence Hn(i)

is injective for all n. This implies that 0 //Hn(A)
Hn(i)

//Hn(X) is exact. Injectivity of Hn−1(i) yields
that the image of δ : Hn(X,A) → Hn−1(A) is trivial. Therefore we get short exact sequences

0 //Hn(A)
Hn(i)

//Hn(X)
π∗ //Hn(X,A) //0

for all n. As Hn(r) is a left-inverse for Hn(i) we obtain a splitting

Hn(X) ∼= Hn(A)⊕Hn(X,A)

because we map [c] ∈ Hn(X) to ([rc], π∗[c]) with inverse

Hn(A)⊕Hn(X,A) ∋ ([a], [b]) 7→ Hn(i)[a] + [a′]−Hn(i ◦ r)[a′] ∈ Hn(X)

for any [a′] ∈ Hn(X) with π∗[a
′] = [b]. The second map is well-defined: if [a′′] is another element with

π∗[a
′′] = [b], then [a′ − a′′] is of the form Hn(i)[ã] because this element is in the kernel of π∗ and hence

[a′ − a′′]−Hn(ir)[a
′ − a′′] is trivial. □

Proposition 6.6. For any ∅ ̸= A ⊂ X such that A ⊂ X is a deformation retract we get

Hn(i) : Hn(A) ∼= Hn(X), Hn(X,A) ∼= 0, 0 ⩽ n.

Proof. Recall, that i : A ↪→ X is a deformation retract, if there is a homotopy R : X × [0, 1] → X such
that

(a) R(x, 0) = x for all x ∈ X,
(b) R(x, 1) ∈ A for all x ∈ X, and
(c) R(a, 1) = a for all a ∈ A.

In particular, R is a homotopy from idX to i ◦ r where r = R(−, 1) : X → A. Condition (c) can be
rewritten as r ◦ i = idA, i.e., r is a retraction, and thus A and X are homotopically equivalent and Hn(i) is
an isomorphism for all n ⩾ 0. □

Definition 6.7. If X has two subspaces A,B ⊂ X, then (X,A,B) is called a triple, if B ⊂ A ⊂ X.

Any triple gives rise to three pairs of spaces (X,A), (X,B) and (A,B) and accordingly we have three
long exact sequences in homology. But there is another one.
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Proposition 6.8. For any triple (X,A,B) there is a natural long exact sequence

. . . //Hn(A,B) //Hn(X,B) //Hn(X,A)
δ //Hn−1(A,B) // . . .

This sequence is part of the following braided commutative diagram displaying four long exact sequences

. . .

&&

. . .

Hn+1(X,A)
!!

&&

Hn(A,B)
""

&&

Hn−1(B)

$$

99

. . .

99

%%

Hn(A)

99

%%

Hn(X,B)

88

&&

. . .

Hn(B)
==

88

Hn(X)
<<

88

Hn(X,A)

::

%%. . .

88

. . .

In particular, the connecting homomorphism δ : Hn(X,A) → Hn−1(A,B) is the composite δ = π
(A,B)
∗ ◦

δ(X,A).

Proof. Consider the sequence

0 //Sn(A)/Sn(B) //Sn(X)/Sn(B) //Sn(X)/Sn(A) //0.

This sequence is exact, because Sn(B) ⊂ Sn(A) ⊂ Sn(X). □

7. Excision

The aim is to simplify relative homology groups. Let A ⊂ X be a subspace. Then it is easy to see that
H∗(X,A) is not isomorphic to H∗(X \A): Consider the figure eight as X and A as the point connecting the
two copies of S1, then H0(X,A) is trivial, but H0(X \A) ∼= Z⊕ Z.

&%
'$

&%
'$
•

So if we want to simplify H∗(X,A) by excising something, then we have to be more careful. The first
step towards that is to make singular simplices ’smaller’. The technique is called barycentric subdivision
and that is a tool that’s frequently used.

First, we construct cones. Let v ∈ ∆p and let α : ∆n → ∆p be a singular n-simplex in ∆p.

Definition 7.1. The cone of α with respect to v is Kv(α) : ∆
n+1 → ∆p,

(t0, . . . , tn+1) 7→

{
(1− tn+1)α(

t0
1−tn+1

, . . . , tn
1−tn+1

) + tn+1v, tn+1 < 1,

v, tn+1 = 1.

This map is well-defined and continuous. On the standard basis vectors Kv gives Kv(ei) = α(ei) for
0 ⩽ i ⩽ n but Kv(en+1) = v. Extending Kv linearly gives a map

Kv : Sn(∆
p) → Sn+1(∆

p).

Lemma 7.2. The map Kv satisfies

• ∂Kv(c) = ε(c).κv − c for c ∈ S0(∆
p), κv(e0) = v and ε the augmentation.

• For n > 0 we have that ∂ ◦Kv −Kv ◦ ∂ = (−1)n+1id.
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Proof. For a singular 0-simplex α : ∆0 → ∆p we know that ε(α) = 1 and we calculate

∂Kv(α)(e0) = (Kv(α) ◦ d0)(e0)− (Kv(α) ◦ d1)(e0) = Kv(α)(e1)−Kv(α)(e0) = v − α(e0).

For n > 0 we have to calculate ∂iKv(α) and it is straightforward to see that ∂n+1Kv(α) = α and
∂i(Kv(α)) = Kv(∂iα) for all i < n+ 1. □

Definition 7.3. For α : ∆n → ∆p let v(α) = v := 1
n+1

∑n
i=0 α(ei). The barycentric subdivision

B : Sn(∆p) → Sn(∆p) is defined inductively as B(α) = α for α ∈ S0(∆p) and B(α) = (−1)nKv(B(∂α)) for
n > 0.

For n ⩾ 1 this yields B(α) =
∑n

i=0(−1)n+iKv(B(∂iα)).
If we take n = p and α = id∆n , then for small n this looks as follows: You cannot subdivide a point any

further. For n = 1 we get

@
@

@I

@
@
@R

•

•

•

And for n = 2 we get (up to tilting)

@
@

@
@

@
@@

@
@

•

•

•

�
�

�
�

�
��

�
�•

•

• •���������

PPPPPPPPP •

Lemma 7.4. The barycentric subdivision is a chain map.

Proof. We have to show that ∂B = B∂. If α is a singular zero chain, then ∂Bα = ∂α = 0 and
B∂α = B(0) = 0.

Let n = 1. Then

∂Bα = −∂KvB(∂0α) + ∂KvB(∂1α).

But the boundary terms are zero chains and there B is the identity so we get

−∂Kv(∂0α) + ∂Kv(∂1α) = −κv + ∂0α+ κv − ∂1α = ∂α = B∂α.

(Note, that the v is v(α), not a v(∂iα).)
We prove the claim inductively, so let α ∈ Sn(∆

p). Then

∂Bα =(−1)n∂Kv(B∂α)

=(−1)n((−1)nB∂α+Kv∂B∂α)

=B∂α+ (−1)nKvB∂∂α = B∂α.

Here, the first equality is by definition, the second one follows by Lemma 7.2 and then we use the induction
hypothesis and the fact that ∂∂ = 0. □

Our aim is to show that B doesn’t change anything on the level of homology groups and to that end we
prove that it is chain homotopic to the identity.

We construct ψn : Sn(∆
p) → Sn+1(∆

p) again inductively as

ψ0(α) := 0, ψn(α) := (−1)n+1Kv(Bα− α− ψn−1∂α)

with v = 1
n+1

∑n
i=0 α(ei).

Lemma 7.5. The sequence (ψn)n is a chain homotopy from B to the identity.
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Proof. For n = 0 we have ∂ψ0 = 0 and this agrees with B − id in that degree.
For n = 1, we get

∂ψ1 + ψ0∂ = ∂ψ1 = ∂(KvB −Kv −Kvψ0∂) = ∂KvB − ∂Kv.

With Lemma 7.2 we can transform the latter to B + Kv∂B − ∂Kv and as B is a chain map, this is B +
KvB∂ − ∂Kv. In chain degree one B∂ agrees with ∂, thus this reduces to

B +Kv∂ − ∂Kv = B − (∂Kv −Kv∂) = B − id.

So, finally we can do the inductive step:

∂ψn =(−1)n+1∂Kv(B − id− ψn−1∂)

=(−1)n+1∂KvB − (−1)n+1∂Kv − (−1)n+1∂Kvψn−1∂

=(−1)n+1((−1)n+1B +Kv∂B)

− (−1)n+1((−1)n+1id +Kv∂)

− (−1)n+1((−1)n+1ψn−1∂ +Kv∂ψn−1∂)

=B − id− ψn−1∂ + remaining terms

The equation

Kv∂ψn−1∂ +Kvψn−2∂
2 = KvB∂ −Kv∂

from the inductive assumption ensures that these remaining terms give zero. □

Definition 7.6. A singular n-simplex α : ∆n → ∆p is called affine, if

α(

n∑
i=0

tiei) =

n∑
i=0

tiα(ei).

We abbreviate α(ei) with vi, so α(
∑n

i=0 tiei) =
∑n

i=0 tivi and we call the vi’s the vertices of α.

Definition 7.7. Let A be a subset of a metric space (X, d). The diameter of A is

sup{d(x, y)|x, y ∈ A}

and we denote it by diam(A).
Accordingly, the diameter of an affine n-simplex α in ∆p is the diameter of its image, and we abbreviate

that with diam(α).

Lemma 7.8. For any affine α every simplex in the chain Bα has diameter ⩽ n
n+1diam(α).

Either you believe this lemma, or you prove it, or you check Bredon, Proof of Lemma 13.7 (p. 226).
Each simplex in Bα is again affine; this allows us to iterate the application of B and get smaller and

smaller diameter. Thus, the k-fold iteration, Bk(α), has diameter at most
(

n
n+1

)k

diam(α).

In the following we use the easy but powerful trick to express α as

α = α ◦ id∆n = Sn(α)(id∆n).

This allows us to use the barycentric subdivision for general spaces.

Definition 7.9.
(a) We define BX

n : Sn(X) → Sn(X) as

BX
n (α) := Sn(α) ◦B(id∆n).

(b) Similarly, ψX
n : Sn(X) → Sn+1(X) is

ψX
n (α) := Sn+1(α) ◦ ψn(id∆n).

Lemma 7.10. The maps BX are natural in X and are homotopic to the identity on Sn(X).
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Proof. Let f : X → Y be a continuous map. We have

Sn(f)B
X
n (α) =Sn(f) ◦ Sn(α) ◦B(id∆n)

=Sn(f ◦ α) ◦B(id∆n)

=BY
n (f ◦ α).

The calculation for ∂ψX
n + ψX

n−1∂ = BX
n − idSn(X) uses that α induces a chain map and thus we get

∂ψX
n (α) = ∂ ◦ Sn+1(α) ◦ ψn(id∆n) = Sn(α) ◦ ∂ ◦ ψn(id∆n).

Hence

∂ψX
n + ψX

n−1∂ = Sn(α) ◦ (∂ ◦ ψn(id∆n) + ψn−1 ◦ ∂(id∆n)) = Sn(α) ◦ (B − id)(id∆n) = BX
n (α)− α.

□

Now we consider singular n-chains that are spanned by ’small’ singular n-simplices.

Definition 7.11. Let U = {Ui, i ∈ I} be an open covering of X. Then SU
n (X) is the free abelian group

generated by all α : ∆n → X such that the image of ∆n under α is contained in one of the Ui ∈ U.

Note that SU
n (X) is an abelian subgroup of Sn(X). As we will see now, these chains suffice to detect

everything in singular homology.

Lemma 7.12. Every chain in Sn(X) is homologous to a chain in SU
n (X).

Proof. Let α =
∑m

j=1 λjαj ∈ Sn(X) and let Lj for 1 ⩽ j ⩽ m be the Lebesgue numbers for the

coverings {α−1
j (Ui), i ∈ I} of ∆n. Choose a k, such that

(
n

n+1

)k

⩽ L1, . . . , Lm. Then Bkα1 up to Bkαm

are all in SU
n (X). Therefore

Bk(α) =

m∑
j=1

λjB
k(αj) =: α′ ∈ SU

n (X).

As B is homotopic to the identity we have

α ∼ Bα ∼ . . . ∼ Bkα = α′.

□

With this we get the main result of this section:

Theorem 7.13. Let W ⊂ A ⊂ X such that W̄ ⊂ Å. Then the inclusion i : (X \W,A \W ) ↪→ (X,A)
induces an isomorphism

Hn(i) : Hn(X \W,A \W ) ∼= Hn(X,A)

for all n ⩾ 0.

Proof. We first prove that Hn(i) is surjective, so let c ∈ Sn(X,A) be a relative cycle, i.e., let ∂c ∈
Sn−1(A). There is a k such that c′ := Bkc is a chain in SU

n (X) for the open covering U = {Å,X \ W̄} =:
{U, V }. We decompose c′ as c′ = cU +cV with cU and cV being elements in the corresponding chain complex.
(This decomposition is not unique.)

We know that the boundary of c′ is ∂c′ = ∂Bkc = Bk∂c and by assumption this is a chain in Sn−1(A).
But ∂c′ = ∂cU + ∂cV with ∂cU ∈ Sn−1(U) ⊂ Sn−1(A). Thus, ∂cV ∈ Sn−1(A), in fact, ∂cV ∈ Sn−1(A \W )
and therefore cV is a relative cycle in Sn(X \W,A\W ). This shows that Hn(i)[c

V ] = [c] ∈ Hn(X,A) because
[c] = [cU + cV ] = [cV ] in Hn(X,A).

The injectivity ofHn(i) is shown as follows. Assume that there is a c ∈ Sn(X\W ) with ∂c ∈ Sn−1(A\W )
and assume Hn(i)[c] = 0, i.e., c is of the form c = ∂b+ a′ with b ∈ Sn+1(X) and a′ ∈ Sn(A) and write b as
bU + bV with bU ∈ Sn+1(U) ⊂ Sn+1(A) and b

V ∈ Sn+1(V ) ⊂ Sn+1(X \W ). Then

c = ∂bU + ∂bV + a′.

But ∂bU and a′ are elements in Sn(A \W ) and hence c = ∂bV ∈ Sn(X \W,A \W ). □
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