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Last term: The stable homotopy category SH as a
tensor-triangulated category.
At a fixed prime p: We described the tt-spectrum of the p-local
stable homotopy category, SH(;,), with the help of
Morava-K-theories.
These are (co)homology theories for 0 < n < oo whose coefficients
are

K(n)s = Fplv, ).

Here, |v,| = 2p" — 2, and we can think of the 2p” — 2 as a
wavelength. The case n = 0 is special: K(0) is singular
cohomology with rational coefficients and vy = p. In particular,
|[vo| = 0. For p = 2 the degrees of the v,s are:

va : 30
vy : 14
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The first player is MU, that is complex cobordism. Here you study
manifolds with a complex linear structure on the stable normal
bundle up to bordism, so you say that two such manifolds My, M,
of the same dimension are bordant, if there is such manifold W
one dimension higher with OW = My LI M.

Its coefficients are

MU = Z[x1,x2,...], |xi| = 2i.

We are always working p-locally for a prime p. Then MU, splits
into shifted copies of the Brown-Petersen spectrum, BP. And
there you have

W*BP:Z(p)[Vl,Vg,...], |Vi’:2pi—2.

These coefficients are much sparser and BP-(co)homology is easier
to compute than MU-(co)homology. You can custom-build k(n) as
BP/(p,v1,. .., Va1, Vatl, Vat2, - .), SO mx(k(n)) = Fp[vy] singles
out one of the v,s, and finally K(n) = k(n)[v;!].
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The definition of a space K(R) such that m;K(R) = K;(R) for

i =0,1,2 is due to Quillen in the 70’s.

K(R) = Ko(R) x BGL(R)™.

K-groups are notoriously hard to calculate, for instance we don't
know all K-groups of Z.



On the other hand:
zZ, i=0,
Ki(F,) =} 0, i=2j>0,
Z/(¢ —1), i=2j—1 [Quillen].
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Here, you view C as a discrete ring and you take its K-theory. So if
you p-complete that, then you get (p-completed, connective)
complex topological K-theory. So, up to p-completion, K(C)
knows about complex vector bundles of finite rank on spaces...
This is an early instance of red-shift: K(HC) = K(C), where HC
represents singular cohomology with C-coefficients. This is of
chromatic type 0 (like HQ = K(0)).

me(ku) = Z[u] and uP~! = vq, so this is chromatic type 1. Here, u
is the Bott class — it gives rise to Bott periodicity.

Ausoni-Rognes conjectured red-shift for algebraic K-theory in the
2000's and they showed red-shift for a summand of ku, . For

p > 5, V(1)K (ku) has a non-nilpotent higher Bott element, b,
and bP~1 = —v;, [Ausoni 2010].

V(1). roughly cuts away p and v;.
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Virtual complex vector bundles of finite rank are classified by ku.
Baas-Dundas-R-Rognes (2011): virtual 2-vector bundles are
classified by K(ku). You might know gerbes. These are 2-vector
bundles of rank one.

We show that K(ku) ~ K(V) where the right-hand side is the
K-theory of the bimonoidal category of complex vector spaces, V.
The set of objects of V is just Ng (dimension), and

{U(n), n=m,

V(n,m) = I} n# m.

The K-theory is
K(V) =7Z x |BGL(V)|"

where GL(V) are weakly invertible matrices over V.
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First:
GL,(No) — GL,(Gr(Np))

|

M;(Ng) — M,(Gr(No))

So, a matrix of objects A € GL,(Np) is invertible, if it is invertible
as an integral matrix.

Then GL,(V) is the full subcategory of all nxn-matrices over V,
whose object-matrix is in GL,(Np).

That (V) classifies 2-vector bundles was shown by
Baas-Dundas-Rognes (2004).



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,

using spectra T(n). But if you think of K(n), you're not far off in
this context:



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,
using spectra T(n). But if you think of K(n), you're not far off in
this context:

A ring spectrum is T (n)-acyclic iff it is K(n)-acyclic (Land,
Mathew, Meier, Tamme, Clausen: consequence of the nilpotence
theorem by Hopkins, Smith).



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,
using spectra T(n). But if you think of K(n), you're not far off in
this context:

A ring spectrum is T (n)-acyclic iff it is K(n)-acyclic (Land,
Mathew, Meier, Tamme, Clausen: consequence of the nilpotence
theorem by Hopkins, Smith).

Definition A commutative ring spectrum R has height n, if
T(n)«(R) #0, but T(n+1).(R) =0.



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,
using spectra T(n). But if you think of K(n), you're not far off in
this context:

A ring spectrum is T (n)-acyclic iff it is K(n)-acyclic (Land,
Mathew, Meier, Tamme, Clausen: consequence of the nilpotence
theorem by Hopkins, Smith).

Definition A commutative ring spectrum R has height n, if
T(n)«(R) #0, but T(n+1).(R) =0.

An important theorem by Hahn says that then T(p).(R) = 0 for
all p>n+1.



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,
using spectra T(n). But if you think of K(n), you're not far off in
this context:

A ring spectrum is T (n)-acyclic iff it is K(n)-acyclic (Land,
Mathew, Meier, Tamme, Clausen: consequence of the nilpotence
theorem by Hopkins, Smith).

Definition A commutative ring spectrum R has height n, if
T(n)«(R) #0, but T(n+1).(R) =0.

An important theorem by Hahn says that then T(p).(R) = 0 for
all p>n+1.

HQ has height 0,



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,
using spectra T(n). But if you think of K(n), you're not far off in
this context:

A ring spectrum is T (n)-acyclic iff it is K(n)-acyclic (Land,
Mathew, Meier, Tamme, Clausen: consequence of the nilpotence
theorem by Hopkins, Smith).

Definition A commutative ring spectrum R has height n, if
T(n)«(R) #0, but T(n+1).(R) =0.

An important theorem by Hahn says that then T(p).(R) = 0 for
all p>n+1.

HQ has height 0, topological K-theory spectra KO, KU, ko, ku
have height 1,



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,
using spectra T(n). But if you think of K(n), you're not far off in
this context:

A ring spectrum is T (n)-acyclic iff it is K(n)-acyclic (Land,
Mathew, Meier, Tamme, Clausen: consequence of the nilpotence
theorem by Hopkins, Smith).

Definition A commutative ring spectrum R has height n, if
T(n)«(R) #0, but T(n+1).(R) =0.

An important theorem by Hahn says that then T(p).(R) = 0 for
all p>n+1.

HQ has height 0, topological K-theory spectra KO, KU, ko, ku
have height 1, topological modular forms live at height 2,



We will focus on red-shift for E,.-ring spectra aka commutative
ring spectra.

If R is such a commutative ring spectrum, then K(R) is a
commutative ring spectrum as well.

Usually red-shift is formulated in terms of telescopic complexity,
using spectra T(n). But if you think of K(n), you're not far off in
this context:

A ring spectrum is T (n)-acyclic iff it is K(n)-acyclic (Land,
Mathew, Meier, Tamme, Clausen: consequence of the nilpotence
theorem by Hopkins, Smith).

Definition A commutative ring spectrum R has height n, if
T(n)«(R) #0, but T(n+1).(R) =0.

An important theorem by Hahn says that then T(p).(R) = 0 for
all p>n+1.

HQ has height 0, topological K-theory spectra KO, KU, ko, ku
have height 1, topological modular forms live at height 2, The nth
Lubin-Tate spectrum E,, that governs the deformation theory of
the Honda formal group law at height n, has itself height n.
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Some specific results on red-shift:

Yuan (to appear JEMS): K(E,) has height n+ 1.

If k is a field whose characteristic is not p, then the n-fold iterated
K-theory of k has height n.

This recovers red-shift for K(ku), because to the eyes of T(2),
K(ku) is K(K(C)).

What is a good notion of an n-vector bundle for n > 27 And if we
have these, can we relate them to n-fold iterated K-theory of C?
There is work on this by Lind-Sati-Westerland (2020).

Hahn-Wilson (2022): BP(n) = BP/vn41, Vat2, . .. satisfies
red-shift.
Beware: BP(n) is not E,, by Lawson (2018) and Senger.
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In the Nullstellensatz paper (Annals of Math, to appear),
Burklund, Schlank and Yuan show a general red-shift result:

Let R be a non-trivial commutative ring spectrum of height n > 0.
Then the height of K(R) is n+ 1.

In Suslin’s case (K(C), ~ kup) and in Ausoni's calculation of
V(1)K (ku) you can actually pin down a non-nilpotent element,
that could be called a higher Bott element.

I'll give a few more examples of cases where such Bott elements
were determined. This is not a comprehensive list.
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» Ausoni-Rognes (2011): K(k(1)) has Bott element vs.

» Bayindir (to appear): K(ku/p) has Bott class b (as for
K(ku)).

» Angelini-Knoll, Ausoni, Culver, Honing, Rognes (to appear):
K(BP(2)) has v3 as a Bott class.

Note, that neither of k(1), ku/p, BP(2) are commutative, so these
cases are not covered by Burklund-Schlank-Yuan, but BP(2) is
covered by Hahn-Wilson.
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What are some of the methods?
For the explicit computations trace methods are crucial:

K(R) — TC(R) — THH(R).

THH(R) is a version of Hochschild homology for ring spectra, and
you've seen HH, this term.

Trace methods have been simplified by the Nikolaus-Scholze model
of topological cyclic homology, TC. Dundas-Goodwillie-McCarthy
showed that TC(R) is an extremely good approximation to K(R)
for connective R.

Yuan uses facts about the Tate construction, for instance the
Tate-orbit lemma by Nikolaus-Scholze.

The chromatic Nullstellensatz uses spectral analogues of algebraic
closures. The corresponding Galois theory for commutative ring
spectra is due to Rognes.

Of course, co-categories are all over the place.



