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Classical setting

Let K C L be an extension of number fields and let O — O, be
the corresponding extension of rings of integers.

A prime ideal p C Ok in L, if pOp =p*-...-p%in O
and ¢; > 1 for at least one 1 </ < s.
The ramification is when the ramification indices e; are all
relatively prime to the residue characteristic of p and it is
otherwise.
Consider
Q—Q(/)
7 ——=7Ji]

Then Z[i] D (2) = (1 + i)? and 2 is the characteristic of the
residue field [y, so (2) is wildy ramified.
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Auslander and Buchsbaum [1959] considered ramification in the
setting of general noetherian rings.

If K C Lisa G-Galois extension, then O — O, is unramified, if
and only if Ox — O is a

and this in turn says that O = Ok and O; ®o, O = 1] Oy if
G is the Galois group of K C L.

The fixed point condition is always satisfied in this situation, so the

condition for being unramified is

o Kok = HOL
G

via the map x ® y — (xg(¥))geq-
Plan for today:
» What are ramified extensions of ring spectra?

» When is an extension tame or wild?

> Examples, examples, examples.
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spectra is a for a finite group G, if certain
cofibrancy conditions are satisfied, if G acts on B from the left
through commutative A-algebra maps and if the following two
conditions are satisfied:

» The map from A to the homotopy fixed points of B with
respect to the G-action, i: A — B¢, is a weak equivalence.

» The map
h: B/\ABAHB
G

is a weak equivalence.
Here, h is right adjoint to the composite map
BAaBAG——B Ay B——B,

induced by the G-action and the multiplication on B.
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G-Galois extension of commutative rings.

Consider the complexification map ¢, that sends an
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bundle.

This map ¢ induces a map of commutative ring spectra from real
topological K-theory, KO, to complex topological K-theory, KU:

c: KO — KU.

Complex conjugation gives rise to a Cy-action on KU.
Rognes [2008]: This turns KO — KU into a C>-Galois extension.
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Note that on homotopy groups we get

s« (C)

m(KO) = Z[n, y, w1/ (20,7 1y, y? — 4w)——>Z[u*™'] = m.(KU)
with y — 202
So as a graded commutative m,(KO)-algebra 7. (KU) is really bad.
Other important Galois extensions:
> For p an odd prime: KUy =~ \/%-5 £%L and L, — KU, is a
Cp—1-Galois extension [Rognes 2008].
> TMFo(3)2) — TMF1(3)(2) is C2-Galois [Mathew-Meier 2015].
» TMF[1/n] — TMF(n) is GLx(Z/nZ)-Galois [MM-2015].
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If A— B is unramified, so if B Ag B >~ [[ B, then Rognes
showed that

» B — THHA(B) is a weak equivalence and
> TAQ(BJA) ~ .

Here, THHA(B) is topological Hochschild homology of B with
respect to A and TAQ(B|A) is a spectrum version of André-Quillen
homology, defined and studied by Basterra.
If B o¢ THHA(B) or if m, TAQ(B|A) # 0 for some n, then we know
that there has to be ramification. If Ox — O, is an extension of
number rings with corresponding extension of number fields
K C L, then

w0 TAQ(HOL|HOK) = Q4 10,

is the classical module of Kahler differentials.

Mathew 2016: For connective Galois extensions the induced map
on homotopy groups is étale in a graded sense.

So, in particular, connective covers of Galois extensions are rarely
Galois extensions — these will be our main examples.
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Detecting ramification

Hurewicz theorem for topological André-Quillen homology
[Basterra 1999]: Let ¢: A — B be an n-equivalence, where A
and B are connective and n > 1. Then TAQ(B|A) is n-connected
and there is a map of A-modules f: Cp — TAQ(B|A) for which
fi: Tnt1Cp = mhp1 TAQ(BJA).

With this result it is easy to show:

> m TAQ(ku(p)|l) = Z(p). Here, £ — kup) is the inclusion of
the Adams summand into p-localized complex K-theory, for
an odd prime p.

» 7, TAQ(ku|ko) = Z.
> 1 TAQ(tmh(3)2)[tmfo(3)(2)) = Z2).
> 1y TAQ(tmfo(Z)(3)|tmf(3)) = Z(3)

We do have ramification, but we don’t see yet, whether it's tame
or wild.
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Wild ramification and Tate cohomology

Classically: A finite generically étale extension A — B of Dedekind
domains is tame if and only if the trace B — A is surjective.

For Ok C Oy: This extension is tamely ramified if the norm map
is surjective: If G is the Galois group of K C L, then the norm is

NGZ O/_—)OK, X = ng.
geaG

The norm map induces a map Ho(G; O1) — H°(G; O)). lts
deviation fromA being an isomorphism is measured by Tate
cohomology, H*(G; O,).

Homotopy theoretic version:
If B is a G-spectrum, then the

is the cofiber BtC of Bjg—¢~Bh6 - BIG.
Here, By is the homotopy orbit spectrum and
B"¢ = F¢((EG), B) is the homotopy fixed point spectrum.
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Classically, this can be used as a criterion for tame ramification:
The map Ok — O is tamely ramified iff 7, (HO,)!® = 0.
There is a spectral sequence

Es' = A7°(G; mB) = moye(B™©),
where H*(G; m:B) is the

If B = HQOy, then the spectral sequence collapses and
A*(G; 01) = m_(HO.)C.
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We want to use 7, B¢ for determining whether A — B is tamely
or wildly ramified.

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant
commutative A-algebra on which G acts via maps of commutative
A-algebras. If B is dualizable and faithful as an A-module and if

h: B Ay B—=F(Gy,B),

then B¢ ~ x.

In algebra, faithfulness is not an extra assumption but comes for
free!

Anyway: We always have to assume that our maps A — B are
faithful, if we want to measure ramification and not just noise.
Beware! If A— B is a map between connective commutative ring
spectra, then often B"® o« A, but A — TZ()BhG might be an
equivalence (e.g. ko =~ T>oku"®).
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call A— B if B¢ ~ x. Otherwise, A — B is

Rognes: If a spectrum with a G-action X is in the thick
subcategory generated by spectra of the form G A W, then
X6 ~ % soin particular, if B has a normal basis, B ~ G A A,
then B¢ ~ x.
Can we determine B¢ for
> B=kuand G= G? kut® ~\/,, ¥ HZ/27Z [Rognes].
» For B = tmfi(3)(2) and G = (37
» For B = tmf(2)(3) and G = GLQ(FQ) >~ 337
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Theorem [Honing-R]

> tmfi(3 )tg; ~ ey X8 HZ/27Z, and

> tmf(2)G5 = Viez T HZ/3Z.

The first result can be deduced from calculations of Mahowald and
Rezk for . TI\/IF1(3)E’C)2 = m TMFo(3)(2) via a spectral sequence
calculation. This gives the answer on the level of homotopy
groups. A result by Hopkins and Mahowald implies that tmfl(?))fc)2
is a generalized Eilenberg-MacLane spectrum.

The proof of the second claim uses Stojanoska's calculation of

Tmf(2)f32)3 ~ x via the Tate spectral sequence

E2, = A" (S5, mm(TIF(2)3))) = Tnsm( Tmf(2)157).
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is actually

» Similarly, if n=p; ... p, for primes p;, then |GLx(Z/nZ)| is
invertible in Z[%] if for all p; the numbers p; — 1 and p; +1
are invertible in Z[1].
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show that ko — ku is not log-étale.
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sequence ku

Thank you!



