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Classical setting

Let K C L be an extension of number fields and let O — O, be
the corresponding extension of rings of integers.

A prime ideal p C Ok in L, if pOp =p*-...-p%in O
and ¢; > 1 for at least one 1 </ < s.
The ramification is when the ramification indices e; are all
relatively prime to the residue characteristic of p and it is
otherwise.
Consider
Q—Q(/)
7 ——=7Ji]

Then Z[i] D (2) = (1 + i)? and 2 is the characteristic of the
residue field [y, so (2) is wildy ramified.
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In contrast, if p is an odd prime, then
Z — Z[Cp)

is tamely ramified.
Here, using the cyclotomic polynomial one sees that the ideal (p)

splits as (1 — ¢p)P~ 1 in Z[(p).
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Auslander and Buchsbaum [1959] considered ramification in the
setting of general noetherian rings.

If K C Lis a G-Galois extension, then O — Oy is unramified, if
and only if O — Oy is a

and this in turn says that O¢ = Ok and O; ®o, OL =[O if
G is the Galois group of K C L.

The fixed point condition is always satisfied in this situation, so the
condition for being unramified is

OL®o, OL = HOL
G

via the map x ® y — (xg(y))geq-

If X is a compact Hausdorff space and G is a finite group of
homeomorphisms of X, then C°(X/G;R) — C°(X;R) is a
G-Galois extension iff G acts fixed-point free on X.
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We consider multiplicative cohomology theories, think of
» singular cohomology with coefficients in a commutative ring
R: H*(—; R),
» nice cobordims theories, like complex cobordism, MU*(—),
» real or complex topological K-theory, KO*(—), KU*(-),
» topological modular forms, TMF*(—).
All these examples and many more can be represented by
commutative ring spectra; HR, MU, KO, KU, TMF,...

A ring spectrum A has a product AAA — A and a unit S — A,
such that A is a commutative and associative monoid.

We want to understand ramification of maps A — B in order to
understand descent questions in algebraic K-theory: How close is
K(B)® to K(A)?

[Ausoni, Rognes, Clausen-Mathew-Naumann-Noel,...]
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K (ku) classifies 2-vector bundles on spaces (e.g. gerbes)
[Baas-Dundas-R-Rognes]

K(S) ~ S v WhPf (%) where WhP(x) is the Whitehead spectrum
and this in turn is related to the stable smooth h-cobordism space.
[Waldhausen, Jahren, Rognes,...]
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[Rognes 2008]: A map A — B of commutative ring
spectra is a for a finite group G, if certain
cofibrancy conditions are satisfied, if G acts on B from the left
through commutative A-algebra maps and if the following two
conditions are satisfied:

» The map from A to the homotopy fixed points of B with
respect to the G-action, i: A — B"G is a weak equivalence.

> The map
h: BAsB — H B
G
is a weak equivalence.
Here, h is right adjoint to the composite map

BApBANGL——=B Ay B——B,

induced by the G-action and the multiplication on B.
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[Rognes] If A is the Eilenberg-MacLane spectrum HR
and B = HT for some commutative rings R and T such that T
carries a G-action via R-algebra maps, then HR — HT is a
G-Galois extension of commutative ring spectra iff R — T is a
G-Galois extension of commutative rings.

Consider the complexification map ¢, that sends an
R-vector bundle to the corresponding complexified C-vector
bundle.

This map ¢ induces a map of commutative ring spectra from real
topological K-theory, KO, to complex topological K-theory, KU:

c: KO — KU.

Complex conjugation gives rise to a Cy-action on KU.
Rognes [2008]: This turns KO — KU into a C-Galois extension.
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Note that on homotopy groups we get

7 (C)
m«(KO) = Z[n, y, wil]/(277, 3, ny, y? — 4w)*>Z[ui1] = 7.(KU)
with y — 202
So as a graded commutative 7,.(KO)-algebra 7. (KU) is really bad.
Other important Galois extensions:
» For p an odd prime: KU ~ \/f’;02 Y2[ and L, — KUy is a
Cp—1-Galois extension [Rognes 2008].
> TMFo(3)2) — TMF1(3)(2) is Co-Galois [Mathew-Meier 2015].
> TMF[1/n] — TMF(n) is GLy(Z/nZ)-Galois [MM-2015].
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showed that TAQ(B|A) ~ .

TAQ(BJA) is a spectrum version of André-Quillen homology,

defined and studied by Basterra.

> m TAQ(ku(p)|l) = Z(p). Here, £ — kup) is the inclusion of

the Adams summand into p-localized complex K-theory, for
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We do have ramification, but we don't see yet, whether it's tame
or wild.
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Wild ramification and Tate cohomology

Classically: A finite generically étale extension A — B of Dedekind
domains is tame if and only if the trace B — A is surjective.

For Ok C Oy: This extension is tamely ramified if the norm map
is surjective: If G is the Galois group of K C L, then the norm is

NGZ OL—>OK, X = ng.
geaG

The norm map induces a map Ho(G; O1) — H°(G; O)). lts
deviation fromA being an isomorphism is measured by Tate
cohomology, H*(G; O,).

Homotopy theoretic version:
If B is a G-spectrum, then the

. . N

is the cofiber B¢ of Bpc—>=Bh¢— Bt
Here, B¢ is the homotopy orbit spectrum and B"C is the
homotopy fixed point spectrum.
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The map Ok — O is tamely ramified iff 7, (HO,)!® = 0.
There is a spectral sequence

Es' = A7°(G; mB) = moye(B™©),
where H*(G; m:B) is the

If B = HQOy, then the spectral sequence collapses and
A*(G; 01) = m_(HO.)C.
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We want to use 7, B¢ for determining whether A — B is tamely
or wildly ramified.

Lemma [Rognes] Assume that G is a finite group, B is a cofibrant
commutative A-algebra on which G acts via maps of commutative
A-algebras. If B is dualizable and faithful as an A-module and if

h: B Ay B—=F(G,,B),

then BtC ~ x.

In algebra, faithfulness is not an extra assumption but comes for
free!

Beware! If A — B is a map between connective commutative ring
spectra, then often B"C o A but A — ngBhG might be an
equivalence (e.g. ko ~ T>oku"®).
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> If n = 2k3¢ with k, ¢ > 1 for instance, the order of GLy(Z/nZ)
is invertible in Z[1].
» It also holds for instance if n=2-3-...- p,, is the product of
the first m prime numbers for any m > 2
» orforn=2-3-7 but not for n=2-3-11.



