
Abstracts

(Higher) Topological Hochschild homology – an overview

Birgit Richter

When topological Hochschild homology, THH, of rings and ring spectra was first
defined by Bökstedt in the mid 80’s [5], there was no symmetric monoidal category
of spectra developed, yet. Bökstedt used the diagram category of finite sets and
injections in order to give a model for THH. Since the mid 90’s there are other
models, for instance one that mimics the definition of the Hochschild complex,
one using a Tor-like definition and one using a suitable bar construction (see [13,
chapter IX]). It was shown that THH of a ring is isomorphic to MacLane homology
[19] and to stable K-theory [12]. The Dennis trace map tr : K∗(R) → HH∗(R)
factors over THH∗(R) and the latter is a better approximation to algebraic K-
theory than HH∗(R); it also serves as the input for the construction for topological
cyclic homology, TC(R), and this approximates K∗(R) very well in many cases.

Bökstedt calculated THH of the integers and of Fp [6]. His famous spectral
sequence was used for instance by McClure and Staffeldt to determine the mod p
homotopy groups of THH of the connective Adams summand [17]. We know THH
in many more examples, for instance for local fields [14], number rings [15], Z/pn
[7] and connective complex topological K-theory [3].

For a discrete R-algebra A (R commutative), the center of A over R can be
identified with the endomorphisms of A in the category of A-bimodules over R.
Topological Hochschild cohomology of an R-algebra spectrum A can be defined
as the derived spectrum of self-maps of A over the enveloping algebra A ∧LR Ao

and can hence be viewed as a derived center of A over R. Angeltveit showed that
this derived center depends on the chosen A∞-structure, for instance different
A∞-structure of Morava K-theory, Kn, over Morava E-theory, En, give different
THHEn(Kn) [2].

Let A be a commutative R-algebra spectrum. Rognes defined in [20] when A is

unramified over R and showed that in this case the canonical map A→ THHR(A)
is a weak equivalence. We use this to show that the complexification map ko→ ku
is wildly ramified [11, Theorem 5.2]: THH ko

∗ (ku) is not equivalent to ku∗ and it
behaves like Hochschild homology of the Gaussian integers.

In the discrete case Weibel and Geller showed [22] that for an étale exten-
sion of commutative rings R → A Hochschild homology satisfies étale descent,
HH∗(A) ∼= A ⊗R HH∗(R), and if R → A is G-Galois for a finite group G this
implies HH∗(A)G ∼= HH∗(R). Both properties do not carry over to ring spec-
tra: Akhil Mathew shows [16] that there is a Cp-Galois extension of commutative
ring spectra for which étale descent fails for THH. In joint work with Ausoni we
show that for the HQ-dual of the Hopf map η∗ : F (S2

+, HQ) → F (S3
+, HQ) the

S1 homotopy fixed points of THH (F (S3
+, HQ)) are not homotopy equivalent to

THH (F (S2
+, HQ)) although η∗ is an S1-Galois extension.
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The category of commutative ring spectra is tensored over (pointed) simpli-
cial sets. For a commutative ring spectrum A the standard simplicial model of
THH(A) can be directly identified with A⊗S1 where S1 = ∆1/∂∆1 is the standard
simplicial model of the 1-sphere.

For any pointed simplicial set X we call π∗(A⊗X) the X-homology of A. In the
discrete case this was defined by Pirashvili [18], but mentioned earlier for spheres
for instance by Anderson [1] in the context of iterated Eilenberg-Moore spectral
sequences. Basterra-McCarthy showed that topological André-Quillen homology
can be viewed as the stabilization of the A⊗ Sn’s [4].

Higher topological Hochschild homology of order n of A is Sn-homology of A

and denoted by THH[n](A). another important special case is torus homology [8]:
if one considers n-fold iterated algebraic K-theory of A, Kn(A), then the iteration
of the trace map has A⊗ (S1)n as the target.

We know THH [n] in some cases for all n ≥ 1. For instance we show in [10, 3.6]
that

THH[n]
∗ (HFp) ∼= TorTHH

[n−1]
∗ (HFp))

∗,∗ (Fp,Fp), n ≥ 2.

These Tor-algebras were determined by Cartan [9] and can be explicitly written
down as graded commutative Fp-algebras. This result was also known to Basterra
and Mandell. We also show in [11] that for all primes

THH[2]
∗ (HZ(p)) ∼= Z(p)[x1, x2, . . .]/p

nxn = 0, xpn = pxn+1, |x1| = 2p.

Schlichtkrull gives a general identification forX-homology of commutative Thom
spectra [21].

Ongoing work by Ausoni and Dundas makes progress on Rognes’ red-shift con-
jecture using torus homology. They show that the generator vn−1 of connective
Morava K-theory is not in the kernel of the unit map

k(n− 1)∗ → k(n− 1)∗K
n(HFp).

They prove this by showing that vn−1 is detected in k(n−1)∗(HFp⊗(S1)n)h(S
1)n .

It turns out that π∗(HFp⊗(S1)n) can be described by higher THH of HFp because
in this case torus homology does not see the attaching maps in the CW structure
of the torus. In order to prove the red-shift conjecture for Fp they have to show
that all powers of vn−1 also survive.
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