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T heorem

The Brown-Peterson spectrum BP at a prime
p has at least a (2p2 + 2p — 2)-stage structure.



What are n-stages?

— n-stages approximate Eso-Structures.

Alan Robinson:

Here

e (EX,)n is the topological version of the
Barratt-Eccles operad and

e 7, is Boardman’'s tree operad.



Trees

The space of n-trees, 1), consists of abstract
trees on n + 1 leaves. These leaves are label-
led with the numbers O, ...,n where each label
appears exactly once. Internal edges get an as-
signed length O < A < 1.



Examples

The tree space is set to consist of a point for
n<?2

The only 2-tree is the tree

1 O

hA

There are three different types of 3-trees, na-
mely

1 2

v ol o<

with a corolla-shaped tree if the length of the
only internal edge is zero.

1 2
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Filtration

Robinson defines a filtration of this Ex-Operad
as follows: set B = (Ex,)® x T, where
(EX,) is the i-th skeleton of the standard
model for £ ,. Then define



n-stages

An n-stage structure for an Es-Structure on a
spectrum FE is a sequence of maps

pm : V'"Bp xs ENT — E

which on their restricted domain of definition
satisfy the requirements for an operad action
on E.



2-stage structures

A 2-stage structure on a spectrum FE consist
of action maps starting from VQBm which is

g—m) — (Ezm)(Q—m) % Tm

Therefore the only requirement here is that we
have a map

(B xTy)xs, EXZXE S E

and that E possesses a map

(EZ2) O x o) xy, EN? &2 (Zy) x5, B2 — E.

So we obtain a multiplication p on E together
with its twisted version po 7 if 7 denotes the
generator of 2 -.

Iterates of u and pw o7 act on higher smash
powers of E, but they do not have to satisfy
any relations.



3-stage structures

A 3-stage structure on E comes with three
kinds of maps, because non-trivial values for
m are 1,2, 3.

m = 2

(EZ2)M) x ) xg, EN — E.

The 1-skeleton of E3> 5 is the 1-circle, giving
the homotopy between p and por.

In addition to that, the value m = 3 brings in
the homotopies for associativity via the trees
we described above.

A 3-stage structure on E is a homotopy com-
mutative and associative multiplication.



Theorem [Robinson]

Assume that E is a homotopy commutative
and associative ring spectrum which satisfies

E*(EM™) 2 Hompg, (E<E®™, Ey)

for all m > 1.

If £ has an (n—1)-stage structure which can be
extended to an n-stage structure then possible
obstructions to extending this further to an
(n + 1)-stage structure live in

HE ™2~ (ExE|Ex; Ex).

If in addition HF™1—"(E,E|E.; Ex) vanishes, then
this extension is unique.



What is HI™*7

Gamma cohomology — a cohomology theory
for differential graded E-o-algebras.

We will need it for graded commutative alge-
bras.

How is it defined?

Let k¥ be a (graded) commutative ring with
unit, let A be a (graded) commutative k-algebra
and let M be a (graded) A-module.

Robinson defines Gamma homology of A over
k with coefficients in M as the homology of
the total complex of a bicomplex =i« which
we will now describe.



Let Lie(n) be the n-th term of the operad
which codifies Lie-algebras over k, i.e., Lie(n)
is the free k-module generated by all Lie mo-
nomials in variables x1,...,xn such that each
variable appears exactly once.

There is a canonical action of the symmetric

group on n letters, >X,, on Lie(n) by permuting
the variables z;.
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Let Lie(n)* be the k-linear dual of Lie(n). Then
the bicomplex for Gamma homology in bide-
gree (r,s) is defined as

Er)s(A k, M) —

Lie(s + 1)* @ k[Z,41]®" @ A®CGTD ¢ 0.
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Differentials

The horizontal differential is the differential of
the bar construction, i.e., the elements of the
symmetric group are multiplied together or an
action of > .4 on the dual of the Lie monomi-
als is induced or the elements in the (s+ 1)-st
tensor power of the algebra A are permuted.

T he vertical differential is more complicated...

Important is that both differential are homoge-
neous if k, A and M carry an internal grading.
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From now on let k etc be graded (e.g. k = F,

Following Robinson we denote by Hl_q’i(A|k; M)
the ¢-th cohomology of the homomorphism
complex

Homfél(Tot(E*,*(fHk; A)), M)

whose morphisms lower internal degree by 3.
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Properties of Gamma (co)homology For
sake of simplicity assume that A is k-projective.

e In good cases (like BP) there is a universal
coefficient spectral sequence with

ES" = Exty (H«(A|k; A), M)
and converging to HIM*(Alk; M).

e Robinson and Whitehouse proved that Gam-
ma cohomology vanishes if A is étale over
k, and that Gamma cohomology satisfies
Flat Base Change and has a Transitivity
Sequence.

e Theorem|[Basterra-R]

Gamma cohomology is isomorphic to the
obstruction groups which arise in the work
of Goerss and Hopkins.
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The case of BP

BP satisfies the necessary properties to app-
ly Robinson’s obstruction theory: BP is a ho-
motopy commutative MU-ring spectrum at all
primes, so we start with a 3-stage structure.

If we want to establish an (2p2 + 2p — 2)-stage
structure on BP, then we have to show that
Gamma cohomology vanishes in bidegrees
(n,2 —n) for all 2p2 +2p—3>n> 3.
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Ingredients of the proof

e Additivity

From BP«BP = BP«[t1,t>,...] we can de-
duce

Hl—s,*(BP*BP|BP*; BP*BP) =

11

e Flat base change

Hrs,*(BP*[ti”BP*; BP+BP) =

BP*®Z(p) H I‘S,*(Z(p) [£;] |Z(p)’ Z(p))@)z(p) BP+«BP.
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e Calculation of HI s for polynomial alge-
bras [R-Robinson]

Summing over all internal degrees, we can
identify Gamma homology of Z,) [t;] as

g% H st (Z ) [t Z (s Z(py) = (HZ(p,y) HZ.
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Kochman’s result

Kochman provides an explicit basis of the p-
torsion in HZ+HZ. The result is:

e [ here is only simple p-torsion.

e An explicit basis of (HZ@)*HZ over 7 /pZ
consists of all expressions

P(nl,...,nt)zil-...-_gs
where t > 0, t 21, 0 < n1 < ... < ng,
e, 20, t4+e1+...4es>0and e; = 0 for
i < ni. Here, the degree of the P(nq,...,n¢)
is 2(p™1 4 ... 4+ p") —t — 1 and the degree

of ¢ is 2(pt — 1).

17



Casest =0 and t = 2.

For t = 0 the condition e; = 0 for 1 < nq IS vO-
id, therefore elements like (71...(¢ arise with
at least one e; being positive. These elements
have total degree

S

degree(it-...-C&) = Y ei(2p' - 2).
i=1

For t = 2 the element of lowest possible degree
in this case is P(1,2) with

degree(P(1,2)) = 2p+2p°—2—1 = 2p°+2p—3.
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Obstructions for extending an n-stage to an
(n 4 1)-stage structure live in H™2— 7,

As we know that (HZ(p))*HZ consists only of

simple p-torsion it suffices to consider Ext0*-
and Extl*-terms in the Universal Coefficient
spectral sequence.
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We know as well, that the internal degree can
only be of the form ¥, A\;(2p* — 2); conse-
quently possible values for n have to be of the
form SV ; \;(2p'—2)+2 with the ); being non-
negative integers.
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A degree count gives that the case t = 0 does
not give any obstruction classes, but ¢t = 2
gives a possible class:

Here the corresponding equation of degrees
that has to be satisfied is

N .
Y@t —-2)+1=
i=1

M .
2p" +2p™ =34 > ei(2p) —2).

j=1

The generator P(1,2) is of lowest possible de-
gree and turns this requirement into

N
n—1=> N2p'—-2)+1=
1=1
2p+2p° —3=2p—2+42p° -2+ 1.

Therefore such a homology class could occur
for n = 2p2 + 2p — 2. []
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Dyer-Lashof operations

An n-stage structure on a spectrum E dgives
rise to some Dyer-Lashof operations coming
from the skeleton filtration of the Barratt-Ecc-
les operad.

Proposition
If E has an n-stage structure with n > p then

there are Dyer-Lashof operations ); on the [Fp-
homology of E for : < n — p.
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Theindecomposable element a,_1 in the group
(HIFp)Qp_Q(MU) is known to be in the image
of (HIFp)Qp_Q(BP). Consider an element z =
Top_2 iN (H]Fp)Qp_Q(BP) with image a,_1.

For such an x the highest Dyer-Lashof opera-

tion Q' which we get out of the (2p2 4 2p —2)-
stage structure is Q<P.
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Hu, Kriz and May proved that the inclusion
from BP to MU cannot be a map of commu-
tative S-algebras, and they used this particular
Dyer-Lashof operation to show that.

The image of a,_; under Q%P is a(o, 4 1y(p_1) UP
to decomposable elements, but there is no in-

decomposable element in (HFp)(2p+1)(p_1)BP.
For p = 2 a similar argument works using aj.
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T heorem

The Brown-Peterson spectrum BP cannot be
the Thom spectrum associated to an 4-fold
loop map to BSF at p = 2 resp. a (2p+4)-fold
loop map to BSF at any odd prime p.

Here, BSF is the classifying space of spherical
fibrations.

Again, The proof uses a Dyer-Lashof operation
argument.
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Proof
Assume there were such a map from an n-fold
loop space X to BSF

~: X — BSF

which would allow to write BP as the Thom
spectrum associated to v, BP = X7,

Lewis: Then BP is an E,-spectrum.

Thom isomorphism: the homology of BP is iso-
morphic to the homology of X, and the latter
maps to the homology of BSF'.

[Cohen-Lada-May]

If p =2, the homology of BSF is

H.(BSF) 2 H.(BSO) @ C,

whereas at odd primes, the homology of BSF
IS isomorphic to

H.(BSF) 2 HW @ C..
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The map from BSO to BSFE is an infinite loop
map and it is this map which includes the ten-
sor factor Hi.(BSO) into Hi.(BSF'). Therefore
the tensor factor H.(BSO) is closed under the
Dyer-Lashof operations.

A similar remark applies to W which is a sum-
mand of BO at odd primes, because there is a
splitting of infinite loop spaces

~ 1
BO(p)_WXW .
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Consider z = xp, 5 in H«(BP) with P}(z) = 1.
This gives a non-trivial class of degree 2p —
2 in Hy(BSF). There is no such class in the
C«- resp. C!-part. Therefore z has to have an
image in Hi«(BSO) resp. H«(W).

In both cases, x has to hit an indecomposable
element, whose Q2p—image gives a generator up
to decomposable elements. The lack of inde-
composables in H«(BP) yields a contradiction.

]
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