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Aim:
1) Approximate Quillen homology for En-algebras by Quillen
homology of Gerstenhaber algebras.

2) Reduce this further to Quillen homology of graded Lie-algebras
and of commutative algebras, aka André-Quillen homology.
3) Apply this for instance to the Hodge decomposition of higher
order Hochschild homology (in the sense of Pirashvili).
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Little n-cubes

Let Cn denote the operad of little n-cubes.
Then (C∗Cn(r))r , r ≥ 1 is an operad in the category of chain
complexes. Let En be a cofibrant replacement of C∗Cn.

For an augmented En-algebra A∗ let Ā∗ denote the augmentation
ideal.

The sth En-homology group of Ā∗, HEn
s (Ā∗) is then the sth derived

functor of indecomposables of Ā∗.
I.e., it is Quillen homology of the En-algebra A∗.

Theorem [Fresse 2011]
There is an n-fold bar construction for En-algebras, Bn, such that

HEn
s (Ā∗) ∼= Hs(Σ

−nBn(Ā∗)).

I.e., En-homology is the homology of an n-fold algebraic delooping.
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Some results

Cartan (50s): HEn
∗ of polynomial algebras, exterior algebras and

some more.

Fresse (2011): X a nice space: Bn(C ∗(X )) determines the
cohomology of ΩnX .
Livernet-Richter (2011): Functor homology interpretation for HEn

∗
for augmented commutative algebras.

HEn
∗ (Ā) ∼= HH

[n]
∗+n(A; k), Hochschild homology of order n in the

sense of Pirashvili.
Can we gain information about HH

[n]
∗ (A; k), at least rationally?

What is HEn
∗ (Ā∗) in other interesting cases such as Hochschild

cochains, A∗ = C ∗(B,B), or A∗ = C∗(Ω
nX )?
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Setting

In the following k is a field, most of the times k = F2 or k = Q.
The underlying chain complex of A∗ is non-negatively graded.

Over F2: n = 2; for Q: arbitrary n.
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1-restricted Lie algebras

Definition
A 1-restricted Lie algebra over F2 is a non-negatively graded
F2-vector space, g∗, together with two operations, a Lie bracket of
degree one, [−,−] and a restriction, ξ:

[−,−] : gi × gj → gi+j+1, i , j ≥ 0,
ξ : gi → g2i+1 i ≥ 0.

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi
relation

[a, [b, c]]+[b, [c , a]]+[c , [a, b]] = 0 for all homogeneous a, b, c ∈ g∗.

2. The restriction interacts with the bracket as follows:
[ξ(a), b] = [a, [a, b]] and ξ(a + b) = ξ(a) + ξ(b) + [a, b] for all
homogeneous a, b ∈ g∗.

1-rL: The category of 1-restricted Lie algebras.
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1-restricted Gerstenhaber algebras

Definition
A 1-restricted Gerstenhaber algebra over F2 is a 1-restricted Lie
algebra G∗ together with an augmented commutative F2-algebra
structure on G∗ such that the multiplication in G∗ interacts with
the restricted Lie-structure as follows:

I (Poisson relation)

[a, bc] = b[a, c] + [a, b]c , for all homogeneous a, b, c ∈ G∗.

I (multiplicativity of the restriction)

ξ(ab) = a2ξ(b)+ξ(a)b2+ab[a, b] for all homogeneous a, b ∈ G∗.

1-rG: the category of 1-restricted Gerstenhaber algebras.
In particular, the bracket and the restriction annihilate squares:
[a, b2] = 2b[a, b] = 0 and ξ(a2) = 2a2ξ(a) + a2[a, a] = 0. Thus if 1
denotes the unit of the algebra structure in G∗, then [a, 1] = 0 for
all a and ξ(1) = 0.
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Free objects and indecomposables

For a graded vector space V∗ let 1rL(V∗) be the free 1-restricted
Lie algebra on V∗.

The free graded commutative algebra S(1rL(V∗)) has a
well-defined 1-rG structure and is the free 1-restricted
Gerstenhaber algebra generated by V∗:

1rG (V∗) = S(1rL(V∗)).

For G∗ ∈ 1rG let Q1rG (G∗) be the graded vector space of
indecomposables.
Note: Q1rG (G∗) = Q1rL(Qa(G∗)).
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Homology of free objects

Lemma
H∗(E2(Ā∗)) ∼= 1rG (H∗(Ā∗)).

Proof: Let X be a space. We have Cohen’s identification of
H∗(C2(X ); F2).
Observation by Haynes Miller: H∗(C2(X ); F2) ∼= 1rG (H̄∗(X ; F2)).
(Dyer-Lashof operations only give algebraic operations.)
Take X with H̄∗(X ; F2) ∼= H∗(Ā∗), then

H∗(E2(Ā∗)) ∼=
⊕

r

H∗(E2(r)⊗F2[Σr ] H∗(Ā∗)
⊗r )

∼=
⊕

r

H∗(E2(r)⊗F2[Σr ] H̄∗(X ; F2)
⊗r )

∼= H∗(C2(X ); F2) ∼= 1rG (H∗Ā∗).
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H∗(E2(Ā∗)) ∼=
⊕

r

H∗(E2(r)⊗F2[Σr ] H∗(Ā∗)
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Resolution spectral sequence

Theorem
There is a spectral sequence

E 2
p,q

∼= (LpQ1rG (H∗(Ā∗)))q ⇒ HE2
p+q(Ā∗).

Proof: Standard resolution E •+1
2 (Ā∗).

E 1
p,q : HE2

q (Ep+1
2 (Ā∗)) ∼= Hq(E

p
2 (Ā∗))

Hq(E
p
2 (Ā∗)) ∼= 1rGp(H∗Ā∗)q ∼= Q1rG (1rGp+1(H∗Ā∗))q.

d1 takes homology wrt resolution degree.
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p+q(Ā∗).

Proof: Standard resolution E •+1
2 (Ā∗).
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Example

For X connected:
(LpQ1rG (H∗(C∗(Ω

2Σ2X ; F2)))∗ = (LpQ1rG (1rG (H̄∗(X ; F2)))∗.

This reduces to H̄q(X ; F2) in the (p = 0)-line and

HE2
q (C̄∗(Ω

2Σ2X ; F2)) ∼= H̄q(X ; F2).
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Rational case

The rational case is much easier:

H∗(En+1Ā∗) ∼= nG (H∗(Ā∗)),

the free n-Gerstenhaber algebra generated by the homology of Ā∗.
We get:

E 2
p,q

∼= (LpQnG (H∗(Ā∗)))q ⇒ H
En+1
p+q (Ā∗)

for every En+1-algebra Ā∗ over the rationals.
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General Blanc-Stover setting

Let C and B be some categories of graded algebras (e.g., Lie, Com,
n-Gerstenhaber etc.) and let A be a concrete category (such as
graded vector spaces) and T : C → B, S : B → A.

If TF is is S-acyclic for every free F in C, then there is a
Grothendieck composite functor spectral sequence for all C in C

E 2
s,t = (Ls S̄t)(L∗T )C ⇒ (Ls+t(S ◦ T ))C .

I Note: T ,S non-additive.

I S̄t(π∗B) = πt(SB) if B is free simplicial; otherwise it is
defined as a coequaliser.

I S̄ takes the homotopy operations on π∗B into account (B a
simplicial object in B): π∗B is a Π-B-algebra.

I B = Com: π∗(B) has divided power operations. B = rLie:
π∗B inherits a Lie bracket and has some extra operations.
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In our case

Theorem

I k = F2: For any C ∈ 1rG :

E 2
s,t = Ls((Q̄1rL)t)(AQ∗(C |F2, F2)) ⇒ Ls+t(Q1rG )(C ).

I For k = Q we get for all n-Gerstenhaber algebras C :

Ls((Q̄nL)t)(AQ∗(C |Q, Q)) ⇒ Ls+t(QnG )(C ).
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Hodge decomposition for k = Q
Let HH

[n]
∗ (A; Q) denote Hochschild homology of order n or A with

coefficients in Q.
Over Q, HH

[n]
∗ (A; Q) has a decomposition, the Hodge

decomposition:

Theorem [Pirashvili 2000] For odd n we obtain

HH
[n]
`+n(A; Q) =

⊕
i+nj=`+n

HH
(j)
i+j(A; Q).

Here HH
(j)
∗ (A; Q) is the j-th Hodge summand of ordinary

Hochschild homology. For even n, however, the summands are
different and described as follows in terms of functor homology:

HH
[n]
`+n(A; Q) =

⊕
i+nj=`+n

TorΓi (θ
j ,L(A, Q)).

Here, θj [n] is the dual of the Q-vector space that is generated by
the S ⊂ {1, . . . , n} with |S | = j .
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Relationship to Taylor towers

The groups TorΓi (θ
j ,L(A, Q)) are related to a variant of

Goodwillie’s calculus of functors for Γ-modules.

Theorem [R,2000]

TorΓi (θ
j ,L(A, Q)) ∼= Hi (Dj(L(A, Q))[1])

where Dj is the jth homogenous piece in the Taylor tower of
L(A, Q)

Dj(L(A, Q))∗ = cone∗+1(Pj(L(A, Q)) → Pj−1(L(A, Q)))

with

. . .Pn(L(A, Q)) → Pn−1(L(A, Q)) → . . . → P1(L(A, Q)) → Q.
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Hodge summands as Quillen homology of Gerstenhaber
algebras

Theorem Let A be a commutative augmented Q-algebra. For all
`, k ≥ 1 and m ≥ 0:

I

HH
(`)
m+1(A; Q) ∼= (LmQ2kG Ā)(`−1)2k .

I

TorΓm−`+1(θ
`,L(A; Q)) ∼= (LmQ(2k−1)G Ā)(`−1)(2k−1).
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Idea of proof

First we prove a stability result

(LmQnG Ā)qn
∼= (LmQ(n+2)G Ā)q(n+2).

We show this by producing an isomorphism of the corresponding
Blanc-Stover spectral sequences.
The remaining argument is just a matching of the decomposition
pieces in the Hodge decomposition and the resolution spectral
sequence.
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