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Aim:

1) Approximate Quillen homology for E,-algebras by Quillen
homology of Gerstenhaber algebras.

2) Reduce this further to Quillen homology of graded Lie-algebras
and of commutative algebras, aka André-Quillen homology.

3) Apply this for instance to the Hodge decomposition of higher
order Hochschild homology (in the sense of Pirashvili).
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A Blanc-Stover spectral sequence

Hodge decomposition
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Little n-cubes

Let C, denote the operad of little n-cubes.

Then (C.Cpn(r))r, r > 1 is an operad in the category of chain
complexes. Let E, be a cofibrant replacement of C,C,.

For an augmented E,-algebra A, let A, denote the augmentation
ideal.

The sth E,-homology group of_/z\*, HEn(A,) is then the sth derived
functor of indecomposables of A,.
l.e., it is Quillen homology of the E,-algebra A,.

Theorem [Fresse 2011]
There is an n-fold bar construction for E,-algebras, B", such that

He"(A) 2 Hy(Z7"B"(AL)).

l.e., E,-homology is the homology of an n-fold algebraic delooping.
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Some results

Cartan (50s): HE" of polynomial algebras, exterior algebras and
some more.

Fresse (2011): X a nice space: B"(C*(X)) determines the
cohomology of Q7X.

Livernet-Richter (2011): Functor homology interpretation for HE
for augmented commutative algebras.

HEn(A) = HHiﬂn(A; k), Hochschild homology of order n in the
sense of Pirashvili.

Can we gain information about HHL"](A; k), at least rationally?
What is HE?(A,) in other interesting cases such as Hochschild
cochains, A, = C*(B, B), or A, = C.(Q"X)?
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Setting

In the following k is a field, most of the times k = I, or k = Q.
The underlying chain complex of A, is non-negatively graded.
Over Fy: n = 2; for Q: arbitrary n.
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1. The bracket is bilinear, symmetric and satisfies the Jacobi
relation

[a, [b, c]]+][b, [c, a]]+]c, [a, b]] = O for all homogeneous a, b, ¢ € g..

2. The restriction interacts with the bracket as follows:
[€(a), b] = [a, [a, b]] and £(a + b) = &(a) + &(b) + [a, b] for all
homogeneous a, b € g..

1-rL: The category of 1-restricted Lie algebras.
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1-restricted Gerstenhaber algebras

Definition

A 1-restricted Gerstenhaber algebra over F; is a 1-restricted Lie
algebra G, together with an augmented commutative Fr-algebra
structure on G, such that the multiplication in G, interacts with
the restricted Lie-structure as follows:

» (Poisson relation)
[a, bc] = bla, c] + [a, b]c, for all homogeneous a, b, ¢ € G,.
» (multiplicativity of the restriction)
£(ab) = a%¢(b)+£(a)b?+abla, b] for all homogeneous a, b € G,.

1-rG: the category of 1-restricted Gerstenhaber algebras.

In particular, the bracket and the restriction annihilate squares:

[a, b?] = 2b[a, b] = 0 and &(a?) = 2a%£(a) + a®[a,a] = 0. Thus if 1
denotes the unit of the algebra structure in G,, then [a,1] = 0 for
all aand ¢(1) = 0.
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Free objects and indecomposables

For a graded vector space Vi let 1rL(V,) be the free 1-restricted
Lie algebra on V.

The free graded commutative algebra S(1rL(V.)) has a
well-defined 1-rG structure and is the free 1-restricted
Gerstenhaber algebra generated by Vi:

1rG(V,) = S(1rL(V4)).

For G, € 1rG let Q1,6(Gx) be the graded vector space of
indecomposables.

Note: Q1,6(Gx) = Q1r(Qa(Gy)).
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Homology of free objects

Lemma
H.(Ex(A.)) = 1rG(H.(A,)).

Proof: Let X be a space. We have Cohen’s identification of
H*(C2(X),]F2) _
Observation by Haynes Miller: H,( (G (X); F2) = 1rG(H.(X; F2)).
(Dyer-Lashof operations only give algebraic operations.)

Take X with H,(X;F2) = H,(A,), then

H.(Ex(A,)) @H (Ex(r) @py[s, He (A7)

g@H Ex(r) ®py[s,) Ho(X;F2)®")

1

H.(Gy(X); o) = 1rG(H,A,).
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Resolution spectral sequence

Theorem
There is a spectral sequence

E} .= (LpQuc(H

(A
Proof: Standard resolution E3™(A
EL + HE(EL T (A.) = Ho(EE A,

g = H2g(AL).
))
Hq(EE(AL)) = 1rGP(H.AL)g & Qua(1rGPH(H.AL)),.

d! takes homology wrt resolution degree.
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Example

For X connected: )
(Lp Q1 (Hu(C(QPX2X: F2)))s = (LpQurG (1rG(Hu(X; F2)))s.
This reduces to Hq(X;F2) in the (p = 0)-line and

HE (CQPE2 X F2)) = Ho(X: Fa2).
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Rational case

The rational case is much easier:

H*(En+1/z\*) = ”G(H*(’z\*))a

the free n-Gerstenhaber algebra generated by the homology of A,.
We get:

E2 ¢ = (LpQne(Ha(A.)))g = Hy2i (AL)

for every E, 1-algebra A, over the rationals.
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General Blanc-Stover setting

Let C and B be some categories of graded algebras (e.g., Lie, Com,
n-Gerstenhaber etc.) and let A be a concrete category (such as
graded vector spaces) and T:C — B, S: B — A.

If TF is is S-acyclic for every free F in C, then there is a
Grothendieck composite functor spectral sequence for all C in C

E2. = (LsS:) (L. T)C = (Lsst(S o T))C.

» Note: T,S non-additive.

» Si(m.B) = 7:(SB) if B is free simplicial; otherwise it is
defined as a coequaliser.

> S takes the homotopy operations on m, B into account (B a
simplicial object in B): 7B is a [1-B-algebra.

» B = Com: 7.(B) has divided power operations. B = rLie:
74 B inherits a Lie bracket and has some extra operations.
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In our case

Theorem

» k=T, For any C € 1rG:

EZ: = Ls((Qur)e)(AQu(C|F2,F2)) = Lot +(Q1,6)(C).

» For k = Q we get for all n-Gerstenhaber algebras C:

Ls((Qnt)t)(AQ:(C|Q, Q)) = Ls1+(Qn6)(C)-
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Hodge decomposition for k = Q

Let HHL"](A; Q) denote Hochschild homology of order n or A with
coefficients in Q.

Over Q, HH,["] (A; Q) has a decomposition, the Hodge
decomposition:

Theorem [Pirashvili 2000] For odd n we obtain

[n] (J
HHEJrn @ HHI+J
i+nj=~¢+n

Here HHij)(A;Q) is the j-th Hodge summand of ordinary
Hochschild homology. For even n, however, the summands are
different and described as follows in terms of functor homology:

HH(AQ) = @ Tol (¢, L(A Q).

i+nj=~f+n

Here, &/[n] is the dual of the Q-vector space that is generated by
the S C {1,...,n} with |S§| = .



Relationship to Taylor towers

The groups Tor! (¢, £(A, Q)) are related to a variant of
Goodwillie’s calculus of functors for -modules.



Relationship to Taylor towers

The groups Tort (67, L(A, Q)) are related to a variant of
Goodwillie’s caIcqus of functors for -modules.
Theorem [R,2000]

Tort (¢, L(A,Q)) = H, (D (L(AQ))[1])

where D; is the jth homogenous piece in the Taylor tower of

L(AQ)
Di(L(A, Q)+ = conewt1(Pi(L(A, Q) — Pj-1(L(A,Q)))

with

Po(L(A, Q) — Pr1(L(A,Q)) — ... — P(L(A,Q)) — Q.
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Hodge summands as Quillen homology of Gerstenhaber
algebras

Theorem Let A be a commutative augmented Q-algebra. For all
£, k>1and m>0:

>
HH,(,QA(A; Q) = (Lm Qa6 A) (¢—1)2k-

Tor}, 441(0°, £(A;Q)) 22 (LmQak—1)6A) (t—1)(2k—1)-
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|dea of proof

First we prove a stability result

(Lm QnG/_A)qn = (Lm Q(n+2)G’_4)q(n+2) :

We show this by producing an isomorphism of the corresponding
Blanc-Stover spectral sequences.

The remaining argument is just a matching of the decomposition
pieces in the Hodge decomposition and the resolution spectral
sequence.
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