INHABITANTS OF INTERESTING SUBSETS OF THE BOUSFIELD LATTICE
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ABSTRACT. The set of Bousfield classes has some important subsets such as the distributive lattice DL of
all classes (E) which are smash idempotent and the complete Boolean algebra cBA of closed classes. We
provide examples of spectra that are in DL, but not in ¢cBA; in particular, for every prime p, the Bousfield
class of the Eilenberg-MacLane spectrum (HFp) is in DL\cBA.

1. INTRODUCTION & DEFINITIONS

In the original paper [1] introducing the Bousfield lattice B, Bousfield also introduces its subsets BA and
DL and identifies the location of many explicit Bousfield classes. In [4, Definition 6.3], Hovey and Palmieri
add a third interesting subset, denoted by ¢cBA. (We shall give definitions below.) It is easy to see that

BA CcBA CDL CB.

In this paper, we deal with the question of which and how many spectra live in the various parts of B
defined by this chain of inclusions. The main cardinality results of this paper (lower bounds) are graphically
represented as in Figure 1 and concern the dark grey parts.

BA
Card(BA) > 2o [1]

Card(B\DL) > R [1]

FIGURE 1. Lower bounds for the sizes of the four differences of subsets of B.
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2. DEFINITIONS

In order to fix notation, we give the relevant definitions, following closely the exposition in [4]. We consider
the Bousfield equivalence of spectra [1]: two spectra X and Y are equivalent if for all spectra E, X.(E) =0
if and only Y, (E) = 0 (alternatively put: X A E ~ x if and only if Y A E ~ x). For a spectrum X, we write
(X) for the class of all spectra F with X, (F) = 0. The class of all Bousfield classes is denoted by B. By a
theorem of Ohkawa [5, 2], it is known that B is a set and

2% < Card(B) < 22°.

This set is a poset with respect to reverse inclusion: (X) < (V) if and only if for all spectra Z, Y,.Z = 0
implies X.Z = 0. The poset (B, <) has a largest element 1 := (S) where S is the sphere spectrum and we
denote by 0 the minimal element which is the Bousfield class of the trivial spectrum. We work at a fixed
but arbitrary prime p, i.e., we consider p-local spectra.

For every prime p, K (n) denotes the nth Morava K-theory spectrum with coefficients 7. (K (n)) = F,[viF!]
where the degree of v, is 2p™ — 2. We use the convention that K (oco) is the mod p Eilenberg-MacLane
spectrum, HIF,. For any subset S € NU {oo}, we denote by K (S) the spectrum \/, .4 K(n).

The topological operations A and V of taking smash products and wedges, respectively, are well-defined
on B; the class (\/,; X;) is the least upper bound (“join”) in the structure (B, <) of the classes (X;) [1,
(2.2)], but in general, A does not produce the greatest lower bound. We can define the greatest lower bound
(“meet”) by

AX=\{Z;:vX e X(Z < X)},
and observe that A and A can differ quite a bit: the Brown-Comenetz dual I of the p-local sphere spectrum
satisfies (I) A (I) =0 # (I) = (I) A (I) [1, Lemma 2.5].
The complete lattice (B, A, V) is endowed with a pseudo-complementation function

aX :=\/{Z; Z X =0}

which is well-defined on Bousfield classes, i.e., a{X) := (aX) is independent of the choice of representative
X of (X). The function a is not in general a complement. While a? = id and a(X) A (X) = 0, we may not
have a(X) V (X) =1 [1, Lemma 2.7]. Bousfield defined two subclasses of B as follows:

BA = {(X); (X)Va(X) =1}, and

DL := {(X); (X) A (X) = (X)}.

Many examples for classes in BA or DL are known. Bousfield showed in [1] that every Moore spectrum of
an abelian group is in BA and so are the periodic topological K-theory spectra (KO) = (KU); furthermore,
he shows that (arbitrary joins of) finite CW spectra also give classes in BA. Every class of a ring spectrum
is in DL but not necessarily in BA [1, § 2.6]; in particular, all Eilenberg-MacLane spectra of rings are in
DL, but, e.g., the class of the Eilenberg-MacLane spectrum of the integers, (HZ), is in DL\BA [1, Lemma
2.7]. However, the Brown-Comenetz duals of (p-local) spheres are not in DL [1, Lemma 2.5].

We have that BA C DL; on DL, A and A coincide, and (DL, A, V) is a distributive lattice. Furthermore,
on BA| a is a true complement, so (BA, A,V,0,1,a) is a Boolean algebra, but not complete.

There is a retraction from B to DL defined by

r(X):=\/{(2): (2) e DL and (Z) < (X)}.
The pseudo-complementation function a may not respect DL, i.e., it could be that (X) € DL, but a(X) ¢
DL. On DL, we therefore define a new pseudo-complement by
A(X) = ra(X).
While A% = A and (X) < A2(X), it is not in general the case that A% = id. It is known [4, Lemma 6.2(d)]
that A converts joins to meets, i.e.,
A\ X) = \{A(X); X € X}
Following [4, Definition 6.3], we define

cBA = {(X) € DL; A*(X) = (X)}.



The set ¢cBA carries a complete Boolean algebra structure [4, Theorem 6.4]; however, it is not
(cBA,A,V,0,1, A), but instead (cBA, A, Y,0,1, A) with Y defined by

YX:: A2\/X.

3. RESULTS

We start with an observation on joins of elements in BA and use this to derive lower bounds for the size
of DL\cBA and cBA\BA.

Lemma 1. If X CBA, then Y X =\/ X. In particular, \| X € cBA.

YX:AQ\/X:Tara\/X,

and as a converts joins to meets, the latter is equal to

rar A{a ) e X}

Since every a(X) is in BA, it is also in DL, and as DL is complete,
= A{a(X); (X) € X} € DL

Proof. We have that

and hence r= = =. Therefore, as a sends meets to joins,

—r\/{a X) e X}
—r\/{ EX}
:\/X.

Proposition 2. If S C N is infinite, then (K(S)) = \/;,c4(K(i)) € c BA\BA and (K(S)) > (I).

Proof. By Lemma 1, (K(S)) is in ¢cBA. Hovey showed [3, Proof of Theorem 3.6] that the mod-p Moore
spectrum, M (p) is K(S)-local, so in particular K(S) has a finite local and [4, Proposition 7.2] gives that
(K(S) > (). If K(S) were in BA, having a finite local implies [4, Lemma 7.9] that (K(S) A I) # 0. But
we know that (K (n) A I) = 0 and hence using distributivity we get that (K(S)AI) = 0. O

Corollary 3. We have a proper inclusion BA ; cBA; in fact, the set cBA\BA has size continuum.

Proof. Because BA is a Boolean algebra, a(X) € BA for elements (X) € BA C DL. Therefore, A(X) =
ra(X) = a(X). But a® = id, so “C” holds. For the non-equality, if S # S’ are infinite subsets of N, then
Dwyer and Palmieri showed that (K(S)) # (K(S’)) [2, Lemma 3.4], so there are continuum many elements
in the complement. O

To sum up, we have
BA S cBA CDL G B.
Hovey and Palmieri argue that the middle inclusion is also proper:

This argument also implies that A? is not the identity—indeed, if A? were the identity, one
can check that A would have to convert meets to joins. However, we do not know a specific
spectrum X in DL for which A%(X) # (X). [4, p. 185]

We analyse the argument sketched in the above quote:

Lemma 4. Let X C DL be any set such that A* is the identity for each (X) € X and for \/{A(X); (X) €

X}. Then
A\ X) = \/{A X) e xl.



Proof. Since A converts joins to meets, under the assumption of the lemma, we have
A\ X) = A \{A*(X); (X) € x}
= A? \/{A S (X) e X}

= \V{AX); (X) € x}.

Corollary 5 (Hovey-Palmieri). The operation A? is not the identity on DL; i.e., cBA ; DL.

Proof. Let X := K(N), Y := HF, = K(c0), and X := {X,Y} C DL. We assume towards a contradiction
that A2 is the identity on DL, so in particular, the assumptions of Lemma 4 are satisfied for X. But
(X) AY) =(X)A(Y) =0, hence A((X) A (Y)) = 1. On the other hand, A(X)V AY) < a(l) < 1,in
contradiction to Lemma 4. O

The proof of Corollary 5 due to Hovey and Palmieri yields a trichotomy result: at least one of (K(N)),

(HF,), and A(K(N)) VvV A(HF,) is not in cBA. We improve this in our Dichotomy Lemma 7 to a dichotomy
which will allow us to identify concrete elements in DL\cBA.

Lemma 6. For any spectrum, the condition A(E) < 1 is equivalent to (E) # 0.
Proof. If (E) = 0, then clearly A(E) = 1. Conversely, if A(E) =1, then a(E) > A(F) =1, and so
(E)y =1AN(E)=a(E) N(E)=0.
O

Lemma 7 (Dichotomy Lemma). Let X and Y be spectra, and let E be a spectrum such that (E) # 0.
Suppose that the following conditions hold:
(1) (X) e DL,
(2) (Y) e DL,
(3) (X)A(Y) =
(4) (E) < (X), and
(5) (E) <(Y).
Then { r (Y) is not in cBA.

Note that conditions (4) and (5) are equivalent to saying that (X) A (Y) # 0, and thus the Dichotomy
Lemma extracts the failure of A2 = id from the discrepancy between A and A in B.

(X
(
(
(E
(E

X) o0

Proof. Assume that A?(X) = (X) and A%(Y) = (Y). Since A converts joins to meets, we get by our
assumption on X and Y

1=A40=A(X)A(Y)) = A(A*(X) N A2(Y)) = A% (A(X) V A(Y))
and the latter is A(X) Y A(Y) by definition of Y. As A is order-reversing we get A(X) < A(F) and
A(Y) < A(E) and hence (using Lemma 6)
1=A%A(X)VAY)) = AX) Y AY) < A(E) Y A(E) = A(E) <1,
a contradiction, showing that our assumption that both (X) and (Y) are in cBA cannot hold. O
As usual, we call a set S C NU {oco} coinfinite, if its complement (N U {o0})\S is infinite.
Theorem 8. For any coinfinite set S C NU {oo} with co € S, we have that (K(S)) is not in cBA.

Proof. In Lemma 7, choose E to be the Brown-Comenetz dual of the p-local sphere spectrum, I. We know
by [4, Lemma 7.1(c)] that (HF,) > (I), and hence (K(S)) > (I). As the complement S := (NU {c0})\$
is infinite, we get by Proposition 2 that (K (S)) > (I). Both, (K(S)) and (K(S)) are in DL and (K(S)) A
(K(S)) = 0. Thus all conditions of the Dichotomy Lemma are satisfied, and we get that one of (K (S)) and

(K(S)) is not in cBA. However, by Corollary 3, (K(S)) € cBA, so (K(S)) € DL\cBA. O

Corollary 9. There are at least 2%° Bousfield classes in DL\cBA.
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Proof. This follows directly from Theorem 8 and [2, Lemma 3.4], as there are 2% many coinfinite subsets of
NU {co}. O

4. APPLICATIONS

Several conjectures made by Hovey and Palmieri in [4] suggest that (HF,) is not in cBA [4, Proposition
6.14]. This follows directly from our Theorem 8:

Corollary 10. For every prime p, we have that (HF,) € DL\cBA.

Proof. This is clear from Theorem 8, as (HF,) = (K(o0)) = (K({oo})) where {oo} is coinfinite in N U
{o0}. O

Our method also identifies several other explicit Bousfield classes in DL\cBA. The following examples
exploit the fact that for any self-map of a spectrum X, f: L1 X — X one gets by [6, Lemma 1.34] that

(X) = (Cp) v(X[F7T]).
Here, Cy denotes the cofiber of f and X[f~!] is the telescope. Then the Bousfield class of the Eilenberg-
MacLane spectrum of the p-local integers, HZ ), is (K({0,00})). This is a special case of a truncated
Brown-Peterson spectrum BP(n) with 7, (BP(n)) = Zg[v1,. .., va] ([vs] = 2p" — 2). Multiplication by vy,
is a self-map on BP(n) with cofiber BP(n — 1) and BP{(n)[v, '] = E(n). An iteration then gives (cf. [6,
Theorem 2.1]) (BP(n)) = (E(n)) V (HF,). As the Bousfield class of E(n) is (K(0)) V...V (K(n)) we obtain
(BP(n)) = (K({0,...,n,00})).

Corollary 11. For every prime p and every natural number n, we have that (HZ,)) and (BP(n)) are in
DL\cBA.

Proof. The subsets {0,00} and {0,...,n,0c0} are coinfinite in NU {oo}. O

For the connective Morava K-theory k(n) (with m,k(n) = Fplv,]) we get (k(n)) = (K(n)) VvV (HF)) =
(K({n,o0})).

Corollary 12. For every natural number n, (k(n)) € DL\cBA.

Proof. This follows from Theorem 8, as {n, oo} is coinfinite in N U {cc}. O

Similar to the Morava K-theory spectra K(n) we can consider the telescopes T'(n) of v,-maps. (Cf. [4,
§5] for details.) It is known that

(T(n)) = (K(n)) vV (A(n))
where A(n) is the spectrum describing the failure of the telescope conjecture. We set (I'(c0)) = (HF,). The
classes (T'(n)) and (A(n)) are in BA but \/((T'(n)) ¢ BA by [4, Corollary 7.10]. By Lemma 1, we know

that for any S C N, we have that \/, .¢(T'(n)) € cBA. An argument similar to the proof of Proposition 2
yields Proposition 13.

Proposition 13. If S C N is infinite, then (T'(S)) = \/,c5(T(i)) € cBA\BA and (T(S)) > (I).

Theorem 14. Let S C NU {oo} be a coinfinite subset with oo € S. Then (T'(S)) is not in cBA.

Proof. Again, we use the Brown-Comenetz dual of the p-local sphere as E in the Dichotomy Lemma. Let S
be the complement of S. As (T'(n)) > (K(n)) and as co € S we have that

\/ (@) = \/ () > (1)
nes nes
and \/,,cg(T'(n)) > (I). The telescopes satisfy (T'(n)) A (T'(m)) = 0 for m # n: cf. [4, §5] for the cases
n # oo #m and cf. the proof of [4, Proposition 6.14] for (HF,)) A \/y(T'(n)) = 0. Therefore we obtain that
one of \/,,c4(T'(n)) or \/,,.5(T(n)) cannot be an element of cBA, but \/,,.5(T'(n)) is in cBA by Proposition
13. (]
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