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In an early example, one glues the commutative monoid (N,+, 0)
to points in a space:

nx

** (m + n)z

my

jj

Dold-Thom, 1958: Let X be a CW complex, x0 ∈ X and define

SPn(X ) := X n/Σn

with pn : X
n → SPn(X ), (x1, . . . , xn) 7→ [x1, . . . , xn].

The symmetric product of X , SP(X ), is the colimit

X = SP1(X ) → SP2(X ) → SP3(X ) → . . .

where SPnX → SPn+1(X ) sends [x1, . . . , xn] to [x0, x1, . . . , xn].
By counting multiplicities, you can write elements [x1, . . . , xn] as∑

x∈X\{x0}mxx with mx ∈ N and mx = 0 for almost all x ∈ X .
Dold-Thom: πi (SP(X ), [x0]) ∼= Hi (X ;Z) for i > 0, if X is a
connected CW complex.
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Some categories are suitable for encoding algebraic properties:

We consider finite sets {0, 1, . . . , n} with the natural ordering
0 < 1 < . . . < n and call this ordered set [n] for all n ≥ 0.
The simplicial category, ∆, has as objects the ordered sets
[n], n ≥ 0, and the morphisms in ∆ are the order-preserving
functions, that is, functions f : [n] → [m], such that f (i) ≤ f (j) for
all i < j .
Let M be a set. Then, M is a monoid if and only if the assigment

[n] 7→ Mn

gives rise to a functor from ∆op to Sets.
So in this case we have an associative ’multiplication’ that is
encoded by δ1 : [1] → [2], which is the order-preserving injection
that misses the value 1. As we start from ∆op, this gives
d1 = (δ1)

op : M2 → M. As δ2 ◦ δ1 = δ1 ◦ δ1, this multiplication is
associative. The unique map from [1] to [0] in ∆ encodes the unit
of M.
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If we want to encode symmetries, then we have to allow more
morphisms in our category.

We consider the category of finite sets and all functions, Fin, whose
objects are the sets of the form {1, . . . , n} for n ≥ 0 with 0 = ∅.
Let M be a set. Then, M is a commutative monoid if and only if
the assignment {1, . . . , n} = n 7→ Mn is a functor from Fin to the
category of sets.
There is a unique morphism m : 2 → 1 and the permutation
(1, 2) ∈ Σ2 satisfies

m ◦ (1, 2) = m,

so m codifies a commutative multiplication. Note that m is also
associative.
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Hochschild homology

Assume that A is an associative and unital R-algebra.

Then the ith Hochschild homology group of A relative R,
HHR

i (A), is defined as

Hi ( . . .
b // A⊗R3 b // A⊗R A

b // A ).

Here, b =
∑n

i=0(−1)idi where
di (a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ aiai+1 ⊗ . . . an for i < n and
dn(a0 ⊗ . . .⊗ an) = ana0 ⊗ . . .⊗ an−1.
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A simplicial set is a functor X : ∆op → Sets.

Hochschild homology is gluing A to points on the circle:
The simplicial model of the circle S1 has n + 1 points in S1

n :

[0] // [1]oo

oo //

// [2]
oo

oo

oo //

//

//
. . .

oo

oo

oo

oo

and face and degeneracy maps di , si as follows
si : [n] → [n + 1] is the unique monotone injection that does not
contain i + 1.
di : [n] → [n − 1],

di (j) =


j , j < i

i , j = i < n, (0, j = i = n),

j − 1, j > i .
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What about other finite simplicial sets?

The circle had a cyclic ordering of the points, so A could be taken
to be associative:

a0

a1

an

⊗ ⊗

⊗

⊗ · · ·

···
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In higher dimensions, the simplicial structure maps can merge
points in all possible directions, so we need commutativity.

Definition Let X be a finite simplicial set and let R → A be a map
of commutative rings, then the Loday construction of A over X
relative R is

LR
X (A)n =

⊗
x∈Xn,R

A.

If f : [m] → [n] ∈ ∆, then the induced map
f ∗ : LX (R)n → LX (R)m is given by
f ∗(

⊗
x∈Xn

rx) =
⊗

y∈Xm
by

with by =
∏

f (x)=y rx where the product over the empty set is
defined to be 1 ∈ R.
The definition goes back to Pirashvili, 2000.
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In joint work with Ayelet Lindenstrauss and others (Bobkova,
Dundas, Halliwell, Hedenlund, Höning, Klanderman, Poirier,
Zakharevich, Zou), we study the Loday construction and its
homotopy groups.

You can replace ’rings’ by ’ring spectra’ and get a corresponding
construction.

Important special cases:

▶ X = S1 yields Hochschild homology (or topological
Hochschild homology, THHR(A), for ring spectra)

▶ X = Sn for n > 1 is higher order (topological) Hochschild
homology.

▶ The case X = S1 × . . .× S1 yields torus homology.
For any two finite simplicial sets X and Y we always get

LR
X×Y (A)

∼= LR
X (LR

Y (A)).

So one can view torus homology as iterated (topological)
Hochschild homology.
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There is a trace map

K (R) → THH(HR) → HH(R)

connecting the algebraic K-theory of a ring R to its (topological)
Hochschild homology. (HR is the Eilenberg-MacLane spectrum of
R.)

If R is commutative, then this is a map of commutative ring
spectra, so we can iterate:

K (K (R)) → K (THH(HR)) → THH(THH(HR)) ∼= LS1×S1(HR).

Why is that important?
Suslin: K (C)p ≃ kup, p-completed connective complex topological
K-theory; so it’s related to complex vector bundles on spaces.
Ausoni, Rognes: K (ku) is a form of elliptic cohomology. Baas,
Dundas, R, Rognes: It’s related to a categorified version of
complex vector bundles.
So iterating K-theory produces homotopically interesting objects.
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Calculating the homotopy groups of LS1×S1(R) is difficult...

But
π∗LSn(R) is known for all n in many important cases.
Example: R = HFp. Bökstedt:

π∗(THH(HFp)) ∼= Fp[µ], |µ| = 2.

Theorem [Dundas-Lindenstrauss-R 2018; Mandell]
For all n ≥ 2:

π∗LSn(Fp) ∼= Tor
π∗LSn−1 (Fp)
∗,∗ (Fp,Fp)

as a graded commutative algebra (with total grading).
If we assume enough cofibrancy, then LX (R) only depends on the
homotopy type of X .
What if it just depended on the homotopy type of ΣX?
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As there is a homotopy equivalence

ΣT n ≃ Σ(
n∨

k=1

∨
(nk)

Sk)

we could calculate torus homology from a tensor product of the
π∗LSk (R)s.

BUT
Theorem [Dundas-Tenti 2018]:

π∗LQ
T 2(Q[t]/t2;Q) ≇ π∗LQ

S2(Q[t]/t2;Q)⊗ π∗LQ
S1(Q[t]/t2;Q)⊗2.

So the Loday construction is not stable in general.

Lindenstrauss-R, 2022: Thom spectra associated to Ω∞-maps are
stable, (real and complex) topological K-theory is stable and
HR → HR/(a1, . . . , an) is stable if R is a commutative ring and
the sequence (a1, . . . , an) is regular, ...
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What about spaces with a group action?

If X has an action by a finite group G , then the smallest
meaningful entity is an orbit:
For x ∈ X we consider Gx = {gx , g ∈ G}.
Then we know that as a set Gx ∼= G/Stabx(G ) =: G/H.
Extreme cases are: Gx ∼= G/G if x is a fixed point of the action.
Gx ∼= G/e if the action on x is free.

Example: Let’s consider Sσ:

•

•

hh66

where the group of order 2, C2, flips the two arcs.
The two points are fixed (and hence give C2/C2 ⊔ C2/C2).
The arcs give a C2/e.
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What are suitable commutative monoids R?

We need a commutative multiplication, but we also need maps
induced from arbitrary orbit collapse maps G/H → G/K for
H < K . These are G -commutative monoids (in the sense of
Hill-Hopkins).
In algebra, these are G -Tambara functors (Mazur,Hoyer,
conjectured by Hill-Hopkins).
In stable homotopy these are genuine commutative G -ring spectra.
For these objects we (=Lindenstrauss-R-Zou) can define
equivariant Loday constructions:

LG
X (R)

for X a G -simplicial set (think a space with a G -action).

Some important known equivariant homology theories can be
identified as equivariant Loday constructions.
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conjectured by Hill-Hopkins).
In stable homotopy these are genuine commutative G -ring spectra.
For these objects we (=Lindenstrauss-R-Zou) can define
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[LRZ]: For G = Cn =< γ > and X = S1
rot
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(R) ∼= HCCn(NCn

e i∗eR),

where HCCn denotes the twisted cyclic nerve of Blumberg,
Gerhardt and Hill.

For G = C2 and Sσ we get THR(A) ≃ LC2
Sσ(A), if A is a (flat and

well-pointed) genuine commutative C2-ring spectrum. Here, THR
is real topological Hochschild homology (Hesselholt-Madsen,
Dotto,...).
Both these objects receive trace maps from equivariant versions of
algebraic K-theory.
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