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Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors. These were defined

by Dress in 1973.
Definition A Mackey functor is a pair of functors M = (M, M*)
from the category of finite G-sets, G-Sets', to abelian groups, such
that

» M, is covariant and M* is contravariant,

> M. (X) = M*(X)=: M(X) for all finite G-sets X,

» for every pullback diagram of finite G-sets

U—"=V

s |

4
we have M*(0) o M,(y) = M.(B) o M*(«),
» for every pair of finite G-sets X and Y/, applying M, to
X — XUY « Y gives the component maps of an
isomorphism M(X) & M(Y) = M(XLY).



Every finite G-set is of the form X = G/H; U...U G/H,, so a
Mackey functor is determined by its values on all G/Hs.



Every finite G-set is of the form X = G/H; U...U G/H,, so a
Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p: G/K — G/H we get a transfer map
M.(p) = tril: M(G/K) — M(G/H).



Every finite G-set is of the form X = G/H; U...U G/H,, so a

Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p: G/K — G/H we get a transfer map
M.(p) = tril: M(G/K) — M(G/H).

The contravariant part describes restriction maps.



Every finite G-set is of the form X = G/H; U...U G/H,, so a

Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p: G/K — G/H we get a transfer map
M.(p) = tril: M(G/K) — M(G/H).

The contravariant part describes restriction maps.

Of course G-Mackey functors form a category (what are the
morphisms?) and we denote it by G-Mack.



Every finite G-set is of the form X = G/H; U...U G/H,, so a

Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p: G/K — G/H we get a transfer map
M.(p) = tril: M(G/K) — M(G/H).

The contravariant part describes restriction maps.

Of course G-Mackey functors form a category (what are the
morphisms?) and we denote it by G-Mack.

Example Let B be an abelian group with a G-action. Then the
fixed point Mackey functor B™ has
B*(G/H) = BH = G-maps(G/H, B).



Every finite G-set is of the form X = G/H; U...U G/H,, so a

Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p: G/K — G/H we get a transfer map
M.(p) = tril: M(G/K) — M(G/H).

The contravariant part describes restriction maps.

Of course G-Mackey functors form a category (what are the
morphisms?) and we denote it by G-Mack.

Example Let B be an abelian group with a G-action. Then the
fixed point Mackey functor Bf* has

B*(G/H) = BH = G-maps(G/H, B).

For K < H we have p: G/K — G/H and B" c BX.



Every finite G-set is of the form X = G/H; U...U G/H,, so a

Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p: G/K — G/H we get a transfer map
M.(p) = tril: M(G/K) — M(G/H).

The contravariant part describes restriction maps.

Of course G-Mackey functors form a category (what are the
morphisms?) and we denote it by G-Mack.

Example Let B be an abelian group with a G-action. Then the
fixed point Mackey functor Bf* has

B*(G/H) = BH = G-maps(G/H, B).

For K < H we have p: G/K — G/H and B" ¢ BX. This
determines the restriction map

resk .= (B™)*(p): B — BX.



Every finite G-set is of the form X = G/H; U...U G/H,, so a

Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p: G/K — G/H we get a transfer map
M.(p) = tril: M(G/K) — M(G/H).

The contravariant part describes restriction maps.

Of course G-Mackey functors form a category (what are the
morphisms?) and we denote it by G-Mack.

Example Let B be an abelian group with a G-action. Then the
fixed point Mackey functor Bf* has

B*(G/H) = BH = G-maps(G/H, B).

For K < H we have p: G/K — G/H and B" ¢ BX. This
determines the restriction map

resk .= (B™)*(p): B — BX.

The transfer tri! for p: G/K — G/H sends an
f € G-maps(G/K, B) to tri{(f)(gH) = > xep-1(gH) F(X)-
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There is an equivalent definition of Mackey functors due to Lindner
in terms of spans.

Definition The Lindner category, Bz_,f, has as objects finite G-sets.
A morphism f € BZ from X to Y is an equivalence class of spans

X<—uy—toy,

Here the above span is equivalent to x<f U’LY, if there is
a bijection of finite G-sets ¢: U — U’ such that

commutes.
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The set B£ (X, Y) carries an abelian monoid structure defined via
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Definition The Burnside category, Bg, has the same objects as
Bé;:, but Bg(X, Y) is the Grothendieck group completion of
BL(X,Y).

A Mackey functor can then be described as an additive functor
M: B — Ab.

The equivalence of the two definitions can be seen as follows: For
amap f: X = Y of finite G-sets we consider the span
X=——=X—L>Y which gives M,(f), and the span

Y <" X——=X which yields M*(f).
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An arbitrary morphism in Bg(X, Y) can then be expressed via a
composition of such spans:

Further examples of Mackey functors are:

» If B is an arbitrary abelian group with trivial G-action, then
the fixed point Mackey functor gives the so-called constant
Mackey-functor, B€.

Beware that this is only constant on objects! For instance, the
transfer map tr% for K < H < G multiplies with the index of
K in H.

» The Burnside Mackey functor, A, for G sends a finite G-set X
to the Grothendieck group of the abelian monoid of
isomorphism classes of finite G-sets over X.
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Here, two classes [Y — X] and [Z — X] are added to give
[YUZ - X].

A map f: X — W of finite G-sets induces A,.(f): A(X) — A(W)
by composition and A*(f): A(W) — A(X) by pullback:

A (AU = W] :=[X xw U — X].
Note that A(X) = Bg(G/G, X). Why?

Later, we'll need to change the group: If H < G, then we can
restrict a G-Mackey functor M to an H-Mackey functor. We'll
denote this by ij;(M). Explicitly: if;(M)(T) := M(G xy T) for
any H-set T.

We can also induce an H-Mackey functor N up to a G-Mackey
functor by sending a G-set S to indGN(S) := N(S) where we view
S just as an H-set.
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Lewis diagrams tell you right away what you need to know about a
given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors
are determined by their value on orbits, you just denote those. You
place the trivial orbit G/G on top and the free orbit G /e at the
bottom and then you fill in the transfer and restriction maps;
often, the Weyl group action W¢(H) at level G/H is indicated.
For example, you'd denote the constant C,-Mackey functor on an

abelian group B as B
res:id< >tr:p-
B

For the C,-fixed point Mackey functor of Z[i] the Lewis diagram is

7 = 7[i]©
res=inclusion < >tr(1)—2,tr(i)—i—i—0
Z[i]

We(e)=C, 1= 1, i —i.
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For abelian groups we have the symmetric monoidal structure
induced by the tensor product. For G-Mackey functors there is a
box-product. Formally, it can be defined as a left Kan extension:
Assume that M and N are in G-Mack, then MCIN is defined via
the following diagram:

Be x Bg % Ab x Ab-Z—= Ab

><
B L

Explicitly,
MDN(X) = C0|imy><zﬁxM(Y) ®N(Z)

This is also called a Day convolution product after Day, who
defined this is his thesis in 1970: You merge the symmetric
monoidal structures X for finite G-sets and ® for abelian groups to
get [ for the functor category.



Often, we want to describe the box product with the help of a
Lewis diagram.



Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard.



Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p. Cp, for a prime p, it's not too bad.



Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p. Cp, for a prime p, it's not too bad.

Formulas can for instance be found in Hill-Mazur 2019.



Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p. Cp, for a prime p, it's not too bad.

Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of C, = (t | tP) are the trivial subgroup e and the
full group, we omit them from the notation.



Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p. Cp, for a prime p, it's not too bad.

Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of C, = (t | tP) are the trivial subgroup e and the
full group, we omit them from the notation.

MON is:

Co/Cp: (M(Cp/cp) ® N(Cp/Cp) ® [M(Cp/e) ® N(Cp/e)]/cp> /FR

-\

Cole: M(Cp/e) ® N(Cp/e)



Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p. Cp, for a prime p, it's not too bad.

Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of C, = (t | tP) are the trivial subgroup e and the
full group, we omit them from the notation.

MON is:

Co/Cp: (M(Cp/cp) ® N(Cp/Cp) ® [M(Cp/e) ® N(Cp/e)]/cp> /FR

-\

Cole: M(Cp/e) ® N(Cp/e)

Let's unravel that: The C,-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ® y wrt that action

by [x @ y].
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Lewis diagram. In general, this is hard. For cyclic groups of order
p. Cp, for a prime p, it's not too bad.

Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of C, = (t | tP) are the trivial subgroup e and the
full group, we omit them from the notation.

MON is:

Co/Cp: (M(Cp/cp) ® N(Cp/Cp) ® [M(Cp/e) ® N(Cp/e)]/cp> /FR

-\

Cole: M(Cp/e) ® N(Cp/e)

Let's unravel that: The C,-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ® y wrt that action
by [x ® y]. The transfer sends m®@ n € M(C,/e) ® N(Cp/e) to
[m&n] € (M(Cp/e) © N(Cp/e))/Cp.
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This is a lot of structure...

Example Let’s take the G-Burnside Mackey functor with

A(X) = B¢(G/G, X).

As G/G x Y 2Y for all finite G-sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for O: For all M € G-Mack

AOM = M = MOA.
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tensor product ® | box product [J
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab, ®) and we can tensor any
commutative ring R with a finite set X: X@ R =@, x Rina
way that is functorial in X. This is where the analogy breaks
down...

Commutative monoids in (G-Mack, [J) are commutative Green
functors. They cannot be tensored with finite G-sets in a functorial
manner. In order to have for instance maps G/ K@ R - G/H® R
for K < H < G we need more structure.
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Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G-Tambara functor (Tambg), if it is a G-Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:

For the map p: G/K — G/H we have a multiplicative map

Ny: R(G/K) — R(G/H).

These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G-action. Then the
Mackey functor R™ is actually a G-Tambara functor:

The norm N, for p: G/K — G/H sends an f € G-maps(G/K, R)
to Np(f)(gH) = Hpr*l(gH) f(X)

Example If R is a commutative ring with a trivial G-action, then
we stress this by calling R™ the constant Tambara functor: R°.
Example The Burnside G-Tambara functor, A. It sends a finite
G-set X to the group completion of the abelian monoid of iso
classes of finite G-sets over X.

A is initial in Tambg with the product induced by the product of
finite G-sets.
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For a map of finite G-sets f: X — Y we consider the pullback
functor that sends h: B — Y to X xy B — X. This is a functor
from the category of finite G-sets over Y to finite G-sets over X.
It has a right adjoint, that sends a p: A— X to q: [[[A— Y.

[TA=1{(.s)yeY.s: fy) = Awith ps(x) = xVx € F1(y)}.
f

Hence s is a local section of p. The map g sends (y,s) to y and G
acts on [[; A via g(y,s) = (gy,%s) where &s(x) = gs(g~1x).

A diagram isomorphic to

X<t A<= Xxy][,A

f lg

14 a [ A

is called an exponential diagram. (Here, ¢(x, (y,s)) = s(x),
o(x, (y,5)) = (v:9).)
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For the definition of G-Tambara functors we need the following
category:

Definition The category P¢ has as objects finite G-sets and a
morphism from S to T is an isomorphism class of diagrams

st y‘t.y_h .t

where two diagrams are isomorphic if there is a commutative
diagram

Composition of morphisms is a bit involved. We define restriction,
norm and transfer associated to a map:



Let f: S — T be a map of finite G-sets.



Let f: S — T be a map of finite G-sets.
The restriction associated with f, Ry, is [T<f—5:5:5].



Let f: S — T be a map of finite G-sets.
The restriction associated with f, Ry, is [ T<—— S=——=5§=—=3].
The norm associated with f, N, is [5:5—f> T—=T].



Let f: S — T be a map of finite G-sets.
The restriction associated with f, Ry, is [ T<—— S=——=5§=—=3].

The norm associated with f, Ny, is [5:5# T—T].

The transfer associated with f, Ty, is [5:5:S—f> T].



Let f: S — T be a map of finite G-sets.

The restriction associated with f, Ry, is [ T<—— S=——=5§=—=3].
The norm associated with f, N, is [5:5—f> T—=T].
The transfer associated with f, Ty, is [5:5:S—f> T].

We interpret [S fyt.v hort as TpboNg o Ry.
g



Let f: S — T be a map of finite G-sets.

The restriction associated with f, Ry, is [T<f—5:5:5].
The norm associated with f, N, is [5:5—f> T—=T].
The transfer associated with f, Ty, is [5:5:S—f> T].

We interpret [S A VA T]as ThoNgoRy.
Proposition
> R is a contravariant functor from finite G-sets to P¢ and
N, T are covariant ones.



Let f: S — T be a map of finite G-sets.

The restriction associated with f, Ry, is [T<f—5:5:5].
The norm associated with f, N, is [5:5—f> T—=T].
The transfer associated with f, Ty, is [5:5:S—f> T].

We interpret [S A VA T]as ThoNgoRy.
Proposition
> R is a contravariant functor from finite G-sets to P¢ and
N, T are covariant ones.

» For a pullback diagram in finite G sets

X
g’i
S

RgONf: Nf/ORg/ and Rgo Tf: Tf’ORg’

~.<

f‘/
—_—

-
[\

~

f'
—_—



» For every exponential diagram

XL A<= XxyI[A

. lg

Y g I, A

NeoTp,=TgoNyoR:.
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The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): G-Sets’ x Tambg — Tambg
(X,R) = X ® R

which satisfies the following properties:

1. For all X and Y in G-Sets’ and R, T in Tambg, there are
natural isomorphisms (X U Y)® R = (X ® R)O(Y ® R) and
X@(ROT) (X R)O(X®T).

2. There is a natural isomorphism X @ (Y @ R) = (X x Y) ® R.

3. On the category with objects finite sets with trivial G-action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ® R =[], .xR.
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Definition Let G be a finite group, R € Tambg and let X be a
finite simplicial G-set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial

degree n is
LZ(R)n:=Xn ® R,

Remarks As X, ® R is functorical in X, this is a well-defined
object.

Mazur and Hoyer show that
G/H® R = Nfij;R

gives a well-defined way of tensoring finite G-sets with G-Tambara
functors. Here i};: Tambg — Tamby is the restriction functor and
Nﬁ: Tamby — Tambg is a norm functor.

The pair (NS, i) is an adjoint functor pair.



