
Mackey and Tambara functors

Birgit Richter

13th of January 2025

.

Let G be a finite group.

The category, on which everything is
based, is the category of G-Mackey functors. These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors.

These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors. These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors. These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors. These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors. These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors. These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Let G be a finite group. The category, on which everything is
based, is the category of G-Mackey functors. These were defined
by Dress in 1973.

Definition A Mackey functor is a pair of functors M = (M∗,M
∗)

from the category of finite G -sets, G -Setsf , to abelian groups, such
that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X) = M∗(X) =: M(X) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X)⊕M(Y) ∼= M(X ⊔ Y).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.

The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).
The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).
For K < H we have p : G/K → G/H and BH ⊂ BK . This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.
The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).

The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).
For K < H we have p : G/K → G/H and BH ⊂ BK . This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.
The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).
The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).
For K < H we have p : G/K → G/H and BH ⊂ BK . This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.
The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).
The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).
For K < H we have p : G/K → G/H and BH ⊂ BK . This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.
The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).
The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).

For K < H we have p : G/K → G/H and BH ⊂ BK . This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.
The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).
The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).
For K < H we have p : G/K → G/H and BH ⊂ BK .

This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.
The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).
The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).
For K < H we have p : G/K → G/H and BH ⊂ BK . This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.
The covariant part encodes transfer maps: For K < H < G and
the canonical projection p : G/K → G/H we get a transfer map
M∗(p) = trHK : M(G/K)→ M(G/H).
The contravariant part describes restriction maps.

Of course G -Mackey functors form a category (what are the
morphisms?) and we denote it by G -Mack.

Example Let B be an abelian group with a G -action. Then the
fixed point Mackey functor Bfix has
Bfix(G/H) = BH ∼= G -maps(G/H,B).
For K < H we have p : G/K → G/H and BH ⊂ BK . This
determines the restriction map

resHK := (Bfix)∗(p) : BH → BK .

The transfer trHK for p : G/K → G/H sends an
f ∈ G -maps(G/K ,B) to trHK (f)(gH) =

∑
x∈p−1(gH) f (x).

There is an equivalent definition of Mackey functors due to Lindner
in terms of spans.

Definition The Lindner category, B+
G , has as objects finite G -sets.

A morphism f ∈ B+
G from X to Y is an equivalence class of spans

X U
foo h //Y .

Here the above span is equivalent to X U ′f ′oo h′ //Y , if there is
a bijection of finite G -sets ϕ : U → U ′ such that

U

ϕ

��

f

~~

h

X Y

U ′
f ′

``

h′

>>

commutes.

There is an equivalent definition of Mackey functors due to Lindner
in terms of spans.
Definition The Lindner category, B+

G , has as objects finite G -sets.

A morphism f ∈ B+
G from X to Y is an equivalence class of spans

X U
foo h //Y .

Here the above span is equivalent to X U ′f ′oo h′ //Y , if there is
a bijection of finite G -sets ϕ : U → U ′ such that

U

ϕ

��

f

~~

h

X Y

U ′
f ′

``

h′

>>

commutes.

There is an equivalent definition of Mackey functors due to Lindner
in terms of spans.
Definition The Lindner category, B+

G , has as objects finite G -sets.
A morphism f ∈ B+

G from X to Y is an equivalence class of spans

X U
foo h //Y .

Here the above span is equivalent to X U ′f ′oo h′ //Y , if there is
a bijection of finite G -sets ϕ : U → U ′ such that

U

ϕ

��

f

~~

h

X Y

U ′
f ′

``

h′

>>

commutes.

There is an equivalent definition of Mackey functors due to Lindner
in terms of spans.
Definition The Lindner category, B+

G , has as objects finite G -sets.
A morphism f ∈ B+

G from X to Y is an equivalence class of spans

X U
foo h //Y .

Here the above span is equivalent to X U ′f ′oo h′ //Y , if there is
a bijection of finite G -sets ϕ : U → U ′ such that

U

ϕ

��

f

~~

h

X Y

U ′
f ′

``

h′

>>

commutes.

Composition in B+
G is defined via pullbacks:

[Y V
goo k //Z] ◦ [X U

foo h //Y] := [X W
ξoo ζ //Z]

where W , ξ, and ζ are defined via the pullback diagram

W

~~

ξ

��

ζ

��

U

f

��

h

V
g

~~

k

��
X Y Z

The set B+
G (X ,Y) carries an abelian monoid structure defined via

[X U1
f1oo h1 //Y]+[X U2

f2oo h2 //Y] := [X U1 ⊔ U2
(f1,f2)oo (h1,h2) //Y]

Composition in B+
G is defined via pullbacks:

[Y V
goo k //Z] ◦ [X U

foo h //Y] := [X W
ξoo ζ //Z]

where W , ξ, and ζ are defined via the pullback diagram

W

~~

ξ

��

ζ

��

U

f

��

h

V
g

~~

k

��
X Y Z

The set B+
G (X ,Y) carries an abelian monoid structure defined via

[X U1
f1oo h1 //Y]+[X U2

f2oo h2 //Y] := [X U1 ⊔ U2
(f1,f2)oo (h1,h2) //Y]

Definition The Burnside category, BG , has the same objects as
B+
G , but BG (X ,Y) is the Grothendieck group completion of

B+
G (X ,Y).

A Mackey functor can then be described as an additive functor
M : BG → Ab.

The equivalence of the two definitions can be seen as follows: For
a map f : X → Y of finite G -sets we consider the span

X X
f //Y which gives M∗(f), and the span

Y X
foo X which yields M∗(f).

Definition The Burnside category, BG , has the same objects as
B+
G , but BG (X ,Y) is the Grothendieck group completion of

B+
G (X ,Y).

A Mackey functor can then be described as an additive functor
M : BG → Ab.

The equivalence of the two definitions can be seen as follows: For
a map f : X → Y of finite G -sets we consider the span

X X
f //Y which gives M∗(f), and the span

Y X
foo X which yields M∗(f).

Definition The Burnside category, BG , has the same objects as
B+
G , but BG (X ,Y) is the Grothendieck group completion of

B+
G (X ,Y).

A Mackey functor can then be described as an additive functor
M : BG → Ab.

The equivalence of the two definitions can be seen as follows:

For
a map f : X → Y of finite G -sets we consider the span

X X
f //Y which gives M∗(f), and the span

Y X
foo X which yields M∗(f).

Definition The Burnside category, BG , has the same objects as
B+
G , but BG (X ,Y) is the Grothendieck group completion of

B+
G (X ,Y).

A Mackey functor can then be described as an additive functor
M : BG → Ab.

The equivalence of the two definitions can be seen as follows: For
a map f : X → Y of finite G -sets we consider the span

X X
f //Y which gives M∗(f), and the span

Y X
foo X which yields M∗(f).

An arbitrary morphism in BG (X ,Y) can then be expressed via a
composition of such spans:

U

U
f

��

U
h

X U Y

Further examples of Mackey functors are:
▶ If B is an arbitrary abelian group with trivial G -action, then

the fixed point Mackey functor gives the so-called constant
Mackey-functor, Bc .
Beware that this is only constant on objects! For instance, the
transfer map trHK for K < H < G multiplies with the index of
K in H.

▶ The Burnside Mackey functor, A, for G sends a finite G -set X
to the Grothendieck group of the abelian monoid of
isomorphism classes of finite G -sets over X .

An arbitrary morphism in BG (X ,Y) can then be expressed via a
composition of such spans:

U

U
f

��

U
h

X U Y

Further examples of Mackey functors are:
▶ If B is an arbitrary abelian group with trivial G -action, then

the fixed point Mackey functor gives the so-called constant
Mackey-functor, Bc .
Beware that this is only constant on objects! For instance, the
transfer map trHK for K < H < G multiplies with the index of
K in H.

▶ The Burnside Mackey functor, A, for G sends a finite G -set X
to the Grothendieck group of the abelian monoid of
isomorphism classes of finite G -sets over X .

An arbitrary morphism in BG (X ,Y) can then be expressed via a
composition of such spans:

U

U
f

��

U
h

X U Y

Further examples of Mackey functors are:

▶ If B is an arbitrary abelian group with trivial G -action, then
the fixed point Mackey functor gives the so-called constant
Mackey-functor, Bc .
Beware that this is only constant on objects! For instance, the
transfer map trHK for K < H < G multiplies with the index of
K in H.

▶ The Burnside Mackey functor, A, for G sends a finite G -set X
to the Grothendieck group of the abelian monoid of
isomorphism classes of finite G -sets over X .

An arbitrary morphism in BG (X ,Y) can then be expressed via a
composition of such spans:

U

U
f

��

U
h

X U Y

Further examples of Mackey functors are:
▶ If B is an arbitrary abelian group with trivial G -action, then

the fixed point Mackey functor gives the so-called constant
Mackey-functor, Bc .

Beware that this is only constant on objects! For instance, the
transfer map trHK for K < H < G multiplies with the index of
K in H.

▶ The Burnside Mackey functor, A, for G sends a finite G -set X
to the Grothendieck group of the abelian monoid of
isomorphism classes of finite G -sets over X .

An arbitrary morphism in BG (X ,Y) can then be expressed via a
composition of such spans:

U

U
f

��

U
h

X U Y

Further examples of Mackey functors are:
▶ If B is an arbitrary abelian group with trivial G -action, then

the fixed point Mackey functor gives the so-called constant
Mackey-functor, Bc .
Beware that this is only constant on objects! For instance, the
transfer map trHK for K < H < G multiplies with the index of
K in H.

▶ The Burnside Mackey functor, A, for G sends a finite G -set X
to the Grothendieck group of the abelian monoid of
isomorphism classes of finite G -sets over X .

An arbitrary morphism in BG (X ,Y) can then be expressed via a
composition of such spans:

U

U
f

��

U
h

X U Y

Further examples of Mackey functors are:
▶ If B is an arbitrary abelian group with trivial G -action, then

the fixed point Mackey functor gives the so-called constant
Mackey-functor, Bc .
Beware that this is only constant on objects! For instance, the
transfer map trHK for K < H < G multiplies with the index of
K in H.

▶ The Burnside Mackey functor, A, for G sends a finite G -set X
to the Grothendieck group of the abelian monoid of
isomorphism classes of finite G -sets over X .

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].

A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition

and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X).

Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor.

We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M).

Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .

We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Here, two classes [Y → X] and [Z → X] are added to give
[Y ⊔ Z → X].
A map f : X →W of finite G -sets induces A∗(f) : A(X)→ A(W)
by composition and A∗(f) : A(W)→ A(X) by pullback:

A∗(f)[U →W] := [X ×W U → X].

Note that A(X) ∼= BG (G/G ,X). Why?

Later, we’ll need to change the group: If H < G , then we can
restrict a G -Mackey functor M to an H-Mackey functor. We’ll
denote this by i∗H(M). Explicitly: i∗H(M)(T) := M(G ×H T) for
any H-set T .
We can also induce an H-Mackey functor N up to a G -Mackey
functor by sending a G -set S to indGHN(S) := N(S) where we view
S just as an H-set.

Lewis diagrams tell you right away what you need to know about a
given Mackey functor [Gaunce Lewis, 1988].

As Mackey functors
are determined by their value on orbits, you just denote those. You
place the trivial orbit G/G on top and the free orbit G/e at the
bottom and then you fill in the transfer and restriction maps;
often, the Weyl group action WG (H) at level G/H is indicated.
For example, you’d denote the constant Cp-Mackey functor on an

abelian group B as B

res=id

B

tr=p·

``

For the C2-fixed point Mackey functor of Z[i] the Lewis diagram is

Z = Z[i]C2

res=inclusion
��
Z[i]

tr(1)=2,tr(i)=i−i=0

\\

WC2(e) = C2, 1 7→ 1, i 7→ −i .

Lewis diagrams tell you right away what you need to know about a
given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors
are determined by their value on orbits, you just denote those.

You
place the trivial orbit G/G on top and the free orbit G/e at the
bottom and then you fill in the transfer and restriction maps;
often, the Weyl group action WG (H) at level G/H is indicated.
For example, you’d denote the constant Cp-Mackey functor on an

abelian group B as B

res=id

B

tr=p·

``

For the C2-fixed point Mackey functor of Z[i] the Lewis diagram is

Z = Z[i]C2

res=inclusion
��
Z[i]

tr(1)=2,tr(i)=i−i=0

\\

WC2(e) = C2, 1 7→ 1, i 7→ −i .

Lewis diagrams tell you right away what you need to know about a
given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors
are determined by their value on orbits, you just denote those. You
place the trivial orbit G/G on top and the free orbit G/e at the
bottom and then you fill in the transfer and restriction maps;

often, the Weyl group action WG (H) at level G/H is indicated.
For example, you’d denote the constant Cp-Mackey functor on an

abelian group B as B

res=id

B

tr=p·

``

For the C2-fixed point Mackey functor of Z[i] the Lewis diagram is

Z = Z[i]C2

res=inclusion
��
Z[i]

tr(1)=2,tr(i)=i−i=0

\\

WC2(e) = C2, 1 7→ 1, i 7→ −i .

Lewis diagrams tell you right away what you need to know about a
given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors
are determined by their value on orbits, you just denote those. You
place the trivial orbit G/G on top and the free orbit G/e at the
bottom and then you fill in the transfer and restriction maps;
often, the Weyl group action WG (H) at level G/H is indicated.

For example, you’d denote the constant Cp-Mackey functor on an

abelian group B as B

res=id

B

tr=p·

``

For the C2-fixed point Mackey functor of Z[i] the Lewis diagram is

Z = Z[i]C2

res=inclusion
��
Z[i]

tr(1)=2,tr(i)=i−i=0

\\

WC2(e) = C2, 1 7→ 1, i 7→ −i .

Lewis diagrams tell you right away what you need to know about a
given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors
are determined by their value on orbits, you just denote those. You
place the trivial orbit G/G on top and the free orbit G/e at the
bottom and then you fill in the transfer and restriction maps;
often, the Weyl group action WG (H) at level G/H is indicated.
For example, you’d denote the constant Cp-Mackey functor on an

abelian group B as B

res=id

B

tr=p·

``

For the C2-fixed point Mackey functor of Z[i] the Lewis diagram is

Z = Z[i]C2

res=inclusion
��
Z[i]

tr(1)=2,tr(i)=i−i=0

\\

WC2(e) = C2, 1 7→ 1, i 7→ −i .

Lewis diagrams tell you right away what you need to know about a
given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors
are determined by their value on orbits, you just denote those. You
place the trivial orbit G/G on top and the free orbit G/e at the
bottom and then you fill in the transfer and restriction maps;
often, the Weyl group action WG (H) at level G/H is indicated.
For example, you’d denote the constant Cp-Mackey functor on an

abelian group B as B

res=id

B

tr=p·

``

For the C2-fixed point Mackey functor of Z[i] the Lewis diagram is

Z = Z[i]C2

res=inclusion
��
Z[i]

tr(1)=2,tr(i)=i−i=0

\\

WC2(e) = C2, 1 7→ 1, i 7→ −i .

For abelian groups we have the symmetric monoidal structure
induced by the tensor product. For G -Mackey functors there is a
box-product.

Formally, it can be defined as a left Kan extension:
Assume that M and N are in G -Mack, then M□N is defined via
the following diagram:

BG × BG
M×N //

×
��

Ab× Ab
⊗ // Ab

BG

M□N

44

Explicitly,

M□N(X) = colimY×Z→XM(Y)⊗ N(Z).

This is also called a Day convolution product after Day, who
defined this is his thesis in 1970: You merge the symmetric
monoidal structures × for finite G -sets and ⊗ for abelian groups to
get □ for the functor category.

For abelian groups we have the symmetric monoidal structure
induced by the tensor product. For G -Mackey functors there is a
box-product. Formally, it can be defined as a left Kan extension:
Assume that M and N are in G -Mack, then M□N is defined via
the following diagram:

BG × BG
M×N //

×
��

Ab× Ab
⊗ // Ab

BG

M□N

44

Explicitly,

M□N(X) = colimY×Z→XM(Y)⊗ N(Z).

This is also called a Day convolution product after Day, who
defined this is his thesis in 1970: You merge the symmetric
monoidal structures × for finite G -sets and ⊗ for abelian groups to
get □ for the functor category.

For abelian groups we have the symmetric monoidal structure
induced by the tensor product. For G -Mackey functors there is a
box-product. Formally, it can be defined as a left Kan extension:
Assume that M and N are in G -Mack, then M□N is defined via
the following diagram:

BG × BG
M×N //

×
��

Ab× Ab
⊗ // Ab

BG

M□N

44

Explicitly,

M□N(X) = colimY×Z→XM(Y)⊗ N(Z).

This is also called a Day convolution product after Day, who
defined this is his thesis in 1970: You merge the symmetric
monoidal structures × for finite G -sets and ⊗ for abelian groups to
get □ for the functor category.

For abelian groups we have the symmetric monoidal structure
induced by the tensor product. For G -Mackey functors there is a
box-product. Formally, it can be defined as a left Kan extension:
Assume that M and N are in G -Mack, then M□N is defined via
the following diagram:

BG × BG
M×N //

×
��

Ab× Ab
⊗ // Ab

BG

M□N

44

Explicitly,

M□N(X) = colimY×Z→XM(Y)⊗ N(Z).

This is also called a Day convolution product after Day, who
defined this is his thesis in 1970: You merge the symmetric
monoidal structures × for finite G -sets and ⊗ for abelian groups to
get □ for the functor category.

For abelian groups we have the symmetric monoidal structure
induced by the tensor product. For G -Mackey functors there is a
box-product. Formally, it can be defined as a left Kan extension:
Assume that M and N are in G -Mack, then M□N is defined via
the following diagram:

BG × BG
M×N //

×
��

Ab× Ab
⊗ // Ab

BG

M□N

44

Explicitly,

M□N(X) = colimY×Z→XM(Y)⊗ N(Z).

This is also called a Day convolution product after Day, who
defined this is his thesis in 1970:

You merge the symmetric
monoidal structures × for finite G -sets and ⊗ for abelian groups to
get □ for the functor category.

For abelian groups we have the symmetric monoidal structure
induced by the tensor product. For G -Mackey functors there is a
box-product. Formally, it can be defined as a left Kan extension:
Assume that M and N are in G -Mack, then M□N is defined via
the following diagram:

BG × BG
M×N //

×
��

Ab× Ab
⊗ // Ab

BG

M□N

44

Explicitly,

M□N(X) = colimY×Z→XM(Y)⊗ N(Z).

This is also called a Day convolution product after Day, who
defined this is his thesis in 1970: You merge the symmetric
monoidal structures × for finite G -sets and ⊗ for abelian groups to
get □ for the functor category.

Often, we want to describe the box product with the help of a
Lewis diagram.

In general, this is hard. For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.
Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.
M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y]. The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard.

For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.
Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.
M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y]. The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.

Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.
M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y]. The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.
Formulas can for instance be found in Hill-Mazur 2019.

As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.
M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y]. The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.
Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.

M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y]. The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.
Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.
M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y]. The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.
Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.
M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y].

The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

Often, we want to describe the box product with the help of a
Lewis diagram. In general, this is hard. For cyclic groups of order
p, Cp, for a prime p, it’s not too bad.
Formulas can for instance be found in Hill-Mazur 2019. As the
only subgroups of Cp = ⟨t | tp⟩ are the trivial subgroup e and the
full group, we omit them from the notation.
M□N is:

Cp/Cp :

(
M(Cp/Cp)⊗ N(Cp/Cp)⊕ [M(Cp/e)⊗ N(Cp/e)]/Cp

)
/FR

res

��
Cp/e : M(Cp/e)⊗ N(Cp/e)

tr

VV

Let’s unravel that: The Cp-quotient is wrt the coordinatewise
action. We denote the equivalence class of x ⊗ y wrt that action
by [x ⊗ y]. The transfer sends m ⊗ n ∈ M(Cp/e)⊗ N(Cp/e) to
[m ⊗ n] ∈ (M(Cp/e)⊗ N(Cp/e))/Cp.

For the restriction one has:

res(u ⊗ v) = res(u)⊗ res(v)

for u ⊗ v ∈ M(Cp/Cp)⊗ N(Cp/Cp)

and

res[x ⊗ y] =

p∑
i=1

t ix ⊗ t iy .

Frobinius-Reciprocity (FR) identifies:

tr(m)⊗ n ∼ [m ⊗ res(n)],m ∈ M(Cp/e), n ∈ N(Cp/Cp)

m ⊗ tr(n) ∼ [res(m)⊗ n],m ∈ M(Cp/Cp), n ∈ N(Cp/e).

This is a lot of structure...

Example Let’s take the G -Burnside Mackey functor with
A(X) ∼= BG (G/G ,X).
As G/G ×Y ∼= Y for all finite G -sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for □: For all M ∈ G -Mack

A□M ∼= M ∼= M□A.

For the restriction one has:

res(u ⊗ v) = res(u)⊗ res(v)

for u ⊗ v ∈ M(Cp/Cp)⊗ N(Cp/Cp) and

res[x ⊗ y] =

p∑
i=1

t ix ⊗ t iy .

Frobinius-Reciprocity (FR) identifies:

tr(m)⊗ n ∼ [m ⊗ res(n)],m ∈ M(Cp/e), n ∈ N(Cp/Cp)

m ⊗ tr(n) ∼ [res(m)⊗ n],m ∈ M(Cp/Cp), n ∈ N(Cp/e).

This is a lot of structure...

Example Let’s take the G -Burnside Mackey functor with
A(X) ∼= BG (G/G ,X).
As G/G ×Y ∼= Y for all finite G -sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for □: For all M ∈ G -Mack

A□M ∼= M ∼= M□A.

For the restriction one has:

res(u ⊗ v) = res(u)⊗ res(v)

for u ⊗ v ∈ M(Cp/Cp)⊗ N(Cp/Cp) and

res[x ⊗ y] =

p∑
i=1

t ix ⊗ t iy .

Frobinius-Reciprocity (FR) identifies:

tr(m)⊗ n ∼ [m ⊗ res(n)],m ∈ M(Cp/e), n ∈ N(Cp/Cp)

m ⊗ tr(n) ∼ [res(m)⊗ n],m ∈ M(Cp/Cp), n ∈ N(Cp/e).

This is a lot of structure...

Example Let’s take the G -Burnside Mackey functor with
A(X) ∼= BG (G/G ,X).
As G/G ×Y ∼= Y for all finite G -sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for □: For all M ∈ G -Mack

A□M ∼= M ∼= M□A.

For the restriction one has:

res(u ⊗ v) = res(u)⊗ res(v)

for u ⊗ v ∈ M(Cp/Cp)⊗ N(Cp/Cp) and

res[x ⊗ y] =

p∑
i=1

t ix ⊗ t iy .

Frobinius-Reciprocity (FR) identifies:

tr(m)⊗ n ∼ [m ⊗ res(n)],m ∈ M(Cp/e), n ∈ N(Cp/Cp)

m ⊗ tr(n) ∼ [res(m)⊗ n],m ∈ M(Cp/Cp), n ∈ N(Cp/e).

This is a lot of structure...

Example Let’s take the G -Burnside Mackey functor with
A(X) ∼= BG (G/G ,X).
As G/G ×Y ∼= Y for all finite G -sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for □: For all M ∈ G -Mack

A□M ∼= M ∼= M□A.

For the restriction one has:

res(u ⊗ v) = res(u)⊗ res(v)

for u ⊗ v ∈ M(Cp/Cp)⊗ N(Cp/Cp) and

res[x ⊗ y] =

p∑
i=1

t ix ⊗ t iy .

Frobinius-Reciprocity (FR) identifies:

tr(m)⊗ n ∼ [m ⊗ res(n)],m ∈ M(Cp/e), n ∈ N(Cp/Cp)

m ⊗ tr(n) ∼ [res(m)⊗ n],m ∈ M(Cp/Cp), n ∈ N(Cp/e).

This is a lot of structure...

Example Let’s take the G -Burnside Mackey functor with
A(X) ∼= BG (G/G ,X).

As G/G ×Y ∼= Y for all finite G -sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for □: For all M ∈ G -Mack

A□M ∼= M ∼= M□A.

For the restriction one has:

res(u ⊗ v) = res(u)⊗ res(v)

for u ⊗ v ∈ M(Cp/Cp)⊗ N(Cp/Cp) and

res[x ⊗ y] =

p∑
i=1

t ix ⊗ t iy .

Frobinius-Reciprocity (FR) identifies:

tr(m)⊗ n ∼ [m ⊗ res(n)],m ∈ M(Cp/e), n ∈ N(Cp/Cp)

m ⊗ tr(n) ∼ [res(m)⊗ n],m ∈ M(Cp/Cp), n ∈ N(Cp/e).

This is a lot of structure...

Example Let’s take the G -Burnside Mackey functor with
A(X) ∼= BG (G/G ,X).
As G/G ×Y ∼= Y for all finite G -sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for □:

For all M ∈ G -Mack

A□M ∼= M ∼= M□A.

For the restriction one has:

res(u ⊗ v) = res(u)⊗ res(v)

for u ⊗ v ∈ M(Cp/Cp)⊗ N(Cp/Cp) and

res[x ⊗ y] =

p∑
i=1

t ix ⊗ t iy .

Frobinius-Reciprocity (FR) identifies:

tr(m)⊗ n ∼ [m ⊗ res(n)],m ∈ M(Cp/e), n ∈ N(Cp/Cp)

m ⊗ tr(n) ∼ [res(m)⊗ n],m ∈ M(Cp/Cp), n ∈ N(Cp/e).

This is a lot of structure...

Example Let’s take the G -Burnside Mackey functor with
A(X) ∼= BG (G/G ,X).
As G/G ×Y ∼= Y for all finite G -sets Y and by abstract non-sense
about representable functors and Day convolution products, we get
that A is the unit for □: For all M ∈ G -Mack

A□M ∼= M ∼= M□A.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗)

and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X .

This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...

Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors.

They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner.

In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

We will later see that the box product of constant Tambara
functors can be easily described.

So far we have the following analogy:

abelian groups G -Mackey functors

tensor product ⊗ box product □
unit Z unit A

In non-equivariant algebra, commutative rings are just
commutative monoids in (Ab,⊗) and we can tensor any
commutative ring R with a finite set X : X ⊗ R =

⊗
x∈X R in a

way that is functorial in X . This is where the analogy breaks
down...
Commutative monoids in (G -Mack,□) are commutative Green
functors. They cannot be tensored with finite G -sets in a functorial
manner. In order to have for instance maps G/K ⊗ R → G/H ⊗ R
for K < H < G we need more structure.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms:

R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:

For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).

These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:

The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .

Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A.

It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .

A is initial in TambG with the product induced by the product of
finite G -sets.

Tambara functors are Mackey functors with an additional
multiplicative structure and with multiplicative norms: R is a
G -Tambara functor (TambG), if it is a G -Mackey functor, if each
R(X) is a commutative ring and if there are multiplicative norm
maps:
For the map p : G/K → G/H we have a multiplicative map
Np : R(G/K)→ R(G/H).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Np for p : G/K → G/H sends an f ∈ G -maps(G/K ,R)
to Np(f)(gH) =

∏
x∈p−1(gH) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A. It sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG with the product induced by the product of
finite G -sets.

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X .

This is a functor
from the category of finite G -sets over Y to finite G -sets over X .
It has a right adjoint, that sends a p : A→ X to q :

∏
f A→ Y .∏

f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p. The map q sends (y , s) to y and G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X . This is a functor
from the category of finite G -sets over Y to finite G -sets over X .

It has a right adjoint, that sends a p : A→ X to q :
∏

f A→ Y .∏
f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p. The map q sends (y , s) to y and G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X . This is a functor
from the category of finite G -sets over Y to finite G -sets over X .
It has a right adjoint, that sends a p : A→ X to q :

∏
f A→ Y .

∏
f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p. The map q sends (y , s) to y and G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X . This is a functor
from the category of finite G -sets over Y to finite G -sets over X .
It has a right adjoint, that sends a p : A→ X to q :

∏
f A→ Y .∏

f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p. The map q sends (y , s) to y and G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X . This is a functor
from the category of finite G -sets over Y to finite G -sets over X .
It has a right adjoint, that sends a p : A→ X to q :

∏
f A→ Y .∏

f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p.

The map q sends (y , s) to y and G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X . This is a functor
from the category of finite G -sets over Y to finite G -sets over X .
It has a right adjoint, that sends a p : A→ X to q :

∏
f A→ Y .∏

f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p. The map q sends (y , s) to y and

G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X . This is a functor
from the category of finite G -sets over Y to finite G -sets over X .
It has a right adjoint, that sends a p : A→ X to q :

∏
f A→ Y .∏

f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p. The map q sends (y , s) to y and G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For a map of finite G -sets f : X → Y we consider the pullback
functor that sends h : B → Y to X ×Y B → X . This is a functor
from the category of finite G -sets over Y to finite G -sets over X .
It has a right adjoint, that sends a p : A→ X to q :

∏
f A→ Y .∏

f

A := {(y , s) | y ∈ Y , s : f −1(y)→ A with ps(x) = x ∀x ∈ f −1(y)}.

Hence s is a local section of p. The map q sends (y , s) to y and G
acts on

∏
f A via g(y , s) = (gy , g s) where g s(x) = gs(g−1x).

A diagram isomorphic to

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

is called an exponential diagram. (Here, ε(x , (y , s)) = s(x),
ϱ(x , (y , s)) = (y , s).)

For the definition of G -Tambara functors we need the following
category:

Definition The category PG has as objects finite G -sets and a
morphism from S to T is an isomorphism class of diagrams

S U
foo g //V

h //T

where two diagrams are isomorphic if there is a commutative
diagram

U
f

~~
∼=

��

g // V

∼=

��

h

S T

U ′
f ′

__

g ′
// V ′

h′

>>

Composition of morphisms is a bit involved. We define restriction,
norm and transfer associated to a map:

For the definition of G -Tambara functors we need the following
category:
Definition The category PG has as objects finite G -sets

and a
morphism from S to T is an isomorphism class of diagrams

S U
foo g //V

h //T

where two diagrams are isomorphic if there is a commutative
diagram

U
f

~~
∼=

��

g // V

∼=

��

h

S T

U ′
f ′

__

g ′
// V ′

h′

>>

Composition of morphisms is a bit involved. We define restriction,
norm and transfer associated to a map:

For the definition of G -Tambara functors we need the following
category:
Definition The category PG has as objects finite G -sets and a
morphism from S to T is an isomorphism class of diagrams

S U
foo g //V

h //T

where two diagrams are isomorphic if there is a commutative
diagram

U
f

~~
∼=

��

g // V

∼=

��

h

S T

U ′
f ′

__

g ′
// V ′

h′

>>

Composition of morphisms is a bit involved. We define restriction,
norm and transfer associated to a map:

For the definition of G -Tambara functors we need the following
category:
Definition The category PG has as objects finite G -sets and a
morphism from S to T is an isomorphism class of diagrams

S U
foo g //V

h //T

where two diagrams are isomorphic if there is a commutative
diagram

U
f

~~
∼=

��

g // V

∼=

��

h

S T

U ′
f ′

__

g ′
// V ′

h′

>>

Composition of morphisms is a bit involved. We define restriction,
norm and transfer associated to a map:

For the definition of G -Tambara functors we need the following
category:
Definition The category PG has as objects finite G -sets and a
morphism from S to T is an isomorphism class of diagrams

S U
foo g //V

h //T

where two diagrams are isomorphic if there is a commutative
diagram

U
f

~~
∼=

��

g // V

∼=

��

h

S T

U ′
f ′

__

g ′
// V ′

h′

>>

Composition of morphisms is a bit involved.

We define restriction,
norm and transfer associated to a map:

For the definition of G -Tambara functors we need the following
category:
Definition The category PG has as objects finite G -sets and a
morphism from S to T is an isomorphism class of diagrams

S U
foo g //V

h //T

where two diagrams are isomorphic if there is a commutative
diagram

U
f

~~
∼=

��

g // V

∼=

��

h

S T

U ′
f ′

__

g ′
// V ′

h′

>>

Composition of morphisms is a bit involved. We define restriction,
norm and transfer associated to a map:

Let f : S → T be a map of finite G -sets.

The restriction associated with f , Rf , is [T S
foo S S].

The norm associated with f , Nf , is [S S
f //T T].

The transfer associated with f , Tf , is [S S S
f //T].

We interpret [S U
foo g //V

h //T] as Th ◦ Ng ◦ Rf .
Proposition

▶ R is a contravariant functor from finite G -sets to PG and
N,T are covariant ones.

▶ For a pullback diagram in finite G sets

X
f ′ //

g ′

��

Y

g
��

S
f // T

Rg ◦ Nf = Nf ′ ◦ Rg ′ and Rg ◦ Tf = Tf ′ ◦ Rg ′

Let f : S → T be a map of finite G -sets.

The restriction associated with f , Rf , is [T S
foo S S].

The norm associated with f , Nf , is [S S
f //T T].

The transfer associated with f , Tf , is [S S S
f //T].

We interpret [S U
foo g //V

h //T] as Th ◦ Ng ◦ Rf .
Proposition

▶ R is a contravariant functor from finite G -sets to PG and
N,T are covariant ones.

▶ For a pullback diagram in finite G sets

X
f ′ //

g ′

��

Y

g
��

S
f // T

Rg ◦ Nf = Nf ′ ◦ Rg ′ and Rg ◦ Tf = Tf ′ ◦ Rg ′

Let f : S → T be a map of finite G -sets.

The restriction associated with f , Rf , is [T S
foo S S].

The norm associated with f , Nf , is [S S
f //T T].

The transfer associated with f , Tf , is [S S S
f //T].

We interpret [S U
foo g //V

h //T] as Th ◦ Ng ◦ Rf .
Proposition

▶ R is a contravariant functor from finite G -sets to PG and
N,T are covariant ones.

▶ For a pullback diagram in finite G sets

X
f ′ //

g ′

��

Y

g
��

S
f // T

Rg ◦ Nf = Nf ′ ◦ Rg ′ and Rg ◦ Tf = Tf ′ ◦ Rg ′

Let f : S → T be a map of finite G -sets.

The restriction associated with f , Rf , is [T S
foo S S].

The norm associated with f , Nf , is [S S
f //T T].

The transfer associated with f , Tf , is [S S S
f //T].

We interpret [S U
foo g //V

h //T] as Th ◦ Ng ◦ Rf .
Proposition

▶ R is a contravariant functor from finite G -sets to PG and
N,T are covariant ones.

▶ For a pullback diagram in finite G sets

X
f ′ //

g ′

��

Y

g
��

S
f // T

Rg ◦ Nf = Nf ′ ◦ Rg ′ and Rg ◦ Tf = Tf ′ ◦ Rg ′

Let f : S → T be a map of finite G -sets.

The restriction associated with f , Rf , is [T S
foo S S].

The norm associated with f , Nf , is [S S
f //T T].

The transfer associated with f , Tf , is [S S S
f //T].

We interpret [S U
foo g //V

h //T] as Th ◦ Ng ◦ Rf .

Proposition

▶ R is a contravariant functor from finite G -sets to PG and
N,T are covariant ones.

▶ For a pullback diagram in finite G sets

X
f ′ //

g ′

��

Y

g
��

S
f // T

Rg ◦ Nf = Nf ′ ◦ Rg ′ and Rg ◦ Tf = Tf ′ ◦ Rg ′

Let f : S → T be a map of finite G -sets.

The restriction associated with f , Rf , is [T S
foo S S].

The norm associated with f , Nf , is [S S
f //T T].

The transfer associated with f , Tf , is [S S S
f //T].

We interpret [S U
foo g //V

h //T] as Th ◦ Ng ◦ Rf .
Proposition

▶ R is a contravariant functor from finite G -sets to PG and
N,T are covariant ones.

▶ For a pullback diagram in finite G sets

X
f ′ //

g ′

��

Y

g
��

S
f // T

Rg ◦ Nf = Nf ′ ◦ Rg ′ and Rg ◦ Tf = Tf ′ ◦ Rg ′

Let f : S → T be a map of finite G -sets.

The restriction associated with f , Rf , is [T S
foo S S].

The norm associated with f , Nf , is [S S
f //T T].

The transfer associated with f , Tf , is [S S S
f //T].

We interpret [S U
foo g //V

h //T] as Th ◦ Ng ◦ Rf .
Proposition

▶ R is a contravariant functor from finite G -sets to PG and
N,T are covariant ones.

▶ For a pullback diagram in finite G sets

X
f ′ //

g ′

��

Y

g
��

S
f // T

Rg ◦ Nf = Nf ′ ◦ Rg ′ and Rg ◦ Tf = Tf ′ ◦ Rg ′

▶ For every exponential diagram

X

f
��

A
poo X ×Y

∏
f A

εoo

ϱ

��
Y

∏
f A

qoo

Nf ◦ Tp = Tq ◦ Nϱ ◦ Rε.

The main technical input in the equivariant context is the following
result:

Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : G -Setsf × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in G -Setsf and R, T in TambG , there are
natural isomorphisms (X ⊔ Y)⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T) ∼= (X ⊗ R)□(X ⊗ T).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y)⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.

The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : G -Setsf × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in G -Setsf and R, T in TambG , there are
natural isomorphisms (X ⊔ Y)⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T) ∼= (X ⊗ R)□(X ⊗ T).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y)⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.

The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : G -Setsf × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in G -Setsf and R, T in TambG , there are
natural isomorphisms (X ⊔ Y)⊗ R ∼= (X ⊗ R)□(Y ⊗ R)

and
X ⊗ (R□T) ∼= (X ⊗ R)□(X ⊗ T).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y)⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.

The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : G -Setsf × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in G -Setsf and R, T in TambG , there are
natural isomorphisms (X ⊔ Y)⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T) ∼= (X ⊗ R)□(X ⊗ T).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y)⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.

The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : G -Setsf × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in G -Setsf and R, T in TambG , there are
natural isomorphisms (X ⊔ Y)⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T) ∼= (X ⊗ R)□(X ⊗ T).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y)⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.

The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : G -Setsf × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in G -Setsf and R, T in TambG , there are
natural isomorphisms (X ⊔ Y)⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T) ∼= (X ⊗ R)□(X ⊗ T).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y)⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.

Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set.

We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks As Xn ⊗ R is functorical in Xn, this is a well-defined

object.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H i∗HR

gives a well-defined way of tensoring finite G -sets with G -Tambara
functors. Here i∗H : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , i∗H) is an adjoint functor pair.

Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks As Xn ⊗ R is functorical in Xn, this is a well-defined

object.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H i∗HR

gives a well-defined way of tensoring finite G -sets with G -Tambara
functors. Here i∗H : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , i∗H) is an adjoint functor pair.

Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks As Xn ⊗ R is functorical in Xn, this is a well-defined

object.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H i∗HR

gives a well-defined way of tensoring finite G -sets with G -Tambara
functors. Here i∗H : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , i∗H) is an adjoint functor pair.

Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks As Xn ⊗ R is functorical in Xn, this is a well-defined

object.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H i∗HR

gives a well-defined way of tensoring finite G -sets with G -Tambara
functors.

Here i∗H : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , i∗H) is an adjoint functor pair.

Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks As Xn ⊗ R is functorical in Xn, this is a well-defined

object.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H i∗HR

gives a well-defined way of tensoring finite G -sets with G -Tambara
functors. Here i∗H : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , i∗H) is an adjoint functor pair.

Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks As Xn ⊗ R is functorical in Xn, this is a well-defined

object.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H i∗HR

gives a well-defined way of tensoring finite G -sets with G -Tambara
functors. Here i∗H : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , i∗H) is an adjoint functor pair.

