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Loday construction: For A a commutative ring, X a finite
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Let X be a finite set with a G-action and let x € X. Then

Gx = {gx,g € G} is a G-subset of X, so the smallest meaningful
entities are orbits.

What is an adequate notion of commutative monoids in the
equivariant context?

There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category — these are
commutative Green functors.

Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.

Rolf Hoyer showed in 2014: G-commutative monoids are precisely
G-Tambara functors.

What are they?
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The category, on which everything is based in our case, is the
category of G-Mackey functors.

A Mackey functor is a pair of functors M = (M,, M*) from the
category of finite G-sets to abelian groups, such that

» M., is covariant and M* is contravariant,

> M. (X) = M*(X) for all finite G-sets X,

» for every pullback diagram of finite G-sets

U—=V
|
w—s2z
we have M*(0) o M. (y) = M(58) o M*(«),

» for every pair of finite G-sets X and Y/, applying M, to
X = XUY < Y gives the component maps of an
isomorphism M(X)® M(Y) = M(XLY).
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The contravariant part describes restriction maps.

Example Let A be an abelian group with a G-action. Then the
Mackey functor A™ has A™(G/H) = A" = G-maps(G/H, A).
For H < K we have m: G/H — G/K and AK c AH. This
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there are multiplicative norm maps:

For the map m: G/H — G/K we have a multiplicative map

Ny: R(G/H) = R(G/K).

These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G-action. Then the
Mackey functor R™ is actually a G-Tambara functor:

The norm N for 7: G/H — G/K sends an f € G-maps(G/H, A)
to Ny (F)(gK) = Txen-sgr) F(X).

Example If R is a commutative ring with a trivial G-action, then
we stress this by calling R"™ the constant Tambara functor: RC.
Example The Burnside G-Tambara functor, A = AG, sends a finite
G-set X to the group completion of the abelian monoid of iso
classes of finite G-sets over X.

A is initial in Tamb¢g and a unit for the so-called box product of
G-Mackey functors, [.



The main technical input in the equivariant context is the following
result:



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:

1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R)



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:
1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R) and
X@ROT) (X R)O(X®T).



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:

1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R) and
X@ROT) (X R)O(X®T).

2. There is a natural isomorphism X @ (Y @ R) = (X x Y)® R.



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:

1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R) and
X@ROT) (X R)O(X®T).

2. There is a natural isomorphism X @ (Y @ R) = (X x Y)® R.

3. On the category with objects finite sets with trivial G-action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ® R =[], .xR.
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Definition Let G be a finite group, R € Tambg and let X be a
finite simplicial G-set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial

degree n is
LZ(R)n =X, ®R.

Remarks
As X, ® R is functorical in X, this is a well-defined object.

Mazur and Hoyer show that
G/H®R= N§ijR

where if;: Tambg — Tamby is the restriction functor and
Nﬁ: Tamby — Tambg is a norm functor.
The pair (Nﬁ, if;) is an adjoint functor pair.
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Let's first do a sanity check:
If R is an ordinary commutative ring and X is a finite simplicial
set, then we can view both objects as having trivial G-action.

Proposition
LZ(RY) = Lx(R)".

The proof is by direct inspection, where we use the fact that
ROR® = (R® R)".
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The next result is a fun fact about fixed points: Let G = C, for p
a prime and let X be any finite Cy-simplicial set.

Proposition[The hungry fixed points]

Z°, if X% #£g,
o= % T

A, if X~ = @.
We saw that A is the initial object in Tambcp and the ring of
integers is initial in the category of commutative rings. Therefore

Ne?(Z) = Ne? (i2(Z°)) = A,

If X% = @, then all orbits are free, so we just get A everywhere
and AUJA = A.
If there is a fixed point somewhere, then we have one in every
simplicial level. A fixed point corresponds to the orbit C,/Cp,
hence there we get Z¢. The claim follows from Z°JA = Z°. O
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The cyclic group of order n, C, = (7) acts on the circle S1, by

Tro
rotation, so that ~ rotates by 27 /n. This circle has a simplicial

model with non-degenerate cells being one free 0-cell

Cp - xo = {x0, X0, ,V”_lxo} and one free 1-cell C, - e.
7?X0 \’yzeo
_1 .
Y " Xo X0

e()\) X0 /:YeO
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rot

x) = skxo, x| = sh1skeg for 1 < i < k.

The simplicial identities imply that

di(x) =xk_1,

i-1 .

i x_7; 0<,;<i—1

dj(xk) = lfl . .
X1 1)<k

di(xf) =7 X1
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So for a Cp,-Tambara functor R with R := iiR, there is
Eggot (R)k = To<i<i(Cr @ R) = (NS R)THHD),

and d;: (NS R)PEHD — (NS R)PK s

d; = id'OpOid* for 0 < i< k
di = (u0id* "1 o (v 10id*) o 7

where p: (NS"R)P? — NS R is the multiplication and

7 (NS R)PkH) 5 (NS R)P(k+1) moves the last coordinate to
the front. As iZR is an e-Tambara functor, it can be identified
with its value on e/e and that is R(C,/e).
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We obtain a direct isomorphism of the Loday construction with the
twisted cyclic nerve HC" defined by
Blumberg-Gerhardt-Hill-Lawson:

1

Theorem The Cp-equivariant Loday construction for S is

Cn ~Y n n ok
£g1 (R) = HC™ (NG R).
For every subgroup K < C, we can identify the twisted cyclic
nerve relative to K as
HC (ixR) = HC“(Ny"ikR) = L

rot

«(R).

In particular, for K = C,:

Gy

/¢, (R) = HCE(R) = HC™(R).
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Theorem For A flat and well-pointed:

THR(A) ~ L3 (A).
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Why is that true?
There is a simplicial model of O(2) with O(2)x = Dsk44 and of
course Dy 4 = pogy2 X Da.
This gives

A®p, Dakya = pok+2 ® A.
If we choose an ordering of the Dy-set g2 as
1<(¢<¢?<...<?*1 then we always get two trivial orbits

generated by 1 and (X! and k free orbits generated by ¢, ..., k.
We can identify piox12 with the k-simplices of a reflection circle S7:
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