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ABSTRACT. We develop a spectral sequence for the homotopy groups of Loday constructions with
respect to twisted cartesian products in the case where the group involved is discrete. We show
that for commutative Hopf algebra spectra Loday constructions are stable, generalizing a result by
Berest, Ramadoss and Yeung, but prove that several Loday constructions of truncated polynomial
rings with reduced coefficients are not stable by investigating their torus homology.

INTRODUCTION

Topological Hochschild homology and its higher versions are important homology theories in the
study of commutative rings and ring spectra. These are specific examples of the Loday construction,
whose definition relies on the fact that commutative ring spectra are enriched in simplicial sets:
for a simplicial set X and a commutative ring spectrum R one can define the tensor X ® R as a
simplicial spectrum whose n-simplices are

N\ E.

:EEXTL

By slight abuse of notation, X ® R also denotes the commutative ring spectrum that is the geo-
metric realization of this simplicial spectrum. This recovers topological Hochschild homology of
R, THH(R), when X = S!, and higher topological Hochschild homology, THH[”}(R), for higher
dimensional spheres S™. Tensoring satisfies several properties [7, VII, §2, §3], two of which are:

o If X = X4 U})L(O X5 is a homotopy pushout, the tensor product of R with X splits as a
homotopy pushout in the category of commutative ring spectra (which is the derived smash
product):

(X1 Uy, X2) ® R~ (X1 ® R) Aly,an) (X2 ® R).
e A product of simplicial sets X x Y gives rise to an iterated tensor product:
(XXxY) o R~ X ® (Y ®R).

This last expression does not, however, imply that calculating the homotopy groups of (X xY)®R
is easy. In particular, if one iterates the trace map from algebraic K-theory to topological Hochschild
homology n times, one obtains a map

KM™(R) = K(K(...(K(R))...)) = (S' x ... x SYY®R.
—— —_—

n n

Since iterated K-theory is of interest in the context of chromatic red-shift, one would like to know
as much about (S! x ... x S!) ® R as possible.

In some good cases, the homotopy type of X ® R only depends on the suspension of X in the
sense that if XX ~ XY, then one has X ® R ~ Y ® R. This property is called stability. Stability
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for instance holds for Thom spectra R that arise from an infinite loop map to the classifying space
BGLy(S) (see Theorem 1.1 of [25]), or for R = KU and R = KO [13} §4].

One can also work relative to a fixed commutative ring spectrum R and consider commutative
R-algebra spectra A and ask whether X ®g A only depends on the homotopy type of XX. In this
paper, we will often work with coeflicients. For a pointed simplicial set X we place a commutative
A-algebra spectrum C' at the basepoint of X. In other words, when X is pointed then the inclusion of
the basepoint makes X ® g A into a commutative augmented A-algebra, and we consider £§ (4;C) =
C Ag (X ®r A), the Loday construction with respect to X of A over R with coefficients in C'. We
call the pair (A; C) stable if the homotopy type of LE(A; C) only depends on the homotopy type of
Y X. Note that the ring R is not part of the notation when we say that (A; C) is stable although the
question depends on the choice of R, so the context should specify the R we are working over. We
call the commutative R-algebra A multiplicatively stable as in [13, Definition 2.3] if XX ~ XY as
pointed simplicial sets implies that £ (A) ~ LE(A) as commutative augmented A-algebra spectra.
If A is multiplicatively stable, then for any cofibrant commutative A-algebra C, the pair (A4;C) is
stable (see [I3, Remark 2.5]).

Moore introduced twisted cartesian products as simplicial models for fiber bundles. We develop
a Serre type spectral sequence for Loday constructions of twisted cartesian products where the
twisting is governed by a constant simplicial group. As a concrete example we compute the Loday
construction with respect to the Klein bottle for a polynomial algebra over a field with characteristic
not equal to 2.

Work of Berest, Ramadoss and Yeung implies that the homotopy types of E)ng(H A; Hk) and
Egk(H A) only depend on the homotopy type of XX if k is a field and if A is a commutative Hopf
algebra over k. We generalize this result to commutative Hopf algebra spectra.

We investigate several algebraic examples, i.e., commutative ring spectra that are Eilenberg-Mac
Lane spectra of commutative rings. For instance, we show that the pairs (HQJt]/t™; HQ) are not
stable for all m > 2 by examining the Loday construction of the m-torus. This extends a result by
Dundas and Tenti [6]. We also prove integral and mod-p versions of this result.

Content. In Section [1) we recall the definition of the Loday construction and fix notation. Section
contains the construction of a spectral sequence for the homotopy groups of Loday constructions
with respect to twisted cartesian products. Our results on commutative Hopf algebra spectra can
be found in Section[3} In Section [4] we prove that truncated polynomial algebras of the form Q[t]/¢™
and Z[t]/t" for m > 2 are not multiplicatively stable by comparing the Loday construction of tori
to the Loday construction of a bouquet of spheres corresponding to the cells of the tori. We also
show that for 2 < m < p the pairs (F,[t]/t";F,) are not stable.
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1. THE LODAY CONSTRUCTION: BASIC FEATURES

We recall some definitions concerning the Loday construction and we fix notation.

For most of our work we can use any good symmetric monoidal category of spectra whose
category of commutative monoids is Quillen equivalent to the category of F.-ring spectra, such as
symmetric spectra [I1], orthogonal spectra [17] or S-modules [7]. As parts of the paper require us
to work with a specific model category we chose to work with the category of S-modules everywhere
except in Section |3} where we will work in the oco-category of spectra in the sense of Lurie [16].

Let X be a finite pointed simplicial set and let R — A — C' be a sequence of maps of commutative
ring spectra.

Definition 1.1. The Loday construction with respect to X of A over R with coefficients in C is
the simplicial commutative augmented C-algebra spectrum £§ (A;C) given by

LYAC)=CA N\ A
T€Xn \*

where the smash products are taken over R. Here, * denotes the basepoint of X and we place a
copy of C at the basepoint.

The simplicial commutative augmented A-algebra spectrum X ®gr A, which in the Loday con-
struction notation would be written as LE(A) = LE(A; A), is given by Asex, A in degree n where
again all smash products are over R. It has face maps d; defined by multiplying all the copies of A
over x € X, for which d;x = y into the copy of A over y for every y € X,,_1, and degeneracy maps s;
defined similarly which insert the unit maps n4: R — A over all (n+ 1)-simplices which are not hit
by si: X — Xpt1. Then LE(A;0), is C Aa Azex, A; a pushout in the category of commutative
ring spectra, for all n. Using the smash product of the identity of C' with the simplicial structure
maps above defines the simplicial structure on £ (A4;C).

As defined above, L&(A;C) is a simplicial commutative augmented C-algebra spectrum. In the
following we will always assume that R is a cofibrant commutative S-algebra, A is a cofibrant com-
mutative R-algebra and C'is a cofibrant commutative A-algebra. This ensures that the homotopy
type of E%(A; () is well-defined and depends only on the homotopy type of X.

Remark 1.2. When R — A — C is a sequence of maps of commutative rings, we can of course use
the above definition for HR — HA — HC'. The original construction by Loday [14, Proposition

6.4.4] used
Co K A
TE€Xn\*

instead with the tensors taken over R as the n-simplices in £ (A4;C).

This algebraic definition also makes sense if R is a commutative ring and A — C is a map of
commutative simplicial R-algebras. It continues to work if R is a commutative ring and A — C
is a map of graded-commutative R-algebras, with the n-simplices defined as above, but the maps
between them require a sign correction as terms are pulled past each other—see [22, Equation
(1.7.2)].

An important case is X = S™. In this case L%, (4;C) is known as THHIE(A; C) and is the
higher order topological Hochschild homology of order n of A over R with coefficients in C. Let k
be a commutative ring, A be a commutative k-algebra, and M be an A-module. If A is flat over k,
then m, THH*(HA; HM) = HHY(A; M) [7, Theorem IX.1.7] and this also holds for higher order
Hochschild homology in the sense of Pirashvili [22]:

(1.3) m THHIMHR (B A3 V) = HHPYR (A4, )
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if A is k-flat [5, Proposition 7.2].
Given a commutative ring A and an element a € A, we write A/a instead of A/(a).

2. A SPECTRAL SEQUENCE FOR TWISTED CARTESIAN PRODUCTS

We will start by letting R — A be a map of commutative rings and studying Loday constructions
Eg (A7) over a finite simplicial set B, where 7 indicates a twisting by a discrete group G that acts
on A via ring isomorphisms. This construction can be adapted analogously to Definition to
allow coefficients in an A-algebra C' if B is pointed. Also, as discussed in Remark it can be
extended to settings where R — A is a map of commutative ring spectra, or R is a commutative
ring and A is a graded-commutative R-algebra or a simplicial commutative R-algebra.

If we have a twisted cartesian product (TCP) in the sense of [I8, Chapter IV] E(7) = F x,; B
where the fiber F' is a simplicial R-algebra and the simplicial structure group G acts on F' by sim-
plicial R-algebra isomorphisms, it is possible to generalize this definition of the Loday construction
to allow twisting by a simplicial structure group, as expained in Definition below.

We show an example where such a TCP arises: if we start with a TCP E(7) = F x; B of
simplicial sets with twisting in a simplicial structure group G acting on F' simplicially on the left
and with a map of commutative rings R — A, we can use that twisting to construct a TCP with
fiber equal to the simplicial commutative R-algebra C?(A) and with the structure group G acting
on El{z(A) by R-algebra isomorphisms. In that situation, we get that

LR (A) = LELEA)),

which generalizes the fact that for a product, L& 5(A) 22 LE(LE(A)). If the structure group G is
discrete, i.e., if G is a constant simplicial group, Eg(T)(A) can be written as a bisimplicial set and
we get a spectral sequence for calculating its homotopy groups.

Definition 2.1. Let B be a finite simplicial set, R be a commutative ring, and A be a commutative
R-algebra (or a graded-commutative R-algebra, or a simplicial commutative R-algebra). Let G be
a discrete group acting on A from the left via isomorphisms of R-algebras, and let 7 be a function
from the positive-dimensional simplices of B to G so that

() = [r(dob)]"i7(d1b) for ¢ >1,b€ By,
(2.2) 7(d;b) = 7(b) for i > 2,9 > 1,b € By,
’ T(sib) = 7(b) fori>1,¢>0,b € By, and
T(sob) = eq for ¢ > 0,b € B,.

The twisted Loday construction with respect to B of A over R twisted by 7 is the simplicial com-
mutative (resp., graded-commutative, or bisimplicial commutative) R-algebra LE(A™) given by

LRAT), =L ()= R A
bGB’n/
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where the tensor products are taken over R, with

| QR h]=Q gewithge= ] 7)),

beB, cEBn—1 b:dgb=c

d; ®fb = ® ge with g. = H fofor 1 <i<mn, and

beB, cEBn—1 b:d;b=c
sil Q| = Q hawithhg= [[ frfor0<i<n
beB, dEBn+1 b:s;b=d

We should think of the copy of A sitting over a simplex b € B,, as sitting over its Oth vertex, and
of 7(b) as translating between the A over b’s Oth vertex and the A over b’s 1st vertex.

Lemma 2.3. The definition above makes LE(AT) into a simplicial set.

Proof. To check this we need only check the relations involving dy, since the ones that do not
involve 7 work in the same way that they do in the usual Loday construction. For j > 1, we
get dodj = dj_1dy because in both terms, for any ¢ € B,_2 we get the product over all b € B,
with dodjb = dj_1dpb = ¢ of terms that are either 7(b)(f;) or 7(d;b)(fy). These are the same
by the condition in Equation above. For j = 1, we get the product over all b € B, with
dodib = dpdob = c of terms that are either 7(d1b)(f) or 7(dob)7(b)(f), which again agree by
Equation . We get doso = id since 7(sob) = e, and dys; = s;—1dy for ¢ > 0 since for those i,
7(s:b) = 7(b). O

Following Moore, May considers the following simplicial version of a fiber bundle [I8, Definition
18.3]:

Definition 2.4. Let F' and B be simplicial sets and let G be a simplicial group which acts on F
from the left. Let 7: B, — G4—1 for all ¢ > 0 be functions so that

dor(b) = [r(dob)]"t7(d1b) for ¢ > 1,b € By,
T(di+1b) = dﬂ'(b) fort>1,g>1,b€ Bq,
T(si+1b) = s;7(b) for i > 0,¢ > 0,b € By, and
T(s0b) = e for ¢ > 0,b € B,.

The twisted cartesian product (TCP) E(1) = F x; B is the simplicial set whose n-simplices are

given by
E(1), = F, X By,
with simplicial structure maps
(i) do(f,b) = (7(b) - do f,dob),

(i) di(f,b) = (dif,d;b) Vi >0, and

(iii) Si<f, b) = (Sz'f, Sib) Vi Z 0.
These structure maps satisfy the necessary relations to be a simplicial set because of the conditions
that 7 satisfies.

Definition 2.5. If R is a commutative ring and E(7) = C x, B is a TCP as in Definition

where C' is a commutative simplicial R-algebra and the simplicial group G acts on C by R-algebra

isomorphisms (that is, for every ¢ > 0, the group G, acts on the commutative R-algebra C, by
5



R-algebra isomorphisms), then we can use the twisting 7 to define the twisted Loday construction
with respect to B of C' over R, twisted by T,

LECT)n = LE,(Cn) = @) Cn
beBy,

with twisted structure maps given on monomials &,cp fp, with f, € C, for all b € B, by

d| Q) h|= & gewithge= ] 7()(dofs),

beB, ceEBy 1 b:dob=c

(2.6) di | Q) fr ) ge with go= [[ dify for 1<i<n, and

beB, ceEB, 1 b:d;b=c

S; ®fb = ® hg with hg = H Sifp for 0 < i <n.

beB,, d€Byn 1 b:s;b=d

Note that there are two sets of simplicial structure maps being used, those of C inside and those
of B outside. This looks like the diagonal of a bisimplicial set, but since our twisting 7: By41 — G|
explains only how to twist elements in Cy, this is not the case unless the structure group G is a
discrete group, viewed as a constant simplicial group.

If the structure group G is discrete, there is overlap between Definition [2.1] and Definition 2.5
The simplicial commutative R-algebra case of Definition [2.1] actually gives a bisimplicial set: we
use only the simplicial structure of B in the definition and if A also has simplicial structure, that

remains untouched. The diagonal of that bisimplicial set agrees with the constant simplicial group
case of Definition 2.5

Given any TCP of simplicial sets E(7) = F X, B as in Definition and a map R — A of
commutative rings, we can construct £E(A) x, B which is a TCP of commutative simplicial R-
algebras as in Deﬁnition using the same structure group G' and twisting function 7: By — G4—1.
We use the simplicial left action of G, on F),, which we denote by (g, f) — ¢f, to obtain a left
action by simplicial R-algebra isomorphisms

Gy x LF (A) = LE (A)

(2.7) (9, ® ar) — ® Qg5

f€Fn fE€F,
Since the original action of G,, on F}, was a left action, this is a left action. In the original monomial,
the fth coordinate is ay. After g € Gy, acts on it, the fth coordinate is by = a,-1;. After h € Gy,
acts on the result of the action of g, the fth coordinate is b,-1; = a4-1,-1¢, which is the same as
the result of acting by hg on the monomial.

Proposition 2.8. If E(1) = F x; B is a TCP and R — A is a map of commutative rings, and
we use the simplicial set twisting function T to construct a simplicial R-algebra twisting function
to obtain a TCP LE(A) x, B as above, we get that

L3 (A) = LE(LE(A)).

This uses the definition of the Loday construction of a simplicial algebra twisted by a simplicial
group in Definition [2.5
Proposition [2.§8 generalizes the well-known fact that for a product of simplicial sets,
L p(A) = LE(LEA)).
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Proof. Both £g(T)(A) and LE(LE(A)7) have the same set of n-simplices for every n > 0:
R1- @ 42Q (@ o
e€EE(T)n (f,b)EFnXBnp beB, feFn

We have to show that the simplicial structure maps agree with respect to this identification.
For 1 < i < n, for any choice of elements z(;;) € A,

d; ® Ty | = ® Y(g.e)

(fvb)anXBn (gvc)an71><Bn71

where

Y(g,0) = H L) = H H L(f.b)

(f:b):(di f,dsb)=(g,c) bidib=c \ f:dif=g

The internal product on the right-hand side is what we get from d; on £(A) and the external
product is what we get from d; of Eg, so this agrees with the definition in Equation .

The proof that the s;, 0 < i < n agree is very similar.

The interesting case is that of dp. For any choice of elements x(;; € A, the boundary dy

associated to EE(T) (A) satisfies

(2.9) do ® Tp) | = ® Y(g,c)

(fvb)anXBn (g7C)EFn_1 XBpn_1
where
Y(g,e) = H L(fp) = H L(f.b)
(£,b):do(f,b)=(g,¢) bdob=c \ f:7(b)-dof=g
From the LE(LE(A)) point of view, by Equation (2.6).

do ®(® Ty | = ® H 7(b)do ®93(f,b)

beB, feF, c€Bp_1 b:dgb=c fEF,
=@ Il & II zu»
cEBy, 1 b:dgb=c geF,—1 f:dof:g

- I [® H 7(13)

cEBp—1 bidob=c \gEFn—1 fiudof=7(b)"1g

= 11 I zuw|

(9,€)EFn—1XBy 1 bidob=c \ f:dof=7(b)"1g

which is exactly what we got in (2.9). O

If G is a discrete group and E(7) is constructed using G, then for every ¢ > 0 there is a function
7: By — G satisfying the conditions listed in Equation and G acts simplicially on F' on the
left.
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Theorem 2.10. If E(1) = F X B is a TCP where the twisting is by a constant simplicial group
G and if R — A is a map of commutative rings such that m.(LE(A)) is flat over R, then there is
a spectral sequence

(2.11) E}%,q = ”p((‘cg(ﬂ*‘cg(A)T))q) = 7r10-1-61(’Cg(r) (A4)).

Here, W*ﬁl{f(A) is a graded commutative R-algebra. For any fixed p and ¢, we consider the
degree g part of Egp (m«LE(A)7), denoted by (ﬁgp (m«LE(A)7))q. This forms a simplicial abelian
group which in degree p is (Egp (m«LE(A)))4, with simplicial structure maps induced by those of B

with the twisting by 7, and m,((LE(m.LE(A)7)),) denotes its pth homotopy group. The flatness
assumption above is for instance satisfied if R is a field.

Proof. Since the twisting is by a constant simplicial group G, we are able to form a bisimplicial
R-algebra

(2.12) (m,n)— Q) &) A.

beBy, feF,

In the n-direction, the simplicial structure maps df and SZF will simply be the simplicial structure
maps of the Loday construction £(A) applied simultaneously to all the copies of LE(A) over all
the b € B,,. In the m direction, df and SZB are the simplicial structure maps of the twisted Loday
construction, as in Equation in Definition These commute exactly because the simplicial
structure maps in G are all equal to the identity. For any choice of x; € E?(A)n for all b € B,,,

didf | Q w| =df | Q) df (w) | = Q) ] )l (z)

beBm, beBm, cEB—1 b:dgb=c

while

didg | Q@ w | =d | @ II ~® =)= &Q [ a(®)-m),

beBm, cEBy—1 b:dpb=c cEBym—1 b:dpb=c

which is the same since
df’ (7(b) - ap) = di(7(b)) - df (xp) = 7(b) - df ().

Note that since the twisting is by a constant simplicial group, L’g(T) (A) = LE(LE(A)T) is exactly
the diagonal of the bisimplicial R-algebra in Equation (2.12)).

We use the standard result (see for instance [8, Theorem 2.4 of Section IV.2.2]) that the total
complex of a bisimplicial abelian group with the alternating sums of the vertical and the horizontal
face maps is chain homotopy equivalent to the usual chain complex associated to the diagonal of
that bisimplicial abelian group. Since we know that the realization of the diagonal is homeomorphic
to the double realization of the bisimplicial abelian group, in order to know the homotopy groups
of the double realization of a bisimplicial abelian group, we can calculate the homology of its total
complex with respect to the alternating sums of the vertical and the horizontal face maps. Filtering
by columns gives a spectral sequence calculating the homology of the total complex associated to
a bisimplicial abelian group consisting of what we get by first taking vertical homology and then
taking horizontal homology. In the case of the bisimplicial abelian group we have in Equation ,
the vertical gth homology of the columns will be the gth homology with respect to Y 1 (—1)d’

of the complex
&) L)

beBm/
8



and this is isomorphic to 74 (Qpep, LE(A)). Since we assumed that m,(LE(A)) is flat over R, we
obtain

| @ LEA) | = (D m(LE(A)))-
beBm beBm
Here, the subscript ¢ denotes the degree g part of the graded abelian group @,cp - (LE(A)).
Moreover, the effect of the horizontal boundary map on @,cp s (LE(A)) is the boundary of the
twisted Loday construction, with the action of G on the graded-commutative R-algebra . (LE(A))
induced by that of G on the commutative simplicial R-algebra LE(A). As the boundary map
preserves internal degree, we get the desired spectral sequence. ]

2.1. Norms and finite coverings of S'. The connected n-fold cover of S' given by the degree
n map can be made into a TCP as follows. Let B = S! be the standard simplicial circle and
Cp = (v: 7™ = 1) be the cyclic group of order n with generator v. The twisting function 7: S; — Cy
sends the non-degenerate simplex in S to v and is then determined by Equation . Let F = C,,
viewed as a constant simplicial set; then C), acts on itself at every simplicial degree in F' by left
multiplication. Then E(7) = F x, B is in fact another simplicial model of S! with n non-degenerate
1-simplices. Therefore,

LE(A) = LG (A)  and  m(LE)(A)) = HHI(A)
for every commutative R-algebra A. In this case, LEA = A®R" is the constant commutative
simplicial R-algebra, with the Cj,-action given by
ry(al®...®an):an®al®...®anil‘

As LE(A) is a constant simplicial object, we obtain that

ABRT % =0,
mLi(A) {0 £>0

If A is flat over R, the spectral sequence of Equation (2.11)) is

Ez,q = Wp(ﬁsRl (A®Rn)7)q = 7Tp+q£§(7_) (A) = HHngq

(A).
In our case, the spectral sequence is concentrated in g-degree zero and hence it collapses, yielding
mp(LE (A7) = HHT(A).

With Proposition we can identify .C%(T)(A) if A is a commutative ring spectrum and we
recover the known result (see for instance [2, p. 2150]) that

(2.13) THH¢, (NS A) ~ THH(A).
Here, THH¢, (A) = Ngi(A) is the Cy-relative THH defined in [2, Definition 8.2], where NS A is

the Hill-Hopkins-Ravanel norm. See also [I, Definition 2.0.1]. The identification in (2.13)) is an
instance of the transitivity of the norm: Ngi NE A~ N5 "A.

2.2. The case of the Klein bottle. For the Klein bottle, K¢, we compute the homotopy groups
of the Loday construction of the polynomial algebra k[z] for a field k£ using our TCP spectral
sequence. We assume that the characteristic of &k is not 2, so 2 is invertible in k. Note that away
from the prime 2, the obvious projection map K¢ — S! is an equivalence, so we know that

(Lo (Kla])) = m (L (k[z])) 2 HHE (K[2]) = klz] @ A(ea).

In this subsection, we show how one could also calculate this using the TCP spectral sequence.
9



We will use the following simplicial model for the Klein bottle:
Kl = (I x 8Y)/(0,t) ~ (1, flip(t))

where flip is the reflection of the circle about the y-axis. We use the model of the circle with two
vertices vg and v; and two edges ag and a;:

U1

(651 (67s)

Vo

Then the flip map is a simplicial map fixing vy and vy and exchanging the ays. It induces a map
on ﬁ*(ﬁgl(l{[m]) = k[z] ® A(ex). It maps = to = because k[z]| corresponds to the value at the base
point. Set zo, := lsguy @ lsgu; @ Tap @ 1o, and o, 1= Lgyue @ Lsgu; @ 1oy @ To,. The generator ex
can be represented by z,, — Za,, so exchanging the a;s sends ex to —ez.

The nontrivial twist 7: S' — Cy = (7) maps the non-degenerate 1-cell a € S} to v and is then

determined by (2.2)), yielding
(2.14) do(ap®@ a1 ® ... Q@ ap) =ag-va1 Qa2 X ... R ay.
The TCP spectral sequence ([2.11)) in this case takes the form

B, = ((ﬁ’; (m<£’§1<k[x]>>T))q> — e Ll (k)

and since W*Egl (k[z]) = k[z] ® A(ex),

E}, =m ((ﬁ’;l (k:[:x] ® A(E:L")T> ) q) ,

which is the pth homotopy group of the simplicial k-vector space whose p-simplices are

<£§;(kz[x] ® A(ea:)T))q

For each p, E%(/{:[ﬂ:}@/\(éx}) o~ E%(k[x])@kﬁlgé (A(ex)), and so L, (k[z]@A(ex)T) ~ LK, (k[x])®y

Egl (A(ex)). We can think of this tensor product of simplicial k-algebras as the diagonal of
a bisimplicial abelian group, and by [8, Theorem 2.4 of Section IV.2.2] the total complex of a
bisimplicial abelian group with the alternating sums of the vertical and the horizontal face maps is
chain homotopy equivalent to the usual chain complex associated to the diagonal of that bisimplicial
abelian group. In this case of a tensor product, the total complex was obtained by tensoring
together two complexes, and since we are working over a field its homology is the tensor product
of the homology of the two complexes, so

- ((ﬁ{; (k[m] ® A(aa:)T) ) ) ~ o, ((z{; (k2] )) ) ® T ((ﬁ{; (A(ax)T)) ) .

The first factor is just the Hochschild homology of k[x]. Tt sits in the Oth row of the E? term since
z has internal degree zero, and gives us m, (L%, (k[z]) = k[z] ® A(ex) concentrated in positions (0,0)
10



and (1,0). All spectral sequence differentials vanish on it for degree reasons, and so it will just
contribute k[z] ® A(ez) to the E* term.

The second factor in the E? term is the twisted Hochschild homology for A(ex). To calculate
it, we can use the normalized chain complex. Elements of the form ex ® ... ® ex will map to zero
under the Hochschild boundary map. We need to consider the odd and even cases of differentials
on elements of the form 1 ® ex ® ... ® ex. The d; maps in the twisted and untwisted Hochschild
complex are all the same except for dg, which incorporates the twisting action of 7. Therefore we
have

d(1® (e2)%%) = = (ea)®* + (=1)* (= 1) (e2) % = —2(cz)®*
d(1® (5x)®2k+1) = —(5$)®2k+1 + (—1)2k+1(1)(5:p)®2k+1 - —2(5x)®2k+1,

Here, the first —1 comes from the v action on ex as in and the extra £1 in brackets come
from passing the one-dimensional ex past an odd or an even number of copies of itself. Since we
are assuming that 2 is invertible in k, we get that the second part of the E? term has only k left
in degree 0. So, if 2 is invertible in k, then the entire E? term is just k[z] ® A(ez) in the Oth row,
and the TCP spectral sequence collapses and confirms that

T LN (k[2]) 2 k[z] ® A(ex).

3. HOPF ALGEBRAS IN SPECTRA

In this section, we prove that the Loday construction is stable for commutative Hopf algebra
spectra, generalizing a result of Berest, Ramadoss, and Yeung [3]. Since dealing with comonoid
objects in model categories of spectra is very restrictive, see [2I], in this section we will work in the
oo-category of spectra, Sp, in the sense of Lurie [16]. We start by describing what we mean by the
notion of a commutative Hopf algebra in the co-category Sp. Let CAlg denote the co-category of
E-ring spectra.

Definition 3.1. A commutative Hopf algebra spectrum is a cogroup object in CAlg.
Hopf algebra spectra are fairly rare, so let us list some important examples.

Example 3.2. If G is a topological abelian group then the spherical group ring S[G] = X°G,
equipped with the product induced by the product in G, the coproduct induced by the diagonal map
G — G x @G, and the antipodal map induced by the inverse map from G to G is a commutative Hopf
algebra spectrum. This follows from the fact that the suspension spectrum functor ¥5°: & — Sp is
a strong symmetric monoidal functor. Here & denotes the co-category of spaces.

Example 3.3. If A is an ordinary commutative Hopf algebra over a commutative ring k& and A is
flat as a k-module, then the Eilenberg-Mac Lane spectrum HA is a commutative Hopf algebra
spectrum over Hk because the canonical map

is an equivalence.

The category of commutative ring spectra is tensored over unpointed topological spaces and
simplicial sets in a compatible way [7, VII, §2, §3]. By [15, Corollary 4.4.4.9], this yields an
equivalence of mapping spaces of co-categories

(3.4) CAlg(X ® A, B) ~ 8(X, CAlg(A, B)).

See also [23, §2] for a detailed account on tensors in oco-categories.
If we consider a commutative Hopf algebra spectrum H, then the space of maps CAlg(H, B) has
a basepoint: the composition of the counit map to the sphere spectrum H — S followed by the
11



unit map S — B is a map of commutative ring spectra. The functor that takes an unbased space
X to the topological sum of X with a point + is left adjoint to the forgetful functor, so we obtain
an equivalence

(3.5) S(X,CAlg(H, B)) ~ 8.(X4, CAlg(#, B))

where S, denotes the oo-category of based spaces. For path-connected spaces Z, May showed that
the free E,-space on Z, C,(Z), is equivalent to Q"¥"Z [19, Theorem 6.1]. This equivalence is
natural in Z. Segal extended this result to spaces that are not necessarily connected. He showed
that for well-based spaces Y there is a model of the free Ej-space, C7(Y), as follows: The spaces
C1(Y) and C{(Y) are homotopy equivalent, C1(Y) is a monoid, its classifying space BC{(Y) is
equivalent to 3X(Y) [26, Theorem 2|, and thus, C1(Y) — QBC{(Y) is a group completion. We
can apply this result to Y = X because X is well-based, thus BC](X;) ~ 3(X4). Note that
QOBC(X4) ~ Q%(X4).

Nikolaus gives an overview about group completions in the context of oco-categories [20]. He
shows that for every Fq-monoid M, the map M — QBM gives rise to a localization functor of co-
cateories in the sense of [I5 Definition 5.2.7.2], such that the local objects are grouplike Ej-spaces.
In particular, there is a homotopy equivalence of mapping spaces [15, Proposition 5.2.7.4]

Mapp, s(QBC|(X+), W) =~ Mapp, s(C1(X+), W)
if W is a grouplike Ei-space. Here, F1S denotes the co-category of Ej-spaces.
If H is a commutative Hopf-algebra, then the space CAlg(#, B) is a grouplike Fj-space. There-
fore, by using Equations (3.4) and (3.5]), we obtain a chain of homotopy equivalences
CAlg(X ® H,B) ~ S(X,CAlg(H, B))
= Ma’pEHS(Ci (X+)7 CAlg(%a B))
= MapE1S(QE(X+)a CAlg(Hv B))
If ¥(X4) ~ X(Y}) is an equivalence in Sy, then Q3 (Xy) ~ QX(Y}) as grouplike Ej-spaces, and
therefore we get a natural homotopy equivalence
CAlg(X ® H,B) ~ CAlg(Y ® H, B)

for all B € CAlg.
Since the Yoneda embedding is fully faithful, this gives:

Theorem 3.6. If H is a commutative Hopf algebra spectrum and if (X ) ~ X(Y,) is an equiva-
lence in Sy, then there is an equivalence X @ H =Y ® H in CAlg.

Remark 3.7. If X is a pointed simplicial set, then the suspension ¥(X ) is equivalent to ¥ (X) Vv S*.
Therefore, if X and Y are pointed simplicial sets, such that 3(X) ~ 3(Y) as pointed simplicial
sets, then we also obtain an equivalence between (X ) and X(Y5).

We stated the theorem above in the absolute setting of CAlg but one can also work relative to
a fixed commutative ring spectrum R and obtain an analogue of the above result for commutative
R-Hopf algebras. Let CAlgy denote the co-category of E.-R-ring spectra.

Corollary 3.8. Let k be a commutative ring and let A be a commutative Hopf algebra over k that
s flat as an underlying k-module.
o If (X ) ~ X(Y,) is an equivalence in Sy, then there is an equivalence X Q@pr HA ~
o If XY €8, and if 2(X) =~ X(Y) in Si, then X Qg HA~Y Qpr HA in CAlgy,.
12



The above result slightly generalizes the stability result that can be obtained from [3, Theorems
5.1, 5.2] because the authors of [3] work relative to a field k. It is known that Thom spectra are
stable [25] Theorem 1.1], so the case of suspension spectra of topological groups does not give
anything new.

Segal’s result from [26] also works for n larger than 1. If two spaces are equivalent after an n-fold
suspension, then having an F,-coalgebra structure on a Hopf algebra guarantees that the Loday
construction will be equivalent on these two spaces. There are interesting pairs of spaces that
are not equivalent after just one suspension, but need iterated suspensions to become equivalent:
Christoph Schaper [24, Theorem 3] shows for instance that for affine arrangements .4 one needs
at least a (74 + 2)-fold suspension in order to get a homotopy type that only depends on the
poset structure of the arrangement. Here, 74 is a number that depends on the poset data of the
arrangement, namely the intersection poset and the dimension function.

4. TRUNCATED POLYNOMIAL ALGEBRAS

One way of showing that a commutative R-algebra spectrum A is not stable is to prove that the
homotopy groups of the Loday construction £, (A) differ from those of EV Vo gi(A), as in [6].

(1)°

Here, we write \/(n) Sk for the (Z) -fold V-sum of S*. Indeed, there is a homotopy equivalence
k

(4.1) (1) ~ 2\ \/ %)
M=)

If A is augmented over R, then for proving that R — A is not stable, it suffices to show that

L (A5 R) £ Lijn_ " (4; R).
See [13, §2] for details and background on different notions of stability.

In the following we restrict our attention to Eilenberg-Mac Lane spectra of commutative rings
and we will use this strategy to show that none of the commutative Q-algebras Q[t]/t™ for m > 2
can be multiplicatively stable. We later generalize this to quotients of the form Q[t]/q(t) where
q(t) is a polynomial without constant term, and to integral and mod-p results.

Pirashvili determined higher order Hochschild homology of truncated polynomial algebras of the
form k[x]/z" ! additively when k is a field of characteristic zero [22, Section 5.4] in the case of odd
spheres. A direct adaptation of the methods of [5 Theorem 8.8] together with the flowchart from
[4, Proposition 2.1] yields the higher order Hochschild homology with reduced coefficients for all
spheres. See also [0, Lemma 3.4].

Proposition 4.2. For allm > 2 andn > 1

Ag(zpn) @ Qynta],  ifn is odd,

[n],Q m., ~
HH. Qe /6™ Q) = {@[xn] @ Ag(Ynt1), if n is even.

In both cases, Hochschild homology of order n is a free graded commutative Q-algebra on two
generators in degrees n and n + 1, respectively, and the result does not depend on m.
We will determine for which m and n we get a decomposition identifying mﬁ% (Q[t]/t™; Q) with

W*[:SZ:I Vi S (Q[t]/t™; Q). Note that

3

n

(43) LY\ s(QH/ Q) = Q) QT LE I/ Q QHH @/ @),
o =1 () =1 ()

13



where all unadorned tensor products are formed over Q. Thus, if we have an isomorphism between
T L3 (Q[t]/t™; Q) and W*ﬁgn Vip S (Q[t]/t™;Q), then we can read off the homotopy groups of
k=1 n
k
W*ﬁgn (Q[t]/t"™; Q) from Proposition

We first set up a spectral sequence converging to mﬁ%n (Q[t]/t"™; Q): Expressing Q[t]/t™ as the
pushout of the diagram

QMY —="— Q1]

tHOJ

Q

allows us to express the Loday construction for Q[t]/t", now viewed as a commutative HQ-algebra
spectrum, as the homotopy pushout of the diagram

LEJ(HQY]; HQ) —="— LI (HQ[]; HQ)

t»—)OJ{

HQ.
In other words,
HQ m, ~ rHQ . L
Ly (HQ[t]/t™, HQ) ~ L (HQt]; HQ) /\[:?;?(H@[t};HQ) HQ
and we get a spectral sequence
Tk EH;? H H m
(44) B2, = Tor IO @ (L BQ(HQ[): HQ)), Q) = m LR (HQU 17 HQ),

where the action of m(ﬁgg (HQI[t]; HQ)) on itself is induced by the map t — ™.

As Q[t] is smooth, and even a free symmetric algebra over Q, by [0, Example 2.6] Q[t] is stable
over Q in the sense that the homotopy type of the linear Loday construction Eg (Q[t]), and therefore
also of the linear construction with reduced coefficients E%(Q[t]; Q) = £% (Q[t]) ®qpy Q, depends

only on the homotopy type of ¥X. But as discussed in Equation (|1.3) above, this means that the
same is true for the homotopy groups of the spectrum version. We obtain an isomorphism

n

£(Q[1;Q) = @ QHHIC(@Q[1]; Q).

mﬁ% (Q[t; Q) = W*ﬁ(\%z:l \/(n)
: = 0

With the help of [4, Proposition 2.1] we can identify the terms as follows:

Q[z], if k is even,

(%],Q . ~
(4.5) HH, (@[t]v@)—{/\@(m, if k is odd.

Lemma 4.6. There is an isomorphism of graded commutative Q-algebras

ML vy QAT Q) 2 Qi) @ Tor 4119 g, ),

Proof. Let Symg(zy) denote the free graded commutative Q-algebra generated by an element xy,
in degree k and Symg (2, yx+1) denote the free graded commutative Q-algebra generated by an
14



element xj in degree k and an element yy41 in degree k+ 1. By Equation (4.3)) and Equation (4.5)
above, we obtain

(4.7) W*ESZ:1 Vip S (Q]/t™; Q) = ® ® HHC Qi) /1 Q) = ® ® Symg(k, Yr+1)-
’ =1 (%) =G
As W*ﬁgn (QIQ) = Qr_y ®(2) Symg(zk), we obtain that

n+1

TCx @n 5
Torr @%@ = ® Symg(ye)

= 2

and hence the tensor product of the two gives a graded commutative Q-algebra isomorphic to that

in Equation (4.7)). O

Let A, denote the graded commutative Q-algebra W*E%(Q[t]; Q) and B, denote 7['*[,9” (Q[t]; Q)
viewed as an A,-module via a morphism of graded commutative Q-algebras f: A, — B,.

Lemma 4.8. Let fi: Ay — By be the morphism fi = np, o ea, where e4,: Ay, — Q 1is the
augmentation that sends all elements of positive degree to zero and where np,: Q — B, is the
unit map of By. Let fo: Ay — By be any map of graded commutative algebras such that there is
an element x € A, with n > 0 such that fa(z) = w # 0. Let TorA*’fl( B.,Q) denote the graded
Tor-groups calculated with respect to the A.-module structure on B, given by f;. Then

dimg(Tors'y” (By,Q)), < dimg(Tori'y 1 (B,,Q))y

where (Tory, 1’f1(B*, Q))n = @rJrs:n Tor;ff;’fi(B*, Q).

The proof is a standard exercise in homological algebra. The impatient reader is invited to skip
it.

Proof. We construct a small A,-free resolution Py of Q. Since Q is concentrated in degree zero and
Ap = Q, we can choose Py to be A,. Then we choose P, = jer, 27 A, with the minimal possible
number of copies of A, in each suspension degree, beginning from the bottom. This ensures that
di: @jeh 3" Ag — Py is injective, and moreover

ker(dy: D E" A, — Py) € @D =™ ker(ea,)
jel jen

For every ¢ > 0 we choose Py with Py = @jelé ¥ A, so that do: P
and

jel, 3" Ag — Py is injective

ker(dg: @ T A, — Py) € @D £ ker(ea,).
Jjel, JEl,

The Tor groups we want are the homology groups of
B.®a, P=B.2a, P A. =2 B,
Jjel; Jjel,
with respect to the differential id ® d for either A,-module structure.
As f1: A, — B, factors through the augmentation, the differentials in the chain complex

B* ®A* Po
15



with the A,-module structure given by f; are trivial: they are of the form id ® d where d is the

differential of P,. As d sends every X1 € ,;c;, X" A, to something in P;c;, | X" ker(ea,),

([d®d)(b@a, 5"1) € Qb} @4, € T ker(ea,) =0
J€lg—1
for all b € B,. Hence Torg *’fl( B.,Q) = (®j61g Y% By)s = ®j€Ig ¥" B,_s. In particular,
Tor{s /" (B.,Q) = B, for all s.
Fc;r the A,-module structure on B, given by fo we obtain that
Torg*(B,,Q) = B, @4, Q

but here, the tensor product results in a nontrivial quotient of B,. Recall that we assumed that
fa(x) = w # 0. The element w ® 1 € B, ®4, Q is trivial because the degree of x is positive and
hence €4, () = 0:

wRl=folz)®1=1Rey,(r)=1®0=0.
Therefore,

dimg TorA*’fQ(B Q) < dimg TorA*’fl(B*, Q).

The other Tor-terms in total degree n of the form Tor,‘f;’f 2(B4, Q) with r 4+ s = n are subquotients

of
@ Y By

jel,
and hence for all (r,s) with »r + s =n and r > 0 we obtain

dimg Tor ;2 (B,, Q) < dimg Tor/ ;7 (B., Q).

Note that if f: A, — B, factors through the augmentation A, — Q then

(4.9) Tory"* (B., Q) = B, ® Tory" (Q, Q).
We show the failure of stability by showing that

Theorem 4.10. Let n > 2. Then
n. : Q n.
dimg 7, T”( [t]/t"; Q) < dimg 7Tn£v2=1 V(Z) o (Q[t]/t" Q).

In particular, for alln = 2 the pair (Q[t]/t"; Q) is not stable and Q — Q[t]/t"™ is not multiplicatively
stable.

The n = 2 case of Theorem [4.10] was obtained earlier by Dundas and Tenti [6].

Our proof of Theorem .10 investigates the map fo: A, — B, induced by sending ¢ — ¢",
and shows that it sends an element in positive degree to a nonzero element. Therefore, we
get from Lemma that the E?-term of the spectral sequence of Equation already has a
smaller dimension over Q in total degree n than dimg Wn,CSn V(n) 4 (Q[t]/t";Q). Then, even
if the spectral sequence differentials do not reduce it further, dimg m, T"( [t]/t"; Q) which is
the dimension over Q of the total degree n part of the E°°-term will have to be smaller than

dim@ Wn[:(%z:l V(n) gk (@[t]/tn§ Q)

Before we prove the theorem, we state the following integral version of it:

Corollary 4.11. For alln > 2 the pair (Z[t]/t";Z) is not stable and Z — Z[t]/t"™ is not multiplica-
tively stable.
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Proof of Corollary[{.11]. If for some n > 2 the pair (Z[t]/t";Z) were stable, then in particular

T L (L[ Z) 2wl o) (Z[t) /1 Z.).

Localizing at Z \ {0} would then imply
T L3 QU Q) 2 m Ly, gy s (@)

in contradiction to Theorem .10l O

4.1. Proof of Theorem We prove Theorem by identifying an element in A, of positive
degree that is sent to a nontrivial element of B,. More precisely, we have that S' Vv ...V S is the
1-skeleton of T™ and S™ is the quotient of 7™ by its (n — 1)-skeleton. We will give a particular
element of Wnﬁ%((@[t]; Q) (which the collapse of the (n — 1)-skeleton sends to the indecomposable
element in wnﬁgn((@[t]; Q)), and show that the map that sends ¢ to t" sends it, up to a unit, to the
element

(4.12) dty dty -~ dt, € T LY, o (Q[t]; Q)

viewed as an element of Wnﬁgn (Q[t]; Q) by the the map induced by the inclusion of the 1-skeleton.
Here each dt; is the image of the element of ﬂlﬁgl (Q[t]; Q) represented by 1®t under the inclusion
S <5 T™ as the ith factor.

In the following we use the standard model of S' as S' = A; /OA; with S} = [p] and we consider
T™ as the diagonal of an n-fold simplicial set where every ([pi],...,[pn]) € (A)™ is mapped to
Sy, %...x S} . Then E%(Q[t]; Q) can also be interpreted as the diagonal of an n-fold simplicial Q-
vector space with an associated n-chain complex. By abuse of notation we still denote this n-chain
complex by £, (Q[1]; Q).

Note that in n-chain degree (p1,...,pn) of L2, (Q[t];Q), we have Q ® Q[t]2(P1+1)(Pnt1)=1)
where the Q is placed at spot (0,...,0). We think of a tensor monomial in this tensor product
as an n-dimensional multi-matrix of dimensions (p; + 1) X -+ X (p, + 1). We use the following
terminology for the n-chain complex £$, (Q[t]; Q):

e 0, =(0,0,...,0) and 1,, = (1,1,...,1) are the vectors containing only 0 or 1, respectively,
repeated m times.

e A vector V € N” is viewed as a multi-degree of an element in the n-chain complex.

e A vector v € N" for which 0,, < v < V in every entry can be thought of as specifying a
coordinate in the multi-matrix of an element in multi-degree V. We call the i¢th entry of a
vector v € N” the ith place in v. It is always assumed that V = 1,,, putting us in total
degree n, if not otherwise specified.

e Each element of Egn (Q[t]; Q) in degree V = (v1,...,v,) is a sum of tensor monomials, each
of which is a tensor of (v + 1) X (va + 1) X -+ X (v, + 1) entries which we write in a multi-
matrix of dimension (v; + 1,...,v, + 1) whose entries are in Q[t] at coordinates v # 0,, and
in Q at coordinate 0,,.

o 1, for x € Q[t] and v € N” is the multi-matrix with term z at coordinate v and 1 at other
coordinates. We say a term is trivial if it is 1; thus, 1, is trivial in all its coordinates.

e Therefore zy - yw for z,y € Q[t] and v,w € N" is the product of zy and yy in degree V
of Egn (Q[t], Q) regarded as an n-simplicial ring. Explicitly, if v # w, it is the multi-matrix
with x at coordinate v, y at coordinate w, and 1 elsewhere; if v = w, it is the multi-matrix
with zy at coordiante v and 1 elsewhere.
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Suppose that C, is an n-chain complex with differentials dy, ..., d, in the n different directions,

then the total chain complex Tot(C,) has differential in component (vy,...,v,) given by
n
d=>) (~1t-tuag,
i=1

In our case we will have each d; = Z}”':O(—l)jdm where d; j: Cy,.... v, = Coy,...vi—1,..v, 15 the face

n

map. We are interested in low degrees, especially in 1,. Any v; = 1 will imply d; = 0 since the
d; are cyclic differentials and Q[t] is commutative. This allows us to eliminate the d; from d. We
have the following three lemmas about homologous classes and tori of different dimensions:

Lemma 4.13 (Split Moving Lemma). Let a,b be coordinates in degree 1,1 (that is, in 2 X 2 X
... X 2-dimensional matrices). Then

Z(a,1) " Y(b,1) ™~ T(a,0) " Y(b,1) T T(a,1) " Y(b,0)-

Proof. Their difference is a boundary of an element of degree (1,,—1,2):

A(Z(a1)  Yb2) = (D" ' dn(Ta) - Ub2)) = T(a0) * Ybi1) — T(a) " YU(b,1) + T(a1) * Y(b0)-

For example, when n = 2, a = 0,b = 1, the difference is

Gr)=00) -GG

Let b be a coordinate of a multi-matrix of an element in degree 1,_,, such that b # 0,_,,.
For any multi-matrix ¢ in degree W € N, we can form the following multi-matrix in degree
(W,1,_,,) € N"™:

ca  at coordinate (a,0p,_p,);
¢(-,0) ® Y(o,p) has terms {11,  at coordinate (0,,,b);
1 elsewhere.

Lemma 4.14. The following is a chain map:

Tot(£%,.(Q[t],Q)) — Tot(£L.(Q[t],Q));

c = C(—0) @Y0,b)-

]

c(—0) @Yo,p) s V = (W,1,,_,,) € N* and whenever v; = 1, d; = d; o — d;;1 = 0, we also get

Proof. Clearly di(c(— ) ® yo,p)) = dic(—,0) ® Yo,p) for 0 < i < m. But since the multi-degree of

di(C(,70) & y(oyb)) =0, form<i<n.
U

This lemma also applies when y(g ) is replaced by another multi-matrix that has more than one
nontrivial term, as long as the nontrivial terms are all in coordinates of the form (0,,,b) for b in
degree 1,,_,, and b # 0,_,,. It has the following immediate corollary:

Lemma 4.15 (Orthogonal Moving Lemma). Let b be a coordinate in degree 1,_,, such that b #
0,_m. Let c,c be elements in multi-degree W € N™. If ¢ ~ ¢ in multi-degree W, then

(= 0nm) @ Y(0mb) ~ €= 0, 1) D Y(Opb)

in multi-degree (W, 1,_p,)
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Conceptually, the moving lemmas tell us how to move the nontrivial elements z,y in certain
multi-matrices to lower coordinates. They are stated for a special case for simplicity, but of course
they work for any permulation of copies of N in the statement. The split moving lemma says that
if we have x, and yw where the coordinates share a 1 in a particular place, the 1’s can be moved to
coordinate 0 separately. The orthogonal moving lemma says that the x in xy and the y in yw can
be moved separately if they are supported in orthogonal tori (that is, have their nontrivial entries
in different coordinates).

Proposition 4.16. Let v and w be two coordinates of degree 1.
(1) If v and w are both 0 in the ith place for some 1 < i < n, then

Ty - Yw ~ 0.

In particular, if v # 1,, then xy ~ 0.
(2) In general,

Ty Yw ~~ Z Ty Yw'!,
v/ <v,w/<w,
v4+w/=1,
where the sum is taken over all coordinates v and w' such that
o They are place-wise no greater than v and w respectively;
o They take 1 in complementary places.
(8) For k > 1 and n > 1, we have the following homologous relation:

k
Wi,...,W#O0p, =1
wi+t...+wr=1,
In particular, if k = n and we let e; denote the coordinate that has 1 at the ith place and 0
at other places, we get

(4.17) (t")1, ~ n! [ ] te,-
=1

Also, if k > n, this gives us
()1, ~ 0

Proof. The class in (1) is a cycle because everything in multi-degree 1, is a cycle; it is null-
homologous because it is in the image of the degeneracy s; ¢ in the i¢th place.

For (2) we write |v| for the sum of the places of the vector v. We induct on |v| 4 |w|. Notice
that a coordinate v of degree 1, is just a sequence of length n of 0’s and 1’s and |v| is just the
number of 1’s in it.

For |v| + |w| < n, there are two cases: One is that v and w are both 0 in one place. Then the
claim holds because the right-hand side is the empty sum and the left-hand side is 0 by part (7).
The other case is that v4+w = 1,,. Then the claim also holds because the right-hand side has only
one copy that is exactly the left-hand side.

Assume that the claim is true for |v|+4 |w| < m where m > n and suppose now |v|+|w| =m+1.
Since m +1 > n+ 1, v and w have to be both 1 in some place. Without loss of generality, we
assume that

v = (vo,1), w = (wp, 1) where vo,wo < 1,,1.

By the Split Moving Lemma (Lemma [4.13]),

Ty " Yw ~ L(vo,0) " Yw + Ty Y(wo,0)-
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Since |(vo,0)| + |w| = |v| 4+ |(wo, 0)| = m, by inductive hypothesis we have that

Ty * Yw ~ Z T(vo!,0) * Yw' T Z Ty’ Y(wo',0)

vo'<vo,w' <w, v/<v,wo’<wo,
(vo',0)+w'=1,, v/ +(wo’,0)=1,

= Z Ty Yw! -

v/<v,w/<w,
v+w'=1,

For (3) we order the pair (k,n) by the lexicographical ordering. We induct on (k,n). When
k =1, the claim is trivially true.

Suppose the claim is true for all pairs less than (k,n) where k > 2. Taking v=w =1,, x =t
and y = t*~! in part (2), we get that

(4.18) )1, ~ Yt e = Dty (T

wi+v/=1, w17#0n,
wi+v/=1,

The second step above uses that tg, = 0 because ¢ is 0 in the Q[t]-module Q. Let m = |v'|. By the
inductive hypothesis, we have

k
(4.19) (tF 1)y, ~ > [1tw

Wy, Wi #Opy, =2
wht.. 4wl =1y

For each w/ which is a coordinate of degree 1,,, we add in 0 in places where v’ is 0 to make it a
coordinate of degree 1,. Denote it by w;. Then the Orthogonal Moving Lemma (Lemma [4.15]),

and combine to
k
)~ D> TItw

W1,...,W#Op, =1
wit..+wip=1,

0

For any n > 2, we call t1, the diagonal class and denote it by A,,. If we include S! «— T™ as the
ith coordinate and identify the first Hochschild homology group with the Kéhler differentials, the
generator dt of HH(l@(Q[t];Q) maps to the generator we call dt; in the Loday construction of the
torus. Note that []7; te, is exactly the degree-n class dt; dts - - - dt,, from Equation .

Proof of Theorem[[.10. By Equation (4.17) we know that the map ¢ — ¢" induces a map on
mﬁ% (Q[t]; Q), that sends the diagonal class, A,, to n!dt; dts---dt,. Hence, by Lemma E we
know that in the Tor-spectral sequence (4.4) that converges to . (E%(Q[t]/ t";Q)) the dimension

of the E2-term in total degree n is strictly smaller than the dimension of the total degree n-part of
T EQn t];
Tor T, O, (£2. QI ©)), Q)

where the m(ﬁ% (Q[t]; Q))-module structure of m(ﬁ% (Q[t];Q)) is given by the augmentation
followed by the unit map. Equation (4.9) and Lemma show that this total degree n part is

isomorphic to m, (£, «(Q[t]/t;Q)).
Vi=1 V(Z) s

In the spectral sequence (4.4) for m, (E% (Q[t]/t™; Q)) differentials could cut down the dimension
even further, but in any case we obtain

T (L (QUE /4" Q) # MLy
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Remark 4.20. For the non-reduced Loday construction £, (Q[t]), parts (1) and (2) of Proposition
are still true. Part (3) will become

k
(tk)ln ~ Z H lw,

wi+t...+wr=1, i=1
and Equation (4.17)) is no longer true.

4.2. Q[t]/t™ on T™ for 2 < m < n. We know that for Q[¢]/t" we get a discrepancy between m,
of the Loday construction on the n-torus and that of the bouquet of spheres that correspond to
the cells of the n-torus. We use this to first show that Q[t]/t™ causes a similar discrepancy for
2<m<n.

Proposition 4.21. Let 2 < m < n. Then
T L (QUE /475 Q) # T LT Vi s+ @/ Q)
- k

Proof. We consider the Tor-spectral sequence

ﬂ'*[l@n t; m
TorT D (7, 2. (Ql1]: @), @) = w2, (Qlt)/1™; Q)
where the F*ﬁgn (Q[t]; Q@)-module structure on W*E% (Q[t]; Q) is induced by t + t"™. The m-chain
complex C,Em) = Lgm (Q[t]; Q) can be considered as an n-chain complex whose m + 1,...,n-

coordinates are trivial. Then
™ = £2,.(Q[t]; Q) — ¢ = £2,(Q[t); Q)

is a sub-n-complex of Cin). We know that A,, — m!dty dts---dt,, in the homology of the total

complex of Cim), and so the same is true in Cin)

T Lo (Q[t]; Q) — L3 (Qt]; Q)

that is induced by ¢ +— ¢ is nontrivial and by Lemma the dimension of Fmﬁgn (Q[t]/t™; Q) is
strictly smaller than the dimension of

ﬂ—mﬁgzzl V(n) Sk (Q[t]/tm; Q)

. Therefore the map

O

4.3. Quotients by polynomials without constant term. Let ¢(t) = a,t™ + ... + a1t € Q[t]
be a polynomial which is not the zero polynomial. Then we can still write Q[¢]/¢(t) as a pushout

o =% gy
Q - Qlt]/gt)

and the above methods carry over.
Proposition 4.22. Let mg be the smallest natural number for which am, # 0 . Then
oo s QU0 Q) 2 oLy (@40 @)
N k
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Proof. Clearly 1 < mg < m. If my = 1, then et € HH?(Q[t];Q) maps to (q(t)) € HH?(Q[L‘];Q)
under the map t — ¢(¢). In the module of Kéhler differentials this element corresponds to

ardt + 2astdt + ... + ma,t™ 1dt,

but all these summands are null-homologous except for the first one. So et — ajet # 0 and this,
along with Lemma proves the claim.
We denote by Ap,(q(t)) the element (q(t))1,,,- If mo > 1, then the diagonal element A (1)

maps to
m

Bug(a(®) = 3 @il (1)

and this is homologous to
(mo)! am, dt1 dta - - - dtp,, + terms of higher ¢-degree

by Equation (4.17). Hence A, (t) maps to a nontrivial element and again Lemma gives the
claim. O

4.4. Truncated polynomial algebras in prime characteristic. The Loday construction on a
(flat) commutative Hopf algebra is stable, so the Loday construction on a truncated polynomial

algebra of the form F)[t]/ #" has the same homotopy groups when evaluated on an n-torus and on
the corresponding bouquet of spheres. However, we show that there is a discrepancy for truncated
polynomial algebras IF,[t]/t" for 2 < n < p.

Theorem 4.23. If2<n <p andn < m,

(58 (B 1)/ ) 2 (57

- w(Fplt] /" Fp)).
gyt Bl

In particular, for all 2 < n < p the pair (Fp[t]/t";Fp) is not stable.

Proof. We consider the case m = n. The cases n < m follow by an argument similar to that for
Proposition

As Fp[t] is smooth over F),, we know that [, — F,[t] is stable, so that

T (L7 (Bplt]; Fp)) =2 ma( L1 s+ Sl Fp)) = <§1> <(X)) HH (B, 1] ).

The higher Hochschild homology HHEY (Fp[t];Fp) is calculated in [5] §8], so that we obtain

k]),Fp ~
HHE ™ (B, (1) F,) = B},

where B = F,[t] and B; | = Torf:’ﬁ (Fp,Fp), using the total grading on Torfl’; (Fp,Fp). In low
degrees, this gives HH]}:”(Fp[t];Fp) = Ap, (et) with |et] = 1, HHLQ]’FP(Fp[t];Fp) = Ty, (0¢t) with
|0%t| = 2. As 'y, (0"et) = Xi=0 Fplo"et]/(oket)P, we can iterate the result.

Note that in HHL:L LEp (F,[t]; F,) there is always an indecomposable generator of the form gg . .. o
or 0%0" ... 0%t in degree n. We call this generator A,. We also obtain a class

Oct

F F
gt ... etn €Ly, o (Fplt]i Fp) — mn Ly (Fy[t]; Fp).
The results from Proposition work over the integers. If n < p, then n! is invertible in F),
and therefore the class A,, maps to nlety - ... et,. An argument analogous to Lemma finishes
the proof. 0
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