Structural Reflection and the HOD Conjecture

3. Lecture: Consequences of ultraexactness

Philipp Moritz Lücke Universität Hamburg

Contemporary Set Theory Workshop – Gdansk 26. March 2025

Introduction

In this lecture, we want derive strong consequences of the ultraexactness of a cardinal.

These results will rely on arguments showing that, given an elementary embedding $j: X \longrightarrow V_{\zeta}$ witnessing the ultraexactness of a cardinal $\lambda < \zeta$, for certain ordinals $\lambda < \alpha \in X \cap \zeta$, we can find functions

$$f: L_{\alpha}(V_{\lambda+1}) \longrightarrow L_{j(\alpha)}(V_{\lambda+1})$$

in \boldsymbol{X} with the property that

$$f \upharpoonright (X \cap \mathcal{L}_{\alpha}(\mathcal{V}_{\lambda+1})) = j \upharpoonright (X \cap \mathcal{L}_{\alpha}(\mathcal{V}_{\lambda+1})).$$

This will allow us to show that e.g., the successor of an ultraexacting cardinal is measurable in HOD.

In the following, fix

- a cardinal λ ,
- an ordinal $\zeta > \lambda$ such that V_{ζ} is sufficiently elementary in V,
- an elementary submodel X of V_{ζ} with $V_{\lambda} \cup \{\lambda\} \subseteq X$, and
- an elementary embedding $j: X \longrightarrow V_{\zeta}$ with $j(\lambda) = \lambda$, $j \upharpoonright \lambda \neq id_{\lambda}$ and $j \upharpoonright V_{\lambda} \in X$.

Extensions to $V_{\lambda+1}$

Remember that, if ξ is an ordinal of countable cofinality and $k : V_{\xi} \longrightarrow V_{\xi}$ is an elementary embedding, then the map

$$k_{+}: \mathcal{V}_{\xi+1} \longrightarrow \mathcal{V}_{\xi+1}; \ A \longmapsto \bigcup \{k(A \cap V_{\alpha}) \mid \alpha < \xi\}$$

is the unique Σ_0 -elementary function from $V_{\xi+1}$ to $V_{\xi+1}$ extending k.

If $i: V \longrightarrow M$ is an I2-embedding with least non-trivial fixed point λ , then

$$(i \upharpoonright V_{\lambda})_{+} = i \upharpoonright V_{\lambda+1} : V_{\lambda+1} \longrightarrow V_{\lambda+1}$$

is Σ_1 -elementary. Conversely, every non-trivial Σ_1 -elementary function from $V_{\lambda+1}$ to itself can be extended to an I2-embedding.

Lemma

The map

$$(j \upharpoonright V_{\lambda})_{+} : V_{\lambda+1} \longrightarrow V_{\lambda+1}$$

is an elementary embedding that is contained in X and satisfies

$$(j \upharpoonright \mathcal{V}_{\lambda})_+ \upharpoonright (X \cap \mathcal{V}_{\lambda+1}) = j \upharpoonright (X \cap \mathcal{V}_{\lambda+1}).$$

Proof.

Since $j \upharpoonright V_{\lambda} \in X$, elementarity implies that $(j \upharpoonright V_{\lambda})_{+} \in X$. Moreover, the equality

$$(j \upharpoonright V_{\lambda})_+ \upharpoonright (X \cap V_{\lambda+1}) = j \upharpoonright (X \cap V_{\lambda+1}).$$

holds by the definition of $(j \upharpoonright V_{\lambda})_+$.

The elementarity of j and the above equality then imply that $(j \upharpoonright V_{\lambda})_+$ is an elementary embedding of $V_{\lambda+1}$ into itself in X. Finally, the correctness properties of X ensure that $(j \upharpoonright V_{\lambda})_+$ also has this property in V. \Box

Extensions below $\Theta^{L(V_{\lambda+1},E)}$

Lemma

Let γ be an ordinal in X such that there is a surjection $s: V_{\lambda+1} \longrightarrow \gamma$ in X with $j(s) \in X$. Then there exists a unique function $j_{\gamma}: \gamma \longrightarrow j(\gamma)$ that is an element of X and satisfies

$$j \upharpoonright (X \cap \gamma) = j_{\gamma} \upharpoonright (X \cap \gamma).$$

Proof.

Define $j_{\gamma}: \gamma \longrightarrow j(\gamma)$ to be the unique function satisfying

 $j_{\gamma}(s(x)) = j(s)((j \upharpoonright V_{\lambda})_{+}(x))$

for all $x \in V_{\lambda+1}$. Then j_{γ} possesses all of the listed properties.

Remember that, given $E \subseteq V_{\lambda+1}$, we let $\Theta^{L(V_{\lambda+1},E)}$ denote the least ordinal γ such that $L(V_{\lambda+1},E)$ does not contain a surjection from $V_{\lambda+1}$ onto γ .

The basic structure theory of $L(V_{\lambda+1}, E)$ now yields the following statement:

Lemma

If $E \in X \cap V_{\lambda+2}$ with j(E) = E and $\gamma \in X \cap \Theta^{\mathrm{L}(\mathrm{V}_{\lambda+1},E)}$ with $j(\gamma) \in X$, then there is a surjection $s : V_{\lambda+1} \longrightarrow \gamma$ in X with $j(s) \in X$.

Corollary

If $E \in X \cap V_{\lambda+2}$ with j(E) = E and $\gamma \in X \cap \Theta^{\mathrm{L}(\mathrm{V}_{\lambda+1},E)}$ with $j(\gamma) = \gamma$, then there is a function $j_{\gamma} : \gamma \longrightarrow \gamma$ in X with

$$j \upharpoonright (X \cap \gamma) = j_{\gamma} \upharpoonright (X \cap \gamma).$$

An application: the consistency strength of ultraexactingness

Corollary

If $E \in X \cap V_{\lambda+2}$ with j(E) = E and $\gamma \in X \cap \Theta^{L(V_{\lambda+1},E)}$ is a limit ordinal with $j(\gamma) = \gamma$, then there is a function

$$j^{\gamma} : \mathcal{L}_{\gamma}(\mathcal{V}_{\lambda+1}, E) \longrightarrow \mathcal{L}_{\gamma}(\mathcal{V}_{\lambda+1}, E)$$

in X with

 $j \upharpoonright (X \cap L_{\gamma}(V_{\lambda+1}, E)) = j^{\gamma} \upharpoonright (X \cap L_{\gamma}(V_{\lambda+1}, E)).$

Definition (Woodin)

The Internal Axiom IO holds at a cardinal λ if for all $\lambda < \gamma < \Theta^{L(V_{\lambda+1})}$, there exists a non-trivial elementary embedding

```
j: \mathcal{L}_{\gamma}(\mathcal{V}_{\lambda+1}) \longrightarrow \mathcal{L}_{\gamma}(\mathcal{V}_{\lambda+1})
```

with $\operatorname{crit}(j) < \lambda$.

Corollary (Aguilera-Bagaria-Goldberg-L.)

Internal Axiom I0 holds at every ultraexacting cardinal.

Theorem (Woodin)

The following statements are equiconsistent over ZFC:

- There exists an I0-embedding.
- Internal Axiom I0 holds at some cardinal.

An application: fragments of HOD-Berkeleyness

Definition

Given an inner model N and ordinals $\rho < \vartheta$, the ordinal ρ is N- ϑ -Berkeley if for every $\alpha < \rho$ and every transitive set M in N that contains the ordinal ρ as an element and has cardinality less than ϑ in N, there exists a non-trivial elementary embedding $j: M \longrightarrow M$ with $\alpha < \operatorname{crit}(j) < \rho$.

Theorem (Aguilera–Bagaria–L.)

If $E \in V_{\lambda+2} \cap X$ with j(E) = E, then λ is $HOD-\Theta^{L(V_{\lambda+1},E)}$ -Berkeley.

An application: Icarus sets

Definition

An element E of $V_{\lambda+2}$ is a strong learns set if there exists a non-trivial elementary embedding $i : L(V_{\lambda+1}, E) \longrightarrow L(V_{\lambda+1}, E)$ with the property that $\operatorname{crit}(i) < \lambda$ and i(E) = E.

Theorem (Aguilera–Bagaria–L.)

Let $E \in V_{\lambda+2} \cap X$ be such that j(E) = E. If $E^{\#}$ exists, then there is an elementary embedding $i : L(V_{\lambda+1}, E) \longrightarrow L(V_{\lambda+1}, E)$ with $i \upharpoonright V_{\lambda} = j \upharpoonright V_{\lambda}$ and i(E) = E.

Corollary

If λ is an ultraexacting cardinal with the property that $V_{\lambda+1}^{\#}$ exists, then there is an IO-embedding $j : L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$.

Pick $E \in X \cap V_{\lambda+2}$ such that j(E) = E and $E^{\#}$ exists.

Set $\Theta = \Theta^{L(V_{\lambda+1},E)}$ and $\Theta' = \Theta^{L(V_{\lambda+1},E^{\#})}$. Then $\Theta < \Theta'$ holds.

Moreover, we have $E^{\#}, \Theta, \Theta' \in X$ with $j(E^{\#}) = E^{\#}$, $j(\Theta) = \Theta$ and $j(\Theta') = \Theta'$.

Hence, our results yield a function $j^{\Theta}: L_{\Theta}(V_{\lambda+1}, E) \longrightarrow L_{\Theta}(V_{\lambda+1}, E)$ in X with

$$j^{\Theta} \upharpoonright (\mathcal{L}_{\Theta}(\mathcal{V}_{\lambda+1}, E) \cap X) = j \upharpoonright (\mathcal{L}_{\Theta}(\mathcal{V}_{\lambda+1}, E) \cap X).$$

If we define

$$U = \{A \in \mathcal{V}_{\lambda+2}^{\mathcal{L}(\mathcal{V}_{\lambda+1},E)} \mid j \upharpoonright \mathcal{V}_{\lambda} \in j^{\Theta}(A)\} \in X,$$

then it can be shown that U is a normal $L(V_{\lambda+1}, E)$ -ultrafilter and taking an ultrapower of $L(V_{\lambda+1}, E)$ by U yields an elementary embedding

$$i: L(V_{\lambda+1}, E) \longrightarrow L(V_{\lambda+1}, E)$$

with $i \upharpoonright V_{\lambda} = j \upharpoonright V_{\lambda}$ and i(E) = E.

Thank you for listening!