Structural Reflection and the HOD Conjecture

2. Lecture: Consistency results

Philipp Moritz Lücke Universität Hamburg

Contemporary Set Theory Workshop – Gdansk 25. March 2025

Introduction

Definition

A cardinal λ is exacting if for all $\alpha < \lambda < \beta$, there exists

- an elementary submodel X of V_{β} with $V_{\lambda} \cup \{\lambda\} \subseteq X$, and
- an elementary embedding $j : X \longrightarrow V_{\beta}$ with $\alpha < \operatorname{crit}(j) < \lambda$ and $j(\lambda) = \lambda$.

Definition

A cardinal λ is *ultraexacting* if for all $\alpha < \lambda < \beta$, there exist

- an elementary submodel X of V_β with $V_\lambda \cup \{\lambda\} \subseteq X$, and
- an elementary embedding $j : X \longrightarrow V_{\beta}$ with $\alpha < \operatorname{crit}(j) < \lambda$, $j(\lambda) = \lambda$ and $j \upharpoonright V_{\lambda} \in X$.

In this lecture, we will discuss results dealing with the relative consistency of these axioms.

For this purpose, we recall the definitions of the rank-into-rank axioms.

Definition

- An I3-embedding is a non-trivial elementary embedding
 j: V_λ → V_λ for some limit ordinal λ.
- An I2-embedding is a non-trivial elementary embedding $j: V \longrightarrow M$ with $V_{\lambda} \subseteq M$, where λ is the first non-trivial fixed point of j.
- An I0-embedding is a non-trivial elementary embedding $j : L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$, where λ is the first non-trivial fixed point of j.

Theorem (Aguilera–Bagaria–Goldberg–L.)

The following statements are equiconsistent over ZFC:

- There is an ultraexacting cardinal.
- There is an I0-embedding.

Theorem (Aguilera–Bagaria–Goldberg–L.)

- If there is an I2-embedding, then there is a transitive ZFC-model with an exacting cardinal.
- If λ is an exacting cardinal, then V_λ is a model of $\rm ZFC$ with a proper class of I3-embeddings.

The consistency of ultraexacting cardinals

The relative consistency of $\rm ZFC$ with an ultraexacting cardinal is established from the consistency of $\rm ZFC$ with an I0-embedding through the following result:

Theorem (Aguilera–Bagaria–L.)

If $j : L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$ is an IO-embedding and G is $Add(\lambda^+, 1)$ generic over V, then $L(V_{\lambda+1}, G)$ is a model of ZFC and λ is an
ultraexacting cardinal in $L(V_{\lambda+1}, G)$.

We outline the proof of this theorem.

Let $j : L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$ be an I0-embedding and let G be $Add(\lambda^+, 1)$ -generic over V.

Then $Add(\lambda^+, 1) \subseteq L(V_{\lambda+1})$ and G is also $Add(\lambda^+, 1)$ -generic over $L(V_{\lambda+1})$.

Since $Add(\lambda^+, 1)$ is $<\lambda^+$ -closed in V, it follows that V and V[G] contain the same λ -sequences of elements of V, and $L(V_{\lambda+1})$ and $L(V_{\lambda+1}, G)$ contain the same λ -sequences of elements of $L(V_{\lambda+1})$.

By genericity, the filter G codes a wellordering of $\mathcal{P}(\lambda)$ of order-type λ^+ , and it follows that $V_{\lambda+1}$ can be wellordered in $L(V_{\lambda+1}, G)$.

This shows that $L(V_{\lambda+1}, G)$ is a model of ZFC.

Moreover, these observations show that $H(\lambda^+)^{L(V_{\lambda+1},G)} \subseteq L(V_{\lambda+1})$.

In $L(V_{\lambda+1}, G)$, fix a cardinal $\eta > \lambda$ and an elementary submodel X of V_{η} of cardinality λ with $V_{\lambda} \cup \{\lambda\} \subseteq X$.

Let $\pi: X \longrightarrow M$ denote the corresponding transitive collapse.

Then $\pi^{-1}: M \longrightarrow V_{\eta}$ is an elementary embedding with $\pi^{-1} \upharpoonright V_{\lambda} = id_{V_{\lambda}}$ and $M \in H(\lambda^+)^{L(V_{\lambda+1},G)} \subseteq L(V_{\lambda+1}).$

The weak homogeneity of $Add(\lambda^+, 1)$ in $L(V_{\lambda+1})$ then implies that

 $\mathbb{1}_{\mathrm{Add}(\lambda^+,1)} \Vdash \text{ There is an elementary embedding } k : \check{M} \longrightarrow \mathrm{V}_{\check{\eta}} \text{ with } k \upharpoonright \mathrm{V}_{\check{\lambda}} = \mathrm{id}_{\mathrm{V}_{\check{\lambda}}}.$

Since $j(\lambda) = \lambda$ and $j(\operatorname{Add}(\lambda^+, 1)) = \operatorname{Add}(\lambda^+, 1)$, it follows that, in $L(V_{\lambda+1}, G)$, there is an elementary embedding $k : j(M) \longrightarrow V_{j(\eta)}$ with $k \upharpoonright V_{\lambda} = \operatorname{id}_{V_{\lambda}}$.

Since $j \upharpoonright M \in L(V_{\lambda+1})$, we can conclude that

$$i = k \circ (j \upharpoonright M) \circ \pi : X \longrightarrow \mathcal{V}_{j(\eta)}^{\mathcal{L}(\mathcal{V}_{\lambda+1},G)}$$

is an elementary embedding with $i \upharpoonright V_{\lambda} = j \upharpoonright V_{\lambda}$ in $L(V_{\lambda+1}, G)$.

Fix a cardinal $\eta > \lambda$ with $j(\eta) = \eta$ and $V_{\eta}^{L(V_{\lambda+1},G)} \prec_{\Sigma_2} L(V_{\lambda+1},G)$.

In $L(V_{\lambda+1}, G)$, pick an elementary submodel X of V_{η} of cardinality λ with $V_{\lambda} \cup \{j \upharpoonright V_{\lambda}\} \subseteq X$.

The above computations now show that $L(V_{\lambda+1}, G)$ contains an elementary embedding

$$i: X \longrightarrow \mathcal{V}^{\mathcal{L}(\mathcal{V}_{\lambda+1},G)}_{\eta}$$

with $i \upharpoonright V_{\lambda} = j \upharpoonright V_{\lambda}$.

Since $i(\lambda) = \lambda$ and $j \upharpoonright V_{\lambda} \in X$, the existence of this embedding ensures that λ is an ultraexacting cardinal in $L(V_{\lambda+1}, G)$.

The consistency of exacting cardinals

The following result yields the lower bound for the consistency strength of exacting cardinals:

Theorem

If $j : V_{\lambda} \longrightarrow V_{\lambda}$ is an I3-embedding with the property that λ has uncountable cofinality in $L(V_{\lambda})$, then there exists an I3-embedding $i : V_{\lambda'} \longrightarrow V_{\lambda'}$ with $\operatorname{crit}(j) < \lambda' < \lambda$.

Let $j : V_{\lambda} \longrightarrow V_{\lambda}$ be an I3-embedding with the property that λ has uncountable cofinality in $L(V_{\lambda})$.

Define T to be the set of all partial elementary embeddings $k: V_{\lambda} \xrightarrow{part} V_{\lambda}$ with the property that there exists a finite strictly increasing sequence $\langle \kappa_m \mid m \leq n+1 \rangle$ of cardinals below λ with the property that $\operatorname{dom}(k) = V_{\kappa_n} \cup \{\kappa_n\}$, $\operatorname{ran}(k) \subseteq V_{\kappa_{n+1}} \cup \{\kappa_{n+1}\}$, $\kappa_0 = \operatorname{crit}(j)$, $k \upharpoonright \kappa_0 = \operatorname{id}_{\kappa_0}$ and $k(\kappa_{\ell}) = \kappa_{\ell+1}$ for all $\ell \leq n$.

If we order T by inclusion, then we obtain a tree of height at most ω . Moreover, the embedding j induces a cofinal branch through T.

Since T is definable in V_{λ} , it follows that T is an element of $L(V_{\lambda})$ and a well-foundedness argument yields a cofinal branch B through T in $L(V_{\lambda})$.

By our assumption, there is a cardinal $\operatorname{crit}(j) < \lambda' < \lambda$ with the property that $\bigcup B : V_{\lambda'} \longrightarrow V_{\lambda'}$ is an I3-embedding.

The presented upper bound for the consistency strength of exacting cardinals is given by the following result:

Let $j: \mathcal{V} \longrightarrow M$ be an I2-embedding with critical point κ and let

$$U = \{A \subseteq \kappa \mid \kappa \in j(A)\}.$$

If G is generic over V for Prikry forcing with U, then κ is an exacting cardinal in ${\rm V}[G].$

Let $j : V \longrightarrow M$ be an I2-embedding with critical point κ and least non-trivial fixed point λ . Set $U = \{A \subseteq \kappa \mid \kappa \in j(A)\}.$

Results of Martin show that $j \upharpoonright V_{\lambda}$ is $(\omega + 1)$ -iterable. Let $j_{\omega} : V_{\lambda} \longrightarrow M_{\omega}$ denote the embedding of the first into the ω -th model in this iteration.

Then M_{ω} is a transitive set with $V_{\lambda} \cup \{\lambda\} \subseteq M_{\omega}$, $\operatorname{crit}(j_{\omega}) = \kappa$ and $j_{\omega}(\kappa) = \lambda$.

Fix $\rho > \lambda$ such that V_{ρ} is sufficiently elementary in V and pick an elementary submodel X of V_{ρ} of cardinality κ with $V_{\kappa} \cup \{U\} \subseteq X$.

Let $\pi: X \longrightarrow N$ denote the corresponding transitive collapse. Set $N_* = j_{\omega}(N)$ and $U_* = j_{\omega}(\pi(U))$.

Standard arguments then show that $V_{\lambda} \subseteq N_*$, $j(N_*) = N_*$ and the critical sequence $\vec{\kappa}$ of j is Prikry generic for U_* over N_* .

We now know that

$$i = j \upharpoonright N_*[\vec{\kappa}] : N_*[\vec{\kappa}] \longrightarrow N_*[\vec{\kappa}]$$

is an elementary embedding.

Now, in $N_*[\vec{\kappa}]$, fix a non-empty subset A of $V_{\lambda+1}$ that is definable by a formula with parameter λ . Pick $x \in A$ and set y = i(x). Then $y \in A$ and i induces a non-trivial elementary embedding of (V_{λ}, \in, x) into (V_{λ}, \in, y) .

Since λ has countable cofinality in $N_*[\vec{\kappa}]$, a well-foundedness argument shows that such an embedding already exists in $N_*[\vec{\kappa}]$.

Results presented yesterday morning now show that λ is exacting in $N_*[\vec{\kappa}]$ and hence elementarity ensures that Prikry forcing with U over V turns κ into an exacting cardinal.

Thank you for listening!