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Abstract. This paper deals with the question whether the assumption that
for every inaccessible cardinal κ there is a well-order of H(κ+) definable over

the structure 〈H(κ+),∈〉 by a formula without parameters is consistent with
the existence of (large) large cardinals and failures of the GCH. We work

under the assumption that the SCH holds at every singular fixed point of

the i-function and construct a class forcing that adds such a well-order at
every inaccessible cardinal and preserves ZFC, all cofinalities, the continuum

function and all supercompact cardinals. Even in the absence of a proper class

of inaccessible cardinals, this forcing produces a model of “V = HOD” and
can therefore be used to force this axiom while preserving large cardinals and

failures of the GCH. As another application, we show that we can start with

a model containing an ω-superstrong cardinal κ and use this forcing to build
a model in which κ is still ω-superstrong, the GCH fails at κ and there is a

well-order of H(κ+) that is definable over H(κ+) without parameters. Finally,

we can apply the forcing to answer a question about the definable failure of
the GCH at a measurable cardinal.

1. Introduction

The outer model programme aims to obtain desirable structural features of
Gödel’s constructible universe in generic extensions of the ground model while pre-
serving large cardinals. A related objective is to obtain desirable structural features
of Gödel’s constructible universe in generic extensions of the ground model while
not only preserving large cardinals, but also other features that are incompatible
with the assumption “V = L”. This paper focuses on the existence of well-orders
of H(κ+) definable over the structure 〈H(κ+),∈〉 by a formula without parameters,
large cardinals and failures of the GCH. Our main result shows that it is possible
to add such well-orderings at every inaccessible cardinal κ using a class-forcing that
preserves ZFC, all cofinalities, the continuum function and supercompact cardinals.
As a corollary, we also obtain a result on the relative consistency of the statement
“V = HOD” together with the existence of large cardinals and possible failures
of the GCH. Before we state our results, we fix some definitions and give a brief
overview of related existing results.

Definition 1.1. Let κ be an infinite cardinal, X ⊆ H(κ+), p ∈ H(κ+) and n < ω.
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• The set X is lightface Σn-definable (respectively, is Σn-definable in param-
eter p) over H(κ+) if X is definable over the structure 〈H(κ+),∈〉 by a
Σn-formula without parameters (respectively, with parameter p).

• We say that X is boldface Σn-definable over H(κ+) if it is Σn-definable in
some parameter (in H(κ+)) over H(κ+).

• The set X is lightface Σn-definable (respectively, is Σn-definable in param-
eter p) in H(κ+) if X is lightface Σn-definable (respectively, Σn-definable
in parameter p) over H(κ+) and X is an element of H(κ+).

• We say that there is a lightface Σn-definable well-order (respectively, a
boldface Σn-definable well-order) of H(κ+) if there is a well-order of H(κ+)
which is lightface (respectively, boldface) Σn-definable over H(κ+).

• Lightface definable abbreviates lightface Σn-definable for some n ∈ ω,
boldface definable or simply definable abbreviate boldface Σn-definable for
some n ∈ ω.

In [2] and [3], David Asperó and the first author showed that assuming the GCH,
there is a cofinality-preserving class forcing which introduces a lightface definable
well-order of H(κ+) for every regular uncountable κ while preserving all instances
of supercompactness, many other large cardinals and the GCH. In [9], the first and
second author independently obtained (as a side result) that assuming GCH, there
is a cofinality-preserving forcing which introduces a boldface definable well-order
of H(κ+) for every regular uncountable κ while preserving many large cardinals
(including ω-superstrong cardinals) and the GCH. While this result is basically
weaker than the aforementioned, enhancements of the techniques developed in the
proofs of this statement will be made heavy use of in the following.

The first and third author have shown in [11] that assuming the SCH holds at
singular limits of inaccessibles (but not the GCH),1 there is a cofinality-preserving
forcing which introduces a boldface definable well-order of H(κ+) for every inacces-
sible κ and preserves all supercompacts, many instances of supercompactness and
the continuum function. This construction is based on results of the third author
from [13] that allow us to add boldface definable well-orders of H(κ+) by forcings
which preserve the value of 2κ. These forcings will be another ingredient of our
construction.

Our main result improves the result of [11] by obtaining lightface instead of
boldface definable well-orders (starting from a slightly stronger SCH-assumption).

Theorem 1.2. Assume SCH holds at singular fixed points of the i-function. There
is a ZFC-preserving class forcing P definable without parameters that satisfies the
following statements.

(i) If α is inaccessible and G is P-generic over V then there is a lightface
definable well-order of H(α+)V [G].

(ii) P is cofinality-preserving.
(iii) P preserves the continuum function: If G is P-generic over V , then (2α)V =

(2α)V [G] for every α.
(iv) P preserves the supercompactness of supercompact cardinals.

In [5], Andrew Brooke-Taylor has shown that assuming GCH, there is a cofinality-
preserving forcing to obtain “V = HOD” in the generic extension while preserving

1If X is a class of singular strong limit cardinals, SCH at X abbreviates the statement that
2κ = κ+ for every κ ∈ X.
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various large cardinals and the GCH. In order to obtain this, he codes a class-
function F : On −→ 2 into the validity of the principle ♦∗κ at various regular car-
dinals κ, making use of the fact that under the GCH, the validity of the principle
♦∗κ can be “ switched on and off ” by mild (<κ-closed and κ+-c.c.) forcings.

In the proof of the above theorem, we improve this technique and develop a
finer coding which does not rely on the GCH. This coding uses the fact that the
existence of boldface definable well-orders of H(κ+) for uncountable κ with κ = κ<κ

can be “ switched on and off ” by mild (again <κ-closed and κ+-c.c.) forcing that
preserves the value of 2κ. This follows from results contained in [13] that will be
restated in Section 2 of this paper. Hence one could define a Boldface Definable
Well-order Oracle Partial Order similar to the ♦∗-Oracle Partial Order defined in
[5, Definition 5] and use it to start with a model where the SCH holds on a proper
class of singular strong limit cardinals2 and force the statement “V = HOD” while
preserving all cofinalities and the continuum function. The class forcing constructed
in the proof of Theorem 1.2 contains such a Boldface Definable Well-order Oracle
Partial Order and uses it (in combination with other coding forcings) to make
certain sets locally lightface definable. This construction will allow us to run the
argument sketched above and derive the following corollary.3

Corollary 1.3. If P is the partial order from Theorem 1.2, then in any P-generic
forcing extension, “V = HOD” holds.

In particular, if the SCH holds at singular fixed points of the i-function, then
we can force the statement “V = HOD” with a class forcing that preserves ZFC,
all cofinalities, the continuum function and every supercompact cardinal. This
generalizes a result of Arthur Apter and Shoshana Friedman from [1], where the
above has been obtained under the assumption of (and preserving) GCH.

Moreover one could replace the coding based on modifying the number of normal
measures on measurable cardinals that is used in Section 3 of [1] by the boldface
definable wellorder existence coding to obtain, under the assumption of the SCH at
singular fixed points of the i-function, a version of [1, Theorem 3.2] that does not
need the assumption of the GCH (and preservation of the GCH is to be replaced by
preservation of cofinalities and the continuum function). Since the SCH assumption
above is only needed to ensure preservation of cofinalities, this also provides an
alternative proof of [6, Theorem 4]. Under the assumption of SCH at singular fixed
points of the i-function, we obtain the following version of that theorem (see [6]
for the definition of HOD-supercompactness):

Theorem 1.4. Assume κ is supercompact and SCH holds at all singular fixed
points of the i-function. Then there is a set-forcing extension that preserves both
cofinalities and the continuum function, in which κ is still supercompact, but not
HOD-supercompact.

We discuss other applications of the forcing construction from Theorem 1.2. In
[10], Radek Honzik and the first author show that it is possible to obtain a model

2Note that a classical theorem of Solovay (see Theorem 1.9) implies that this assumption
becomes void in the presence of a strongly compact cardinal.

3Note that if there are unboundedly many inaccessibles, then the corollary follows directly
from Theorem 1.2. Only in the case that the inaccessibles are bounded in the universe do we need
to argue as above.
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containing a measurable cardinal κ with a lightface definable well-order of H(κ+)
and 2κ = κ++, starting with a κ++-strong cardinal κ. The iteration of their paper
cannot be used to make 2κ bigger than κ++. This raises the question whether it is
consistent to have a measurable cardinal κ with 2κ > κ++ and a lightface definable
well-order of H(κ+). Starting from a much stronger large cardinal assumption, we
use the forcing from Theorem 1.2 to establish this consistency and thus answer [10,
Question 6.1].

Corollary 1.5. Assume that the SCH holds at singular fixed points of the i-
function. Let κ be a regular cardinal and δ be the least singular strong limit cardinal
of cofinality κ. If κ is δ-supercompact, then there is a cofinality-preserving set forc-
ing which introduces a lightface definable well-order of H(κ+) and preserves the
δ-supercompactness (and thus the measurability) of κ and the value of 2κ.

With the help of a folklore result (see Lemma 1.8), this immediately gives rise
to the following.

Theorem 1.6. The consistency of ZFC plus

(i) “There is a δ-supercompact cardinal κ such that δ is the least singular
strong limit cardinal of cofinality κ”

implies the consistency of ZFC plus

(ii) “There is a measurable cardinal κ with 2κ > κ++ and a lightface definable
well-order of H(κ+)”.

We also show that the ω-superstrength of a given ω-superstrong cardinal (see [9,
Definition 5]) may be preserved while forcing with P, which in particular yields the
following result (again with the help of Lemma 1.8).

Theorem 1.7. The following statements are equiconsistent over ZFC.

(i) There is an ω-superstrong cardinal.
(ii) There is an ω-superstrong cardinal κ with 2κ > κ+ (or 2κ > κ++) and a

lightface definable well-order of H(κ+).

Throughout this paper, we assume that the SCH holds at singular fixed points
of the i-function. This will imply that the partial order P constructed in the proof
of Theorem 1.2 is cofinality-preserving. The following folklore result says that this
assumption can be obtained by mild forcing (i.e., collapsing all “counterexamples ”
while preserving the continuum function and large cardinals).

Lemma 1.8. There is a class-sized iteration S which satisfies the following:

• S forces SCH at singular fixed points of the i-function.
• S preserves the cofinality of κ whenever there is no singular fixed point λ

of the i-function with λ+ < κ ≤ 2λ.
• S preserves the value of 2κ whenever it preserves κ and κ is not a singular

fixed point of the i function with 2κ > κ+.
• S preserves the inaccessibility of all inaccessible and the supercompactness

of all supercompact cardinals.
• If γ is a singular strong limit cardinal but not a fixed point of the i-function

and κ is γ-supercompact with γ<κ = γ, then forcing with S preserves the
γ-supercompactness of κ.

• If κ is ω-superstrong, then there is a condition in S which forces that the
ω-superstrength of κ is preserved by forcing with S.
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Sketch of the proof. Let S be the reverse Easton iteration which at stage κ adds a
Cohen subset of κ+ if 2κ > κ+ and κ is a singular fixed point of the i-function.
That S forces SCH at singular fixed points of the i-function, preserves the relevant
cofinalities, the relevant parts of the continuum function and all inaccessibles are
standard arguments. That it preserves all instances of supercompactness as in the
statement of the lemma can be shown by arguments similar to (but easier than)
those in the proof of supercompactness preservation provided later in this paper
for P. The ω-superstrength preservation can be shown similar to (but easier than)
the proof of ω-superstrength preservation provided later in this paper for P. For
those reasons and because this lemma is not actually essential to the content of this
paper, we will not provide a detailed proof. �

Several computations in the following proofs will rely on the following classical
theorem by Robert Solovay (see [12] for the refined statement below).

Theorem 1.9 (Solovay). If γ > κ, γ is a singular strong limit cardinal and κ is
γ-strongly compact, then 2γ = γ+.

In particular, this result shows that the assumptions of our main result auto-
matically hold above the first supercompact cardinal.

2. Prerequisites

In this section we will introduce several concepts and results contained in [11]
and [13] that we will make use of in later sections. Given an ordinal λ, we let λλ
denote the set of all functions f : λ −→ λ and <λλ denote the set of all functions g
with dom(g) ∈ λ and ran(g) ⊆ λ. We let ≺·, ·� denote the Gödel pairing function
on ordinals.

Definition 2.1. Let κ be an uncountable cardinal with κ = κ<κ. A pair 〈A, s〉 is
a κ-coding basis if A is a subset of κκ and s = 〈sα | α < κ〉 is an enumeration of
<κκ such that lh(sα) ≤ α for all α < κ and the set {α < κ | sα = t} is unbounded
in κ for each t ∈ <κκ.

Given an uncountable cardinal κ with κ = κ<κ and a κ-coding basis 〈A, s〉, we
define Ps(A) to be the partial order consisting of conditions p = 〈Tp, gp, hp〉 with
the following properties.

(i) Tp is a subtree of <κ2 that satisfies the following statements.
(a) Tp has cardinality less than κ.
(b) If t ∈ Tp with lh(t) + 1 < ht(Tp), then t has two immediate successors

in Tp.

(ii) gp : A
part−−−→ [Tp] is a partial function such that dom(gp) is of cardinality

less than κ.
(iii) hp : A

part−−−→ κ is a partial function with the following properties.
(a) dom(hp) = dom(gp).
(b) For all x ∈ dom(hp) and α, β < ht(Tp) with α = ≺hp(x), β�, we have

sβ ⊆ x ⇐⇒ gp(x)(α) = 1.

We define p ≤Ps(A) q to hold if the following statements are satisfied.

(a) Tp is an end-extension of Tq.
4

4In the sense that Tq = {t ∈ Tp | lh(t) < ht(Tq)}.



6 SY-DAVID FRIEDMAN, PETER HOLY, AND PHILIPP LÜCKE

(b) For all x ∈ dom(gq), x ∈ dom(gp) and gq(x) is an initial segment of gp(x).
(c) hq = hp � dom(hq).

Proposition 2.2. If κ is an uncountable cardinal with κ = κ<κ and 〈A, s〉 is a
κ-coding basis, then Ps(A) ⊆ H(κ+), Ps(A) satisfies the κ+-chain condition and is
<κ-directed closed with infima5.

Proof. The first statement is immediate from the definition of the partial order and
the second one is proven in [13, Lemma 3.2]. To show that the third statement
holds, let D be a directed subset of Ps(A) of cardinality less than κ. Define T =⋃
{Tp | p ∈ D},

g = {〈x,
⋃
{gp(x) | p ∈ D, x ∈ dom(gp)}〉 | ∃p ∈ D x ∈ dom(gp)}

and h =
⋃
{hp | p ∈ D}. Then T is a subtree of <κ2 of size less than κ and

dom(g) = dom(h) is of size less than κ. Given p0, p1 ∈ D, x ∈ dom(g) and
α < ht(T ), there is a q ∈ D with q ≤ p0, p1, x ∈ dom(gq) and ht(Tq) ≥ α. If
x ∈ dom(gpi), then gpi(x) ⊆ gq(x) and hpi(x) = hq(x). This shows that g and h
are partial functions and g(x) ∈ [T ] for all x ∈ dom(g). In particular, the triple
pD = 〈T, g, h〉 is a condition in Ps(A) and it is easy to check that pD is the infimum
of D in Ps(A). �

In the above setting, we let Ṫκ and Ḟκ denote the canonical Ps(A)-names with

the property that ṪGκ =
⋃
{Tp | p ∈ G} and

ḞGκ : A −→ [ṪGκ ]V[G]; x 7−→
⋃
{gp(x) | p ∈ G, x ∈ dom(gp)}

whenever G is Ps(A)-generic over V.

Theorem 2.3 ([13, Corollary 3.7]). Let κ be an uncountable cardinal with κ = κ<κ,

〈A, s〉 be a κ-coding basis and G be Ps(A)-generic over V. Then [ṪGκ ]V[G] = ran(ḞGκ )
and the following statements are equivalent for all x ∈ (κκ)V[G].

(i) x is an element of A.

(ii) There is a z ∈ [ṪGκ ]V[G] and an α < κ such that

sβ ⊆ x ⇐⇒ z(≺α, β�) = 1

holds for all β < κ.

In particular, A is made boldface Σ1-definable over H(κ+)
V[G]

. In the proof of
Theorem 1.2, we will make use of the following direct consequence of Theorem 2.3.

Corollary 2.4. Let κ be an uncountable cardinal with κ = κ<κ, 〈A, s〉 be a κ-coding
basis and G be Ps(A)-generic over V. If W is an outer model of V[G] such that κ

is a cardinal in W and [ṪGκ ]W = [ṪGκ ]V[G], then A is Σ1-definable in parameters s

and ṪGκ over 〈H(κ+)W,∈〉. �

Given functions x, y ∈ κκ, we let ≺x, y� denote the unique function z ∈ κκ with

z(≺α, β�) =

 x(β), if α = 0,
y(β), if α = 1
0, otherwise.

.

5We say that a subset D of a partial order P is directed if for all p0, p1 ∈ D there is a p ∈ D
with p ≤ p0, p1. Given an infinite regular cardinal κ, a partial order P is <κ-directed closed with

infima if every directed subset of P of cardinality less than κ has an infimum in P.
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We say that A ⊆ κκ codes a well-order of κκ if there is a well-order ≺ of κκ such
that

A = {≺x, y� | x, y ∈ κκ, x ≺ y}.
The following, which is notationally adapted from the original theorem in [13],

provides us with a forcing to introduce a boldface definable well-order of H(κ+).

Theorem 2.5 ([13, Theorem 6.1]). Assume that κ is an uncountable cardinal with
κ = κ<κ, 〈A, s〉 is a κ-coding basis and A codes a well-order of κκ. If G is Ps(A)-
generic over V, then there is a well-ordering of H(κ+)V[G] that is ∆2-definable over

〈H(κ+)V[G],∈〉 in parameters s and ṪGκ .

In the other direction, we also need a forcing that allows us make sure that there
are no definable well-orders of H(κ+). The following result is folklore. A proof of
this statement can be found in [13, Section 9].

Theorem 2.6. If κ is an uncountable cardinal with κ = κ<κ and G is Add(κ, κ+)-
generic over V, then the Axiom of Choice does not hold in 〈L(P(κ)V[G]),∈〉. In
particular, there is no boldface definable well-order of H(κ+)V[G].

3. Lightface definable well-orders of H(κ+)

In this section, we commence the proof of Theorem 1.2. Let Bs denote the class
of all singular fixed points of the i-function, Γ be the class of all successor cardinals
of elements of Bs and 〈bγ | γ ∈ On〉 be the monotone enumeration of Γ. We will
start by introducing a variant Cf (i) of the canonical function coding. This coding
was first introduced in [2] and [3] and also made use of in [9].

Given an inaccessible cardinal α, γ ∈ [α, α+), a bijection f : α −→ γ and i < 2,
a set t is a condition in Cf (i) if the following statements hold.

• t is a closed, bounded subset of α and
• If η ∈ t, then c(otp f [η]) = i, where c : On −→ 2 is defined by

c(δ) =

{
1, if there is a definable well-order of H(bδ

+).
0, otherwise.

Conditions in Cf (i) are ordered by end-extension.

Definition 3.1. Given a set X, the lottery of X is the forcing poset consisting
of a weakest condition 1 and all elements of X, where it is assumed that 1 6∈ X.
Elements of X are pairwise incompatible in the lottery. If G is generic for the
lottery of X, G will be of the form {x,1} for some x ∈ X; we say that G decides
for x in that case.

Before we commence with the details of the proof of Theorem 1.2 by stating
the definition of our forcing iteration P, we want to give a rough idea of what the
iteration P will do, as some of the basic ideas seem to be in danger of being buried
by technicalities in the actual definition.

Our iteration will basically be Easton supported (but with an additional restric-
tion on the supports) and we only force nontrivially at stage α and α+ 1 for α ∈ Γ
and stages in the interval [α, α · α) for inaccessible α. We perform a lottery of
the set {0, 1} at stage α ∈ Γ. If the lottery decides for 0, then we ensure at stage
α+1 (by forcing, using Theorem 2.6) that there is no definable well-order of H(α+).
Otherwise, we ensure at stage α + 1 (by forcing, using Theorem 2.5) that there is
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a definable well-order of H(α+). This way we obtain a generic predicate c that is
coded by the boldface definable well-order existence pattern.

If α is inaccessible, then we will first perform the lottery of all α-coding bases
〈A, s〉 such that A codes a well-ordering of αα, to choose such an α-coding basis
〈Aα, sα〉. In the next step, we force with Psα(Aα) (as defined in Section 2) to
introduce a well-order of H(α+) that is definable over H(α+) in some generically
added parameter xα ⊆ α. In the next α · α-many stages, we perform an iteration
Sα<α·α, using supports of size less than α, which applies appropriate instances of
the forcing Cf (i) to make sure that xα and the generic for Sα<α·α itself are both
definable from c∩α. This will allow us to infer that H(α+) has a lightface definable
well-order in any P-generic extension.

For the sake of large cardinal preservation, we must in fact not allow for the
lottery of {0, 1} if α is of the form bκ+2+δ for some inaccessible κ and δ < κ, but
choose either 0 or 1 (non-generically) depending on the generic for the iteration
below α. This will be made use of in the proof of Claim 20.

Throughout the following, for every inaccessible κ we fix a uniformly (in pa-
rameter κ) definable recursive sequence 〈fγ | γ ∈ [κ, κ · κ]〉 such that every fγ is a
bijection from κ to γ.

Proof of Clauses (i)-(iii) of Theorem 1.2. Our forcing P will be an “Easton-like it-

eration ”6 of the form 〈P<α, Ṗα | α ∈ On〉. Ṗα denotes the trivial forcing unless
α ∈ Γ, α = β+1 and β ∈ Γ or cardα = κ is inaccessible and α ∈ [κ, κ ·κ). If α ∈ Γ,

let Ṗα and Ṗα+1 both denote the trivial forcing if α<α > α or α is singular in the
P<α-generic extension.7 Similarly, if cardα = κ is inaccessible, α ∈ [κ, κ · κ) and κ

is not inaccessible in the P<α-generic extension, let Ṗα denote the trivial forcing.7

Given a generic G for P or a generic G for some P<β and an ordinal α < β, we let
G<α denote the generic on P<α induced by G or G respectively.

Case (α is inaccessible and remains so in the P<α-generic extension). We let Ṗα
denote the canonical P<α-name for the lottery of (the set of) all α-coding bases
〈A, s〉, where A codes a well-order of αα in the P<α-generic extension. If G is P<α-

generic over V, a generic for ṖGα over V[G] decides for an α-coding basis 〈Aα, sα〉,
where Aα codes a well-order of (αα)V[G]. Let Ȧα and ṡα be canonical P<α+1-names
for Aα and sα.

Let Ṗα+1 be a canonical P<α+1-name for Pṡα(Ȧα). If G is P<α+2-generic over

V, sα = ṡ
G<α+1
α , Aα = Ȧ

G<α+1
α and Ḡ is the filter in Psα(Aα) induced by G, then

the well-ordering of (αα)V[Gα+1] given by Aα is Σ1-definable in some parameter

xα ∈ α2 coding the sets sα and Ṫ Ḡα , where Ṫα is the Psα(Aα)-name in V[G<α+1]
constructed in Section 2. Let ẋα be a canonical P<α+2-name for such a parameter
xα. Working in W = V[G], by Proposition 2.2 we have H(α) ⊆ V[G<α+1] and
α+ = (α+)V[G<α+1]. Let <α denote the well-ordering of (αα)V[G<α+1] determined
by the parameter ẋGα . There is a canonical surjection σ of (α2) onto H(α+) that
is Σ1-definable in parameter α in H(α+).8 Since the definition of this function

6This name of course refers to the supports used - those will be specified just before Definition

3.2. A related forcing construction is used in [9].
7We will later show by induction that this is never the case (see Claim 7).
8Fix x ∈ α2. We define a binary relation ∈x on α by setting β ∈x γ if x(≺0,≺β, γ��) = 1.

If 〈α,∈x〉 is well-founded and extensional and π : α −→ y is the corresponding collapsing map,

then we define σ(x) = {π(β) | x(≺1, β�) = 1}. Otherwise, we define σ(x) = ∅. If z ∈ H(α+)
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is absolute, the set H(α+)V[G<α+1] is equal to the image of (α2)V[G<α+1] under σ.
Hence <α induces a well-ordering <α of H(α+)V[G<α+1] in a canonical way.9 <α
induces a well-ordering of H(α)V[G<α+1] of order-type ξ ∈ [α, α+) and, by using
the <α-least bijection from α to ξ, <α actually induces a well-ordering <α of
H(α)V[G<α+1] = H(α) of order-type α. Let <α(δ) denote the δth element of H(α)
in this ordering. We define by induction

• an auxiliary forcing iteration Sα<α·α of the form 〈Sα<δ, Ṡαδ | δ < α · α〉 with
<α-support,

• a sequence 〈Rα<δ | δ ≤ α · α〉 such that Rα<δ ⊆ Sα<δ for each δ ≤ α · α, and
• a sequence 〈ȧαδ | δ < α · α〉 such that ȧαδ is an Sα<δ-name for each δ < α ·α.

If Sα<δ is defined, let

Rα<δ = {p ∈ Sα<δ | ∃wp : δ −→ [α]<α ∀γ < δ p�γ 
 p(γ) = w̌p(γ)}.

Note that given p ∈ Sα<δ, if wp as desired exists, then it is uniquely determined.
This allows us to define an injection ρ : Rα<δ −→ H(α) by setting ρ(p) = q if q is a

function with domain f−1
α·α
′′
supp(p) and q(γ) = wp(fα·α(γ)) for all γ ∈ dom(q).

We define ȧαδ as follows. If δ is of the form α · δ̄, then we let ȧαδ be the canonical
Sα<δ-name for ẋGα (δ̄). If δ is of the form α · δ̄+ 1 +γ for some γ < α, then we choose
a canonical Sα<δ-name such that

(ȧαδ )K =

{
1, if <α(γ) ∈ K̄.
0, otherwise.

holds whenever K is Sα<δ-generic over W and K̄ = ρ′′(K ∩ Rα<δ). Finally, choose

Ṡαδ such that

(Ṡαδ )K = (Cfα+2+δ
((ȧαδ )K))W[K]

whenever K is Sα<δ-generic over W .
We now want to define the iteration P in the interval [α+ 2, α ·α) by induction.

Assume δ < α · α and P<α+2+δ is already defined. Let G be P<α+2+δ-generic over
V and let W = V[G<α+2]. Work in W . Define Sα<δ, R

α
<δ and ȧαδ as above. We will

sometimes use ȧαδ to also denote a canonical P<α+2-name for the actual Sα<δ-name
ȧαδ in the P<α+2-generic extension. We say that an element q of Rα<δ is induced by
an element r of G if

r � [α+ 2, α+ 2 + γ) 
 r(α+ 2 + γ) = w̌q(γ).

holds in W for all γ < δ. Let

K = {p ∈ Sα<δ | ∃q ∈ Rα<δ (q ≤ p ∧ q is induced by an element of G)}.

and b : α −→ tc({z} ∪ α) is a bijection, then there is an x ∈ α2 with ∈x= {〈β, γ〉 | b(β) ∈ b(γ)},
x = {b(β) | x(≺1, β�) = 1} and hence σ(x) = z.

9Define x <α y to hold if

∃x̄, ȳ ∈ (α2)V[G<α+1][x̄ <α ȳ ∧ σ(x̄) = x ∧ σ(ȳ) = y

∧ ∀x̃ ∈ (α2)V[G<α+1](x̃ <α x̄→ σ(x̃) 6= x)

∧ ∀ỹ ∈ (α2)V[G<α+1](ỹ <α ȳ → σ(ỹ) 6= y)].
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Then K is a filter in Sα<δ.
10 Choose a canonical P<α+2+δ-name K̇ for K and define

Ṗα+2+δ to be a canonical P<α+2+δ-name such that

ṖGα+2+δ = (Cfα+2+δ
((ȧαδ )G<α+2∗K̇G

))V[G]

holds whenever G is P<α+2+δ-generic over V. We will later show inductively (see
Clause 7 of Claim 7) that P<α+2 ∗ Sα<δ can be densely embedded into P<α+2+δ

by a canonical embedding. We will thus sometimes identify ȧαδ not only with a
P<α+2 ∗ Sα<δ-name, but also with a P<α+2+δ-name.

Case (α ∈ Γ, α<α = α in the P<α-generic extension). If there is no inaccessible

κ such that α is of the form bκ+2+δ for some δ < κ, let Ṗα denote the lottery of 0
and all triples 〈1, A, s〉 where 〈A, s〉 is an α-coding basis and A codes a well-order

of αα in the P<α-generic extension. If G is P<α-generic over V, a generic for ṖGα
over V[G] decides for either 0 or 1 and if it decides for 1 it also decides for an
α-coding basis 〈Aα, sα〉 where Aα codes a well-order of (αα)V[G]. If α = bκ+2+δ for

some inaccessible κ and δ < κ, we demand that Ṗα decides for 1 if and only if ȧκδ
is decided by the filter on P<κ+2 ∗ Sκ<δ induced by G to be 1 (it shall decide for

0 otherwise) and only in that case11 let Ṗα also perform a lottery of all α-coding
bases 〈A, s〉 where A codes a well-order of κκ in the P<α-generic extension, and

thus choose an α-coding basis 〈Aα, sα〉 as above. Let Ȧα and ṡα be canonical
P<α+1-names for Aα and sα. Let both denote ∅ if no α-coding basis was chosen.

Assume G is P<α+1-generic. Let Aα = ȦGα and sα = ṡGα . Let Ṗα+1 be a P<α+1-

name such that ṖGα+1 = Add(α, α+) if G decided for 0 at stage α and such that

ṖGα+1 = Psα(Aα) if G decided for 〈1, Aα, sα〉 at stage α, with both Add(α, α+)
and Psα(Aα) defined in the sense of V[G]. Note that by Theorem 2.6, Add(α, α+)
ensures that H(α+) has no definable well-order in the generic extension, while
Psα(Aα) ensures that H(α+) has a definable well-order in the generic extension
by Theorem 2.5. Both Add(α, α+) and Psα(Aα) are <α-closed and satisfy the
α+-chain condition.

For p ∈ P<α, λ inaccessible and γ ∈ supp(p)∩ [λ+2, λ ·λ), we write p∗∗γ for p(γ).

As a notational convention, we say p∗∗γ = 1̌ otherwise. We define the club support

of p to be the set C - supp(p) = {γ | p∗∗γ 6= 1̌}.
It remains to declare the supports used in the construction of our iteration.

Assume α is a limit ordinal, P<γ is defined for γ < α, T is the inverse limit of
〈P<γ | γ < α〉 and p ∈ T . Then p ∈ P<α if

• if α is regular, supp(p) is bounded in α and
• for every inaccessible θ, card (C - supp(p) ∩ θ+) < θ. 12

Let P be the direct limit of 〈P<α | α ∈ On〉.

Definition 3.2. If α is inaccessible and v ⊆ [α, α · α] is of size less than α, we say
that Cv is the canonical separating club for v if

Cv = {η < α | ∀γ0, γ1 ∈ v γ0 < γ1 → fγ0 [η] is a proper initial segment of fγ1 [η]}.

As defined, Cv is easily seen to be a club subset of α. Note that if v1 ⊇ v0, we
have that Cv1 ⊆ Cv0 . We will tacitly make use of this in the following.

10We will prove later that K is in fact generic for Sα<δ (see Clause 7 of Claim 7).
11See Claim 20 for a motivation of this extra condition.
12The former condition is the reason why we called our iteration “Easton-like ” earlier on.
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Definition 3.3. If p ∈ P<α and η < α is a cardinal, we define uη(p) as follows:13

uη(p)(γ) =

 1̌ if γ < η
1̌ if γ ∈ (η, η+)
p(γ) otherwise

.

We will usually assume that for every γ ∈ supp(p), 1P<γ 
 p(γ) ∈ Ṗγ ; therefore
uη(p) ∈ P<α. We let uη(P<α) = {uη(p) | p ∈ P<α}.

The following claim will often be tacitly used.

Claim 1. If p ∈ P<α, η < α is a cardinal and q ≤ p, then there is r ≤ q such that
q ≤ r (i.e. q and r are equivalent) and uη(r) ≤ uη(p).

Proof. Assume p ∈ P<α, η < α is a cardinal and q ≤ p. We want to construct
r ≤ q such that uη(r) ≤ uη(p). We define r by induction on i < α. For i < η, let

r(i) = q(i). If i ≥ η, r � i is defined, r � i ≤ q � i, uη(r � i) ≤ uη(p � i) and Ġ<α is the
canonical name for the P<α-generic, let

r(i) =

{
q(i), if r � i ∈ Ġ<α.
p(i), otherwise.

Then r � i 
 r(i) = q(i) ≤ q(i). Let A be a maximal antichain below uη(r � i)
that refines r � i, i.e. for every a ∈ A either a ≤ r � i or a ⊥ r � i. If a ≤ r � i,
then a 
 r(i) = q(i) ≤ p(i). If a ⊥ r � i, then a 
 r(i) = p(i) ≤ p(i). Hence
uη(r � i) 
 r(i) ≤ p(i). This handles successor stages of our induction. The limit
stages are immediate. �

Definition 3.4. If η < α is a cardinal and p ∈ P<α, we define lη(p) as follows:

lη(p)(γ) =

 1̌, if γ ≥ η+.
1̌, if γ = η.
p(γ), otherwise.

We call lη(p) the η-sized or the lower part of p. Note that lη(p) complements uη(p)
in the sense that it carries exactly all information about p not contained in uη(p).

Definition 3.5 (stable below η+). Assume 〈pi | i < δ〉 is a decreasing sequence
of conditions in P<α of limit length δ < η+ where η < α a cardinal. We say that
〈pi | i < δ〉 is stable below η+ iff

• 〈lη(pi) | i < δ〉 is eventually constant or
• η is singular and for every cardinal µ < η, 〈lµ(pi) | i < δ〉 is eventually

constant.

The following definition will be the key ingredient for Claim 3 below. The basic
idea is that if p and q are conditions in P<α, for q to be strategically below p means
that q is (in a sense that is detailed below) sufficiently strong w.r.t. p.

Definition 3.6. Assume α′ ≤ α and θ is inaccessible. If p ∈ P<α, q ∈ P<α′ and
q ≤ p �α′, we say that q is strategically below p at θ if C - supp(p) ∩ [θ, θ+) = ∅, if
θ ≥ α′ or all of the following hold, letting θ∗ = min({α′, θ+}):

13We will usually use 1̌ to denote the canonical name for the weakest condition of a poset in
a forcing extension, where both the poset and the forcing extension should always be clear from

context.
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(i) for all γ ∈ C - supp(p) ∩ [θ, θ∗), q �γ forces that ȧθξ has a P< sup(supp(q)∩θ)-
name, where ξ is such that γ = θ + 2 + ξ,

(ii) for all γ ∈ C - supp(p)∩ [θ, θ∗), q �γ forces that max q∗∗γ > sup(supp(p)∩ θ)
and that sup(supp(q) ∩ θ) > max p∗∗γ ,

(iii) sup(supp(q)∩θ) is larger than or equal to some element of CC - supp(p)∩[θ,θ+)

above sup(supp(p) ∩ θ) and
(iv) sup(supp(q) ∩ θ) is greater than the cardinality of C - supp(p) ∩ [θ, θ+).
(v) Let ν := card sup(supp(p) ∩ θ). Then sup(supp(q) ∩ θ) ≥ ν+ν·ν .

If η < α′ ≤ α, η is a cardinal and q ≤ p�α′, we say that q is η+-strategically below
p if for every inaccessible θ > η, q is strategically below p at θ. It is immediate
that if η0 < η1 are both cardinals and q is η0

+-strategically below p then q is
η1

+-strategically below p.

The common case will be when α′ = α in the above. If p ∈ P<α, q ∈ P<α′ ,
α′ < α and q is η+-strategically below p, then q is η+-strategically below p � α′.
The reverse direction of this implication will usually not hold, as in general (iii) and
(iv) get weaker as α gets smaller. A couple more trivial facts that will be useful
later on are the following.

Claim 2. • If α < α∗, p, q ∈ P<α∗ and q is η+-strategically below p, then
q �α is η+-strategically below p�α.
• For p, q, r ∈ P<α and a cardinal η < α, if q is η+-strategically below p and
r ≤ q, then r is η+-strategically below p.
• For p, q, r ∈ P<α and a cardinal η < α, if q ≤ p and r is η+-strategically

below q, then r is η+-strategically below p.

Proof. Straightforward from Definition 3.6. �

Notation. Given a decreasing sequence of conditions 〈pi | i < δ〉 in P<α of limit
length δ, we say that a sequence r = 〈r(γ) | γ < α〉 is the componentwise union of
〈pi | i < δ〉 if the following statements hold.

• If γ < α with γ ∈ [θ + 2, θ · θ) for some inaccessible θ, then r(γ) is the
canonical P<γ-name for the set

⋃
i<δ(p

i)∗∗γ ; we denote r(γ) by r∗∗γ .

• Otherwise, r(γ) is the canonical P<γ-name for inf{pi(γ) | i < δ}.

The sequence r is usually not a condition in P<α as the r∗∗γ are not necessarily
names for closed sets, but the supports of r can be calculated as if r were a condition
by letting

supp(r) = {γ | r(γ) 6= 1̌} =
⋃
i<δ

supp(pi)

and
C - supp(r) = {γ | r∗∗γ 6= 1̌} =

⋃
i<δ

C - supp(pi).

If γ ∈ Γ, ẋ is a P<γ-name for either 0 or 1 and p ∈ P<α for some α > γ, we
write p �γ 
 p(γ) = ẋ to abbreviate the following: there is a maximal antichain A
below p � γ which decides ẋ such that if a ∈ A and a 
 ẋ = 0 then a 
 p(γ) = 0,

and if a ∈ A and a 
 ẋ = 1 then there exist P<γ-names ṡ and Ȧ such that

a 
 p(γ) = 〈1, Ȧ, ṡ〉.

Definition 3.7 (Strategic lower bound). Given a cardinal η < α and a sequence
〈pi | i < δ〉 of conditions in P<α of limit length δ < η+ which is stable below η+,
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form their componentwise union r, which exists by our assumptions. supp(r) is
bounded below every regular cardinal and C - supp(r) ∩ θ+ has size less than θ for
every inaccessible θ. We would like to obtain a condition q ∈ P<α with the following
properties for every γ ∈ C - supp(r), γ ≥ η+, γ = card γ + 2 + ξ:

(1) q �γ 
 q(botp fγ [sup r∗∗γ ]) = ȧcard γ
ξ and

(2) q �γ 
 q∗∗γ := r∗∗γ ∪ {sup r∗∗γ }.
Components of q other than the above should be equal to the respective components
of r. If such q exists, we call q the η+-strategic lower bound for 〈pi | i < δ〉.
Whenever we want to apply the above, we will be in a situation where each sup r∗∗γ
will have been decided (by any lower bound of 〈pi �γ | i < δ〉) to equal an actual
ordinal value (and is not just a name for an ordinal). Note that (1) implies that q �γ
forces that c(otp fγ [sup r∗∗γ ]) = ȧcard γ

ξ . It is immediate from the definitions that if

our desired q exists as a condition in P<α, then q is a lower bound for 〈pi | i < δ〉,
i.e. q ≤ pi for each i < δ.

Claim 3. If η < α is a cardinal and 〈pi | i < δ〉 is a decreasing sequence of con-
ditions in P<α of limit length δ < η+ which is stable below η+ such that pi+1 is
η+-strategically below pi for every i < δ, then the sequence of conditions 〈pi | i < δ〉
has an η+-strategic lower bound.

Proof. By induction on α ≥ η+. If α = η+, the claim follows by stability of
〈pi | i < δ〉 below η+. Given that the claim holds below α, we want to show that
there exists an η+-strategic lower bound qα for 〈pi | i < δ〉. Inductively, for γ < α,
let qγ be the η+-strategic lower bound of 〈pi �γ | i < δ〉. We will also use that if
γ0 < γ1 < α, then qγ1 � γ0 ≤ qγ0 . Thus we also have to show that if γ < α, then
qα �γ ≤ qγ . Let r be the componentwise union of 〈pi | i < δ〉. We first show that
the sequence 〈pi | i < δ〉 has the property that for every inaccessible θ ∈ (η, α),
either C - supp(pi) ∩ [θ, θ+) = ∅ for all i < δ or the following hold:

(i) sup(supp(r) ∩ θ) > sup(supp(pi) ∩ θ) for all i < δ,
(ii) for γ ∈ C - supp(r) ∩ [θ, θ+), qγ 
 sup r∗∗γ = sup(supp(r) ∩ θ) and
(iii) fγ [sup(supp(r) ∩ θ)] ⊇ sup(supp(r) ∩ θ),
(iv) for γ0 < γ1 both in C - supp(r) ∩ [θ, θ+), fγ0 [sup(supp(r) ∩ θ)] is a proper

initial segment of fγ1 [sup(supp(r) ∩ θ)],
(v) for γ ∈ C - supp(r)∩ [θ, θ+), qγ forces that ȧθξ has a P< sup(supp(r)∩θ)-name,

where ξ is such that θ + 2 + ξ = γ,
(vi) sup(supp(r) ∩ θ) ≥ card (C - supp(r) ∩ [θ, θ+)) and
(vii) there is no inaccessible λ < θ such that sup(supp(r) ∩ θ) ∈ [λ, λ · λ).

Property (i) immediately follows from property (v) in Definition 3.6. Property (ii)
follows from Property (ii) in Definition 3.6, using that qγ is stronger than pi � γ
for every i < δ. Property (iii) follows from Property (v) in Definition 3.6 as the
latter implies that sup(supp(r)∩ θ) is a cardinal. Property (iv) follows as Property
(iii) in Definition 3.6 implies that sup(supp(r) ∩ θ) belongs to CC - supp(r)∩[θ,θ+).
Property (v) follows from Property (i) in Definition 3.6, Property (vi) follows from
Property (iv) in Definition 3.6. We are thus left with proving Property (vii). Note
that sup(supp(r)∩ θ) cannot be equal to λ for some inaccessible λ < θ as Property
(v) in Definition 3.6 implies that sup(supp(r) ∩ θ) has cofinality ≤ η, but stability
of 〈pi | i < δ〉 implies that sup(supp(r) ∩ θ) ≥ η and equality can only occur if η
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is singular. Moreover Property (v) in Definition 3.6 implies that it cannot be in
(λ, λ · λ).

Now we show, using (i)-(vii), that we can form the η+-strategic lower bound qα

of 〈pi | i < δ〉. This is trivial (using induction) if cardα is not inaccessible. Note
that if we can form qα ∈ P<α out of r as in definition 3.7, then qα � γ ≤ qγ for
every γ < α. Assume θ ∈ (η, α) is inaccessible and γ ∈ [θ + 2, θ · θ). Given
(i)-(iv), qγ decides sup r∗∗γ and otp fγ [sup r∗∗γ ] ≥ sup(supp(r) ∩ θ) is distinct from
otp fξ[sup r∗∗ξ ] for every ξ < γ. By (v), if ξ is such that θ + 2 + ξ = γ, qγ forces

that ȧθξ has a P< sup(supp(r)∩θ)-name, allowing us to satisfy (1) as in definition 3.7,

as botp fγ [sup(supp(r)∩θ)] ≥ sup(supp(r)∩ θ) and as by (vii) and (iii), there cannot be
some inaccessible λ < θ with otp fγ [sup( suppr ∩ θ)] ∈ [λ, λ · λ). (2) in Definition
3.7 can obviously be satisfied. Finally (vi) implies that supp(qα) \ supp(r) (and
hence supp(qα)) is bounded below every regular cardinal and hence qα actually is
a condition in P<α. �

Claim 4. Assume η is a cardinal, α > η is a limit ordinal, p and q are conditions
in P<α, 〈αj | j < cof(α)〉 is cofinal in α and increasing with α0 > η s.t. for every
j < cof(α), q �αj is η+-strategically below p. Then q is η+-strategically below p.

Proof. Immediate from Definition 3.6. �

Claim 5. Assume η < α is a cardinal, α is a limit ordinal, 〈pi | i < δ〉 is a
decreasing sequence of conditions of limit length δ < η+ in P<α which is stable
below η+, 〈αj | j < cof(α)〉 is cofinal in α and increasing such that α0 > η and:

• ∀i < δ there exists j < cof(α) such that pi+1 �αj is η+-strategically below
pi and pi+1[αj , α) = pi[αj , α).

• ∀ j < cof(α) there are unboundedly many i < δ for which there exists k ≥ j
such that pi+1 �αk is η+-strategically below pi.

Then the η+-strategic lower bound for 〈pi | i < δ〉 exists.

Proof. By Claim 3, we know that for every j < cof(α), the η+-strategic lower
bound for 〈pi �αj | i < δ〉 exists and denote it by qj . It is easily observed that the
componentwise union of the qj is a condition in P<α

14 and is the η+-strategic lower
bound for 〈pi | i < δ〉. �

Definition 3.8. If D is a dense subset of P<α and η < α is a cardinal, we say that
q reduces D below η if for every r ∈ P<α with uη(r) ≤ uη(q), there is s ≤ r with
uη(s) = uη(r) and such that s meets D in the sense that ∃d ∈ D s ≤ d.

Definition 3.9. If P is a notion of forcing and D ⊆ P , we say that D is an
equivalent dense subset of P if for every p ∈ P , there is d ∈ D so that d ≤ p and
p ≤ d, i.e. p and d are equivalent.

Definition 3.10. Let γ(α) denote the supremum of the cardinals γ < α such that

Ṗγ does not denote the trivial forcing, i.e. assuming that (as we will show later on
inductively) initial segments of our iteration preserve cofinalities, inaccessibles and
the continuum function,

γ(α) = sup({θ < α | θ ∈ Γ or θ is inaccessible}).

14As for every γ < α, 〈(qj)∗∗γ | j < cof(α)〉 is eventually constant.



LARGE CARDINALS AND LIGHTFACE DEFINABLE WELL-ORDERS 15

Let S : On −→ Card be defined as follows:

S(α) =


1 if α ≤ min(Γ),
α if α is inaccessible,
γ(α)+ if γ(α) is a singular limit point of Γ,

2(γ(α)+) otherwise.

We will show later that for every α, P<α has a dense subset of size S(α).

Claim 6. ∀β ∈ Γ S(β) ≤ β.

Proof. If β ∈ Γ, β = λ+ for some λ ∈ Bs. If λ is a (singular) limit point of Γ,
S(β) = S(λ) = β. If λ is not a limit point of Γ, then γ(β) < λ and therefore

S(β) ≤ 2γ(β)+ < λ < β. �

Claim 7. Suppose ω ≤ η < α, κ = cardα and η is a cardinal such that either
S(η) ≤ η or η is a limit point of {ν | S(ν) ≤ ν}.

1. [Strategic Successors, Strategic Closure]
If α∗ ≥ α, p ∈ P<α∗ and q ≤ p � α, then there is r ≤ q which is η+-
strategically below p such that lη(r) = lη(q). Consequently, uη(P<α) is
η+-strategically closed.

2. [Smallness of the iteration]
P<α has a dense subset E<α of size S(α).

3. [Early Club Information]
If p ∈ P<α, then there is q ≤ p so that lη(q) = lη(p) and q � i forces that
q∗∗i has a P<card i-name whenever i ∈ C - supp(q), i ≥ η+. If q is such, we
say that q has early club information above η.

4. [Chain Condition]
Assume η is regular. If J is an antichain of P<α such that uη(p) ‖ uη(q)
whenever p and q are in J , then |J | ≤ η.

5. [Reducing dense sets]
• Assume η is regular and 〈Di | i < η〉 is a collection of dense subsets of
P<α. Then any condition in P<α can be strengthened to a condition q
with the same η-sized part so that for every i < η, q reduces Di below
η.
• Assume η ≤ α is singular and 〈Di | i < η〉 is a collection of dense

subsets of P<α. Then for any cardinal ζ < η, any condition in P<α
can be strengthened to a condition q with the same ζ-sized part so that
for every i < η there exists ηi < η so that q reduces Di below ηi.

6. [Early names]

• Assume η is regular and ḟ is a P<α-name for an ordinal-valued func-
tion with domain η. Then any condition in P<α can be strengthened
to a condition q with the same η-sized part forcing that for every
i < η, there is a maximal antichain of size at most η below q deciding
ḟ(i), where for every element a of that antichain, uη(a) = uη(q). In

particular, q forces that ḟ has a Pγ-name for some γ < η+.

• Let η ≤ α be a singular cardinal. Let ḟ be a P<α-name for an ordinal-
valued function with domain η. Then for any cardinal ζ < η, any
condition in P<α can be strengthened to a condition q with the same
ζ-sized part, forcing that for every i < η, there is a maximal antichain
of size less than η below q deciding ḟ(i), where for every element a
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of that antichain, uη(a) = uη(q). In particular, q forces that ḟ has a
Pη-name.

7. [Factoring] If κ is inaccessible, α ∈ (κ + 2, κ · κ] and α = κ + 2 + δ, then
there is an embedding π : P<κ+2 ∗ Sκ<δ → P<α such that π′′P<κ+2 ∗Rκ<δ is
dense in P<α, with Sκ<δ and Rκ<δ as defined at the beginning of this section.
Hence P<α ∼= P<κ+2 ∗ Sκ<δ ∼= P<κ+2 ∗Rκ<δ.

8. [Covering, Preservation of Cofinalities]
For every cardinal θ, for every p ∈ P<α and every P<α-name ẋ for a set
of ordinals of size θ there is a set X in V of size θ and an extension q of p
such that q 
 ẋ ⊆ X. Therefore forcing with P<α preserves all cofinalities.

9. [Preservation of the continuum function]
Forcing with P<α preserves the continuum function and thus in particular
all inaccessibles.

10. [Club Extendibility]
If I ⊆ α is s.t. card (I ∩ θ+) < θ for every regular θ, I ⊆

⋃
{[θ + 2, θ ·

θ) | θ inaccessible} and 〈δ̄i | i ∈ I〉 is such that δ̄i < card i for every i ∈ I,
then for every p ∈ P<α, there is q ≤ p such that ∀i ∈ I q � i 
 max q∗∗i ≥ δ̄i.
Moreover if η < card min I is regular, there is such q with lη(q) = lη(p).

Proof. We will proceed by induction on α.

Proof of 1. This is trivial if η = κ. Thus assume η < κ. We distinguish several cases
for α. Note that (iii), (iv) and (v) in Definition 3.6 can easily be satisfied by choosing
r such that sup(supp(r) ∩ θ) is sufficiently large whenever C - supp(p) ∩ [θ, θ+) 6= ∅
and θ ∈ (η, α) is inaccessible. We will thus ignore (iii), (iv) and (v) in the following
and concentrate only on (i) and (ii).

Case 1: α = β + 1 is a successor ordinal
This is trivial by 1 inductively if κ is not inaccessible or α ≤ κ + 2. We thus

assume that κ is inaccessible and β ≥ κ + 2. Assume first that η is regular. Let
ξ be such that β = κ + 2 + ξ. Using 6 inductively, we may strengthen q to q∗

so that (q∗)∗∗β = q∗∗β and q∗ � β forces that ȧκξ and sup q∗∗β have P< sup(supp(q∗)∩κ)-

names while lη(q∗) = lη(q). Now use 1 inductively to find r ≤ q∗ such that r �β is
η+-strategically below p while lη(r) = lη(q∗). Choose a cardinal δ < κ such that

• δ > η, δ > sup(supp(p) ∩ κ), q∗ �β forces δ > sup q∗∗β and

• otp fβ [δ] > sup(supp(r) ∩ κ).

The former is possible as by our (inductive) use of 6, there is a maximal antichain
of size at most η < κ of conditions below q∗ �β deciding sup q∗∗β . Let r∗∗β be such

that r �β 
 r∗∗β = q∗∗β ∪ {δ} and set r(botp fβ [δ]) such that r �β 
 r(botp fβ [δ]) = ȧκξ .

Then r ≤ q is η+-strategically below p and lη(r) = lη(q), as desired. The case when
η is singular is similar.

Case 2: α is a limit ordinal, cof(α) = κ
Let ᾱ = sup(supp(q)∩α) < α. Now use 1 inductively to find r ≤ q such that r � ᾱ

is η+-strategically below p and r[ᾱ, α) = q[ᾱ, α). Then r ≤ q is η+-strategically
below p, as desired. The additional lower parts agreement requirements are easy to
satisfy using induction.

Case 3: α is a limit ordinal, cof(α) < κ
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Let η∗ = max{η, cof(α)}. Let 〈αi | i < cof(α)〉 be an increasing sequence cofinal
in α with α0 > η∗. We build a decreasing sequence of conditions 〈qi | i ≤ cof(α)〉
as follows.

• Let q0 be so that q0 �α0 ≤ q �α0 is η+-strategically below p and q0[α0, α) =
q[α0, α).

• Given qi, let qi+1 be so that qi+1 �αi is (η∗)+-strategically below qi and
qi+1[αi, α) = qi[αi, α).

• If δ ≤ cof(α) is a limit ordinal, let qδ be the (η∗)+-strategic lower bound
of 〈qi | i < δ〉, which exists by Claim 5.

qcof(α) ≤ q is (η∗)+-strategically below p by Claim 5, hence by our assumption on
q0 above, qcof(α) is η+-strategically below p, as desired. The additional lower parts
agreement requirements are easy to satisfy using induction. �

Proof of 2. We will show that D<α = {p ∈ P<α | ∀θ ∈ Card supp(p) ∩ (θ, θ+) 6=
∅ → p �θ 
 p(θ) 6= 1̌} has an equivalent dense subset E<α of size S(α). Note that
D<α itself is dense in P<α and that for different α, the D<α cohere. The claim is
trivial if α ≤ min(Γ), as P<α denotes the trivial iteration of length α in this case.

Assume first that α = β+ 1 and D<β has an equivalent dense subset E<β of size

S(β) by 2 inductively. The only nontrivial cases are when Ṗβ does not denote the
trivial forcing, i.e. when either β ∈ Γ, β = γ + 1 for some γ ∈ Γ or cardβ = κ is
inaccessible and therefore γ(α) = κ.

If β ∈ Γ, conditions in Qβ can canonically be identified with subsets of β+, hence

a P<β-name for a condition in Ṗβ can be identified with a collection of β+-many
antichains of E<β , which is of size ≤ β and hence this gives rise to an equivalent

dense subset E<α of D<α of size 2β
+

= S(α).

If β = γ + 1 for some γ ∈ Γ, conditions in Qβ can canonically be identified with
subsets of γ+, hence if p ∈ D<α, we may assume that p�β ∈ E<β and p(β) can be
identified with a collection of γ+-many antichains of E<β below p�β. Since for any
two elements a0, a1 of such an antichain uγ(a0) = uγ(a1), such an antichain will
have size at most γ by 4 inductively, giving rise to an equivalent dense subset E<α
of D<α of size 2γ

+

= S(α).

If cardβ = κ is inaccessible, then S(β) ≤ 2κ
+

and conditions in Qβ can canon-
ically be identified with subsets of κ+, hence if p ∈ D<α, we may assume that
p � β ∈ E<β and p(β) can be identified with a collection of κ+-many antichains
of E<β below p � β. Since for any two elements a0, a1 of such an antichain
uκ(a0) = uκ(a1), such an antichain will have size at most κ by 4 inductively,

giving rise to an equivalent dense subset E<α of D<α of size 2κ
+

= S(α).

Now we consider the case that α is a limit ordinal. Since the E<β cohere for
β < α, if α is a limit point of Γ and p ∈ D<α, we may assume that for every
β < α we have p �β ∈ E<β . We will thus either obtain an equivalent dense subset
E<α of D<α of size α for α inaccessible by the boundedness of the supports or of
size α+ for α singular. If α is singular but not a limit point of Γ or α is regular
but not inaccessible, we have that γ(α) < α and the result is therefore immediate
inductively. �



18 SY-DAVID FRIEDMAN, PETER HOLY, AND PHILIPP LÜCKE

Proof of 3. This proof is similar to the proof of 1: Let p ∈ P<α be given. We may
assume that κ is inaccessible and α > κ + 2 as 3 is immediate by 3 inductively
otherwise. We distinguish several cases for α.

Case 1: α = β + 1 is a successor ordinal
Strengthen p to p∗ so that p∗ � β forces that p∗∗β has a P<κ-name and so that

lη(p∗) = lη(p), using 6 inductively, and let (p∗)∗∗β = p∗∗β . Now use 3 inductively to

find q ≤ p∗ with lη(q) = lη(p∗) such that q �β has early club information above η
and q∗∗β = (p∗)∗∗β . Then q has early club information above η, as desired.

Case 2: α is a limit ordinal, cof(α) = κ
Let ᾱ = sup(supp(p) ∩ α) < α. Now use 3 inductively to find q ≤ p such that

q � ᾱ has early club information above η, lη(q) = lη(p) and q[ᾱ, α) = p[ᾱ, α). Then
q has early club information above η, as desired.

Case 3: α is a limit ordinal, cof(α) < κ
Let η∗ = max({η, cof(α)}). Let 〈αi | i < cof(α)〉 be an increasing sequence cofi-

nal in α with α0 > η∗. We build a decreasing sequence of conditions 〈pi | i ≤ cof(α)〉
as follows.

• Let p0 ≤ p be so that p0 � α0 has early club information above η and
lη(p0) = lη(p).

• Given pi, let pi+1 be so that pi+1 is (η∗)+-strategically below pi, pi+1 �αi
has early club information above η∗ and lη∗(p

i+1) = lη∗(p
i).

• If δ ≤ cof(α) is a limit ordinal, let pδ be the (η∗)+-strategic lower bound
of 〈pi | i < δ〉, which exists by Claim 5.

q := pcof(α) ≤ p has early club information above η, as desired. �

Proof of 4. We may assume that η is inaccessible or η ∈ Γ, as otherwise 4 is imme-
diate from our assumption that S(η) ≤ η and the fact that P is trivial in [η, η+).
Assume J is an antichain of P<α such that whenever p and q are in J , uη(p) ‖ uη(q).
We may assume that all conditions in J are from E<α and have early club infor-
mation. Assume for a contradiction that J has size at least η+. As E<η has
size ≤ η, p � η is the same for η+-many conditions in J and thus we may assume
it is the same for all conditions in J . As η<η = η in V by the SCH at singu-
lar fixed points of the i-function, we can apply a ∆-system argument and obtain
that there is W ⊆ J of size η+ and a subset A of η+ of size less than η such that
C - supp(p)∩C - supp(q)∩ [η, η+) = A whenever p 6= q are both in W . Using η<η = η
in the P<η-generic extension by 9 inductively, it follows that for η+-many condi-
tions p in W , 〈p∗∗i | i ∈ A〉 is the same (modulo equivalence). Using the assumption
that uη(p) ‖ uη(q) it follows that W induces an antichain of Psκ(Aκ) of size κ+,
contradicting Proposition 2.2. �

Proof of 5. We will first show the following:

Claim 8. Assume p ∈ P<α, D is a dense subset of P<α and ν < α is regular with
S(ν) ≤ ν. Then there is q ≤ p such that lν(q) = lν(p) and q reduces D below ν.

Proof. Build a decreasing sequence of conditions in P<α below p as follows: Let
p0 = p. Choose q0 so that q0 ≤ p0 and q0 ∈ D. By possibly passing to an equivalent
condition, we may also ensure that uν(q0) ≤ uν(p0). At stage j + 1, let pj+1 ≤ p0

be any condition incompatible with all qk, k ≤ j, such that uν(pj+1) = uν(qj) if
such exists and choose qj+1 such that:
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• qj+1 ≤ pj+1,
• qj+1 ∈ D and
• uν(qj+1) is chosen according to the strategy for ν+-strategic closure below
〈uν(qk) | k ≤ j〉.

At limit stages j < ν+, let pj ≤ p0 be a condition which is incompatible with all
qk, k < j so that for all k < j, uν(pj) ≤ uν(qk) if such exists. Note that a pj

satisfying the latter condition can always be found by the strategic choice of the
uν(qk). Choose qj ≤ pj so that qj ∈ D and uν(qj) ≤ uν(pj). Proceed until at some
stage j no condition pj as above can be chosen. By 4, this will be the case for some
j < ν+. We can then find q ∈ P<α so that uν(q) ≤ uν(qk) for every k < j and
lν(q) = lν(p). By our construction, q reduces D below ν. �

Using 1 and the claim for ν = η, the case of regular η follows immediately. For
the case of η ≤ α singular, choose a continuous, cofinal in η, increasing sequence
〈ηi | i < cof(η)〉 of cardinals where η0 and each ηi+1 is regular with S(ηi+1) ≤ ηi+1,
S(η0) ≤ η0 and η0 ≥ ζ, cof(η). This is possible by our requirement that η is a
limit point of {ν | S(ν) ≤ ν}. Build a sequence of conditions 〈qi | i < cof(η)〉 so
that qi+1 = qi for limit ordinals i and otherwise qi+1 reduces the first ηi-many
given dense sets below ηi, lηi(q

i+1) = lηi(q
i) and uηi(q

i+1) is chosen according
to the strategy for (ηi)

+-strategic closure of uηi(P<α) for each i < cof(η). At
limit stages i ≤ cof(η), we may take lower bounds of the conditions obtained
so far using stability of the obtained sequence of conditions below ηi and Claim
reflowerbound. �

Proof of 6. Apply 5 to reduce the dense sets Di of conditions which decide ḟ(i),
i < η. �

Proof of 7. Using 8 for κ+2 inductively, we let π be the canonical embedding from
P<κ+2∗Sκ<δ to P<α - given (p, t) ∈ P<κ+2∗Sκ<δ, let q ∈ P<α be so that q � (κ+2) = p
and for ξ < δ such that γ = κ+ 2 + ξ, q(γ) is a P<γ-name for t(ξ).

To show that π′′(P<κ+2 ∗ Rκ<δ) is dense in P<α, given p ∈ P<α let q ≤ p be
so that for all γ > κ in C - supp(q), q � γ forces that q∗∗γ has a P<κ-name. This is
possible by 3. We can now find s ∈ P<κ+2 ∗ Rκ<δ such that π(s) is equivalent to
q. �

Proof of 8. Assume θ is a cardinal, p ∈ P<α and ẋ is a P<α-name for a set of
ordinals of size θ. If S(θ) ≤ θ, we may use 6 to reduce ẋ below θ and obtain q as
desired. Otherwise, let ν ≥ θ be least such that S(ν) ≤ ν. If ν < α, we may use
6 to find p′ ≤ p wich reduces ẋ below η. We let p′ = p otherwise. Note that our
iteration is trivial on [θ, η] by the case assumption. But this means that p′ forces
that ẋ has a P<γ(θ)+ -name. If γ(θ) ∈ Γ, we can find p′′ ≤ p and a P<γ(θ)-name ẏ

for a set of ordinals of size θ such that p′′ 
 ẋ ⊆ ẏ using that Ṗγ(θ)+1 is forced to

be <γ(θ)-closed and γ(θ)+-cc and Ṗγ(θ) does not add any new sets. The desired
result then follows using 8 inductively for P<γ(θ).

Now assume γ(θ) is inaccessible. For every δ ≤ γ(θ) · γ(θ), Pδ ∼= P<γ(θ)+2 ∗ Rδ̄
with δ = γ(θ) + 2 + δ̄ by 7. Rδ̄ has size γ(θ) ≤ θ in any P<γ(θ)+2-generic extension

and therefore has the desired covering property for ẋ. As Ṗγ(θ)+1 is forced to be

< γ(θ)-closed and γ(θ)+-cc and Ṗγ(θ) does not add any new sets, the desired result
follows using 8 inductively for P<γ(θ) as above.
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The remaining case is when γ(θ) ∈ Lim(Γ) is singular. Note that in this case
S(θ) = S(γ(θ)) = γ(θ)+. Therefore the only relevant case is when θ = γ(θ) ∈
Lim(Γ). But we may now use the singular case of 6 to reduce ẋ below θ and obtain
q as desired. �

Proof of 9. Let θ be any infinite cardinal and let θ∗ = min({θ+, α}). All subsets of
θ which are added by P<α are in fact added by P<θ∗ by 6. If S(θ∗) ≤ θ, our desired
result follows immediately. Otherwise, let ν = γ(θ∗) ≤ θ. If ν ∈ Γ, our desired

result follows as Ṗν+1 is forced to be ν+-cc, Ṗν does not add any new sets and thus
both preserve the value of 2θ and P<ν preserves the value of 2θ as S(ν) ≤ ν. If
ν is inaccessible, our desired result follows using 7 as Rν<ν·ν has size ν and thus

preserves the value of 2θ, Ṗν+1 is forced to be ν+-cc, Ṗν does not add any new
sets and thus both preserve the value of 2θ and P<ν preserves the value of 2θ as
S(ν) ≤ ν. Finally if ν ∈ Lim(Γ) is singular, then S(θ+) = S(ν) = ν+ and thus
the only relevant case is ν = θ. But then any subset of θ added by P<α is in fact
added by P<θ as P<α is trivial in [θ, θ+). The singular case of 6 shows that every
P<θ-name for a subset of θ can densely be reduced below θ and the claim follows as
there are only θ+-many inequivalent such reduced names by an easy cardinalities
argument using 3. �

Proof of 10. Given p ∈ P<α, I ⊆ α and 〈δ̄i | i ∈ I〉 as in the statement of the
claim, let p′ ≤ p be such that for every θ with I ∩ [θ, θ+) 6= ∅, we have that
sup(supp(p′)∩ θ) ≥ sup({δ̄i | i ∈ I ∩ [θ, θ+)}). Let q ≤ p′ be η+-strategically below
p′ (or ω1-strategically below p′ if no η < card min I is specified). It follows that q
is as desired. If η < card min I is regular, we may easily ensure that lη(q) = lη(p)
in the above. �

This completes the proof of Claim 7. �

Note: For every i ∈ [κ + 2, κ · κ) with κ inaccessible,
⋃
p∈G p

∗∗
i is club in κ for any

P-generic G. This is immediate from Clause 10 of Claim 7.

Corollary 3.11. P preserves ZFC, cofinalities and the value of 2κ for every κ.

Proof. For every cardinal κ and P<κ-generic G, P/G is <κ-distributive by Claim 7,
Clause 6 and the observations that if ν = min{θ ≥ κ | S(θ) ≤ θ} > κ, then P [κ, κ+)
is <κ-closed (or even trivial) and P is trivial in the interval [κ+, ν). By [7, Lemma
2.31], this implies that P is tame below κ. Thus P is tame, which implies that
P preserves ZFC (see [7, pp. 32]). Preservation of cofinalities is immediate from
Claim 7, Clauses 8 and 6. Preservation of the continuum function is immediate
from Claim 7, Clauses 9 and 6. �

Claim 9. Assume α > γ are ordinals, let G<γ be generic for P<γ over V and let
P [γ, α) denote the iteration P from stage γ to stage α, as defined in V[G<γ ]. Let
P [γ, α) denote the canonical P<γ-name for this iteration. Then

P<α ∼= P<γ ∗ P [γ, α).

Proof. The proof is a standard argument using the covering properties of P<γ
provided by Clause 8 of Claim 7. �

Corollary 3.12. Suppose ω ≤ η < η+ < α, κ = cardα and η is a cardinal. If
η is not inaccessible, then P [η, α) is <η-strategically closed in every P<η-generic
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extension. If moreover η 6∈ Γ, then P [η, α) is <η+-strategically closed in every
P<η-generic extension.

Proof. The second statement follows from the first one since if η is not inaccessible
and not in Γ, then P [η, η+) is trivial. Work in a P<η-generic extension. The partial
order P [η, η+) is either trivial or <η-closed by Proposition 2.2. It is seen as in the
proof of Claim 9 that

P [η, α) ∼= P [η, η+) ∗ P [η+, α)

and it thus suffices to show that P [η+, α) is <η-strategically closed, but this follows
directly from Clause 1 of Claim 7. �

Claim 10. If κ is inaccessible, G is P<κ+-generic, K<γ is the induced Sκ<γ-generic

and aκγ = (ȧκγ)G<κ+2∗K<γ for every γ < κ · κ, then the sequence 〈aκγ | γ < κ · κ〉 is

Σ1-definable in parameter H(κ)V[G] in H(κ+)V[G].

Proof. Let c denote the class function defined at the beginning of this section.
Then Clause 6 of Claim 7 implies cV[G] � κ = cV[G<κ+2] � κ : κ −→ 2 and this
function is ∆0-definable in parameter H(κ)V[G] in H(κ+)V[G]. Since the sequence
〈fγ : κ −→ γ | γ ∈ [κ, κ · κ]〉 is ∆0-definable in parameter κ in H(κ+)V[G] and the
equivalence

aκγ = 1 ⇐⇒ {δ < κ | c(otp fκ+2+γ [δ]) = 1} contains a club

holds in V[G], we can conclude the statement of the claim. �

Claim 11. Assume κ is inaccessible and G is P<κ+-generic. Let ρ : Rκ<κ·κ −→
H(κ)V[G<κ+2] denote the injection in V[G<κ+2] constructed at the beginning of this
section. Then the set Rκ = ρ′′Rκ<κ·κ is Σ1-definable in parameter H(κ)V[G] in

H(κ+)V[G].

Proof. In V[G], a function w : κ · κ −→ [κ]<κ in V[G<κ+2] witnesses that some
condition in Sκ<κ·κ is an element of Rκ<κ·κ if the following statements hold.

(i) card ({γ < κ · κ | w(γ) 6= ∅}) < κ.
(ii) w(γ) is a closed, bounded subset of κ for all γ < κ · κ.

(iii) c(otp fκ+2+γ [η]) = aκγ for all γ < κ · κ and η ∈ w(γ).

Clause 6 of Claim 7 shows that all bounded subsets of κ added by forcing with P
already appear after forcing with P<κ. This implies that Rκ is the set of all partial

functions q : κ
part−−−→ [κ]<κ in H(κ)V[G] such that q(α) is a closed, bounded subset

of κ and c(otp fκ+2+γ [η]) = aκγ for all α ∈ dom(q), η ∈ q(α) and γ = fκ·κ(α). By

Claim 10 and its proof, Rκ is Σ1-definable in parameter H(κ)V[G] in H(κ+)V[G]. �

Claim 12. If κ is inaccessible, G is P<κ+-generic over V and <κ is the corre-
sponding well-ordering of (κκ)V[G<κ+1] in V[G], then the sets (κκ)V[G<κ+1] and <κ

are Σ1-definable in parameter H(κ)V[G] over H(κ+)V [G].

Proof. We will use the notation from Section 2. Let 〈Aκ, sκ〉 be the κ-coding
basis chosen by G<κ+1 and let Ḡ be the filter in Psκ(Aκ) induced by G. By the

definition of the aκδ ’s and Claim 10, ẋ
G<κ+2
κ is Σ1-definable in parameter H(κ)V[G]

in H(κ+)V[G]. Let Ḟκ and Ṫκ denote the Psκ(Aκ)-names in V[G<κ+1] constructed

in Section 2. In this situation, Corollary 2.4 shows that the equality [Ṫ Ḡκ ]V[G] =

[Ṫ Ḡκ ]V[G<κ+2] would imply the statement of the claim.
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Therefore, let us asssume for a contradiction that there is a condition p0 ∈ G
and a P<κ+ -name ż with

p0 
 ż ∈ [Ṫκ] ∧ ż /∈ ran(Ḟκ).

We combine this assumption with Clauses 1 and 6 of Claim 7 and the fact that κ
is a regular cardinal in every P<κ+ -generic extension to construct

• a descending sequence 〈pn | n < ω〉 of conditions in P<κ+ ,
• strictly increasing sequences 〈αn | n < ω〉 and 〈βn | n < ω〉 of ordinals

smaller than κ, and
• a sequence 〈ṡn | n < ω〉 of P<κ-names

such that the following statements hold for all n < ω.

(i) pn+1 is ω1-strategically below pn,
(ii) αn+1 > βn,
(iii) pn+1 � (κ+ 1) 
 ht(Tpn(κ+1)) = α̌n,
(iv) pn+1 
 ż � α̌n = ṡn, and

(v) pn+1 
 ∀x ∈ dom(gpn(κ+1)) Ḟκ(x) � β̌n 6= ż � β̌n.

By Claim 3, there is a condition q in P<κ+ with q ≤ pn for all n < ω and

q � (κ+ 1) 
 q(κ+ 1) = inf
Ṗκ+1

{pn(κ+ 1) | n < ω}.

Let H be P<κ+1-generic over V with q � (κ + 1) ∈ H, α = supn<ω αn ∈ κ ∩ Lim
and s =

⋃
{ṡHn | n < ω}. Our construction ensures that ht(Tq(κ+1)H ) = α and

s 6= gq(κ+1)H (x) for all x ∈ dom(gq(κ+1)H ). This allows us to construct a condition

rκ+1 in ṖHκ+1 with ht(Trκ+1) = α + 1, rκ+1 ≤ q(κ + 1) and s /∈ Trκ+1 . If r is the

condition in P [κ+1, κ+)V[H] with r(κ+1) = rκ+1 and r � [κ+2, κ+) = q � [κ+2, κ+),
then the above construction ensures

r � [κ+ 1, κ+) 
 ż ∈ [Ṫκ] ∧ ż � α̌ = š ∧ š /∈ Ṫκ,

a contradiction. �

Claim 13. If κ is inaccessible, G is P<κ+-generic over V, 〈Aκ, sκ〉 is the κ-co-
ding basis chosen by G<κ+1 and Ḡ is the filter in Psκ(Aκ)V[G<κ+1] induced by G,
then the sets Psκ(Aκ)V[G<κ+1] and Ḡ are Σ1-definable in parameter H(κ)V[G] over
H(κ+)V [G].

Proof. Psκ(Aκ)V[G] = Psκ(Aκ)V[G<κ+1] as V[G] and V[G<κ+1] contain the same
bounded subsets of κ by Clause 6 of Claim 7. The proof of Claim 12 shows that
Aκ is Σ1-definable in parameter H(κ)V[G] over H(κ+)V [G] and we can conclude that

Psκ(Aκ)V[G] is definable in the same way. Next, if Ṫκ denotes the Psκ(Aκ)-name
in V[G<κ+1] defined in Section 2, then Claim 10 and the proof of Claim 12 show

that the sets Ṫ Ḡκ and sκ are also definable in this way and [Ṫ Ḡκ ]V[G] = [Ṫ Ḡκ ]V[G<κ+2]

holds. In this situation, the computations of [13, Proof of Proposition 6.3] show
that Ḡ is also definable in the desired way. �

Claim 14. If κ is inaccessible, then every P-generic extension of the ground model
contains a well-ordering of H(κ+) that is ∆2-definable in parameter κ over H(κ+).

Proof. Let G be P-generic over V, G be the filter in P<κ+ induced by G, 〈Aκ, sκ〉
be the κ-coding basis chosen by G<κ+1, Ḡ be the filter in Psκ(Aκ)V[G<κ+1] induced
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by G and <κ be the corresponding well-ordering of (κκ)V[G<κ+1] in V[G<κ+2]. By
the distributivity of the tails of P, we have H(κ+)V[G] ⊆ V[G].

By the remarks at the beginning of this section and Claim 12, there is a surjection
σ : (κ2)V[G<κ+1] −→ H(κ+)V[G<κ+1] that is contained in V[G<κ+1] and Σ1-definable
in parameter H(κ)V[G] in H(κ+)V[G]. Together with Claim 12, this shows that
H(κ+)V[G<κ+1] is Σ1-definable in parameter H(κ)V[G] over H(κ+)V[G]. We define

e0 : (κ2)V[G<κ+1] −→ P(κ)V[G<κ+2]

to be the map with

e0(x) = {α < κ | ∃y ∈ κκ ∃β < κ [σ(y) ∈ Ḡ ∧ ∀γ < κ y(γ) = x(≺α,≺β, γ��)]}.
Claim 12 and Claim 13 show that e0 is Σ1-definable in parameter H(κ)V[G] over
H(κ+)V[G]. Since Psκ(Aκ)V[G<κ+1] satisfies the κ+-chain condition in V[G<κ+1]
and every element of P(κ)V[G<κ+2] is represented by a Psκ(Aκ)V[G<κ+1]-nice name
of cardinality at most κ, we have ran(e0) = P(κ)V[G<κ+2] and this set is definable
in the above way.

Let <κ be the canonical well-ordering of H(κ+)V[G<κ+1] induced by <κ, ξ be the
order-type of the restriction of <κ to H(κ)V[G], f be the <κ-least bijection from
κ to ξ, <κ be the corresponding well-ordering of H(κ)V[G] of order-type K be the
filter in Sκ<κ·κ induced by G. We define

e1 : P(κ)V[G<κ+2] −→ P(κ)V[G]

by setting

e1(x) = {α < κ | ∃β < κ (≺α, β� ∈ x ∧<κ(β) ∈ ρ′′(K ∩Rκ<κ·κ))}.
Our construction ensures

<κ(β) ∈ ρ′′(K ∩Rκ<κ·κ) ⇐⇒ aκκ·δ+1+β = 1 for some δ < κ.

Now Claim 10 shows that e1 is Σ1-definable in parameters H(κ)V[G] and <κ over
H(κ+)V[G]. By Clause 7 of Claim 7, every element in P(κ)V[G] has an Rκ<κ·κ-nice

name in H(κ+)V[G<κ+2] and this implies that e1 is surjective.
By using the surjection σ constructed at the beginning of this section, we can

find a surjection τ : P(κ)V[G] −→ H(κ+)V[G] that is Σ1-definable in parameter κ in
H(κ+)V[G]. Given x, y ∈ H(κ+)V[G], we define x <∗κ y to hold if

∃x̄, ȳ ∈ (κ2)V[G<κ+1]
[
x̄ <κ ȳ ∧ (τ ◦ e1 ◦ e0)(x̄) = x ∧ (τ ◦ e1 ◦ e0)(ȳ) = y

∧ ∀x̃ ∈ (κ2)V[G<κ+1](x̃ <κ x̄ −→ (τ ◦ e1 ◦ e0)(x̃) 6= x)

∧ ∀ỹ ∈ (κ2)V[G<κ+1](ỹ <κ ȳ −→ (τ ◦ e1 ◦ e0)(ỹ) 6= y)
]
.

Then <∗κ is a well-ordering of H(κ+)V[G] that is Σ2-definable (and hence also
Π2-definable) in parameters H(κ)V[G] and <κ over H(κ+)V[G]. By its definition
and Claim 12, the well-ordering <κ of H(κ+)V[G<κ+1] is ∆2-definable in parameter
H(κ)V[G] over H(κ+)V[G]. This implies that the ordering <κ� (H(κ)V[G]×H(κ)V[G])
is ∆2-definable in parameter H(κ)V[G] in H(κ+)V[G]. We can conclude that the ordi-
nal ξ, the function f and the ordering <κ are all Σ2-definable in parameter H(κ)V[G]

in H(κ+)V[G]. Since H(κ)V[G] is Π1-definable in parameter κ in this model, the
above shows that <∗κ is ∆2-definable in parameter κ in V[G]. �

Claim 15. If κ is inaccessible, then every P-generic extension of the ground model
contains a well-ordering of H(κ+) that is lightface ∆3-definable over H(κ+).
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Proof. This follows directly from Claim 14 and the fact that the ordinal κ is lightface
Π2-definable in H(κ+). �

This completes the proof of Clauses (i)-(iii) of Theorem 1.2. �

All that remains to prove Theorem 1.2 is to show that P preserves supercompact
cardinals. We will do this in the next section.

4. Supercompactness preservation

This section will be devoted to the proof of the remaining clause of our main
theorem.

Proof of Clause (iv) of Theorem 1.2. It will suffices to prove the following claim
that directly implies the last part of Theorem 1.2.

Claim 16. If γ is a singular strong limit cardinal but not a fixed point of the i-
function and κ is γ-supercompact such that γ<κ = γ, then forcing with P preserves
the γ-supercompactness of κ.

In the following, fix κ and γ as in the above claim, let

ν = sup{α < γ | α is inaccessible or α ∈ Γ} < γ

and let j : V −→ M denote an elementary embedding witnessing the γ-supercom-
pactness of κ. We may assume that M = Ult(V, U), where U is a normal ultrafilter
on Pκ(γ). Note that we have 2γ = γ+ by Theorem 1.9 and our assumptions imply

that S(γ) ≤ 2(ν+) < γ.

Claim 17. If α ≤ γ, then PM
<α = P<α ⊆ αVγ .

Proof. Since γ is a strong limit cardinal, the definition of the forcing iteration
directly implies P<α ⊆ Vγ for all α < γ and hence P<γ ⊆ γVγ . The clauses defining
P<γ are absolute between transitive ZFC-models with the same γ-sequences and
we can conclude P<α = PM

<α holds for all α ≤ γ. �

Claim 18. If G<γ is P<γ-generic over V, then G<γ is PM
<γ-generic over M and

(γM[G<γ ])V[G<γ ] ⊆ M[G<γ ].

Proof. Let x ∈ P(γ)V[G<γ ]. By Clause 2 of Claim 7, P<γ has a dense subset of
cardinality S(γ) < γ and therefore satisfies the γ-chain condition. Let

ẋ =
⋃
α<γ

Aα × {α̌},

be a P<γ-nice name with x = ẋG<γ . Then the sequence 〈Aα | α < γ〉 is an element
of M, ẋ ∈ M and x = ẋG<γ ∈ M[G<γ ].

Next, let X ∈ V[G<γ ] be a set of ordinals with (cardX)V[G<γ ] ≤ γ. Clause 8 of
Claim 7 shows that there is X̄ in V with (card X̄)V = γ and X ⊆ X̄. Then X̄ ∈ M
and (card X̄)M = γ. Let 〈aα | α < γ〉 be an enumeration of X̄ in M. By the above
computations, the set {α < γ | aα ∈ X} is an element of M[G<γ ] and this shows

that X ∈ M[G<γ ]. We can conclude (γOn)V[G<γ ] ⊆ M[G<γ ] and this implies the
statement of the claim. �

Claim 19. If G<γ is P<γ-generic over V, then there is a set D ∈ M[G<γ ] such
that the following statements hold.
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(i) If D ∈ D, then D is a dense subset of P [γ, j(ν+))M[G<γ ].
(ii) Every D-generic filter for P [γ, j(ν+))M[G<γ ] is P [γ, j(ν+))M[G<γ ]-generic

over M[G<γ ].
(iii) The set D has cardinality at most γ+ in V[G<γ ].

Proof. Clause 2 of Claim 7 implies that PM
<j(ν+) contains a dense subset E of car-

dinality less than j(γ) in M. Clauses 8 and 9 of the same claim show that j(γ) is
still a strong limit cardinal in M[G<γ ]. In M[G<γ ], we define

E[γ, j(ν+)) = {q ∈ P [γ, j(ν+))M[G<γ ] | ∃p ∈ G<γ p ∪ q ∈ E}.

Then E[γ, j(ν+)) is a dense subset of P [γ, j(ν+))M[G<γ ] of cardinality less than
j(γ) in M[G<γ ]. In M[G<γ ], let D denote the set of all subsets of E[γ, j(ν+)) that

are dense in P [γ, j(ν+))M[G<γ ]. By the above remarks, D has cardinality less than
j(γ) in M[G<γ ] and it clearly satisfies the first two statements of the claim.

To complete the proof of the claim, it suffices to show that j(γ) has cardinality
at most γ+ in V. If α < j(γ), then α is represented in M = Ult(V, U) by a function
f : Pκ(γ) −→ γ in V. In V, the set Pκ(γ) has cardinality γ and the set of all such
functions has cardinality 2γ = γ+ by Theorem 1.9. �

We will need a strengthening of Claim 3 in order to handle directed sets in
suitable tails of the iteration P instead of decreasing sequences of conditions in P.

Notation. Work in a P<γ-generic extension of the universe. Given α > γ and a
directed set D of conditions in P [γ, α) of size less than γ, we say that a sequence
r = 〈r(δ) | δ ∈ [γ, α)〉 is the componentwise union of D if the following statements
hold.

• If δ ∈ [γ, α) with δ ∈ [θ + 2, θ+) for some inaccessible θ, then r(δ) is the
canonical P [γ, δ)-name for the set

⋃
p∈D p

∗∗
δ ; we denote r(δ) by r∗∗δ .

• Otherwise, r(δ) is the canonical P<δ-name for inf({p(δ) | p ∈ D}).15

The sequence r is usually not a condition in P [γ, α) as the r∗∗δ are not necessarily
names for closed sets, but the supports of r can be calculated as if r were a condition
by letting

supp(r) = {δ | r(δ) 6= 1̌} =
⋃
p∈D

supp(p)

and
C - supp(r) = {δ | r∗∗δ 6= 1̌} =

⋃
p∈D

C - supp(p).

Definition 4.1 (Strategic lower bound). Assume that G<ν+ is P<ν+ -generic over
V (and hence over M by Claim 17). Note that P is trivial in the interval [ν+, γ)
and therefore we can identify G<γ and G<ν+ . For every α ∈ [γ, j(ν+)], let

Dα = {j(p)� [γ, α) | p ∈ G<ν+}.
Fix some particular α ∈ [γ, j(ν+)]. Let r be the componentwise union of Dα.
supp(r) is bounded below every regular cardinal, C - supp(r)∩ θ+ has size less than
θ for every inaccessible θ. If for some ordinal ξ, h is the bijection from card ξ to ξ
chosen by some condition or generic in M, we denote this bijection by fM

ξ , in order
to be able to distinguish it from its V-counterpart fξ.

15This infimum exists by Proposition 2.2.
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Working in M[G<γ ] = M[G<ν+ ], we would like to obtain a condition q ∈ P [γ, α)M

that satisfies the following properties for every δ ∈ C - supp(r) with δ = card δ+2+ξ.

(1) If δ > j(κ)+, then

q �δ 
 q(botp fM
δ [sup r∗∗δ ]) = ȧcard δ

ξ .

(2) q �δ 
 q∗∗δ := r∗∗δ ∪ {sup r∗∗δ }.
(3) Components of q other than the above should be equal to the respective

components of r.

If such q exists, we call q the strategic lower bound of Dα.

Claim 20. In M[G<γ ], if our desired q exists as a condition in P [γ, α)M, then q
is a lower bound for Dα, i.e. q ≤ p for every p ∈ Dα.

Proof. Work in M[G<γ ]. The only thing to check is that if δ ∈ C - supp(r) ∩
[j(κ), j(κ)+) with δ = j(κ) + 2 + ξ, then there is p ∈ G<γ such that

q �δ 
 p(botp fM
δ [sup r∗∗δ ]) = (ȧ

j(κ)
ξ )M.

Note that

C - supp(r)∩[j(κ), j(κ)+) =
⋃
{j(A) | A ⊆ [κ+2, κ·κ)∧ cardA < κ} = j′′[κ+2, κ·κ)

and hence such δ will be of the form j(δ̄) for some δ̄ ∈ [κ+ 2, κ ·κ) and fM
δ = j(fδ̄).

Similarly, (ȧ
j(κ)
ξ )M = j(ȧκ

ξ̄
) where ξ = j(ξ̄) and δ̄ = κ+2+ ξ̄. Note that sup r∗∗δ = κ,

and hence

otp fM
δ [sup r∗∗δ ] = otp j(fδ̄)[κ] = otp j′′fδ̄[κ] = otp j′′δ̄ = δ̄

as j is order-preserving. Now the claim follows as q(bδ̄) = ȧκ
ξ̄

by the definition of

our iteration. �

Claim 21. Assume G<ν+ is P<ν+-generic over V. Then for every α ∈ [γ, j(ν+)],
the set Dα = {j(p)� [γ, α) | p ∈ G<ν+} has a strategic lower bound in M[G<γ ].

Proof. By induction on α ≥ γ in M[G<γ ]. If α = γ, the claim is trivial. Given
that the claim holds below α, we want to show that there exists a strategic lower
bound qα for Dα, which is a directed set. Inductively, for β < α, let qβ be the
strategic lower bound for Dβ . We also assume inductively that if β0 < β1 < α,
then qβ1 �β0 ≤ qβ0 . Thus we also have to show that if β < α, then qα �β ≤ qβ . Let r
be the componentwise union of Dα. We first show that either for every inaccessible
θ ∈ (j(κ), α), C - supp(p) ∩ [θ, θ+) = ∅ for all p ∈ Dα or the following hold:

(o) sup(supp(r) ∩ θ) > γ,
(i) sup(supp(r) ∩ θ) > sup(supp(p) ∩ θ) for all p ∈ Dα,

(ii) for δ ∈ C - supp(r) ∩ [θ, θ+), we have

qδ 
 sup r∗∗δ = sup(supp(r) ∩ θ)
(iii) for δ ∈ C - supp(r) ∩ [θ, θ+), we have

fM
δ [sup(supp(r) ∩ θ)] ⊇ sup(supp(r) ∩ θ)

(iv) for δ0 < δ1 both in C - supp(r) ∩ [θ, θ+), the set fM
δ0

[sup(supp(r) ∩ θ)] is a

proper initial segment of fM
δ1

[sup(supp(r) ∩ θ)],
(v) for δ = θ + 2 + ξ ∈ C - supp(r) ∩ [θ, θ+), we have

qδ 
 (ȧθξ)
M has a P [γ, sup(supp(r) ∩ θ))M[G<γ ]-name,
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(vi) sup(supp(r) ∩ θ) ≥ card (C - supp(r) ∩ [θ, θ+)),
(vii) there is no inaccessible λ < θ such that sup(supp(r) ∩ θ) ∈ [λ, λ · λ).

Proof of (o): Let p ∈ Dα such that C - supp(p)∩ [θ, θ+) 6= ∅ and p = j(t)� [γ, α) for
some t ∈ G<ν+ . Define X to be the set consisting of all s ∈ P<ν+ such that

C - supp(t) ∩ [η, η+) 6= ∅ −→ sup(supp(s) ∩ η) > κ

holds for all inaccessible η > κ. X is dense below t. Pick s ∈ X ∩G<ν+ . Then

sup(supp(j(s)) ∩ θ) > j(κ) > γ

and hence sup(supp(r)) ∩ θ > γ. �

Proof of (i): Assume p ∈ Dα. Then p = j(t) � [γ, α) for some t ∈ G<ν+ . Define X
to be the set consisting of all s ∈ P<ν+ such that

C - supp(t) ∩ [η, η+) 6= ∅ −→ sup(supp(s) ∩ η) > sup(supp(t) ∩ η)

holds for every inaccessible η. X is dense below t. Then

sup(supp(r) ∩ θ) ≥ sup(supp(j(s)) ∩ θ) > sup(supp(p) ∩ θ)

for all s ∈ X ∩G<ν+ . �

Proof of (ii): Assume ξ < sup(supp(r) ∩ θ). Then we can find a p ∈ Dα such that
ξ < sup(supp(p)∩θ), δ ∈ C - supp(p) and p = j(t)� [γ, α) for some t ∈ G<ν+ . Define
X to be the set consisting of all s ∈ P<ν+ such that

s�ζ 
 sup(s∗∗ζ ) ≥ sup(supp(t) ∩ card ζ)

holds for all ζ ∈ C - supp(t). X is dense below t. Let s ∈ X ∩G<ν+ . Then

qδ ≤ j(s)� [γ, δ) 
 sup j(s)∗∗δ ≥ sup(supp(p) ∩ θ)

and hence qδ 
 sup r∗∗δ ≥ sup(supp(r)∩ θ). That also qδ 
 sup r∗∗δ ≤ sup(supp(r)∩
θ) is shown similarly. �

Proof of (iii): We show that sup(supp(r) ∩ θ) is a cardinal in M, which clearly
implies (iii). But the former follows as for every t ∈ G<ν+ , the set consisting of all
s ∈ P<ν+ such that

C - supp(t) ∩ [η, η+) 6= ∅ −→ sup(supp(s) ∩ η) > (sup(supp(t) ∩ η))+

holds for every inaccessible η is dense below t. �

Proof of (iv): Assume ξ < sup(supp(r)∩ θ). Then we can find a p ∈ Dα such that
ξ < sup(supp(p) ∩ θ), δ0, δ1 ∈ C - supp(p) and p = j(t) � [γ, α) for some t ∈ G<ν+ .
Define X to be the set consisting of all s ∈ P<ν+ such that

fζ0 [sup(supp(t) ∩ η)] ⊆ fζ1 [sup(supp(s) ∩ η)]

and

fζ1 [sup(supp(t) ∩ η)] ∩ ζ0 ⊆ fζ1 [sup(supp(s) ∩ η)]

hold for every inaccessible η and all ζ0 < ζ1 both of cardinality η and both in
C - supp(t). X is dense below t. Let s ∈ X ∩ G<ν+ . Then fM

δ0
(ξ) is an element of

fM
δ1

[sup(supp(r)∩ θ)] and fM
δ1

(ξ) is an element of fM
δ0

[sup(supp(r)∩ θ)] if the former

is less than δ0. But this means that fM
δ0

[sup(supp(r)∩θ)] is a proper initial segment

of fM
δ1

[sup(supp(r) ∩ θ)], as desired. �
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Proof of (v): Pick p ∈ Dα with δ ∈ C - supp(p) and t ∈ G<ν+ with p = j(t)� [γ, α).
Define X to be the set consisting of all s ∈ P<ν+ such that

s�ζ 
 ȧcard ζ

ξ̄
has a P< sup(supp(s)∩card ζ)-name

holds for all ζ ∈ C - supp(t) with ζ = card ζ + 2 + ξ̄. X is dense below t. Pick
s ∈ X ∩G<ν+ . Then

j(s)�δ 
 (ȧθξ)
M has a PM

< sup(supp(j(s))∩θ)-name,

hence in M [G<γ ], qδ ≤ j(s) � [γ, δ) 
 (ȧθξ)
M has a P [γ, sup(supp(r) ∩ θ))M-name,

as desired. �

Proof of (vi): We have

card (C - supp(r) ∩ [θ, θ+)) = card (
⋃

t∈G<ν+

C - supp(j(t)) ∩ [θ, θ+)).

There are only 2ν < γ < j(κ) < θ-many possiblities for C - supp(p) for p ∈ G<ν+ .
This implies that

card (C - supp(r) ∩ [θ, θ+)) = sup({card (C - supp(j(t)) ∩ [θ, θ+)) | t ∈ G<ν+}).
Pick some t ∈ G<ν+ and define X to be the set consisting of all s ∈ P<ν+ such that

sup(supp(s) ∩ η) ≥ card (C - supp(t) ∩ [η, η+))

holds for every inaccessible η. X is dense below t. Let s ∈ X ∩G<ν+ . Then

sup(supp(j(s)) ∩ θ) ≥ card (C - supp(j(t)) ∩ [θ, θ+))

and (vi) follows by the above. �

Proof of (vii): Let us say that E ⊆ On is Easton iff E is bounded below every
regular cardinal. In M, we have

sup(supp(r) ∩ θ) = sup(
⋃
{j(E) ∩ θ | E ⊆ ν Easton}).

It follows that sup(supp(r)∩ θ) has cofinality ≤ 2ν < γ while sup(supp(r)∩ θ) > γ
in M as j(κ) ∈ supp(r) and therefore sup(supp(r) ∩ θ) cannot be inaccessible.

sup(supp(r)∩ θ) 6∈ (λ, λ · λ) for any inaccessible λ as for every t ∈ G<ν+ , letting
ξη = sup(supp(t) ∩ η), the set

{s ∈ P<ν+ | ∀η inaccessible (C - supp(t)∩[η, η+) 6= ∅ → sup(supp(s)∩η) > ξ+ξη·ξη
η )}

is dense in P<ν+ . �

Now we show, using (o)-(vii), that we can form the strategic lower bound qα of Dα.
This is trivial (using induction) if cardα is not inaccessible. Note that if we can
form qα ∈ P [γ, α)M out of r as in Definition 4.1, then qα ≤ qα � γ ≤ qγ for every
γ < α. Assume θ ∈ (j(κ), α) is inaccessible and δ ∈ [θ + 2, θ · θ). Given (i)-(iv), qδ

decides sup r∗∗δ and forces that

otp fM
δ [sup r∗∗δ ] ≥ sup(supp(r) ∩ θ)

is distinct from otp fM
ξ [sup r∗∗ξ ] for every ξ < δ. By (v), if ξ is such that θ+2+ξ = δ,

qδ forces that (ȧθξ)
M has a PM[γ, sup(supp(r)∩ θ))-name, allowing us to satisfy (1)

as in Definition 4.1, as

botp fM
δ [sup(supp(r)∩θ)] ≥ sup(supp(r) ∩ θ) > γ
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by (o) and as by (vii) and (iii), there cannot be some inaccessible λ < θ with

otp fM
δ [sup(supp(r) ∩ θ)] ∈ [λ, λ · λ).

The statement (2) in Definition 4.1 can obviously be satisfied. Finally (vi) im-
plies that supp(qα) \ supp(r) (and hence supp(qα)) is bounded below every regular
cardinal and hence qα actually is a condition in P [γ, α)M. �

Proof of Claim 16. Let G<γ be P<γ-generic over V. Corollary 3.12 shows that the

partial order P [γ, j(ν+))M[G<γ ] is γ+-strategically closed. Let q be the strategic
lower bound of

Dj(ν+) = {j(p) � [γ, j(ν+)) | p ∈ G<γ}
in M[G<γ ] provided by Claim 21 and let D denote the collection of dense subsets of

P [γ, j(ν+)]M[G<γ ] provided by Claim 19. Work in V[G<γ ] and fix an enumeration

〈Dα | 1 ≤ α < γ+〉 of D. By the γ+-strategic closure of P [γ, j(ν+))M[G<γ ], we can
construct a decreasing sequence 〈pα | α < γ+〉 of conditions in P [γ, j(ν+))M[G<γ ]

such that p0 = q and α > 0 implies that pα ≤ dα for some dα ∈ Dα. Define

H = {p ∈ P [γ, j(ν+))M[G<γ ] | ∃α < γ+ pα ≤ p} ∈ V[G<γ ].

By Claim 19, H is P [γ, j(ν+))M[G<γ ]-generic over M[G<γ ]. Since the partial order
P [j(ν+), j(γ)) is trivial in every P<j(ν+)-generic extension of M, G ∗ H induces

a filter H<j(γ) in PM
<j(γ) that is generic over M. Our constructions ensure that

j[G<γ ] ⊆ H<j(γ) and we can extend j to an elementary embedding j∗ : V[G<γ ] −→
M[H<j(γ)]. By Claim 18, we have

(γOn)V[G<γ ] ⊆ M[G<γ ] ⊆ M[H<j(γ)]

and this implies (γM[H<j(γ)])
V[G<γ ] ⊆ M[H<j(γ)]. Since H<j(γ) is contained in

V[G<γ ], this shows that κ is still γ-supercompact in V[G<γ ].
Now, let G be P-generic over V and let G<γ be the filter in P<γ induced by G.

By our assumptions, P [γ, γ+) is the trivial forcing in V[G<γ ] and Corollary 3.12

implies that P(Pκ(γ))V[G] ∈ V[G<γ ]. The above computations now show that there
is a normal ultrafilter on Pκ(γ) in V[G] and hence κ remains γ-supercompact in
V[G]. �

We will now derive Clause (iv) of Theorem 1.2 from Claim 16. Let κ be super-
compact, α ≥ κ and let ν denote the least fixed point of the i-function that is ≥ α.
We let γ = iν+κ denote the smallest strong limit cardinal of cofinality κ above ν.
Then γ<κ = γ, γ is singular and 2γ = γ+ by Theorem 1.9. Moreover γ is not a
fixed point of the i-function. Hence by Claim 16, κ remains α-supercompact in
every P-generic extension of the ground model. �

We have thus finished the proof of Theorem 1.2.

5. Omega-Superstrongs

This section is devoted to the proof of Theorem 1.7. We will make use of the
following folklore theorem, which we provide a sketch of the proof for sake of com-
pleteness.

Theorem 5.1. If κ is ω-superstrong and the GCH holds, 2κ = κ++ holds in a set
forcing extension which preserves the ω-superstrength of κ and preserves SCH.
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Proof. Let P be the reverse Easton iteration that adds λ++-many Cohen subsets
of λ for every inaccessible λ < jω(κ). This obviously forces 2κ = κ++and preserves
SCH by standard reduction arguments. Hence it suffices to prove the following
statement.

Claim 22. Some condition in P forces that P preserves the ω-superstrength of κ.

Proof. Let j : V→ M witness the ω-superstrength of κ in V. We may assume that
j is given by an extender ultrapower embedding.16 For every n < ω, P<jn(κ) =

P<jn(κ)
M, latter denoting the M-version of P<jn(κ). LetG be the canonical name for

the P -generic. By the closure properties of our iterands, (j′′G)� [κ, jω(κ)) gives rise
to a condition in P (a “master condition”) which forces that j′′G ⊆ G. Furthermore
G ∩ PM is PM- generic over M, using that j is given by an extender ultrapower
embedding (the argument is given in the proof of 1 in the proof of Theorem 23
below). This enables us to lift j to j∗ : V[G]→ M[G∩PM]. V[G]jω(κ) ⊆ M[G∩PM]
follows as every element of V[G]jω(κ) has a P -name in Vjn(κ) for some n < ω by
the closure properties of tails of P . �

This completes the proof of the theorem. �

Proof of Theorem 1.7. Assume κ is ω-superstrong in V. By [8], we can force the
GCH to hold while preserving the ω-superstrength of κ. Using Theorem 5.1, we may
force further to obtain 2κ = κ++ while preserving SCH and the ω-superstrength of
κ. In this situation, the assumptions of Theorem 1.2 hold.

Claim 23. There is a condition in P which forces that the ω-superstrength of κ is
preserved.

Proof. Let j : V −→ M witness the ω-superstrength of κ in V. Let P and P<α
denote the iteration and its restriction to α as defined in the proof of Theorem 1.2,
let PM and PM<α denote their respective M-versions. For every n < ω, P<jn(κ) =

PM
<jn(κ). Moreover if δ < jω(κ) and δ = card δ+2+ξ, fδ = fM

δ , ȧcard δ
ξ = (ȧcard δ

ξ )M,

PM
<jω(κ) = P<jω(κ) ∩M and also the extension relations of those two forcings agree.

We will use those facts tacitly in the following. We want to find a V-generic G ⊆ P
and an M-generic G∗ ⊆ PM such that j′′G ⊆ G∗ and V[G]jω(κ) ⊆ M[G∗]. After
finding a suitable P<jω(κ)-generic G<jω(κ), we will let G∗<jω(κ) be G<jω(κ)∩P<jω(κ).

We will let G∗ be the filter generated by G∗<jω(κ) together with the image of G under

j. The inclusion V[G]jω(κ) ⊆ M[G∗] follows as every element of V[G]jω(κ) has a
P -name in Vjn(κ) for some n < ω by Clause 6 of Claim 7.

It remains to show the following statements.

1. G∗<jω(κ) is PM
<jω(κ)-generic over M.

2. G∗ is P ∗-generic over M.
3. We can choose G<jω(κ) in such a way that j′′G<jω(κ) ⊆ G∗<jω(κ).

We will assume 3 for the moment and prove 1 and 2 using 3. We will then prove
3 without using either 1 or 2. Assume that j is given by an extender ultrapower
embedding.

16This means that each element of M is of the form j(f)(a), where a belongs to Vjω(κ) and f
is a function in V with domain Vjω(κ). This assumption is harmless as if the initial j : V → M

does not satisfy it, we can replace M by the transitive collapse M̄ of H, the elementary submodel
of M consisting of all j(f)(a) of the above form and replace j by k ◦ j, where k : H ∼= M̄ .



LARGE CARDINALS AND LIGHTFACE DEFINABLE WELL-ORDERS 31

Proof of 1. Suppose D ∈ M is dense on PM
<jω(κ) and write D as j(f)(a) where

dom(f) = Vjω(κ) and a ∈ Vjn+1(κ) for some n ∈ ω. Choose p ∈ G<jω(κ) such
that p reduces f(ā) below jn(κ) whenever ā belongs to Vjn(κ) and f(ā) is dense on
P<jω(κ). The existence of p follows from Clause 5 of Theorem 7, using that Vjn(κ)

has size jn(κ). Then j(p) belongs to j′′G<jω(κ) ⊆ G∗<jω(κ) by 3 and reduces D

below jn+1(κ). Hence E = {q ∈ P<jn+2(κ) | q_j(p)[jn+2(κ), jω(κ)) ∈ D} is dense

below j(p) � jn+2(κ) in P<jn+2(κ). Since G<jn+2(κ) contains j(p) � jn+2(κ) and is
P<jn+2(κ)-generic over M, G<jn+2(κ) ∩ E 6= ∅. Choose q in that intersection. Then

q_j(p)[jn+2(κ), jω(κ)) ∈ D ∩G∗<jω(κ). �

Proof of 2. Like 1, using that j′′G ⊆ G∗ as an immediate consequence of 3. �

Proof of 3. We will specify a master condition q ∈ P<jω(κ) so that q ∈ G<jω(κ) en-
sures j′′G<jω(κ) ⊆ G∗<jω(κ). Let G be the canonical name in V for the P-generic. We

define r as the componentwise union of (j′′G)[j(κ), jω(κ)) and define the strategic
lower bound q for this (directed) set to be - similar to Definition 4.1 - the condition
obtained by letting, for every δ ∈ C - supp(r) with δ = card δ + 2 + ξ:

(1) If δ > j(κ)+, then

q �δ 
 q(botp fδ[sup r∗∗δ ]) = ȧcard δ
ξ .

(2) q �δ 
 q∗∗δ := r∗∗δ ∪ {sup r∗∗δ }.
(3) Components of q other than the above should be equal to the respective

components of r.

If such q exists as a condition in P<jω(κ),
17 we call q the strategic lower bound

of (j′′G)[j(κ), jω(κ)). In this case, it is seen as in the proof of Claim 20 that q is a
lower bound for (j′′G)[j(κ), jω(κ)). Furthermore it is seen similar to the proof of
Claim 21 that such q exists as a condition in P<jω(κ).

18 We will finish the proof of
3 by showing the following claim.

Claim 24. Whenever p ≤ q, p ∈ G, then p ≤ j(p); hence if q ∈ G<jω(κ) and p is

any condition in G<jω(κ), then j(p) ∈ G<jω(κ), i.e. j′′G<jω(κ) ⊆ GM
jω(κ).

Proof. Assume p ≤ q. Then p ≤ j(p) as p � κ = j(p) � κ, j(p) � [κ, j(κ)) = 1 and
p�j(κ) 
 p[j(κ), jω(κ)) ≤ q[j(κ), jω(κ)) ≤ j(p)[j(κ), jω(κ)) by our choice of q. Now
if p is any condition in G<jω(κ) 3 q, then there is p′ ∈ G<jω(κ) which is stronger
than both p and q. By the above, p′ ≤ j(p′), but by elementarity j(p′) ≤ j(p)
and therefore j(p) ∈ G<jω(κ). Since j(p) ∈ M, the last statement of the claim
follows. �

If we now choose G<jω(κ) containing q, the above implies that 3 holds. �

This completes the proof of Claim 23. �

In the situation assembled above, we can now combine Theorem 1.2, Theorem
5.1 and Claim 23 to force the existence of a lightface definable well-order of Hκ+

together with a failure of the GCH at κ. �

Note that we could have similarly obtained 2κ > κ++ in the above proof.

17In contrast to Section 4, we do not claim here that either r or q are elements of M.
18The only difference is that for every n < ω, the intervals [jn(κ), jn+1(κ)) have to be treated

separately.
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6. Corollaries

This short section contains the proofs of the two corollaries mentioned in the
Introduction.

Proof of Corollary 1.3. We show that in any P-generic extension, for any ordinal α
and x ⊆ α, there is an ordinal ξ so that for all γ < α,

γ ∈ x ⇐⇒ cξ+γ = 1.

Let α, x ⊆ α and p ∈ P be given. By the distributivity properties of P, it follows
that there is a condition p′ ≤ p which forces that x has a P<α+ -name ẋ. Let ξ be
greater than both sup(supp(p′)) and α. We may extend p′ to q so that for every
γ < α, q forces that c(ξ + γ) = 1 iff γ ∈ ẋ. But this means that q forces that ẋ is
ordinal-definable. �

Proof of Corollary 1.5. As in the proof of Clause (iv) of Theorem 1.2 at the end of
Section 4, letting α = κ. �

7. Open Questions

One could ask whether the results of [2] and [3] can be generalized to a non-GCH
context without any restrictions (like in the case of Theorem 1.2 the restriction to
inaccessible κ). It seems like completely new techniques would be neccessary to
provide an answer.

Question 7.1. Does every model of set theory (which satisfies SCH?) have a
cofinality-preserving forcing extension in which for every regular uncountable κ there
is a lightface definable well-order of H(κ+)? Can this be done at least for boldface
definable well-orders?

Easier questions are the following.

Question 7.2. Can one force to add a boldface definable well-order of H(κ+) when
κ<κ > κ and κ is regular while preserving cofinalities?

Question 7.3. Can one force to add a lightface definable well-order of H(κ+) when
κ<κ = κ but κ is not inaccessible while preserving cofinalities?

The latter question will be answered positively in the forthcoming [4].

While answering [10, Question 6.1], Corollary 1.5 still left open the following
question, which again seems cannot be answered using the techniques introduced
in our paper.

Question 7.4. Starting from a large cardinal assumption weaker than a strong
cardinal, is it possible to obtain a model with a measurable cardinal κ with 2κ > κ++

and a definable well-order of H(κ+)?
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[3] David Asperó and Sy-David Friedman. Definable well-orders of H(ω2) and GCH. J. Symbolic

Logic, 77(4):1101–1121, 2012.



LARGE CARDINALS AND LIGHTFACE DEFINABLE WELL-ORDERS 33
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