SMALL MODELS, LARGE CARDINALS, AND INDUCED IDEALS
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ABSTRACT. We show that many large cardinal notions up to measurability can be characterized through
the existence of certain filters for small models of set theory. This correspondence will allow us to obtain
a canonical way in which to assign ideals to many large cardinal notions. This assignment coincides with
classical large cardinal ideals whenever such ideals had been defined before. Moreover, in many important
cases, relations between these ideals reflect the ordering of the corresponding large cardinal properties both
under direct implication and consistency strength.

1. INTRODUCTION

The work presented in this paper is motivated by the aim to develop general frameworks for large cardinal
properties and their ordering under both direct implication and consistency strength. We develop such a
framework for large cardinal notions up to measurability, that is based on the existence of set-sized models
and ultrafilters for these models satisfying certain degrees of amenability and normality. This will cover
several classical large cardinal concepts like inaccessibility, weak compactness, ineffability, Ramseyness and
measurability, and also many of the Ramsey-like cardinals that are an increasingly popular subject of
recent set-theoretic research (see, for example, [], [5], [6], [9], [10], [16], [27], and [29]), but in addition, it
canonically yields a number of new large cardinal notions. We then use these large cardinal characterizations
to canonically assign ideals to large cardinal notions, in a way that generalizes all such assignments previously
considered in the set-theoretic literature, like the classical definition of the weakly compact ideal, the ineffable
ideal, the completely ineffable ideal and the Ramsey ideal. In a great number of cases, we can show that the
ordering of these ideals under inclusion directly corresponds to the ordering of the underlying large cardinal
notions under direct implication. Similarly, the ordering of these large cardinal notions under consistency
strength can usually be read off these ideals in a simple and canonical way. In combination, these results
show that the framework developed in this paper provides a natural setting to study the lower reaches of
the large cardinal hierarchy.

1.1. Characterization schemes. Starting from measurability upwards, many important large cardinal
notions are defined through the existence of certain ultrafilters that can be used in ultrapower constructions
in order to produce elementary embeddings j : V — M of the set-theoretic universe V into some transitive
class M with the large cardinal in question as their critical point. A great variety of results shows that
many prominent large cardinal properties below measurability can be characterized through the existence of
filters that only measure sets contained in set-sized models M of set theoryﬂ For example, the equivalence
of weak compactness to the filter property (see [I, Theorem 1.1.3]) implies that an uncountable cardinal &
is weakly compact if and only if for every model M of ZFC™ of cardinality at most « that contains k, there
exists an unifornﬂ M-ultrafilter U on « that is <x-complete in VE| Isolating what was implicit in folklore
results (see, for example, [20]), Gitman, Sharpe and Welch showed that Ramseyness can be characterized
through the existence of countably complete ultrafilters for transitive ZFC™-models of cardinality x (see
[9, Theorem 1.3] or [29, Theorem 5.1]). More examples of such characterizations are provided by results of
Kunen [24], Kleinberg [23] and Abramson-Harrington—Kleinberg—Zwicker [I]. Their characterizations can
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n the following, we identify (not necessarily transitive) classes M with the e-structure (M, €). In particular, given some
theory T in the language of set theory, we say that a class M is a model of T' (and write M = T) if and only if (M, €) = T.
2All relevant definitions can be found in Section
SI.e., arbitrary intersections of less than k-many elements of U in V are nonempty.
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be formulated through the following scheme, which is hinted at in the paragraph before [I, Lemma 3.5.1]:
An uncountable cardinal k has the large cardinal property ®(k) if and only if for some (equivalently, for
all) sufficiently large regular cardinal(s) 6 and for some (equivalently, for all) countable M < H(6) with
Kk € M, there exists a uniform M -ultrafilter U on k with the property that the statement W(M,U) holds.
Their results show that this scheme holds true in the following cases:

o [I] ®(k) = “k is inaccessible” and ¥ (M,U) = “U is <k-amenable and <k-complete for M”E|

o [24] (k) = “k is weakly compact” and ¥(M,U) = “U is k-amenable and <r-complete for M”.

o [23] ®(k) = “k is completely ineffable” and W(M,U) = “U is k-amenable for M and M-normal ”.

Generalizing the above scheme, our large cardinal characterizations will be based on three schemes that

are introduced below. In order to phrase these schemes in a compact way, we introduce some terminology.
As usual, we say that some statement ¢(3) holds for sufficiently large ordinals (3 if there is an o € Ord such
that ¢(8) holds for all @ < § € Ord. Given infinite cardinals A < x, a ZFC™-model M is a (\, k)-model
if it has cardinality A and (A + 1) U {k} € M. A (k,k)-model is called a weak k-model. A k-model is a
weak x-model that is closed under <m—sequencesE| Moreover, given an infinite cardinal € and a class S of
elementary submodels of H(6), we say that some statement ¢ (M) holds for many models in S if for every
x € H(#), there exists an M in S with © € M for which ¢ (M) holds. Finally, we say that a statement (M)
holds for many transitive weak k-models M if for every x C k, there exists a transitive weak k-model M
with « € M for which (M) holds.

Scheme A. An uncountable cardinal x has the large cardinal property ®(x) if and only if for all sufficiently
large regular cardinals 6 and all infinite cardinals A < k, there are many (A, k)-models M < H(6) for which
there exists a uniform M-ultrafilter U on x with U(M,U).

Scheme B. An uncountable cardinal  has the large cardinal property ®(x) if and only if for many transitive
weak x-models M there exists a uniform M-ultrafilter U on « with ¥ (M, U).

Scheme C. An uncountable cardinal x has the large cardinal property ®(x) if and only if for all sufficiently
large regular cardinals 6, there are many weak x-models M < H(#) for which there exists a uniform M-
ultrafilter U on x with ¥(M,U).

Trivial examples of valid instances of the Schemes [A] and [C] can be obtained by considering the properties
D(k) = Pps(k) = “k is measurable” and ¥(M,U) = U,,(M,U) = “U is M-normal and U = FN M
for some F € M”. In contrast, Scheme [B| cannot provably hold true for ®(k) = ®,,,s(x) and a property
U(M,U) of models M and M-ultrafilters U whose restriction to x-models and filters on x is definable by
a IT3-formula over V,, because the statement that for many transitive weak x-models M there exists a
uniform M-ultrafilter U on s with W(M, U) could then again be formulated by a II3-sentence over V,, and
measurable cardinals are I13-indescribable (see [22, Proposition 6.5]). Since the measurability of x can be
expressed by a Y2-formula over V., this shows that there is no reasonableﬁ characterization of measurability
through Scheme [B} In order to have a trivial example for a valid instance of Scheme [B| available, we make
the following definition:

Definition 1.1. An uncountable cardinal k is locally measurable if and only if for many transitive weak
rk-models M there exists a uniform M-normal M-ultrafilter U on k with U € M.

By the transitivity of the models M involved, Scheme [Bf then holds true for the properties ®(k) =
Dpns(k) = “k is locally measurable” and U(M,U) = U,,,,(M,U). Standard arguments show that measur-
able cardinals are locally measurable limits of locally measurable cardinals. In addition, we will show that
consistency-wise, locally measurable cardinals are strictly above all other large cardinal notions discussed
in this paper. We will also show that locally measurable cardinals are Ramsey. In contrast, they are not
necessarily ineffable, for ineffable cardinals are known to be II3-indescribable, while local measurability is a
I -property of k.

1.2. Large cardinal characterizations. In combination with existing results, the work presented in this
paper will yield a complete list of large cardinal properties that can be characterized through the above
schemes by considering filters possessing various degrees of amenability and normality. In order to present
these results in a compact way (and also for later usage), we introduce abbreviations for the relevant
properties of cardinals, models and filters. All relevant definitions will be provided in the later sections of
our paper.

4Note that, here and in the following, in order to avoid mention of k within W(M,U), the cardinal k could be defined as
being the least M-ordinal n satisfying |JU C n.

5Note that, unlike some authors, we do not require (weak) x-models to be transitive.

6Let us remark that any reasonable characterization of a large cardinal notion through one of the above schemes should
make use of a formula ¥ that is of lower complexity than the formula ®, for otherwise one can obtain trivial characterizations
through any of the three schemes by setting U(M,U) = ®(UUU).
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= “k is inaccessible”, ;o (M,U) = “U is <k-amenable and <r-complete for M”.
we(k) = “k is weakly compact”, U, (M,U) = “U is k-amenable and <r-complete for M7 .
,U)= “U is M-normal”.
wo(M,U) = “U is <k-amenable for M and M-normal”.
ie(K) = “K is ineffable”, W, (M,U) = “U is normal”.
( k is completely ineffable” , ¥ ;o (M,U) = “U is k-amenable for M and M -normal”.
K 15 weakly Ramsey”,
) =“U is k-amenable for M, M-normal, and Ult(M,U) is well-founded”.
) = “k is w-Ramsey”.
“k is Ramsey”,
= “U 1is k-amenable for M, M-normal and countably complete” .
“k is ineffably Ramsey”,
“U 1is k-amenable for M, M-normal and stationary-complete” .
is AY -Ramsey”, W, gr(M,U) = “U is k-amenable for M and normal”.
‘K 1s strongly Ramsey”,
)= “M is a k-model, U is k-amenable for M and M-normal”.
“k 1is super Ramsey”,
)= “M < H(k") is a k-model, U is -amenable for M and M-normal”.

First, note that some of the large cardinal properties appearing in the above list are already defined
through one of the above schemes, yielding the following trivial correspondences:
e Scheme [B] holds true in the following cases:
— ®(k) = Psr(k) and Y(M,U) = Uy g(M,U).
— ®(k) = Osyr(k) and U(M,U) = Ys,r(M,U).
e Scheme [C] holds true in the following cases:
— ®(k) = Dyr(k) and V(M,U) = Uyr(M,U).
— ®(k) = D,r(k) and ¥(M,U) = U,,g(M,U).

The following theorem summarizes our results, together with a number of known results. Items , (12a))
and extend the classical results of Kunen, Kleinberg, and Abramson-Harrington—Kleinberg—Zwicker
from [1] mentioned abovem Item is the result from Gitman, Sharpe and Welch mentioned above (in
[9], M-normality is not mentioned, however this is easily seen to be irrelevant — see also our Corollary .
Both Item and Item are special cases of a result of Sharpe and Welch ([29, Theorem 3.3]). Item
is due to Abramson, Harrington, Kleinberg and Zwicker ([I, Corollary 1.3.1]).

Theorem 1.2. (1) Schemes[A] [B and[Q hold true in case (k) = Pye(k) and U(M,U) = oo (M, U).
(2) Schemes and@ both hold true in the following cases:
(a) ®(k) = Deie(k) and V(M,U) = Ve (M, U).
(b) ®(k) = Dyr(k) and V(M,U) = Uyr(M,U).
(c) ®(k) = P r(k) and either
(i) Y(M,U) = V,zg(M,U), or
(ii) O(M,U) = U,xg(M,U).
(3) Scheme[B holds true in the following cases:
(a) ®(k) = Pgr(k) and V(M,U) = Ur(M,U).
(b) ®(k) = D;p(k) and Y(M,U) = ¥,;z(M,U).
(4) Scheme holds true in the following cases:
(a) ®(k) = “k is reqgular” and either
(i) O(M,U) = “U is <k-complete for M 7, or
(M,U) = U, (M, U).
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(i) V(M,U) = V,,(M,U), or
(i) ¥(M,U) = “U is <k-amenable for M and normal”.
(5) Schemes@ and@ hold true in the following cases:
(a) ®(k) = Dye(k) and either
(i) O (M,U) =Y,;,(M,U), or
(ii) W(M,U) = “U is stationary-complete, M-normal and <rk-amenable for M 7.
(b) ®(k) = D,(k) and either

(i) O(M,U) =W;.(M,U), or

"These could of course have been stated in terms of the existence of many countable models M < H(0) in [I]. Note that
the arguments of [I] are strongly based on the existence of generic filters over countable models of set theory, hence we will
need to follow a very different line of argument.
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(it) U(M,U) = “U;e(M,U) and U is <k-amenable for M 7.

The above results are summarized in abbreviated form in Tables [1] and [2] below. [f| The meaning of the
tables should be clear to the reader when compared with the results presented in Theorem

All entries in the tables below that are not mentioned within the statement of Theorem [[2] will be
immediate consequences of the definitions of the large cardinal notions that will be introduced later in our
paper. Furthermore, let us remark that our results (some of which are mentioned already within Theorem
will show that the size of the models considered is irrelevant once we consider elementary submodels of
(sufficiently large) H(6)’s together with k-amenability as in Table ﬂ

<k-amenable and ... M| < & |M| =&

<k-complete for M inaccessible | weakly compact
M-normal inaccessible | weakly compact
M-normal and well-founded inaccessible | weakly compact

M-normal and countably complete | inaccessible | weakly compact
M-normal and stationary-complete | inaccessible | weakly compact
normal inaccessible ineffable

TABLE 1. Characterizations with <x-amenability

k-amenable and ... M| =k M < H(0)
<k-complete for M weakly compact weakly compact
M-normal T/ -Ramsey completely ineffable
M-normal and well-founded weakly Ramsey w-Ramsey
M-normal and countably complete Ramsey cc/-Ramsey
M-normal and stationary-complete | ineffably Ramsey A/ -Ramsey
normal Al-Ramsey A/ -Ramsey

TABLE 2. Characterizations with x-amenability

1.3. Large cardinal ideals. We next want to study the large cardinal ideals that are canonically induced
by our characterizations.

Definition 1.3. Let W(M, U) be a property of models M and filters U, and let £ be an uncountable cardinal.

(1) We define I5" to be the collection of all A C  with the property that for all sufficiently large regular
cardinals 0, there exists a set z € H() such that for all infinite cardinals A < «, if M < H(f) is a
(A, k)-model with z € M and U is a uniform M-ultrafilter on x with U(M,U), then A ¢ U.

(2) We define If, to be the collection of all A C k with the property that there exists « C « such that if
M is a transitive weak k-model with 2z € M and U is a uniform M-ultrafilter on xk with ¥(M,U),
then A ¢ U.

(3) We define I%, to be the collection of all A C x with the property that for all sufficiently large regular
cardinals 0, there exists a set © € H(#) such that if M < H(0) is a weak x-model with x € M and
U is a uniform M-ultrafilter on x with (M, U), then A ¢ U.

It is easy to see that the collections Ig", 1§ and I% always form ideals on . Moreover, if Scheme
or C| holds for some large cardinal property ®(x) and some property W(M,U) of models M and filters
U, then the statement that ®(x) holds for some uncountable cardinal x implies the properness of the ideal
Ig", I, or I%y respectively. In addition, in all cases covered by Theorem (and also in most other
natural situations), the converse of this implication also holds true. This is trivial for instances of Scheme
Bl For instances of Schemes [A] and [C] this is an easy consequence of the observation that all properties ¥
listed in the theorem are restrictable, i.e. given uncountable cardinals § < 6, if M < H(f) with § € M,
k € M N is a cardinal and U is a uniform M-ultrafilter on x with W(M,U), then (M, U) holds, where

8The only result in Theorem that does not require some amount of amenability, and which does not appear in our
below tables, is its Item . The reason for this is that it will turn out that without some amount of amenability, none of
the normality properties weaker than (full) normality that we consider in this paper can be used to characterize large cardinal
properties (see Theorem and the discussion following Theorem below).

9Let us also remark that if we were to consider models of size less than  in Tablewithout elementarity, we would clearly
only get regularity at all levels of normality .
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M = M NH(f) < H(#). Moreover, in Lemma below, we will see that in most cases these ideals are in
fact normal ideals.

The above definitions provide uniform ways to assign ideals to large cardinal properties. The next theorem
shows that, in the cases where such canonical ideals were already defined, these assignments turn out to
coincide with the known notions. In the following, given an abbreviation ¥ for a property of models and
filters from the above list, we will write I<* instead of I3 , 1%, instead of I" , and I* instead of I
Ttem below is essentially due to Baumgartner (see [3, Section 2]). The ineffable ideal was introduced
by Baumgartner in [2]. The completely ineffable ideal was introduced by Johnson in [20]. Ttem below
is a generalization of a result for countable models by Kleinberg mentioned in [23] after the proof of its
Theorem 2. The Ramsey ideal and the ineffably Ramsey ideal were introduced by Baumgartner in [3].
Item @ is essentially due to Mitchell (see for example [5, Theorem 2.10]), and both Item @ and Item
are special cases of [29) Theorem 3.3].

Theorem 1.4. (1) If k is inaccessible, then I3 is the bounded ideal on k.
(2) If k is a regular and uncountable cardinal, then I5" is the non-stationary ideal on k.
(3) If k is a weakly compact cardinal, then I}, is the weakly compact ideal on k.
(4) If k is an ineffable cardinal, then IF, is the ineffable ideal on k.
(5) If K is a completely ineffable cardinal, then 1%, is the completely ineffable ideal on k.
(6) If k is a Ramsey cardinal, then 1}, is the Ramsey ideal on k.
(7) If k is an ineffably Ramsey cardinal, then 17y is the ineffably Ramsey ideal on k.

(8) If k is a measurable cardinal, then the complement of 1%, .. is the union of all normal ultrafilters on
K.

1.4. Structural properties of large cardinal ideals. We show that many aspects of the relationship
between different large cardinal notions are reflected in the relationship of their corresponding ideals.

First, our results will show that, for many important examples, the ordering of large cardinal properties
under direct implication turns out to be identical to the ordering of their corresponding ideals under inclusion.

Next, our approach to show that the ordering of large cardinal properties by their consistency strength
can also be read off from the corresponding ideals is motivated by the fact that the well-foundedness of
the Mitchell order (see [I7, Lemma 19.32]) implies that for every measurable cardinal &, there is a normal
ultrafilter U on x with the property that x is not measurable in Ult(V,U). Translated into the context of
our paper (using Theorem ) this shows that the set of all non-measurables below k is not contained
in the ideal 1%, ,1"| To generalize this to other large cardinal properties @, if  is a cardinal, we let

N = {a<k]|2(a)}.

If & is an abbreviation for a large cardinal property, then we write N” instead of Ng . We show that the
above result for measurable cardinals can be generalized to many other important large cardinal notionsm
More precisely, for various instances of our characterization schemes, we will show that the above set of
ordinals without the given large cardinal property is not contained in the corresponding ideal. These results
can be seen as indicators that the derived characterization and the associated ideal canonically describe
the given large cardinal property, as one would expect these cardinals to lose some of their large cardinal
properties in their ultrapowers. Moreover, our results also show that, in many important cases, the fact that
some large cardinal property ®* has a strictly higher consistency strength than some other large cardinal
property ® is equivalent to the fact that ®*(x) implies that the set N4 is an element of the ideal on k
corresponding to ®*. This allows us to reconstruct the consistency strength ordering of these properties
from structural properties of their corresponding ideals. Together with the correspondence described in the
last paragraph, it also shows that, in many cases, the fact that some large cardinal property ®* provably
implies a large cardinal property ® of strictly lower consistency strength yields that ®(x) implies the ideal
on x corresponding to @ to be a proper subset of the ideal on x corresponding to ®*.

Finally, we consider the question whether there are fundamental differences between the ideal 1%, .
induced by measurability and the ideals induced by weaker large cardinal notions. By classical results of
Kunen (see [22, Theorem 20.10]), it is possible that there is a unique normal measure on a measurable
cardinal . In this case, the ideal 1%, is equal to the complement of this measure and hence the induced
partial order P(k)/I%, . is trivial, hence in particular atomic. We study the question whether the partial
orders induced by other large cardinal ideals can also be atomic, conjecturing that the possible atomicity of
the quotient partial order is a property that separates measurability from all weaker large cardinal properties
(this is motivated by Lemma below). This conjecture turns out to be closely related to the previous
topics, and we will verify it for many prominent large cardinal properties.

10We will also provide an easy argument for this result that does not make any use of the Mitchell order in Lemma |16.2)
HEor Ramsey, strongly Ramsey, and super Ramsey cardinals, this also follows from the results of [4], where the notion of
Mitchell rank is generalized to apply to these large cardinal notions.
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The following theorem provides selected instances of our results, namely those concerning large cardinal
notions that had already been introduced in the set theoretic literature. Item |I| and the statement that
I5F C Ity in Item (2) below are of course trivial consequences of Theorem |1 The statement that NI,
belongs to the Weakly compact ideal in Item . has been shown by Baumgartner in [3 Theorem 2.8]. That
N7, € I, in Item was shown by Johnson in [I9] Corollary 4], however we will also provide an easy
self—contamed argument of this result later on for the benefit of our readers. Gitman has shown that weakly
Ramsey cardinals (which are also known under the name of 1-iterable cardinals) are weakly compact limits
of completely ineffable cardinals (see [9, Theorem 3.3 and Theorem 3.7]). Her arguments in the proof of [9,
Theorem 3.7] actually show that if x is a weakly Ramsey cardinal, then N, € 1% ., as in Item That
If p € I% in Item @ is already immediate from our above definitions. The proof of [10, Theorem 4. 1] shows
that N% . € I, as in Item (6). That N% ¢ I7% in Item (6), and I, U {N%} C If; and N%, ¢ If5, in Item
(7 are due to Feng (see [8, Corollary 4. 4 and Theorem 4.5]). Moreover, Theorem [L.4] directly shows that
I, C If, holds for ineffably Ramsey cardinals x. That N%,, ¢ I% in Item (8) and that N%, , ¢ IF - in
Item @D follows easily from the results of [4], and these statements will also be immediate consequences
of fairly general results from our paper. That I, ¢ I%, . in Item @ was brought to our attention by

Gitman, after we had posed this as an open question in an early version of this paper. The final statement
of Ttem is an immediate consequence of the above-mentioned result of Kunen.

Theorem 1.5. (1) If k is an inaccessible cardinal, then N, & 155, and P(k) /15 is not atomic.
(2) If k is a weakly compact cardinal, then I3 U {N¥ } C It,e, N ¢ 18, and P(k)/I5,o is not

atomic.

(3) If k is an ineffable cardinal, then Ifj, U{NF } CIr NE &1, and P(r)/1L is not atomic.

(4) If Kk is a completely ineffable cardinal, then If, U {NL} C 1% e N& 1% 0, and P(k)/17% ;. is not
atomic.

(5) If K is a weakly Ramsey cardinal, then I, U{N%, } CI¢ . NEo ¢ 15, 15 ¢ 1% 5. and P(k)/15 5
s not atomic.

(6) If k is a Ramsey cardinal, then It U{N% .} C 15, N% ¢ 1%, 1% € 1%, and P(k)/1% is not atomic.

(7) If k is an ineffably Ramsey cardmal then If, UT4, U{N } CIfp, Nip ¢ 16 15 . € 16n, and P (k) /15y
18 not atomic.

(8) If k is strongly Ramsey, then 1% U {N%,} C 1%, N5 & 15, 15 & 1% 5. and P(k)/15,, is not
atomic.

(9) If k is super Ramsey, then Ity U, U{N% 1 CI5 o, N o @15 o 15 . 15 & and P(K) /15,5 is
not atomic.

(10) If k is locally measurable, then 1%, U{N% ,} C 1%  Ni ¢ 1r 1% ¢ 15 . and P(k)/1%,, is not
atomic.

(11) If k is measurable, then 1%, UTZ UTs U{N; }CI% o Ne o &1% o and P(k)/1%,,, may be
atomic.

Note that the above statements show that the linear ordering of the mentioned large cardinal properties
by their consistency strength can be read off from the containedness of sets of the form N% in the induced
ideals. Moreover, all provable implications and consistent non-implications can be read of from the ordering
of the corresponding ideals under inclusion. For example, the fact that ineffability and Ramseyness do not
provably imply each other corresponds to the fact that If, ¢ 1%, ¢ I£, holds whenever « is both ineffable and
Ramsey, where the second non-inclusion is a consequence of Nf - N’;w eIt CI% and Nf, ¢ 15

Figure [I] below summarizes the structural statements listed in Theorem In this dlagram, a provable
inclusion I7; C I of large cardinal ideals is represented by a solid arrow Iy —— I; . Moreover, if I is an

ideal induced by a large cardinal property ®, then a dashed arrow Iy— — > I; represents the statement
that N§ € Ip provably holds.

2. SOME BASIC NOTIONS

A key ingredient for our results will be the generalization of a number of standard notions to the context
of non-transitive models, and, in the case of elementary embeddings, also to possibly non-wellfounded target
models. While most of these definitions are very much standard, we will take some care in order to present
them in a way that makes them applicable also in these generalized settings. They clearly correspond to
their usual counterparts in the case of transitive models M. In the following, we let ZFC™ denote the
collection of axioms of ZFC without the powerset axiom (but, as usual, with the axiom scheme of Collection
rather than the axiom scheme of Replacement). In order to avoid unnecessary technicalities, we restrict
our attention to Xg-correct models, i.e. models that are Yg-elementary in V. Since every ¥g-elementary
submodel of a transitive class is 3g-correct, all models considered in the above schemes are ¥g-correct. Note
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FI1GURE 1. Ordering of large cardinal ideals.

that if M is Yg-correct, « € M is an ordinal in M and f € M is a function with domain « in M, then « is
an ordinal and f is a function with domain «.

Definition 2.1 (Properties of M-ultrafilters). Let M be a class that is a ¥g-correct model of ZFC™ and
let  be a cardinal of M.

e A collection U C M NP(k) is an M-ultrafilter on k if (M,U) |= “U is an ultrafilter on ”.
In the following, let U denote an M-ultrafilter on k.

e U is non-principal if {a} ¢ U for all « < k.
e U contains all final segments of k in M if [a, k) € U whenever « € M N k.
o U is uniform if |z|M = k for all x € U.
e U is <k-amenable (respectively, k-amenable) for M if whenever o < K (respectively, « = k) and
(x| B < @) is a sequence of subsets of x that is an element of M, then
(MUY “ZeVB<alzg €U «— pea]”[
e Given a <k in M, U is <a-complete for M it (M,U) | “U is <a-complete”.

U is M-normal if (M,U) = “U is normal”.
U is M-normal with respect to C-decreasing sequences if whenever (z, | a < k) is a sequence of
subsets of x that is an element of M and satisfies

(M,U) = “Va<fB<k[ta €U AN 25 Cx4]7,
then (M,U) E “Aqcpre € U [
U is countably complete if whenever (z,, | n < w) is a sequence of elements of U, then (1, _ x, # 0.
U is stationary-complete if whenever (x,, | n < w) is a sequence of elements of U, then (), __ p is
a stationary subset of k.

e U is normal if either A,.,U, is a stationary subset of k for every (or equivalently, for some)
enumeration (U, | o < k) of U, or |U| <  and (U is a stationary subset of .

Lemma 2.2. If U(M,U) implies that U is M-normal, then the ideals I3", I and 1%y are all normal.

n<w

L2Note that, from the point of view of V, given such a sequence (zg | 8 < ), a witness x for amenability in M need only
satisfy that “zg € U <+— 8 € ” whenever 8 € M Na.

13An easy argument shows that an M-ultrafilter on x that contains all final segments of x in M = ZFC™ is M-normal if
and only if it is <k-complete and M-normal with respect to C-decreasing sequences.
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Proof. We will only present the proof for the ideal I5*, which requires the most difficult argument of the
three. Assume thus that A = (A, | @ < k) is a sequence of elements of I5". Fix 6 sufficiently large, and
fix a sequence & = (z, | @ < k) such that for every o < &, the set z, witnesses that A, € I3" with respect
to 6. Pick M < H(#) such that #, A € M, |[M| < & and ¥(M,U) holds. By elementarity, A € M implies
that VA € M. Since the model (M,U) thinks that A, & U for every a < s and W(M, U) implies that U is
M-normal, it follows that VA ¢ U. This argument shows that VA€ Ig". (]

We now turn our attention to extended definitions regarding elementary embeddings. As mentioned
above, we identify classes M with the corresponding e-structures (M, €). Given transitive classes M and
N, the critical point of an elementary embedding j : M — N is simply defined as the least ordinal o € M
with j(a) > . We need a generalization of this concept for elementary embeddings j : M — (N, en) when
the class M is not necessarily transitive and the e-structure (IV, en) is not necessarily well-founded. In the
following, we let j : M — (N, en) always denote an elementary embedding between e-structures, whose
domain is a Yg-correct ZFC™ -model.

Definition 2.3 (Jump). Given j : M — (N, ex) and an ordinal « € M, we say that j jumps at « if there
exists an N-ordinal v with vey j(a) and j(B8) ey v for all 5 € M N a.

Note that, in the above situation, for every N-ordinal -, there is at most one ordinal o in M such that
v witnesses that j jumps at «. Moreover, elementarity directly implies that elementary embeddings only
jump at limit ordinals.

Definition 2.4 (Critical Point). Given j : M — (N, eyn), if there exists an ordinal o € M such that j
jumps at «, then we denote the minimal such ordinal by crit(j), the critical point of j.

It is easy to see that if crit(j) exists and a € Ord, then crit(j) > « holds if and only if
jMnal = {BeN|Benj(a)}

This shows that the map j | (M Ncrit(j)) is an e-isomorphism between M N crit(j) and the proper initial
segment {f € N | Ja < crit(j) fen j(a)} of the N-ordinals. In particular, this initial segment is contained
in the well-founded part of (NN, ey) and therefore the ordinal otp(M N crit(j)) is a subset of the transitive
collapse of this set. We will tacitly make use of these facts throughout this paper.

Next, we need to generalize the notions of <k- and k-powerset preservation to a non-transitive context.
The idea behind an embedding j : M — (N, ey) being <x-powerset preserving (respectively, k-powerset
preserving) is that M and N contain the same subsets of ordinals below x (respectively, the same subsets
of k). Since the relevant subsets of M are, in a sense made precise below, always contained in N, only one
of those inclusions is part of the following definitions.

Definition 2.5 (<x-powerset preservation). Given j: M — (N, ey) with crit(j) = &, the embedding j is
<k-powerset preserving if

Yye NIzxe M [Ja<Mnk (N,eny) = “yCjla)” — jlz)=1y].

As we will also see later on, this notion is an important concept in the study of embeddings between
smaller models of set theory and it turns out to be closely related to the behavior of the continuum function
below x in M.

Proposition 2.6. Let j : M — (N, en) with crit(j) = k.
(1) If M = “If a < k, then P(a) exists and 2% < k” holds, then j is <k-powerset preserving.
(2) If j is <k-powerset preserving, then M \= “If a < k, then there is no injection from k into P(a) .

Proof. (1) Pick v € M Nk and y € N with (N,en) E “y C j(y)”. By our assumptions, there is an
enumeration & = (z¢ | £ < ) of M N'P(y) in M with a < k. By elementarity, there is an N-ordinal 8 with
Benj(a) and (N,en) E “y = j(Z)(8)”. In this situation, the fact that o < k yields & € M N « satisfying
J(€) = B and j(z¢) = y.

(2) Assume, towards a contradiction, that j is <k-powerset preserving and ¢ : Kk — P(«) is an injection
in M with @ < k. Let v be an N-ordinal witnessing that j jumps at k and pick y € N satisfying
(N,en) E “j(1)(v) =y C j(a)”. By our assumptions, there is x € MNP(«) with j(z) = y and elementarity
yields £ € M N k with ¢(§) = x. Since ¢ is an injection, this implies that j(§) = ~, contradicting the fact
that v witnesses that j jumps at . O

The following definition shows that there is still a useful notion of a k-powerset preserving elementary
embedding, even if we do not have a representative for x in the target model of our embedding.
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Definition 2.7 (k-powerset preservation). Given j : M — (N, ey) with crit(j) = &, the embedding j is
K-powerset preserving if

Yye NIz e M [(N,eny) E “yCjk)” — Mnex={aeMnk|jla)eny}].

Note that if M and N are weak k-models, then the usual notions of critical point and of k-powerset
preservation for an embedding j : M — N clearly coincide with our respective notions.

We close this section by isolating a property that implies the existence of a canonical representative for
% in the target model of our elementary embedding.

Definition 2.8 (k-embedding). Given j : M — (N, ey ) that jumps at , the embedding j is a k-embedding
if there exists an € y-minimal N-ordinal v witnessing that j jumps at k. We denote this ordinal by E

Proposition 2.9. Given j: M — (N, en) with crit(j) = &, the following statements are equivalent:

(1) j is a k-embedding.

(2) The ordinal otp(M N K) is an element of the transitive collapse of the well-founded part of (N, en).
Proof. First, assume that j is a x-embedding. Fix v € N with yey &Y. Since & is a limit ordinal and
kN en j(k), the fact that v does not witness that j jumps at s yields an o € M Nk with yex j(a). By
our earlier observations, this shows that j[M N«k] = {8 € N | Bey £V }. In particular, the N-ordinal x% is
contained in the well-founded part of (IV, ex) and the transitive collapse of this set maps " to otp(M N x).

In the other direction, assume that there is an N-ordinal 8 in the well-founded part of (N, ey) that is
mapped to otp(M N k) by the transitive collapse of this set. By our earlier observations, this shows that
JIMNk]l ={5 € N|dex B}. Let v € N witness that j jumps at k. By our computations, we then have
either 8 = v or Bey~y. In particular, we have Sey j(k) and 8 witnesses that j jumps at k. But these
computations also show that g is the e -minimal N-ordinal with this property. O

3. CORRESPONDENCES BETWEEN ULTRAPOWERS AND ELEMENTARY EMBEDDINGS

The results of this section will allow us to interchangeably talk about ultrafilters or about embeddings
for models of ZFC™. If M is a class that is a Xgp-correct model of ZFC™, k is a cardinal of M, and
U is an M-ultrafilter on k, then we can use the Yg-correctness of ]\4|E| to define the induced ultrapower
embedding jy : M — (Ult(M,U),ey) as usual: define an equivalence relation =y on the class of all
functions f : K — M contained in M by setting f =y ¢ if and only if {o < k | f(a) = g(a)} € U, let
Ult(M,U) consists of all sets [f]y of rank-minimal elements of =y-equivalence classes, define [f]v evlglu to
hold if and only if {o < k | f(a) € g(a)} € U and set jy(x) = [cy]uy, where ¢; € M denotes the constant
function with domain x and value z. It is easy to check that the assumption that M = ZFC™ implies that
Los’ Theorem still holds true in our setting, i.e. we have

Ult(M,U) = o([folu,-- - [fa-1lv) <= (M,U) E “Jz e U Va €z o(fola),..., fn_1(a))”

for every first order e-formula (v, ...,v,—1) and all functions fo,..., fn_1: kK — M in M.
Given an elementary embedding j : M — (N, ex) that jumps at s, let v be a witness for this, and let

Uj = {AeMNP(x) | yenj(A)}

denote the M-ultrafilter induced by v and by j. Since v is not in the range of j, the filter U]'»Y is non-principal.
If j is a k-embedding and v = x”, then we call U; = U ;’ the canonical M-ultrafilter induced by j, or simply
the M-ultrafilter induced by j.

In the following, we say that a property U(M,U) of Xp-correct ZFC™ -models M and M-ultrafilters U
corresponds to a property ©(M, j) of such models M and elementary embeddings j : M — (N, ey) if the
following statements hold:

o If U(M,U) holds for an M-ultrafilter U, then ©(M, jiy) holds.
o If ©(M,j) holds for an elementary embedding j : M — (N, en) and v witnesses that j jumps at
some x € M, then W(M,U}) holds.

Most of the correspondences below are well-known, in a perhaps slightly less general setup.

Proposition 3.1. Let k be an ordinal.

“

(1) “U is an M-ultrafilter on k € M that contains all final segments of k in M 7 corresponds to “j
Jumps at k € M 7.

L4r¢ crit(j) = k, then Propositionshows that k% is the unique N-ordinal on which the ey-relation has order-type M N k.
Otherwise, <V might also depend on the embedding j, which we nevertheless suppress in our notation.

15Note that, given a Xo-correct ZFC ™ -model M and functions f,g : K — M in M, then the set {a < x| f(a) = g(a)} and
{a < k| f(a) € g(a)} are both contained in M and satisfy the same defining properties in it.
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(2) Given a <k, “a € M and U is an M -ultrafilter on k € M that is <a-complete for M and contains
all final segments of k in M 7 corresponds to “crit(j) > o € M and j jumps at k € M ”.

(8) “U is a non-principal M -ultrafilter on k € M that is <k-complete for M 7 corresponds to “crit(j) =
ke M?”.

(4) “U is a non-principal M -ultrafilter on k € M that is <k-complete and <rk-amenable for M ” corre-
sponds to “crit(j) = k € M and j is <k-powerset preserving”.

(5) “U is a non-principal M -ultrafilter on & € M that is <k-complete and r-amenable for M 7 corre-
sponds to “crit(j) = k € M and j is k-powerset preserving”.

Proof. Throughout this proof, we let M denote a ¥g-correct ZFC™ -model with x € M.

(1) Let U be an M-ultrafilter on x that contains all final segments of x in M. Then id, € M and, given
a < k in M, we have (a, k) € U and hence jy(a) = [colv ev[ids]u €v ju (k). Hence [id,]y witnesses that jy
jumps at k. In the other direction, if v witnesses that j : M — (N, en) jumps at k and o € M N k, then
we have [a, k) € M, yen[j(a),5(k))N = j(la, x)) and hence [, k) € U}, as desired.

(2) Pick o < k in M. Let U be an M-ultrafilter on s that is <a-complete for M and contains all final
segments of k in M. By (1), crit(jy) exists. Assume, towards a contradiction, that jy jumps at 8 < a.
Then there is f : K — 8 in M such that [cs]u ev[f]u ev[cs]u holds for every § € M NB. By our assumptions
on M, there is a sequence (x5 | § < ) of subsets of k in M such that z5 = {{ <k | § < f(§) < B} for all
6 < B and x5 € U for all § € M N S. In this situation, the <a-completeness of U implies that ﬂkﬂ zs € U.
Pick £ e M N ﬂ5<ﬁ z5. Then f(§) € M N B and £ € z4(), a contradiction.

In the other direction, assume that « witnesses j : M — (N, ey) to jump at x, and that crit(j) > a.
Pick a sequence & = (x5 | 0 < ) € M with 8 < «, and with v ey j(z5) for all 6 € M NB. By our assumption,
we have j[B8] = {0 € N | den j(8)}, and hence yen 5(Z)(§) holds for all £ € N with ey j(8). This allows
us to conclude that v ey j(;.4 2s) and hence ;525 € Uj.

(3) This statement is a direct consequence of (2), because every non-principal M-ultrafilter on « that is
<k-complete for M contains all final segments of x in M.

(4) Let U be a non-principal M-ultrafilter on & that is <s-complete for M and <rk-amenable for M.
Then (3) implies that crit(jy) = . Fix a function f : K — M in M and a € M Nk such that [f]y is
a subset of jy(e) in (Ult(M,U),ey). Then the sequence (x5 | f < a) with g = {£ < k | B € f(§)} for
all B < « is an element of M. Given € M N «a, Los’ Theorem implies that jy(8) ey[f]y if and only if
xg € U. The <r-amenability of U now yields an z € M with M Nz ={8e€ MnNa | ju(B)ev[flu}. Since
julal ={y € Ut(M,U) | vev ju(a)}, extensionality allows us to conclude that jy(x) = [f]v.

In the other direction, let j : M — (N,en) be a <k-powerset preserving elementary embedding with
crit(j) = # and let v be any witness that crit(j) = #. By (3), we know that U} is <-complete for M and
non-principal. Fix a sequence ¥ = (g | 8 < a) of subsets of  in M with o < k. Then there is y € N with

(New) b “y Ci(a) A VB <ja) [Bey « yei@)
By our assumption, there is x € M with j(z) = y and
v U] <= venjlzs) = j(@)(i(B) < jBeny = j(z) < feux
for all B € M Na. This shows that (M,U]) |F “VB < a [zp € U +— B € z]”.

(5) Let U be a <k-complete, non-principal and x-amenable M-ultrafilter on . By (3), we have crit(j) = k.
Fix a function f: x — M in M with the property that [f] is a subset of jy (k) in (Ult(M,U), ey). Then
M contains the sequence (xg | 8 < k) with g = {{ < x| f € f(§)} and k-amenability yields an x € M
with MNz={8e€ MnNk|xz €U} Given 8 € M Nk, it is now easy to see that § € z if and only if
Ju(Bev[flu.

In the other direction, let j : M — (N,en) be k-powerset preserving with crit(j) = x and let v be
a witness that j jumps at k. Then (3) shows that U is <k-complete and non-principal. Fix a sequence
(x5 | B < k) of subsets of k in M and y € N with

(Nyen) E“y Ci(r) AN VB<j(r) [Bey «— v€i@)(B)]".
Then there is x € M with M Nz ={8e€ MNk|jB)enxy} Given 8 € M Nk, we then have § € x if and
only if zg € U;. O

We next consider situations in which an elementary embedding j : M — (N, ey) induces a canonical
M-ultrafilter U on &, i.e. situations in which j is a k-embedding. Given an ordinal s, a property U(M,U)
of Yg-correct ZFC™ -models M containing x and M-ultrafilters U on k k-corresponds to a property ©(M, j)
of such models M and elementary embeddings j : M — (N, en) if the following statements hold:

e If U(M,U) holds for an M-ultrafilter U on k, then ©(M, jir) holds.
e If O(M,j) holds for an elementary embedding j : M — (N,en), then j is a k-embedding and
U (M, U;) holds.
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Proposition 3.2. “U is an M-ultrafilter on k that is M-normal with respect to C-decreasing sequences
and contains all final segments of k in M ” k-corresponds to “j is a k-embedding ”.

Proof. Let M denote a Yg-correct ZFC™-model with x € M.

First, assume that U is M-normal with respect to C-decreasing sequences and contains all final segments
of k in M. Then, the proof of Proposition [3.1}(1) shows that [id,]y witnesses that ju jumps at k. Assume,
towards a contradiction, that there is an f : Kk — M in M with [f]y ey[ids]u and ju(5) ey[f]u for all
B < k. Then the sequence (x5 | 8 < k) with g ={£ <k | B < f(§) <&} for all B < k is an element of M,
and we have 23 € U for all 8 € M N k. Since this sequence is C-decreasing, we know that Ag<.25 € U.
But then, there is £ € M N Agc,wp with € € z4(¢), a contradiction. This shows that [id,.]y witnesses that
ju is a k-embedding.

Now, assume that j : M — (N, ey) is a k-embedding. Then, Proposition [3.1}(1) shows that U contains
all final segments of x in M. Let & = (zg | B < k) be a C-decreasing sequence of subsets of x in M with
zg € U for all B € M Nk. Pick v € N with yey . Then the minimality of £V yields 8 € M Nk with
ven j(B) en k. Since (N, en) believes that j () is C-decreasing and 2 € U; implies that £~ ey j(xg), this
shows that k" ey j(Z)(7y). But this shows that k" ey j(Ap<nzs) and hence Ao xg € Uj. O

If j : M — (N,ey) is a x-embedding that is induced by an M-ultrafilter U, we may also write kY
rather than x~. We can now add the assumptions from Proposition to each item in Proposition
For example, Clauses (4) and (5) in Proposition [3.1] yields the following;:

Corollary 3.3. “U is an M -ultrafilter on k that contains all final segments of k in M, and is M -normal and
<k-amenable (respectively, k-amenable) for M 7 k-corresponds to “crit(j) =k € M and j is a <k-powerset
preserving (respectively, k-powerset preserving) k-embedding”. ]

Remark 3.4. Using the above results, one could easily rephrase the results from [I], [23] and [24] cited in
the introduction in order to obtain characterizations of inaccessible, of weakly compact, and of completely
ineffable cardinals in terms of the existence of certain elementary embeddings on countable elementary
submodels of structures of the form H(#). We leave this — given the above results, straightforward — task to
the interested reader (for inaccessible cardinals, this was done in [2§]).

The following result will be useful later on.

Lemma 3.5. Let k be an inaccessible cardinal, let b : k — V,, be a bijection, let M be a Xqy-correct model
of ZFC™ with (k + 1) U{b} C M and let j : M — (N,en) be a k-powerset preserving r-embedding with
crit(j) = k.
(1) The map
Jo i MNOViepr — {y €N | yen Vi }en) @ (i(z) Vi)™
is an e-isomorphism extending j | (M N'Vy).
(2) There is an e-isomorphism
7 HEDY — ({y e N [ yen H((™) )V} en)
extending j.

Proof. (1) First, note that, using Xg-correctness, one can show that ran(b)™ = ran(b) = V,, = VM € M and
V%_l = V.11 N M. Now, if 2 € V,, then there is a < k with x C V,, and, since j(a) ey " holds, we have
() = j(x) en VNNN. This shows that j.(z)en \/'HNN+1 for all x € V,; and j, [ Vi is an e-homomorphism,
ie. given x,y € Vi, we have x € y if and only if j.(x) en j«(y). The proof of Proposition shows that
for every N-ordinal v with vey &, there is 8 € x with j(3) = 7. In particular, if z € Vn+1 \ V,, then
J«(2) en(Von 1) and j.(2) ¢y V2Yy. This shows that j, is an e-homomorphism and, by Extensionality, this
also shows that j, is injective.

Now, pick a club subset C of k in M with bla] = V,, for all @ € C. Note that the bijectivity of b implies
that b[x] NV, = blzNa] holds for all & € C and = C k. Since j[x] is the set of all elements of £ in (N, ey),

elementarity implies that x" ey j(C) and
iVl = (Gob)ls] = {ye N [yen(GOEDYY = {ye N |yen Vi)
Finally, pick z € N with zey VNNN 41+ By elementarity and the above computations, there is y € N with
(N,en) = “y C kN Aj(b)y] = z7. Using that j is x-powerset preserving, pick z € P(k)™ satisfying
= Mnz = {a<k]|jla)eny}
Then b[z] € VM, and the fact that £ € j(C) implies that

Jeblz]) = (GO NV = ((0)5() n &)
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Claim. j.(b[z]) = z.

Proof of the Claim. First, fix u € N with u ey j.(b[z]). Then there is an N-ordinal v with v ey &V, v en j(z)
and (j(b)(7))Y = wu. In this situation, we can find 3 < k with j(8) = v and j(b(8)) = u. But then
elementarity implies that 5 € x, veny y and u ey z. In the other direction, fix u € N with uwey z. Then there
is an N-ordinal v with yex y and (5(b)(7))Y = u. As above, we can find 3 < s with j(8) =+~. Then 3 € =
and u = j(b(B)) en j«(b[z]). By Extensionality, these computations yield the desired equality. O

Since the above claim shows that j,. is surjective, we now know that this map is an e-isomorphism.

(2) We are going to make use of the standard coding of elements of H(xk*) by subsets of x: There are
first order e-formulas g (vg), 1 (vo,v1), Y2(ve,v1), w3(vo, v1,) and w4(vg, v1,ve) with the property that the
axioms of ZFC™ prove that whenever b : Kk — V; is a bijection for some inaccessible cardinal x, then

o the formula g defines a set of codes D,, C P(H)E
the formula ¢ defines an equivalence relation =, on Dy,
the formula ¢y defines an =,-invariant binary relation E,; on D,
the formula @3 defines an epimorphism 7, : (D, =, E..) — (H(k"),=, €), and
the formula ¢4 and the parameter b define a function b, : Vo417 — D, with 7, 0 b, = idy
By (1), we now obtain a map j*: H(k*)M — {y € N | yex H((s"V) ")V} extending j. with

(Nyen) |= “man (ju (@) = 57 (0 (2))

for all x € D,. By the above assumptions on the uniform definability of D,, =, and E,, we can conclude
that j* is an e-isomorphism extending j,. O

PR

We introduce one further type of correspondence between ultrafilters and elementary embeddings by
saying that, given an ordinal k, a property W(M,U) of ¥y-correct ZEC™-models M containing « and M-
ultrafilters U on & weakly k-corresponds to a property ©(M, j) of such models M and elementary embeddings
j: M — (N,en) if the following properties hold:

e Whenever U(M, U) holds for an M-ultrafilter U on &, then O(jy, M) holds.

e O(M, ) implies that j jumps at x.

e Whenever ©(j, M) holds for an elementary embedding j : M — (N, ex), then W(M,U]) holds for
some N-ordinal v witnessing that j jumps at .

Note that if U(M,U) corresponds to ©(M, j), then these properties weakly x-correspond for some ordinal
k. Moreover, if U(M,U) weakly x-corresponds to ©(M, j) and ©(M,j) implies that j is a k-embedding,
then these properties also k-correspond. Finally, if ¥(M,U) and O(M,j) k-correspond, then they also
weakly k-correspond. Our next result is an easy consequence of Los’ theorem, and is a most frequently used
standard result in a less general setup.

Lemma 3.6. Given A C k, “A € U and U contains all final segments of k in M ” weakly k-corresponds to
“A € M and there is v € N with ven j(A) witnessing that j jumps at k7.

Proof. First, assume that M is a ¥g-correct ZFC™ -model with kK € M and U is an M-ultrafilter on x such
that A € U and U contains all final segments of x in M. Set v = [id;]y. Then yen ju(A) holds by Los’
theorem and « witnesses that jy jumps at k. In the other direction, if j : M — (N, ey) is an elementary
embedding, v € N witnesses that j jumps at x and yey j(A), then A € U;’ and Proposition (1) shows
that U contains all final segments of x in M. O

Combining earlier observations with arguments from the proofs of Proposition [3.2 and Lemma [3.6] im-
mediately yields the following correspondence, which will be of use later on:

Corollary 3.7. Given A C k, “U is M-normal with respect to C-decreasing sequences, U contains all final
segments of k in M, and A € U ” k-corresponds to “A € M and j is a k-embedding with k™ ex j(A) 7. O

We want to close this section with two k-correspondences, which may seem somewhat trivial, but which
will be useful to have available later on.

Lemma 3.8. “U contains all final segments of k in M and (Ut(M,U), ) is well-founded” k-corresponds
to “j jumps at k and (N,en) is well-founded”.

16The set D, consists of subsets of x that code sets of hereditary cardinality at most x in some canonical way. For
example, we can define D,; to consist of all x C x with the property that there exists an element y € H(xk1) and a surjection
s:k — (tc{y}) with

z = {<0,a> | a <k, s(a) €y} U {<1,<a,B>> | a, B < Kk, s(a) € s(B)},
where <-, > : Ord X Ord — Ord denotes the Godel pairing function.
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Proof. The forward direction is immediate from Proposition [3.1}(1). On the other hand, assume that
j: M — (N,en) is such that j jumps at k and (N, ey) is well-founded. Then the well-foundedness of ey
directly implies that j is a k-embedding and Proposition (1) shows that U; contains all final segments
of kK in M. As in the standard setting, we can now define a map k from Ult(M,U;) to N that sends
[flu, to (5(f)(k™))N. Since this map satisfies k o jy, = j, the well-foundedness of (N, ey) implies the
well-foundedness of (Ult(M,U;), €u,)- O

The above lemma shows that, in many important cases, the existence of an M-ultrafilter U that induces
a well-founded ultrapower of M already implies the existence of an M-normal ultrafilter with this property,
which also shares many other relevant properties (for example being countably complete, or being amenable
for M) with U.

Corollary 3.9. Let k be an ordinal, let M be a ¥y-correct model of ZEC™ with k € M and let U be an
M -ultrafilter on k that is <k-complete for M, contains all final segments of k in M and has the property
that (Ult(M,U), ey) is well-founded. Then there is an M-ultrafilter U’ on & that is M-normal, contains all
final segments of k in M and has the property that (Ult(M,U), ey) is well-founded. Moreover, any property
of U that has a k-corresponding counterpart is shared also by U’.

Proof. An application of Proposition (3) shows that crit(jy) = . In this situation, Proposition
implies that jy is a k-embedding. Set U’ = Uj,,. A combination of Proposition (3), Proposition and
Lemmathen shows that U’ is M-normal, contains all final segments of s in M and induces a well-founded
ultrapower. The final statement of the corollary is immediate by the definition of x-correspondence. O

Lemma 3.10. Given a first order e-formula ¢(vg,v1), “U is M-normal with respect to C-decreasing se-
quences, U contains all final segments of k in M, and (M, U) holds” k-corresponds to “j is a k-embedding
with o(M,U;) 7.

Proof. For the forward direction, we know by Proposition and its proof that [id]y witnesses that jy is
a k-embedding. This directly implies that U = Uj;,, and hence ¢(M, Uj, ) holds. The backward direction is
a direct consequence of Proposition [3.2 O

4. INACCESSIBLE CARDINALS AND THE BOUNDED IDEAL

In this section, we characterize inaccessible limits of certain types of ordinals through the existence of <x-
amenable filters for small models M. We then use these characterizations to determine the corresponding
ideals, which turn out to be the bounded ideals on the corresponding cardinals. The following direct
consequence of Proposition will be crucial for these characterizations.

Corollary 4.1. Let k be an inaccessible cardinal and let j : M — (N,en) be an elementary embedding
with crit(j) = k. If M is a To-correct model of ZFC™ with M = “H(k) exists”, then j is <k-powerset
preserving. In particular, if M < H(0) for some reqular 0 > k, then j is <k-powerset preserving.

Proof. Given o € M N k, we have P(a)M C H(k)M € M, P(a)M € M and (29)M < 2% < k. Hence
Proposition implies that j is <k-powerset preserving. Finally, if M < H(#) for some regular 6 > &, then
the inaccessibility of x implies that H(xk)" = H(k) € M N H(6). O

We will also make use of a classical characterization of inaccessible cardinals. Following [16], Definition
2.2], our formulation of this result uses slightly generalized notions of filters on arbitrary collections of subsets
of k. It is easy to see that these notions correspond well with our already defined notions of M —ultraﬁltersEI

Definition 4.2. (1) A wuniform filter on k is a subset F' of P(k) such that |
n <w and (4; | ¢ < n) is a sequence of elements of F.
(2) A uniform filter F' on k measures a subset A of kK if A € F or K\ A € F and it measures a subset
X of P(k) if it measures every element of X.
(3) A uniform filter F on « is <k-complete if |
(A; | i <) of elements of F.

ien Ail = K whenever

i<y A;| = k holds for every v < k and every sequence

Lemma 4.3 ([I, Corollary 1.1.2]). An uncountable cardinal k is inaccessible if and only if it has the <k-
filter extension property, i.e. whenever F is a uniform, <k-complete filter on k, of size less than k, and
X is a collection of subsets of k with X of size less than k, then there exists a uniform, <k-complete filter
F’ D F that measures X.

7 That is, if M is a model of ZFC™ with k € M, an M-ultrafilter U on x is uniform (respectively, uniform and <k-complete
for M) just in case U is uniform (respectively, uniform and <x-complete) in the sense of Deﬁnition
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We are now ready to state the key proposition of this section. These results will directly yield the state-
ments of Theorems and , because the accessible cardinals are unbounded in every inaccessible
cardinal and every unbounded subset of such a cardinal can be split into two disjoint unbounded subsets.

Proposition 4.4. Let xk be an inaccessible cardinal.

(1) If A is an unbounded subset of k, 8 > kK is a regular cardinal and M < H(8) with |M| < k and
A € M, then there is a uniform M -ultrafilter U on r with A € U and U;,(M,U).
(2) The set I3 is the ideal of bounded subsets of k.

Proof. (1) Assume that A C & has size x. Then, {A} is a uniform, <k-complete filter on &, of size less
than . If > k is a regular cardinal and M < H(0) of size less than x with k € M and A € M, then
we can apply Lemma, to extend {A} to a uniform, <k-complete filter U on « that measures M N P(k).
As mentioned above, this exactly means for U to be a uniform, <rk-complete M-ultrafilter on k. Let
ju : M — (Ult(M,U),ey) be the induced ultrapower embedding. By Proposition [3.1](3), we know that
crit(jy) = k. Moreover, Lemma shows that there is v € Ult(M,U) with v ey ju(A) that witnesses that
Jju jumps at k. Since & is inaccessible, we can apply Lemma [£.1] to see that jy is <s-powerset preserving. In
this situation, we can use Proposition(4) and Lemmato conclude that U ]7U is a uniform M-ultrafilter
on k that is <k-complete and <k-amenable for M and contains the subset A.

(2) If 6 > & is a regular cardinal, M < H(#) with |[M| < x and U is a uniform M-ultrafilter on &, then
the uniformity of U implies that every element of U has size k. By (1), this yields the desired equality. O

The following lemma provides us with the reverse direction for our desired characterization. Moreover,
it shows that for the listed types of domain models M, x-embeddings j : M — (N, en) with crit(j) = &
induce uniform M-ultrafilters U; on k.

Lemma 4.5. Assume that either

o for some regular cardinal 0 > r and some M < H(0), or
e for many transitive weak k-models MH

there exists an elementary embedding j : M — (N, en) with crit(j) = k. Then, k is regular. Moreover, if
the embeddings are also <k-powerset preserving, then k is inaccessible.

Proof. Assume that « is singular. By our assumptions, we can find a cofinal function ¢ : « — k with
a < k and an elementary embedding j : M — (N,en) with crit(j) = x and the property that M is a
Yg-correct ZFC™ -model with ¢ € M. Let v € N witness that j jumps at k. By elementarity, there is
§ € N with dey j(a) and yen(j(c)(6))N. Since a € M Nk, there is B < a with j(8) = § and hence
ven(5(e)(0)N = j(c(B)) en 7, a contradiction.

Now, assume that we can also find <k-powerset preserving embeddings for the desired models and
assume, towards a contradiction, that 2¢ > k holds for some a < k. Then our assumption yields an
injection ¢ : Kk — P(a) and a <k-powerset preserving embedding j : M — (N, ey) with crit(j) = &
and the property that M is a ¥g-correct ZFC™ -model with ¢ € M. The existence of such a model directly
contradicts Proposition [2.6](2). O

The next result is now an immediate consequence of what has been shown above, and in particular implies

Theorem (4(b)i).

Theorem 4.6. Let k be an uncountable cardinal, let 6 < k, let p(vg,v1) be a first order e-formula and let
0 > Kk be a regular cardinal such that the statement o(c, ) is absolute between H(0) and V for all o < k.
Then, the following statements are equivalent:

(1) The cardinal £ is an inaccessible limit of ordinals a such that the property ¢(a,d) holds.

(2) For any (equivalently, for some) M < H(0) of size less than k with k € M, there exists a uniform
M-ultrafilter U on k with W;o(M,U) and {a < k | p(a,0)} € U.

(8) For any (equivalently, for some) M < H(0) of size less than k with k € M, there exists a <k-powerset
preserving elementary embedding j : M — (N, en) with crit(j) = & such that (N,en) = ¢(v,7(9))
for some v € N witnessing that j jumps at k.

Proof. The implication from (1) to (2) is immediate from Proposition[4.4] Proposition[3.1](4) and Lemmal3.6]
show that both the universal and the existential statement in (2) are equivalent to the respective statements
in (3). Finally, Lemma shows that the existential statement in (3) implies that x is inaccessible and
hence the existential statement in (2) allows us to use Proposition |4.4| to derive (1). O

18We would like to thank Victoria Gitman for pointing out a mistake in our proof with respect to the second item of this
lemma in an earlier version of our paper.
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We will next obtain a further characterization of inaccessible cardinals, in which we may require stronger
properties of the ultrafilters and elementary embeddings used. For this, we need two standard lemmas.

Lemma 4.7. If k < 0 are uncountable regular cardinals, S C k is stationary and x € H(0), then there is a
transitive set M of cardinality less than k and an elementary embedding j : M — H(0) with crit(j) € S,
jlerit(4)) = k and x € ran(j).

Proof. Let (N, | @ < k) be a continuous and increasing sequence of elementary substructures of H(6) of
cardinality less than x with z € Ny and & C N, Nk € & for all @ < k. Since the set {N, Nk | a < K}
is closed unbounded in k, there is a < k with N, Nk € S. Set w : N, — M denote the corresponding
transitive collapse. Then 7% : M — H(f) is an elementary embedding satisfying crit(7=!) = N, Nk € S,
7 L(erit(771)) = 77 H(Noy Nk) = k and = € N, = ran(m~1). O

Lemma 4.8. If k < 0 are regular uncountable cardinals, S is a stationary subset of k and M < H(0) with
|M| < k and S € M, then there exists a normal M -ultrafilter U on k with S € U.

Proof. By Lemmald.7] there exists a transitive set X of cardinality less than x and an elementary embedding
j X — H(9) with j(crit(j)) = «, crit(j) € S and M € ran(j). Then, we have j[X] < H(f) and
M C j[X], because elementarity implies that |M| € j[X] Nk and hence |M| < crit(j) C j[X]. Define
U={Ac€jX]|nP(k) | crit(j) € A}. Then U is a j[X]-ultrafilter on x and, since j[X] Nk = crit(j) and
JIX] < H(0), it follows that U is j[X]-normal and <k-complete in V, and all elements of U are stationary
subsets of k. Since |M| < &, it follows that M N U is a normal M-ultrafilter on « and crit(j) € S € M
implies that S € U. (]

Note that, in combination with Proposition (3) and Lemma the previous lemma directly implies

Theorem. Moreover, Lemma also yields the following results, which in particular implies
((b)ii).

Theorem

Theorem 4.9. The following statements are equivalent for every uncountable cardinal k and all regular
cardinals 0 > K:

(1) The cardinal k is inaccessible.

(2) For any (equivalently, for some) M < H(0) of size less than k with k € M, there exists a <k-
amenable, normal M -ultrafilter U on k.

(8) For any (equivalently, for some) M < H(0) of size less than k with kK € M, there exists a <k-
powerset preserving elementary embedding j : M — (N, en) with crit(j) = k, such that j induces
a normal M -ultrafilter on k.

Proof. First, assume that  is inaccessible and M < H(0) with [M| < x and x € M. Then Lemma[4.§]yields
a normal M-ultrafilter U on x. By Proposition we know that jy is a k-embedding and the proof of this
proposition shows that U = U;. In particular, a combination of Proposition (4) and Corollary now
shows that U is <x-amenable. Next, a combination of Proposition [3.1}(3)+(4), Proposition [3.2] Lemma 3.8
Lemma for the statement ¢(M,U) = “U is normal” and arguments from the first implication shows
that, if M < H(0) with |[M| < k and k € M, then every <rs-amenable, normal M-ultrafilter U on & induces a
r~embedding jy with crit(jy) = & that is <k-powerset preserving and induces a normal M-ultrafilter. This
shows that both the universal and the existential statement in (2) imply the respective statements in (3).
The equivalence between the corresponding statements in (2) and (3) then follows from Proposition (4)
Finally, Theorem [4.6] directly shows that the existential statements in (2) and (3) both imply (1). O

5. REGULAR STATIONARY LIMITS AND THE NON-STATIONARY IDEAL

In this section, we characterize Mahlo-like cardinals, that is regular stationary limits of certain ordinalsﬂ
through the existence of M-normal filters for small models M. We then use these characterizations to define
the corresponding ideals, which turn out to be the non-stationary ideal below the considered set of ordinals.
We start by proving the corresponding statement of Theorem [1.4| with the help of Lemma

Proof of Theorem @ Fix a regular and uncountable cardinal k. First, let A be a stationary subset of
K, let @ > k be a regular cardinal and let M < H(#) with |[M| < x and A € M. In this situation, we can
use Lemma to find a normal M-ultrafilter U on x with A € U. Then U is uniform with ¥5(M,U) and
hence U witnesses that A ¢ I5". In the other direction, let A be a non-stationary subset of , let M < H(6)
with |M| < k and A € M, and let U be a uniform, M-normal M-ultrafilter on . By elementarity, we find
a club subset C' of k in M that is disjoint from A. By the M-normality and uniformity of U, every club
subset of x in M is contained in U and this shows that A ¢ U. We can conclude that A € I3*. g

Note that in particular, regular, inaccessible and Mahlo cardinals are Mahlo-like.
20Note that the forward direction of this proof is quite different to that of the seemingly similar Proposition
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The next result is an immediate consequence of Theorem , and in particular implies Theorem
L2} ().

Theorem 5.1. Let k be an uncountable cardinal, let § < k, let p(vg,v1) be a first order e-formula and let
0 > k be a regular cardinal such that the statement p(a, ) is absolute between H(0) and V for all a < k.
Then, the following statements are equivalent:

(1) k is a regular stationary limit of ordinals « satisfying v(«, 9).

(2) For any (equivalently, for some) M < H(0) of size less than k with Kk € M, there exists a uniform,
M -normal M -ultrafilter U on x with {a < k | ¢(a, )} € U.

(3) Same as (2), but we also require U to be normal.

(4) For any (equivalently, for some) M < H(0) of size less than k with k € M, there exists a k-embedding
j: M — (N,en) with crit(j) = k and (N, en) = o(xN,5(5)).

(5) Same as (4), but we also require en to be well-founded.

(6) Same as (4), but we also require j to induce a normal ultrafilter.

Proof. The implication from (1) to (3) is given by Lemma The combination of Proposition [3.1}(3),
Corollary Lemma (3.8 and Lemma [3.10] shows that both the universal and the existential statement in
(2) are equivalent to the corresponding statement in (4). The same is true for the corresponding statements
in (3) and (6). Since ultrapowers of models M of size less than k formed using normal M-ultrafilters are
obviously well-founded, the results listed above also show that the universal statement in (3) implies the
universal statement in (5) and the existential statement in (5) trivially implies the corresponding statement
in (4). Finally, since Lemma shows that the existential statement in (4) implies that x is regular, we
can use Theorem and the implications derived above to conclude that the existential statement in
(2) implies (1). O

6. WEAKLY COMPACT CARDINALS AND K-AMENABILITY

In this section, we extend Kunen’s results from [24] and we characterize weakly compact cardinals
through the existence of k-amenable ultrafilters for models of size at most k. For this, we need a classical
result on weakly compact cardinals, which we present using the notions introduced in Definition [£.2}

Lemma 6.1 ([I, Corollary 1.1.4], see also [I6, Proposition 2.9]). An uncountable cardinal v is weakly
compact if and only if it has the filter extension property, i.e. whenever F' is a uniform <k-complete filter
on Kk of size at most k, and X is a collection of subsets of k with X of size at most k, then there exists a
uniform <rk-complete filter F' O F that measures X .

Corollary 6.2. If k is weakly compact, then I}, =17,

Proof. Let A be unbounded in x and let M be a weak x-model with A € M. Then F = {AN[a, k) | o < K}
is a uniform <k-complete filter on x of size k. Using Lemma we find a uniform <k-complete filter
U 2 F that measures P(x) N M. Then Proposition [3.1](3) and Corollary show that W,,(M,U) holds.
By uniformity, these computations show that both If, and I%;, are the bounded ideal on x and, by Theorem

7 this also shows that they are equal to 13" O

=13 is the bounded ideal on k.

The following lemma will allow us to characterize weak compactness through the existence of k-amenable,
<k-complete ultrafilters.

Lemma 6.3. If x is a weakly compact cardinal, A < k is a cardinal, 0 > Kk is a regular cardinal, A is
an unbounded subset of k and x € H(0), then there is (k, A)-model M < H(0) with x € M and a uniform
M -ultrafilter U on k with A € U and U,.(M,U).

Proof. We recursively construct w-sequences (M, | n < w) of weak xk-models M,, < H(#), and (U,, | n < w)
of M,-ultrafilters on k. Pick a weak k-model My < H(0) with x € My, and, using Lemma let Uy be
a uniform <k-complete My-ultrafilter on k. Now, assume that M, and U, are already constructed, let
M, 11 < H(0) be a weak x-model with M,,,U, € M,1, and, using Lemma let U,4+1 be a uniform
<w-complete M, -ultrafilter extending U,. Set M = U, ., My, and let U = |J, ., Up. Then, U is a
uniform M-ultrafilter that is <x-complete for M < H(0). If Z = (z, | o < k) is a sequence of subsets of k
in M, then ¥ € M, for some n < w. Hence, each z, is measured by U, C U, and thus, by our choice of
My 41, we know that {a < k | 2o € U} € M1 € M, showing that U is k-amenable for M and therefore
proving the lemma for A = k. Given \ < k, we simply take a (A, x)-model (M,U) < (M,U) with € M.
Then, by elementarity, (M, U) has the desired properties. O

Corollary 6.4. If k is weakly compact, then If, . =17

e = Lge is the bounded ideal on k.
<we wce

by choosing £ = A and § = k* in Lemma we can conclude that 17, . is also equal to this ideal. O

Proof. By uniformity, Lemma [6.3| implies that both I%,. and IS% are the bounded ideal on x. Moreover,
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Corollary suggests that the ideals I# , 1%, and IS5 are not canonically connected to weak compact-

wer T<Lwce c

ness. We will present such an ideal in Section 7} The next result directly implies Theorem .

Theorem 6.5. The following statements are equivalent for every uncountable cardinal K, every cardinal
A < k and every reqular cardinal 0 > k:

(1) k is weakly compact.

(2) For many (A, k)-models (equivalently, for some (X, k)-model) M < H(6), there exists a uniform
M -ultrafilter U on k with W,,.(M,U).

(3) For many (X, k)-models (equivalently, for some (A, k)-model) M < H(0), there exists a k-powerset
preserving elementary embedding j : M — (N, en) with crit(j) = &.

(4) For many transitive weak k-models M, there exists a uniform M -ultrafilter U on k with W ,.(M,U).

(5) For many transitive weak r-models M, there exists a k-powerset preserving elementary embedding
Jj: M — (N,en) with crit(j) = k.

Proof. The implication from (1) to (2) and (4) follows from Lemma[6.3] Using Proposition [3.1}(5), we can
see that both statements in (2) are equivalent to the respective statements in (3) and both statements in
(4) are equivalent to the respective statements in (5). Now, assume that (1) fails and j : M — (N, en)
witnesses that the existential statement in (3) holds. Then, Lemma implies that x is inaccessible and
our assumption implies that there exists a x-Aronszajn tree. By elementarity, there is such a tree T" in M
with underlying set . Then, j(T) is a j(k)-Aronszajn tree with underlying set j(k) in N. Pick v € N
witnessing that crit(j) = «, let 6 be a node of j(T') on level v in N and let y € N be the set of predecessors
of § in j(T') in N. By k-powerset preservation, there is x € M with M Nz ={8e M Nk | j(B)eny}. By
elementarity and the fact that crit(j) = &, the set x is linearly ordered and downwards-closed in T'. Since
T is a k-Aronszajn tree, there is some o € M N k such that = does not intersect the a-th level of T'. Then
there is e € M Nk and a surjection s from € onto the a-th level of T'in M. Since € < crit(j), there we can
find € € M Ne with j(s(€)) exy y and hence € € x, a contradiction. The argument that (5) implies (1) again
proceeds analogously by first using Lemma to show that x is inaccessible and then pick a transitive weak
k-model M that contains a k-Aronszajn tree T as an element and is the domain of a k-powerset preserving
elementary embedding with critical point . O

In the above result, instead of using all M < H(6), as in Kunen’s result for countable models, and as in
our earlier sections, we pass to a characterization using only many models M < H(#). The results of our
later sections will show that this is in fact necessary, for if M < H(#) were closed under countable sequences
and satisfies (2) in Theorem then we would obtain that U induces a well-founded ultrapower of M,
which would imply that « is completely ineffable by Theorem [11.5

7. WEAKLY COMPACT CARDINALS WITHOUT Kk-AMENABILITY

In order to find a characterization of weak compactness that is connected to a canonical ideal, we now
consider characterization using models of the same cardinality as the given cardinal. We start by recalling
the definition of the weakly compact ideal, which is due to Lévy.

Definition 7.1. Let x be a weakly compact cardinal. The weakly compact ideal on k consists of all A C k
for which there exists a IIi-formula ¢(v!) and @ C V, with V., E ¢(Q) and V, E —¢(Q N'V,) for all
a € A

It is well-known that the weakly compact ideal is strictly larger than the non-stationary ideal whenever
k is a weakly compact cardinal, because the weakly compact ideal contains the stationary set N7, of smaller
accessible cardinals in this case (see [3, Theorem 2.8]). By a classical result of Lévy (see [22, Proposition
6.11]), the weakly compact ideal is a normal ideal. We now provide a characterization of the weakly compact
ideal which resembles our earlier characterizations, and which in particular shows that I, is the weakly
compact ideal on k, proving Theorem. This result is a variant of results of Baumgartner in [3, Section
2]. In the proof of the first item, we proceed somewhat similar to the argument for [I4] Theorem 1.3].

In the following, whenever M is a ¥y-correct ZFC™-model, k is a cardinal of M and U is an M-ultrafilter
on k that is M-normal with respect to C-decreasing sequences and contains all final segments of x in M,
then we write kU instead of kV(M:U) (see Proposition

Theorem 7.2. Let k be a weakly compact cardinal.

(1) If A C k is not contained in the weakly compact ideal, 0 > r is a regular cardinal and M < H(0)
1s a weak K-model with A € M, then there is a uniform M -ultrafilter U on k with A € U and
\I/WC(Ma U) .

(2) 1§ =1%5 = Iy = 1% is the weakly compact ideal on k.
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Proof. (1) First, assume towards a contradiction, that there is no uniform, M-normal M-ultrafilter U on k
with A € U. Let w : M — X denote the transitive collapse of M, pick a bijection b : kK — X and define

E = {{oa,8) e k x k| bla) € b(B)}.

Let T be the elementary diagram of (k, E'), coded as a subset of V,; in a canonical way. Now, let o(E,T)
be a IT}-statement expressing the conjunction of the following two statements over V,:

(i) There is no U C k such that (k, E,U) thinks that U is a uniform, normal ultrafilter on b~!(x) that
contains b1 (A).

(ii) T is the elementary diagram of (k, F).
Then V. E @(E,T) and, since A is not contained in the weakly compact ideal on x, we can find an
inaccessible o« € A with a > b=1(A) = (b~ Lo7)(A4) and V, | ¢(ENV,,TNV,). Since (ii) is reflected to o,
the structure (a, ENV,) is an elementary substructure of (x, E). Set M, = (7~ o b)[a]. Then M, < H(f)
with |M,| < k and A € M,. Since A is stationary in x, Theorem yields a uniform, M,-normal
M,-ultrafilter U, on k with A € U,. Set U = (b=! o m)[U,] C k. Then, (o, ENV,,U) thinks that U is a
uniform, normal ultrafilter on b~1(k) that contains b~'(A), contradicting the fact that (i) reflects to a.

Now, pick a uniform, M-normal M-ultrafilter U on xk with A € U. By Proposition(3) and Proposition
the map jy is a k-embedding with crit(jy) = x and Corollary implies that jy is <k-powerset
preserving. Since U = Uj,,, Proposition (4) now shows that U is <x-amenable for M and hence we can
conclude ¥y (M,U) holds.

(2) By definition, we have I§ C Ifj, and I%; C 1%, ~. Moreover, (1) shows that 1%, is contained
in the weakly compact ideal on x. Now, pick A € P(k) \ I%;. Then there is a regular cardinal § > &, a
weak k-model M < H(#), and a uniform, M-normal M-ultrafilter U on x with A € U. By Proposition
the induced ultrapower map jy : M — (Ult(M,U), ey) is a k-embedding. Then Lemma implies that
kY ey ju(A). Now, let (v}, v]) be a L}-formula and assume that there is Q C V. with V,, =VZ ¢(Q, Z)
and Vo, = 3'Z =p(QNV,, Z) for all a € A. Since M < H(f), we may assume that Q € M, and that the
above statements hold in M. In this situation, the elementarity of j implies that there is S € Ult(M,U)
such that S C Vv and Vv E —¢(j(Q) N Vv, S) hold in Ult(M,U). Since k C M is inaccessible, we
have V,, C M and the M-normality of U implies that jy | V,; is an €-isomorphism between (V,, €) and

(VIRALU) ) Set R={z € V,. | ju(z) € S}. Then we have

jlQI = {y € UM, U) | y ey (j(Q) N V) AT}

and j[R] = {y € Ult(M,U) | yey S}. This allows us to conclude that V,; = =¢(Q, R), a contradiction. This
shows that A is not contained in the weakly compact ideal on k.

The above computations show that I%; is the weakly compact ideal on x. Finally, by choosing 6 = kT
in (1), we know that Ifj,~ is contained in the weakly compact ideal and we can show that these ideals are
equal by proceeding as in the above argument, however picking a weak x-model M containing the set @ as
an element. O

Note that a small variation of the argument used in the last paragraph of the first part of the above
proof shows that 1§ = Ifj, and 1% = 1%y~ holds for every inaccessible cardinal x. As pointed out to
us by the anonymous referee, it is possible to use an unpublished result of Hamkins (see [12]) to separate
these ideals. His result shows that, after adding x™-many Cohen reals to a model of set theory containing
a weakly compact cardinal x, the cardinal x still possesses the weakly compact embedding property, i.e. for
every subset A of k, there are transitive models M and N of ZFC™ with A,k € M and an elementary
embedding j : M — N with crit(j) = . In particular, the results of Section [3| show that I§ is a proper
ideal in this model. Since the results contained in the remainder of this section show that weak compactness
can be characterized through the property Wy ¢ using Scheme [B} it follows that € Ifj, 2 I§ holds in the
constructed forcing extension.

Hamkins’ result can easily be generalized to show that, by adding x-many Cohen subsets of w; for some
weakly compact cardinal x, we obtain a forcing extension with the property that for every subset A of k,
there is an elementary embedding j : M — N between transitive models of ZFC™ such that crit(j) = &,
YMU{A, k} C M and all stationary subsets of x in M are stationary in V. This shows that the existence of
many transitive weak x-models M with the property that there exists a uniform, M-normal and stationary-
complete M-ultrafilter is not a large cardinal property of x, i.e. it does not imply the inaccessibility of
K.

Finally, it should be noted that, analogous to Theorem and Theorem can be used to obtain
an explicit characterization of weakly compact cardinals with the property that certain definable subsets of
these cardinals do not lie in the corresponding weakly compact ideal. Similar generalizations can be proven
for all stronger large cardinal notions discussed below.
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We now provide the desired characterization of weak compactness. The following result directly implies

Item of Theorem

Theorem 7.3. The following statements are equivalent for every uncountable cardinal xk and every regular
cardinal 0 > k:

(1) k is weakly compact.

(2) For all weak k-models M < H(0), there exists a uniform M -ultrafilter U on k with $ywo(M,U).

(8) For many weak k-models M < H(0), there exists a uniform, stationary-complete M -ultrafilter U on
K with \Ilwc(M, U)

(4) For some weak k-model M < H(0), there exists a uniform M -ultrafilter U on & with W;q(M,U).

(5) For many transitive weak k-models M, there exists a uniform, stationary-complete M -ultrafilter U
on K with e (M, U).

(6) For many transitive weak k-models M, there exists a uniform M -ultrafilter U on k with U;,(M,U).

Proof. The implication from (1) to (2) follows directly from Theorem[7.2] Moreover, since the inaccessibility
of k implies that every element of H(f) is contained in a weak k-model M < H(f) that is closed under
countable sequence and all M-normal M-ultrafilters for such models M are stationary-complete, Theorem
also shows that (1) implies both (3) and (5). Now, assume, towards a contradiction, that  is not weakly
compact, M < H() is a weak k-model and U is a uniform M-ultrafilter that is <sx-amenable for M and <x-
complete for M. By Plroposition(élc)7 we know that ji is a <k-powerset preserving elementary embedding
with crit(j) = k. In this situation, Lemma shows that k is inaccessible and hence our assumption implies
the existence of a k-Aronszajn tree T with underlying set x in M. Pick an Ult(M, U)-ordinal  that witnesses
that jy jumps at x and pick an element S of the y-th level of jy (T') in (Ult(M,U), ey). Given o < k, there
is @ < k with the property that the initial segment of 7" of height « is a subset of & and hence we can find
&o < @ with the property that, in (Ult(M,U), eyy), the ordinal ji(&,) is the unique element of the jy (a)-th
level of jy (T') that lies below 5. But then elementarity implies that the set {{, | & < k} is a cofinal branch
through T, a contradiction. These computations show that (4) implies (1). By first using Lemma to
show that « is inaccessible and then capturing a x-Aronszajn tree in a transitive weak k-model, a variation
of the previous argument shows that (6) also implies (1). Since both (2) and (3) imply (4), and (5) implies
(6), this completes the proof of the theorem. O

We end this section by proving the second statement of Theorem .
Lemma 7.4. If k is weakly compact, then N%, . & Ifi, ..

Proof. Assume that N¥, . € If;;~. Then Theorem implies that N¥ _ is an element of the weakly compact
ideal. Then we may assume that  is the least weakly compact cardinal with this property. Then [30, Lemma
1.15] shows that the set A = {a < K | « is weakly compact} contains a 1-club, i.e. there is a stationary
subset of A that contains all of its reflection points. Since weak compactness implies stationary reflection,
there is an a < k with the property that A N « is stationary in . Then a € A, « is weakly compact and
ANais a l-club in a. Since the results of [30] show that a subset of a weakly compact cardinal is an
element of the weakly compact ideal if and only if its complement contains a 1-club, we can conclude that
N¢&. € Iy, a contradiction. O

8. WEAKLY INEFFABLE AND INEFFABLE CARDINALS

Remember that, given a set A, an A-list is a sequence (d, | a € A) with d, C a for all a € A. Given
an uncountable regular cardinal k, a set A C & is then called ineffable (respectively, weakly ineffable) if for
every A-list (d, | o € A), there is D C & such that the set {« € A| DNa = d,} is stationary (respectively,
unbounded) in k. The ineffable (respectively, weakly ineffable) ideal on k is the collection of all subsets
of k that are not ineffable (respectively, weakly ineffable). These ideals were introduced by Baumgartner,
and he has shown them to be normal ideals on x whenever k is (weakly) ineffable (see [2]). The key
proposition is now an adaptation of [I, Theorem 1.2.1], which shows that the ideals I, and I%;, both agree
with the ineffable ideal on k, yielding Theorem . Moreover, the following result also immediately
yields Theorem [1.2{(5b]).

Theorem 8.1. (1) If k is an uncountable cardinal, d = (do | o € A) is an A-list with A C r, M is a
weak k-model with d € M and U is an M -ultrafilter with U;o(M,U) and with A € U, then there is
D C k with the property that the set {a € A | DNa =d,} is stationary in k.
(2) Let K be an ineffable cardinal.
(a) If A C K is not contained in the ineffable ideal, 0 > K is a regular cardinal and M < H(0) is a
weak k-model with A € M, then there is an M -ultrafilter U on k with A € U and V;o(M,U).
(b) 1, =175, is the ineffable ideal on k.

<ie
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Proof. (1) For every £ < k, let z¢ = {a € A | £ € do}. Then (z¢ | £ < k) € M. Now, given £ < &, set
ue = x¢ if ¢ € U, and set ug = A\ z¢ otherwise. By our assumptions on U, we have u¢ € U for all { < K
and hence H = Agc,ue is a stationary subset of k. Now, fix o, 8 € H with < § and £ < a. Then
a, B €ue. If x¢ € U, then o, § € z¢ and hence € € d, Ndg. In the other case, if z¢ ¢ U, then o, 8 € A\ z¢
and hence € ¢ d, Udg. In combination, this shows that d, = dg N « holds for all o, 8 € H with o < 5.
Define D = | J{d, | @ € H}. Then our arguments show that the set {¢ € A | DNa = d,} is stationary in
K.

(2)(a) Let k be an ineffable cardinal and let A C & be ineffable, § > k be regular and M < H(6) be
a weak k-model. Pick an enumeration {z¢ | { < k} of all subsets of x in M, and, for every o € A, set
do ={€ < a | a € x¢}. Then there is H C A stationary in x, and D C k with D Na = d, for all « € H.
Given & < k, set ug = z¢ if £ € D, and set ue = A\ x¢ otherwise. Define U = {u¢ | £ < k}. The next claim
provides the desired conclusion.

Claim. U is a normal M -ultrafilter with A € U.

Proof of the Claim. H\ (§ +1) C z¢ for all £ € D and HNxe C &+ 1 for all £ € k\ D. Hence, we have
H\ (£+1) Cug for all £ < k and this directly implies that U is an M-ultrafilter. Moreover, it shows that
H C A¢ciue, and hence U is normal. O

(2)(b) Let s be ineffable and assume that A C k is not an element of I, N1%,.. Then every A-list is
contained in a weak x-model M with the property that there is a normal M-ultrafilter U on k with A € U.

By (1), this shows that A is ineffable. This argument shows that the ineffable ideal is contained in both If,

and I%;,. In the other direction, (2)(a) directly shows that 1%, is contained in the ineffable ideal. Moreover,
by choosing # = kT in (4)(a), the same conclusion can be established for I%. O

Weak ineffability does not seem to be characterizable through one of the schemes considered in this
paper. Nevertheless, the weakly ineffable ideal shares properties similar to those of the other ideals that
we investigate here and we will make use of it to derive several statements about the relations of the ideals
defined above. Given a cardinal k, we define N, = {a < k | o is not weakly ineffable} and we let If.,
denote the weakly ineffably ideal on k.

Lemma 8.2. If k is weakly ineffable, then the set Ifj, U {N% } CIf. and the set Ni. ¢ 15 .

Proof. For the first statement, first note that the inclusion of the weakly compact ideal in the weakly ineffable
ideal was been shown by Baumgartner in [2, Theorem 7.2]. Next, let A be the set of all inaccessibles a < k
which are not weakly compact. Fix a bijection b : V,, — k with b[V,] = « for all inaccessible a < k. For
every o € A, define
do = {=<0,[pal=} U {<1,b(z)> | z € Xo} C a,

where X, C V, and [p,] € V., is the Gédel number of a IT}-formula ¢, (v!) such that Vo E ¢q(Xa)
and Vg = —pq(Xo NVp) for all 8 < a. Assume, for a contradiction, that A is weakly ineffable. Then,
the sequence (d, | a € A) is an A-list, and, by the weak ineffability of A, we find D C k such that
U={a€A| DNa=d,} is an unbounded subset of k. Pick «, 8 € U with @ < 8. Then ¢, = s and
Xo = XgNV,. Hence, V, = ¢3(X3NV,), a contradiction. Since N, € I, the above arguments show
that the set NI is contained in the weakly ineffable ideal.

For the second statement, assume for a contradiction that x is the least weakly ineffable cardinal with
the property that the set N%_is contained in the weakly ineffable ideal on k. Let d = (dy | a € N ) be
an N -list, and define

A = g\N;,. = {a <k |« is weakly ineffable} ¢ I7 ...
For every o € A, the fact that d I a is an N, -list implies that there is D, C « with the property that
{£ e N, | de = Dy NE} is an unbounded subset of . But then, the sequence (D, | a € A) is an A-list,
and hence there is D C k such that {o € A | DNa = D,} is an unbounded subset of . In this situation,
the set {a € N, | DNa = d,} is also unbounded in k. These computations show that the subset N7, of

k is weakly ineffable, contradicting our initial assumption.

Lemma 8.3. If k is ineffable, then NI, €I, and Nf, ¢ If .

wie
Proof. First, let A denote the set of all inaccessibles o < k which are not weakly ineffable. For every a € A,
pick an a-list (d¢ | § < ) witnessing that « is not weakly ineffable. Given a € A, define
Dy = {=§,(~|€<a, (€di} C a.

Assume, for a contradiction, that A is ineffable and pick D C & such that theset S = {a € A| DNa = D, }
is stationary in A. Then there is a unique x-list (d¢ | £ < k) with d¢ = dg for all @ € S and { < a. Since
is ineffable, there is E C k with the property that the set T = {£ < k | EN§{ = d¢} is stationary in . Pick
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a € SNLIm(T) C A If § € TNa, then df = de = ENE. Since T'N av is unbounded in «, this shows that
the set {{ < a | ENE = dg} is unbounded in «, contradicting the fact that (dg | { < o) witnesses that « is
not weakly ineffable.

For the second statement, assume for a contradiction that s is the least ineffable cardinal for which
N£ € If holds. Let (d, | @ € N£) be an Nf-list, and let A = {& < k | « is ineffable} ¢ 1%. For every
a € A, we find a set D, C «a such that the set {{ € N | Dy N € = de} is stationary in . Then, the
sequence (D, | a € A) is an A-list, and hence there is D C k so that S = {a € A | DNa = D,} is a
stationary subset of k. Let C be a club subset of , and pick « € Lim(C)NS C A. Then « is regular, C N«
is a club in o and there is { € C N N§, with d¢ = D, N§ = D NE. This allows us to conclude that the set
{£ e NE | DN =dg} is stationary in k. These arguments show that N¥ is ineffable, a contradiction. [0

Since the weakly ineffable ideal is, by definition, contained in the ineffable ideal, the above lemmas directly
yield the corresponding parts of .

9. A FORMAL NOTION OF RAMSEY-LIKE CARDINALS

In this section, we generalize the a-Ramsey cardinals from [16] to the class of U-a-Ramsey cardinals, and
verify analogous results for this larger class of large cardinal notions. We start by introducing a number of
generalizations of notions from [16]. In the later sections of our paper, we will consider a number of special
cases of these fairly general concepts. Our generalizations will be based on games that are similar to those
from [16], which however allow for quite general extra winning conditions ¥. We will usually only require
them to satisfy the property introduced in the next definition.

Definition 9.1. We say that a first order e-formula ¥ (vg, v1) remains true under restrictions if ¥(X, FNX)
holds whenever ) # X C M, F C M and ¥ (M, F) holds.

Definition 9.2. Given uncountable regular cardinals x < 6 with k = <%, a limit ordinal v < T, an
unbounded subset A of £ and a first order formula ¥(vg,v1), we let GUY(A) denote the game of perfect
information between two players, the Challenger and the Judge, who take turns to produce C-increasing
sequences (M, | a <) and (F, | o <), such that the following holds for every a < ~:

(1) At any stage a < -, the Challenger plays a k-model M, < H(0) such that the set A and the sequences
(Ms | @ < o) and (F5 | & < «) are contained in M,,, and then the Judge plays an M,-ultrafilter F,
on K.
(2) A € Fy.
In the end, we let M, = UJ,., Mo and Fy = U, Fo. The Judge wins the run of the game if F), is an
M,-normal filter such that W(A,, F),) holds. Otherwise, the Challenger wins.

Note that if the Judge ever plays a filter F,, that is not normal, then the Challenger wins, for if AF, is
non-stationary, then F, cannot be M,-normal, for otherwise it has to contain AF, as an element. On the
other hand, if every F, is M,-normal, then clearly also F’, is M,-normal.

Definition 9.3. Let k be an uncountable cardinal with kK = k<%, let A be an unbounded subset of &, let
0 > k be a regular cardinal, let v < x™ be a limit ordinal, and let ¥(vg,v1) be a first order e-formula.

e A has the \I/g-ﬁlter property if the Challenger does not have a winning strategy in G\I/g(A).
e A has the \I!z—ﬁlter property if it has the \Ilg—ﬁlter property for all regular ¥ > k.

Extending notions from [J] and from [16], we introduce a generalization of the notion of Ramseyness.

Definition 9.4. Let x < 6 be uncountable regular cardinals, let @ < k be an infinite regular cardinal, let
A be an unbounded subset of x and let ¥(vp,v1) be a first order e-formula.

o Ais Wr-Ramsey if for every x C &, there is a transitive weak k-model M closed under <a-sequences
and a uniform, x-amenable M-normal M-ultrafilter U on & such that x € M, A € U and ¥(M,U)
holds.

o Ais WY _-Ramsey if for every x € H(6), there is a weak x-model M < H(#) closed under <a-sequences
and a uniform, k-amenable M-normal M-ultrafilter U on  such that € M, A € U and ¥(M,U)
holds.

o Ais UY-Ramsey if it is U¥-Ramsey for every regular cardinal 6 > k.

o If ¥ € {k,0,V}, then k is a WY -Ramsey cardinal if x is ¥2-Ramsey as a subset of itself.

The above definition of Ramsey-like cardinals fits well with the main topics of this paper: Given an
ordinal a and a property W(M,U) of models M and M-ultrafilters U, we may form a stronger property

V,(M,U) by conjuncting the properties that M is closed under <a-sequences and U is uniform, M-normal
and k-amenable for M. Then Scheme [B| holds true for ¥#-Ramsey cardinals and the property ¥, (M,U)
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and Scheme [C| holds true for ¥Y-Ramsey cardinals and the property ¥, (M,U). Moreover, Theorem
will show that Scheme [A| holds true as well for ¥Y-Ramsey cardinals and the property W, (M, U).

The above definition covers many instances of specific Ramsey-like cardinals that have already been
defined in the set-theoretic literature. Let o < k be regular cardinals.

e In Section we will show that a cardinal  is completely ineffable if and only if it is T -Ramsey,
where T(M, U) denotes the (trivial) property that U = U.

e [9 Definition 1.2] A cardinal k is weakly Ramsey if it is wf| -Ramsey, where wf(M,U) denotes the
property that the ultrapower Ult(M,U) is well-founded.

e [I0, Definition 2.11] Given an ordinal 8 < wy, a cardinal  is S-iterable if it is wfj/i-Ramsey, where

wf3(M,U) denotes the property that U produces not only a well-founded ultrapower, but also

[B-many well-founded iterates of M.

[16, Definition 4.5] A cardinal & is super weakly Ramsey if it is wfff—Ramsey.

[16, Definition 5.1] A cardinal & is w-Ramsey if it is wf’-Ramsey.

[27, Definition 4.11] Given an ordinal 8 < w;, a cardinal & is (w, 3)-Ramsey if it is wf37-Ramsey.

[9, Theorem 1.3] A cardinal x is Ramsey if and only if it is cc2-Ramsey, where cc(M,U) denotes

the property that U is countably complete.

[4, Proof of Theorem 3.19] A cardinal x is weakly super Ramsey if it is ccf—Ramsey.

e Ineffably Ramsey cardinals were introduced by Baumgartner in [3]. Adapting the above result on
Ramsey cardinals, it will follow in Section [12]that a cardinal « is ineffably Ramsey if and only if it
is sc-Ramsey, where sc(M, U) denotes the property that U is stationary-complete.

e In [8 Definition 3.2], Feng introduced a hierarchy of Ramsey-like cardinals denoted as IIg-Ramsey
cardinals, for § € Ord, with IIj-Ramsey cardinals being exactly the Ramsey cardinals, and with
IT;-Ramsey cardinals being exactly ineffably Ramsey cardinals. All of these cardinals fit into our
hierarchy of Ramsey-like cardinals — see [29, Theorem 3.3].

e [T6 Definition 5.1] Given an uncountable regular cardinal «, a cardinal k > « is a-Ramsey if it is
TY-Ramsey (or, equivalently, cc?-Ramsey). w;-Ramsey cardinals were also called w-closed Ramsey
in [4 Definition 2.6].

e [9 Definition 1.4] A cardinal & is strongly Ramsey if it is T#-Ramsey (or, equivalently, ccf-Ramsey).

e [9, Definition 1.5] A cardinal  is super Ramsey if it is TZ+—Ramsey (or, equivalently, ccf—Ramsey).

e [27, Definition 2.7] A cardinal x is a normal a-Ramsey cardinal if  is AY-Ramsey, where A(M, U)
denotes the property that U is normal.

e A cardinal & is locally measurable if and only if it is (¥,,s)"-Ramsey.

e A cardinal x is measurable if and only if it is (¥,,s)%-Ramsey for some (equivalently, for all) regular
a < K.

The following lemma is a straightforward generalization of [I6, Theorem 5.6].

Lemma 9.5. Let k < 6 be uncountable reqular cardinals with k = k<%, let A be an unbounded subset of k,
let v < k be regular, and let ¥(vg,v1) be a first order e-formula. Then, the following statements hold:
(1) If A has the \Ilz—ﬁlter property, then A is \Ilz—Ramsey,
(2) If ¥ remains true under restrictions and 9 > 2<9
A has the \Ifz -filter property.

s a reqular cardinal, and A is \Ilﬁz -Ramsey, then

Proof. First, assume that A has the \Ilf/—ﬁlter property. Given z € H(#), let o be a any strategy for the
Challenger in the game G\I!f/(A) that ensures that x € M. Since, by our assumption, ¢ cannot be a winning
strategy for the Challenger, it follows that there is a run ((M, | o <), (Fy | & < 7)) of this game which the
Judge wins. Then, M = Ua<'y M, is closed under <v-sequences, and I, = Ua<w F,, is a uniform M-normal
M-ultrafilter such that A € F, and (M, F,) holds. By the same argument as in the proof of Lemma
the filter £, is k-amenable for M, as desired.

Now, assume that ¥ > 2<¢ is regular, and that A is \IJEZ—Ramsey, as witnessed by M < H(¥) and U.
Assume for a contradiction that A does not have the \Ilg—ﬁlter property. Then, there exists a winning
strategy ¢ C H(6) for the Challenger in the game G\I!fY(A). It follows that ¢ € H(¥), and hence, by
elementarity, such a winning strategy exists also in M. But this is a contradiction, because the Judge can
obviously win any run of the game in M by playing suitable pieces of U, using that initial segments of the
run of the game are contained in M, since M is closed under <+vy-sequences, and that ¥ remains true under
restrictions. (|

The next lemma is a generalization of [16, Lemma 3.3], and shows, together with Lemma that in
many cases the \IJ\,Z—Ramseyness of some cardinal k is in fact a local property — namely it is equivalent to
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its \I!f/—Ramseyness for 6 = (27)*. We will need the following, which is a property that is shared by all ¥’s
considered in this paper, except for the case when U(M,U) = wf(M,U).

Definition 9.6. A first order e-formula U(vg,v1) remains true under k-restrictions if ¥(X, F N X) holds
whenever () # P (k)X C P(k)M and ¥(M, F) holds.

Lemma 9.7. Let K = k<% be an uncountable cardinal, let v < k™ be a limit ordinal, let § > k be regular,
and let W(M,U) be a property that remains true under k-restrictions. Then, an unbounded subset A of k
has the \Il:—ﬁlter property if and only if it has the \Ilz—ﬁlter property.

Proof. Let 6y and 0, both be regular cardinals greater than x, and assume that the Challenger has a winning
strategy oo in the game G\I/foy‘) (A). We construct a winning strategy o; for the Challenger in the game
G\I/gl (A). Whenever the Challenger would play M, in a run of the game G\Pgo (A) where he is following his
winning strategy oo, then o; shall tell him to play some M} which is a valid move in the game G\Ilzl (A4)
such that M* D P(k) N M,. Every possible response F* of the Judge in the game G\I'f)yl (A) induces a
response F, = FZ N M, in the game G\I/go (A). We use this induced response together with the strategy
0o to obtain the next move of the Challenger in the game G\II,QYO(A), and continue playing these two games
in this way for v-many steps. As the Challenger is following a winning strategy in the game G\II§O (A), it
follows that F., is either not M,-normal or W(M,, F,) fails. But, using our assumptions, the same is the

case for M7 =, ., My and I =, Iy, showing that oy is indeed a winning strategy. O

The following is now immediate from Lemma [9.5] and Lemma [9.7

Corollary 9.8. Let s be an uncountable cardinal, let v < kT, and let W(M,U) be a property that remains
true under k-restrictions. Then, an unbounded subset A of k is ‘I’X-Ramsey if and only if it is ‘P?/-Ramsey
for some regular cardinal 8 > 2%.

The next result immediately yields Theorem and , and also justifies the entries for T/ -
Ramsey, A%-Ramsey, cc?-Ramsey, and the second entry for AY-Ramsey cardinals in Table[2l We will show
in Section that the notions of AY-Ramseyness and sc’-Ramseyness coincide, thus justifying the first
entry for the former.

Theorem 9.9. Let k be an uncountable cardinal, let A be an unbounded subset of k, let v < Kk be a regular
cardinal, and let U(vg,v1) be a first order e-formula that remains true under restrictions. Then, the following
statements are equivalent for all v < X\ < k with A<7 = \:
(1) A is UY-Ramsey.
(2) For any regular cardinal @ > k and many (A, k)-models M < H(0) closed under <-y-sequences, there
exists a uniform, k-amenable, M-normal M -ultrafilter U on k such that A € U and U(M,U) holds.
(8) For any regular cardinal 0 > k, and many (A, k)-models M < H(0) closed under <+-sequences, there
exists a K-powerset preserving ri-embedding j : M — (N, en) such that k™ ey j(A) and V(M,U;)
holds.

Proof. The implication from (1) to (2) is trivial in case A = k. Given A < k, pick a (\, k)-model (M, U) <
(M,U) closed under < y-sequences and containing = and A as elements. Then, by elementarity, and since
VU remains true under restrictions, (M, U) is as desired. The equivalence between (2) and (3) follows from
Proposition 3.1} (5), Corollary 3.7} and Lemma[3.10} Next, note that Lemma [4.5|shows that (3) implies that

k is inaccessible. The implication from (2) to (1) is again trivial in case A = k. For smaller A, note that the
size of M did not matter in the proof of Lemma 2), as long as v+ 1 C M. This shows that (2) implies
A to have the WY-filter property. Applying Lemma [9.5/(1) then yields A to be ¥7-Ramsey. O

Let us now introduce ideals that are canonically induced by our Ramsey-like cardinals.

Definition 9.10. Let ¥(vg,v1) be a first order e-formula and let x be a ¥Y-Ramsey cardinal with § > &
regular and a < k regular and infinite. We define the W9 -Ramsey ideal on x to be the set

10 (k) = {AC k| A isnot U -Ramsey}.

If & = k, the above ideals are particular instances of the ideals defined in Definition : Given an
ordinal a and a property ¥(M,U) of models M and M-ultrafilters U, if ¥, (M,U) is the induced property
defined in the discussion following Definition (9.4} then If = I¥g(x) holds for every W§-Ramsey cardinal
k. In particular, the discussion following Definition [[.3] and Lemma [2:2] show that these ideals are proper
and normal. Similarly, if we further strengthen the property ¥, (M, U) to obtain a property W} (M, U) that
also demands the model M to be an elementary submodel of H(x™), then ID, = I\IIZJr (k) holds for every

\Ilf;r -Ramsey cardinal x, and hence these ideals are also proper and normal.
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Proposition 9.11. Let U(vg,v1) and Q(vg,v1) be first order e-formulas that remain true under restrictions,
such that Q implies ¥, let a < B < Kk be regular infinite cardinals, let 9 > 6 > k be regular cardinals, and
let k be an Qg—Ramsey cardinal. Then, TWY (k) C IQz(m).

Proof. Assume that A ¢ IQg(/@). Then, for any x € H(0) U P(k), there is a weak k-model M, elementary
in H(¢¥) in case ¥ > k, and transitive in case ¥ = &, that is closed under <g-sequences, with z € M,
with § € M in case 6 < 9, and with a uniform, k-amenable, M-normal M-ultrafilter U on k with A € U,
such that Q(M,U) holds. But then, using that  implies ¥, which remains true under restrictions, either
M N H(#) (in case @ > r) or M NH(x™) (in case § = k) witnesses, together with U, that A ¢ 1Y (k). O

If x is a UY-Ramsey cardinal, it follows by a trivial cardinality argument that the ideals I¥? on  stabilize
for sufficiently large HH We can thus make the following definition, that corresponds to Definition .

Definition 9.12. Let U(vg,v1) be a first order e-formula that remains true under restrictions and let x be
a UY-Ramsey cardinal with o < k regular and infinite. We define the WY -Ramsey ideal on k to be the set

WY (k) = U{I\I/Z(li) | 0 > K regular}.

Given an ordinal a and a property W(M,U) of models M and M-ultrafilters U, if ¥, (M,U) is the
induced property defined in the discussion following Definition [0.4] then the above remarks directly show
that I’i@a = I¥Y () holds for all ¥¥-Ramsey cardinals . In particular, these ideals are normal and proper.
In addition, Proposition shows that, for properties ¥ and {2 that remain true under restrictions such
that  implies ¥, and for regular infinite cardinals o < 8 < &, if K is Qg-Ramsey, then IWY (k) C IQZ(,%).

In the remainder of this section, we prove results concerning the relations of the ideals produced by
Definition [0.10] and Definition [0.12] The following sets will be central for this analysis. Given regular
cardinals o < k and a first order e-formula ¥ (vg, v1), we make the following definitions:

NU% (k) ={y € (o, k) | v is not a U)-Ramsey cardinal}.
NWE (k) ={y <k | v is not a W)-Ramsey cardinal}.

. N\I’ZJr(fﬁ) = {ye (oK) |7visnota \I/;Vt+ -Ramsey cardinal}.
e NUX' (k) = {y<k|~7isnota \I/?{+ -Ramsey cardinal}.

The following lemmas now show that under mild assumptions on the formula ¥, the ¥%-Ramsey, \I/'gf—
Ramsey and U7 -Ramsey cardinals are strictly increasing in terms of consistency strength, thus strengthening
and generalizing [16, Proposition 5.2 and Proposition 5.3] and [9, Theorem 3.14]. They also show that if
is a UY-Ramsey cardinal, then I¥Y (k) 2 TU% (k).

Lemma 9.13. Let U (v, v1) be a first order e-formula that remains true under restrictions, let « be a regular
cardinal, and let Kk > o be a ‘112+ -Ramsey cardinal such that W is absolute between V and H(k™). Then, the
following statements hold true.

(1) NU~ (k) € TU5" (k).
(2) NUE (k) ¢ TS (k).

Proof. (1) Assume that A = NU¥ (k) ¢ I\Ilg+ (k). Then, there is a weak xk-model M < H(k") and a k-
powerset preserving s-embedding j : M — (N, ey) such that A € M and s ey j(A). First assume that

a < k. Then our assumptions on ¥ imply that the set A consists of all v in (¢, k) that are not ¥ -Ramsey

N

cardinals in M. Therefore, k" is not a \Il?(z)—Ramsey cardinal in (N, en). However, since j is k-powerset

preserving and M is an elementary submodel of H(k™), we can use the isomorphism provided by Lemma

to conclude that &V is @?&)—Ramsey in (N,en), a contradiction. In the other case, if & = k, then

our assumptions ensure that A consists of all v < x that are not ¥J-Ramsey cardinals in M and hence kN

is not a \II:Z—Ramsey cardinal in (N, ey). As above, we can use Lemma to derive a contradiction.
(2) First, assume that k > « and & is the least \Ilf—Ramsey cardinal 7 > « with the property that

NUY' () € WY (7) C I\IIZ+ (7). By Definition Proposition (5) and Corollary there is a weak -
model M < H(x"), and a k-powerset preserving s-embedding j : M — (N, ey) with k¥ ¢y j(N\IJg+ ().
N

Therefore, kV is a \Ilg.'({a))Jr—Ramsey cardinal below j(x) in (N, en), and hence, by minimality, it follows that

N\I,(”N)Jr

(@)
+ K c . . (N

NU%" (k) and 1% (k) correctly. In this situation, Lemma shows that NW )

J

(kM) ¢ I\II?(IL)(,%N) holds in this model. By our assumptions on ¥, the model M computes both

)* wN

(kM) € I\I/j(a)(mN)
holds in (N, en), a contradiction. O

211, general, we do not know of any way to find a non-trivial bound on what a sufficiently large 6 would be relative to k.
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The next result shows that, in many important cases, ideals of the form I\Il’;+ (k) are proper subsets of
the corresponding ideals WY (k).

Lemma 9.14. Let ¥(vg,v1) be a first order e-formula that remains true under restrictions and is absolute
between V and H(0) for sufficiently large reqular cardinals 0. If k is a WY -Ramsey cardinal for some reqular

a < K, then N\I/g+ (k) € WY (k).

Proof. Assume that B = NU~' (k) ¢ IUY (k). Let 6 > (2%)F be a sufficiently large regular cardinal. Then,
there is a weak x-model M < H(6) with a k-powerset preserving x-embedding j : M — (N, eny) such that
kN en j(B). Since our assumption on ¥ imply that M computes N\I'SJr (k) correctly, the model i\f JEN)

Ny+
thinks that ~~ is not \Ilg.?a)) -Ramsey. However, by x-powerset preservation and by Lemma (12), the
(xN

+
j(a)) -Ramsey, a contradiction. 0

model (N, ey) also thinks that < is ¥

Lemma 9.15. Let W(M,U) be a first order property such that whenever k is an infinite cardinal and My,
My, Uy and Uy satisfy the properties listed below, then U(My,Ur) holds.

M; is a transitive weak k-model for all i < 2.

U; is a uniform, k-amenable and M;-normal M;-ultrafilter on k for all i < 2.

U (Mo, Uy) holds and My, U, € H(kt)Mo,

Some surjection s : Kk — V; is an element of M.

Y (ij5, (My), jifr, (Ur)) holds in (Ult(Mo, Us), €v,), where jf is the e-isomorphism induced by the
ultrapower embedding ju,: My — Ult(My, Up) and by s, as in Lemma (@

Then, if k is a WP -Ramsey cardinal with o < k and ¥ € {k, kT }, then NUY (k) ¢ T¥Y (k).

Proof. First, assume that there is an ordinal @ and a ¥%-Ramsey cardinal k > o with NU% (k) € IU% (k).
Let x be minimal with this property and pick z C k witnessing that NU% (k) is not ¥%-Ramsey. Pick
a surjection s: Kk — V,. Since k is U£-Ramsey, there is a weak x-model My closed under <a-sequences
and a uniform, k-amenable My-normal My-ultrafilter Uy such that x,s € My and ¥(My,U) holds. If
a < K, then we set 8 = jy,(a). In the other case, if a« = k, then we set 8 = V0. Then %0 is a \I/gUO—
Ramsey cardinal with N5 ° (k7o) ¢ 105" (+7°) in Ult(Mo, Up). Hence, in Ult(M,Up), there is a weak
xkYo-model M closed under <pj-sequences and a uniform, xY°-amenable M-normal M-ultrafilter U such
that j; (z) € M, N\IIEUO (k%) € U and ¥(M,U) holds. Pick My,U; € H(x")Mo with j5; (M;) = M and
jl*Jo (U1) = U. Then M is a weak k-model closed under <a-sequences, U; is a uniform, k-amenable and
M;i-normal Mi-ultrafilter on x and our assumptions on ¥ imply that ¥(M;y, U;) holds. Moreover, we have
r € M, and, since ji; (NV (k) = (N\II’gU0 (kY0))N, we know that NW% (k) € U;. But this shows that M,
and Uy witness that NU% (k) ¢ I0% (), a contradiction.

The case ¥ = kT works analogously, using the observation that, if My < H(k™) is a weak x-model,
Up is a uniform, x-amenable and My-normal My-ultrafilter on x, M < H((kY0)") is a weak kY°-model in
Ult(Mo, Up) and My € H(x™)Mo with jj, (My) = M, then M is a weak x-model with M; < H(k™). O

The above lemma directly yields the related parts of Theorem 7 and @D It also provides
the corresponding statements for S-iterable, super weakly Ramsey and super Ramsey cardinals.

Corollary 9.16. Let o < k <9 be cardinals with 9 € {r, k" }.
(1) If k is a T?-Ramsey cardinal, then NT? (k) ¢ IT? (k).
(2) If k is a wE’-Ramsey cardinal, then Nwf® (k) ¢ Twf’ (k).
(8) If k is a wfBY-Ramsey cardinal with B < w, then NwfBY (k) ¢ IwfBY (k). O

10. THE BOTTOM OF THE RAMSEY-LIKE HIERARCHY

The weakest principles that can be extracted from the general definitions of the previous section are the
T/ -Ramsey and the T$+—Ramsey cardinals. It already follows from Theorem that if x is T -Ramsey,
then « is weakly compact. Moerover, it is trivial to check that whenever « is a T{-Ramsey cardinal, then
ITf (k), the smallest of our Ramsey-like ideals, is a superset of the ideal If.

Lemma 10.1. If x is a TE-Ramsey cardinal, then 15, U {NE} C ITE(k), NTE (k) ¢ ITE (k) and 1, €
IT" ().

Proof. First, let A C & be T%-Ramsey and fix an A-list d = (d, | & € A). Pick a weak k-model M with de M
and a k-amenable, M-normal M-ultrafilter U on k with A € U. Set N = Ult(M,U). Since jy is k-powerset

preserving, the set D = {a < & | ju (@) en (ju (d) v )V} is an element of M. Then {o € A | DNa=d,} € U
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and, since U is uniform, we can conclude that A is weakly ineffable. These computations show that x is
weakly ineffable with 1¥,. C IT% (k). Moreover, Corollary directly shows that NT® ¢ IT% (k).

Next, assume that N, ¢ IT!Z(x). Then, there is a transitive weak x-model M and a k-amenable, M-
normal M-ultrafilter U on x such that N}, € U. Now, for every k-size collection of subsets of x in M, we
can use U to find a normal ultrafilter on that collection in M. In particular, s is ineffable in M (see [,
Corollary 1.3.1] or Theorem [8.1). By the x-powerset preservation of the embedding jy, the fact that the
ineffability of  is a property of V., implies that sV is ineffable in (Ult(M,U),ey). On the other hand,
we have kY ey jiy(NE), yielding that Y is not ineffable in Ult(M, U), a contradiction.

Finally, if & is not ineffable, then the remarks following Definition show that x € I, \ IT% (k). Hence,
we may assume that r is ineffable. Since TZ-Ramseyness is a II3-property and the classical argument of
Jensen and Kunen in [I8] proving the IIi-indescribability of ineffable cardinals shows that, given a II3-
statement 2 that holds in V,, the set of all non-reflection points of 2 in k is not ineffable, we can use

Theorem [8.1| to conclude that NT% € I%2 \ IT? (k). O
Proposition 10.2. If & is T -Ramsey, then I, C IT5" (k) and NTS' (k) ¢ ITS" (k).

Proof. The first statement is proven exactly as the related part of Lemma [10.1] additionally using that, by
elementarity, every element of U is stationary. The second statement follows from Corollary [9.16] a

11. COMPLETELY INEFFABLE CARDINALS
We start by recalling the definition of complete ineffability.

Definition 11.1. Let x be an uncountable regular cardinal.

(1) A nonempty collection S C P(k) is a stationary class if the following statements hold:
(a) Every A € S is a stationary subset of &.
(b) If Ae S and A C B C k, then B € S.

(2) A subset A of k is completely ineffable if there is a stationary class S C P(k) with A € § and the
property that for every S € S and every function c : [S]? — 2, there is H € S that is homogeneous
for c.

(3) The cardinal x is completely ineffable if the set k is completely ineffable in the above sense.

It is trivial to check that if there exists a stationary class S C P(k) witnessing the complete ineffability of
K, then the union of all such stationary classes is again a stationary class witnessing the complete ineffability
of k, and it is therefore the unique mazimal stationary class that does so. From [19] Corollary 3] and its proof,
and from the definition of the completely ineffable ideal in [20], it is immediate that the completely ineffable
ideal is the complement of this maximal stationary class. We will need the following easy observation.

Observation 11.2. If A C x and S C P(k) is a stationary class witnessing that A is completely ineffable,
then S is closed under intersections with closed unbounded subsets of k.

Proof. Let B € S and let C be a club subset of x. Let ¢ : [B]> — 2 by defined by setting c({a, 8}) = 1
if and only if both a and 8 are elements of C. Now, if H C B is a homogeneous set for ¢, then either H
is non-stationary, or H C C. But then, since H € S has to be stationary, it follows that H C C and thus
BNnCeS. O

The following lemma is an easy adaption of Kunen’s result that ineffability can be characterized either in
terms of homogeneous sets for colourings or for lists (see [I8, Theorem 4])@ It is probably a folklore result,
and its substantial direction is implicit in the proof of [27, Theorem 3.12].

Lemma 11.3. Assume that S C P(k) is a stationary class, and that A C k.
(1) If S witnesses that A is completely ineffable, then S witnesses A to be completely ineffable with
respect to lists, in the sense that A € S and for every S € S, and every S-list d= (do | € €8),
there is K € S with do = dg Na for all o, f € K with a < .
(2) If X\ {0} € S holds for all X € S, and S witnesses A to be completely ineffable with respect to lists,
then S witnesses A to be completely ineffable.

Proof. First, assume that the stationary class S witnesses that A C k is completely ineffable. Pick S € S,
and an S-list d = (d, | @ € ). Order the bounded subsets of « by letting a < b if there is an o < x such
that aNa=bNa and « € b\ aﬁ Define a colouring c : [k]?> — 2 by setting, for a < 8, c({a, 3}) = 1 in
case do < dg or d, = dg, and setting c({a, 5}) = 0 otherwise. Let H € S be homogeneous for ¢. Since we

22[18, Theorem 4] also provides a characterization of ineffability in terms of regressive colourings. An analogous result would
be possible for complete ineffability, however we do not need this in our paper, and hence omitted to present it.
23Note that for bounded subsets a and b of K, either a < b, or b < a, or a = b holds.
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cannot have a descending k-sequence in the ordering <, it follows that ¢ takes constant value 1 on H. If the
sequence (d, | @ € H) is eventually constant, then some final segment K of H is as desired. Otherwise, for
every ¢ < k, consider the sequence (d, N¢ | a € H, a > &). Since this is a weakly <-increasing k-sequence
of subsets of &, we can define a function f : Kk — k by letting f(£) be the minimal > £ such that
do NE =dgNE whenever o, 5 € H with n < a < . Then, f is a continuous, increasing function that maps
k cofinally into . Let C' be the closed unbounded subset of x of fixed points of f. Whenever ( € CNH, we
have, in particular, that d: = d, N ¢ for every a > ¢ in H. By Observation we have K =CNHE€S,
and hence S witnesses A to be completely ineffable with respect to lists, as desired.

In the other direction, let S be a stationary class with X \ {0} € S for all X € S such that S witnesses A
to be completely ineffable with respect to lists. Pick S € S, and a colouring ¢ : [S]?> — 2. Define an S-list
d = (dy | @ € S) by setting do, = {8 < a | ¢({a, B}) = 1}. By our assumption, we find H € S such that
do = dg N whenever a < 8 are both elements of H. Let f : H — 2 be defined by setting f(a) = 1 if and
only if & € dg for some (equivalently, for all) 5 > « in H. Now, define an H-list € = (e, | « € H) by setting
eo = a in case f(a) = 1, and setting e, = @ otherwise. By our assumption, we find K € § such that f is
homogeneous on K, and such that 0 ¢ K. Assume that f takes value ¢ < 2 on K. Then, if a < 8 are both
elements of K, our definitions yield that ¢({c, 8}) =i, i.e. K € S is homogeneous for ¢, as desired. O

The following result is the crucial link connecting completely ineffable and Ramsey-like cardinals, and
in particular implies Theorem , by the above and by Lemma In particular, it shows that a
cardinal is completely ineffable if and only if it is TY-Ramsey. Its proof is a generalization, adaption and
simplification of [27, Theorem 3.12].

Theorem 11.4. Given an uncountable reqular cardinal k, a subset A of k is completely ineffable if and
only if k = k<% holds and A has the T -filter property.

Proof. First, assume that A has the T7-filter property, and x = k<% holds. Let § > k be regular. By
Lemma Ais Tg—Ramsey. Let S denote the collection of all subsets of x which are TY-Ramsey. Then,
A € S and S is a stationary class. Pick X € S and ¢ : [X]? — 2. Pick M < H(¢) with ¢ € M, and an
M-normal, x-amenable M-ultrafilter U on x with X € U. Let ¥ = (Y, | a € X) be defined by setting
Yo = {8 > a| c({a,8}) = 0}. Define Z = (Z, | o € X) by setting Z, = Y, in case Y, € U, and let
Zy = X \ 'Y, € U otherwise. Then, Z C U implies AZ € U. Let H € U either be AZN{a e X | Y, € U}
or AZN{a € X | Y, ¢ U}. Then, it is easy to check that H C X is homogeneous for ¢. Moreover, we have
H € U C S and hence S is a stationary class witnessing that A is completely ineffable.

For the reverse direction, assume that A C k is completely ineffable, as witnessed by the stationary class
S. Let 6 > & be a regular cardinal. We describe a strategy for the Judge in the game GT? (A). As required
by the rules of this game, the Challenger and the Judge take turns playing k-models M, and M,,-ultrafilters
U,. We let the Judge also pick, in each step n < w, an enumeration Xn = <X§L | £ < k) of P(k)N M, and a
set H, € S such that the following hold (the first two items are required by the rules of the game GT? (A)):

o Ac Uy,

e If n>0,thenU, DU,_1 and H,, C H,,_1,

o X{ €U, if and only if v € X for all { <~ € Hy, if and only if v € X for some { < € H,.
Assume that we have done this for m < n. We want to define the above objects at stage n. For the sake of
a uniform argument when n =0, let H_; = A, and let C_; = k. For a € H,,_1, define r, C « by letting
£ €ry if and only if a € Xg. By Lemma we find a stationary set H,, C H,_1 in & on which the r,’s
cohere, that is, for every a < 8 in H,,, ro = rgMNo. But this means that fora < 8 € H,,and { < o, @ € X¢
if and only if § € X{. This shows that if we now define U, using H,, as required above, it will satisfy the
required equivalence. In particular, this implies that H, C AU, making U,, a normal M,-measure.

It remains to show that U,_1 C U, in case n > 0. Thus, let X € U,,_1 be given, say X = X! = Xgil.
By the definition of U, _1, every ( < v € H,_1 is an element of X. In particular, we find some such v > ¢
in H,, witnessing that X € U, as desired. (]

We are now ready to generalize Kleinberg’s result from [23]. Given the above, the following is now an
easy consequence of Theorem and in particular implies Theorem .

Theorem 11.5. Given an uncountable cardinal k, the following statements are equivalent for all regular
0 > 2% and all A < k:

(1) The cardinal k is completely ineffable.

(2) For many (A, k)-models M < H(0), there exists a uniform, rk-amenable M-normal M -ultrafilter on
K.

(8) For many (A, k)-models M < H(0), there exists a k-powerset preserving k-embedding j : M —
<N7 6N> :
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Proof. That (1) implies (2) is immediate from Theorem and Theorem m The equivalence between
(2) and (3) follows from Corollary Now, assume that (2) holds. Then Lemma implies that « is
inaccessible. Moreover, observe that the proof of the implication from (2) to (1) in Theorem [9.9| shows that
% has the Tff—ﬁlter property. By Lemma it follows that k is completely ineffable. O

In the remainder of this section, we verify Theorem .
Lemma 11.6. If k is completely ineffable, then I, U{NfL} C 1% .. and N, & I~

<cie <cie”

Proof. The first statement is immediate from Lemma [T0.1] Proposition and Proposition
Assume for a contradiction that N7, € I% ., and assume that  is the least completely ineffable cardinal
with this property. Then there exists a regular cardinal 6 > &, a weak x-model M < H(#) with H(x) € M
and a k-amenable, M-normal M-ultrafilter U with N%,_ ¢ U. It follows that kY is completely ineffable in
Ult(M, U), however N, ¢ Iiiie in Ult(M, U) by elementarity of ji and by our minimality assumption on k.
Let S be the maximal stationary class witnessing that xY is completely ineffable in Ult(M,U), that is, the
complement of I'f;;-e in Ult(M,U). The iterative construction of the maximal stationary class 7 witnessing
that k is completely ineffable in M (see [23]) together with the x-powerset preservation of jy easily yields
that the jy-preimage of the collection of elements of S in Ult(M, U) is contained in 7. However, this yields
that N, € 7, and since T is the complement of 1%, ;. in M, this is clearly a contradiction. g
12. WEAKLY RAMSEY CARDINALS, RAMSEY CARDINALS AND INEFFABLY RAMSEY CARDINALS
We start this section by proving several statements from Theorem .

Lemma 12.1. If  is a weakly Ramsey cardinal, then Iy, U{N% } CI¢ o NE o 15 0 and I, 15 .

cie
Proof. First, note that, since the properties T and wf remain true under restrictions, we can combine
Lemma [8.2] Proposition [0.11] and Lemma to conclude that

we € Thie € ITG(k) C Iwfi(k) = Igg.
Moreover, the proof of [9, Theorem 3.7] directly shows that N¥,, € 1% .. In addition, Corollary
directly implies that

Nor = Nwfi(k) ¢ Iwfi(r) = IgR.
Finally, since weak Ramseyness is a II3-property, the argument used in the last part of the proof of Lemma
also shows that I¥, ¢ 17 .. O

€

In [9, Theorem 1.3] and [29, Theorem 5.1], isolating from folklore results (see for example [26]), Gitman,
Sharpe and Welch have shown that a cardinal x is Ramsey if and only if (in our notation) it is cc”-Ramsey.
In [3], Baumgartner introduced the notion of ineffably Ramsey cardinals.

Definition 12.2. A cardinal & is ineffably Ramsey if and only if every function ¢ : [k]<¥ — 2 has a
homogeneous set that is stationary in .

In [3], Baumgartner also introduced the Ramsey ideal and the ineffably Ramsey ideal at k, which can
be described as follows (see also [§]). A subset A C k is Ramsey if every regressive function function
¢ : [A]<¥ — k has a homogeneous set of size k. The Ramsey ideal on r is the collection of all subsets
of k that are not Ramsey. Moreover, a subset A C & is ineffably Ramsey if every regressive function
¢ : [A]<¥ — Kk has a homogeneous set that is stationary in x and the ineffably Ramsey ideal on k is the
collection of all subsets of x that are not ineffably Ramsey.

The same argument as for [5, Theorem 2.10] yields Item (1) of the following. A completely analogous
argument, replacing unboundedness by stationarity throughout, then verifies Item (2) below, showing in
particular that « is ineffably Ramsey if and only if it is sc;-Ramsey, yielding Theorem . Both items
below are in fact particular instances of [29, Theorem 3.3].

Proposition 12.3. (1) If k is a Ramsey cardinal, then I}, = Iccl (k) is the Ramsey ideal on k.
(2) If k is ineffably Ramsey, then 1f, = Iscl(k) is the ineffably Ramsey ideal on k.
Finally, using results from [8] and [23], we verify several statements from Theorem [L.F] (6) and (7).
Lemma 12.4. If  is a Ramsey cardinal, then N, ¢ 1% and 15,  T%.

e

Proof. The first statement follows directly from [, Theorem 4.5]. Since Ramseyness is a II3-property, the
argument used in the last part of the proof of Lemma also shows that I, ¢ I%. O

Lemma 12.5. If r is an ineffably Ramsey cardinal, then Ny ¢ 15, and 17 ;. € Ifp.
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Proof. The first statement again follows directly from [8, Theorem 4.5]. For the second statement, we may
assume that s is completely ineffable, because otherwise the remarks following Definition [I.3] show that
k €15, \ I5. Then the proof of [23, Theorem 4] shows that, given a ¥3-statement 2 that holds in V,,
the set of all non-reflection points of 2 in x is not completely ineffable. Since ineffable Ramseyness is
I13-definable, the results of Section [11| now show that Nf, € 1% .\ I%. O

<cie
13. AY-RAMSEY CARDINALS

In this short section, we provide the short and easy proof that — perhaps somewhat surprisingly — the
notions of sc”-Ramsey and AY-Ramsey cardinals are equivalentﬁ Together with Theorem this result
shows why AY-Ramseyness appears twice in Table |2} yielding Theorem , and in particular completes
the tables presented in our introductory section.

Proposition 13.1. Let x be a cardinal. Then k is sc¥-Ramsey if and only if r is AY -Ramsey.

Proof. Assume that & is sc?-Ramsey, and let A C x. Pick a sufficiently large regular cardinal 6, and let
My < H(6) with A € M be a weak k-model. Consider a run of the game Gsc? (x), in which the Challenger
starts by playing My. As the Challenger has no winning strategy in this game, there is a run of this game
which is won by the Judge. Let M = M, and F' = F,, be the final model and filter produced by this run. This
means that M < H(6) is a weak k-model with A € M, and that F is a k-amenable, M-normal and stationary-
complete M-ultrafilter. It is now easy to verify that the set (., AF;) \ AF is non-stationary: Assume
that for every 7 < w, the diagonal intersection of F; is taken using the enumeration F; = {ff* | o < x}, and
that the diagonal intersection of F is taken using the enumeration F' = {fa | a < x}, where f@#+m = f8
for every 8 < k and m < w. Then, if X denotes the closed unbounded set of multiples of w* (in the sense
of ordinal exponentiation) below &, it follows that X N (), ., AF;) = X N AF. Since any two diagonal
intersections of the same sets differ only on a non-stationary set, this suffices. Moreover, since AF; € F' for
all i < w, it follows that AF is stationary, for F' is stationary-complete. O

We want to close this section by mentioning that w;-Ramsey cardinals are limits of AY-Ramsey cardinals.
This (and the slightly stronger statement that we will actually mention below) is shown exactly as in [16]
Theorem 5.10], using Corollary

Proposition 13.2. N, € ITY, (k). O

14. STRONGLY RAMSEY AND SUPER RAMSEY CARDINALS

In this section, we prove several statements about strong and super Ramsey cardinals contained in
Theorem and @ We start by using ideals similar to the ones used in the proof of Lemma to
derive the following result.

Proposition 14.1. If k is a strongly Ramsey cardinal, then NTZ+(/£) € IT%(k) for all reqular o < k.

Proof. Pick a k-model M and a uniform M-ultrafilter U on & that is M-normal and x-amenable for M. Then
Ult(M, U) is well-founded and H(xkT)M = H(xT)VMU) ¢ Ult(M,U). Fix x € P(k)M. Using the closure
properties of M and the fact that jy is k-powerset preserving, we can construct a continuous sequence
(M; € H(kT)M | i < a™T) of elementary submodels of H(k*)M with z € My and <*M; U{M; NU} € M,
for all i < at. Set M, = M,+ and U, = U N M, € H(xt)™ C Ult(M,U). Our construction then ensures
that, in Ult(M,U), we have x € M, < H(x™) is a weak k-model closed under a-sequences and U, is a
uniform M,-ultrafilter that is M,-normal and k-amenable for M,. These computations show that  is a
T%"-Ramsey cardinal in Ult(M, U). O

The next result yields several statements from Theorem [L.5] (8).
Lemma 14.2. If s is a strongly Ramsey cardinal, then 15 U {N",} C 1% o, N5, o ¢ 1% and I € 1%, 5.
Proof. By definition, we have It = Iccli (k) C Iecli (k) = ITE(k) = 1%, 5. Corollary shows that
Nt = NTi(k) ¢ ITS(R) = Uip.
. + . . e
Next, since T¢, -Ramsey cardinals » are ineffably Ramsey, we can use Proposition to show that

Nfg C NT[Z;r (k) € I, 5. Finally, rephrasing the <x-closure of a model M in a careful way, it is easy to see
that a cardinal & is strongly Ramsey if and only if for all # C k and all P C P(k), either P is not equal to
the set of all bounded subsets of k or there exists a transitive weak k-model M with z € M, a surjection
s:k — M and a uniform M-ultrafilter U such that s[p] € M for every p € P, and U is k-amenable for M
and M-normal. Since this equivalence shows that strong Ramseyness is a II3-property, the argument used
in the last part of the proof of Lemma can be modified to show that I, & 17, . O

241 particular, this contrasts the hierarchy of large cardinals treated in [27] Section 3].
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The following result will be useful below.
Proposition 14.3. Ifk is a TfJ:r -Ramsey cardinal, then Iscl (k) C ITZT(/{).

Proof. Let M < H(x™) be a weak s-model closed under countable sequences, let U be a uniform M-
ultrafilter that is x-amenable for M and M-normal, let (X,, | n < w) be a sequence of elements of U and
set X =(,co, Xn. Then X € U, X is stationary in M, and elementarity implies that X is stationary in V.
This shows that that sc(M, U) holds. O

The next lemma proves several statements from Theorem @D As mentioned earlier, the argument

showing that I7% ;. is not a subset of I, » is due to Victoria Gitman.

<cie
Lemma 14.4. If k is a super Ramsey cardinal, then Ifp U 1%, U {N% 5} C 15, 5, N - & 17 . and
1% ie € our-
Proof. Let k be a super Ramsey cardinal. By definition, we have
e = ITi(R) C ITY (5) = Type
Next, Proposition [[4.3] allows us to show that
Iy = Isci(k) C ITS (k) C ITE (k) = 155

Moreover, Lemma directly shows that N%,, = NT\(k) € IT: (k) = I%,r- Corollary now
allows us to conclude that

N = NI (v) ¢ ITY (5) = Iyp.
Finally, we show that I% ;. € I? .. In the following, we may assume £ to be completely ineffable, for
otherwise k € 1%, \ I¥, 5. We want to show that N% , € I% ;. holds under this additional assumption.
Assume, towards a contradiction, that this is not the case, and pick a sufficiently large regular cardinal 6,
a weak k-model M < H(0), and a k-powerset preserving k-embedding j : M — (N, ey) such that & is
not super Ramsey in (N, ey ). However, since the embedding j is k-powerset preserving, this implies that
is not super Ramsey in M, and thus by elementarity of M, k is not super Ramsey in V, which yields our
desired contradiction. (]

15. LOCALLY MEASURABLE CARDINALS

In this section, we prove a few results about locally measurable cardinals that allow us to compare these
cardinals and their ideals to the ones studied above, yielding several statements from Theorem .

Proposition 15.1. If x is locally measurable, then Nji ¢ 1% = and If, € 17, ..

lms ms e

Proof. As noted in Section [0} if we set ¥ = W,,,, then local measurability coincides with WU%-Ramseyness
and hence NJi == NU¥ (k) as well as I, , = I¥[ (k). Since ¥ satisfies the assumptions of Lemma we
can use the lemma to conclude that NU” (k) ¢ I¥” (k). Next, since local measurability is a II3-property, we

can modify the proof of Lemma to show that If, ¢ If . O
Lemma 15.2. If & is a locally measurable cardinal, then x is strongly Ramsey and 15, C 17 ..

Proof. Pick A € P(k)\I,, and some x C k. Then, there is a transitive weak x-model M and an M-normal
M-ultrafilter U such that 2, H(k),U € M and A € U. But then, U € M = ZFC™ implies that P (k)™ € M,
and hence H(kT)™ € M. Then, M contains a continuous sequence (M; | i < k) of elementary submodels
of H(k)M with x, 2, A € My and (<*M;)™ U{M; NU} C M;,, for all i < k. By construction, the model
M, has cardinality x in M and, since H(x) C M, we know that <*M, C M. But this implies that M, is a
k-model. Since our construction also ensures that U is M,-normal and k-amenable for M, , we can conclude
that A ¢ I7, . O

The following result shows that locally measurable cardinals are consistency-wise strictly above all the
large cardinals mentioned in Table [2, noting that AY-Ramsey cardinals are implication-wise stronger than
all these large cardinal notions.

Theorem 15.3. If k is locally measurable, then NAY € 1% .

Proof. Assume that x is locally measurable. Let M be a transitive weak k-model with V, € M, let U be an
M-normal M-ultrafilter with U € M, let § > & be a regular cardinal in Ult(M, U) and let = € H(§)V*(M.U)
Using the fact that U is a normal ultrafilter on k in M and Ult(M, U) can be identified with the ultrapower
Ult(M,U)M of M by U constructed in M, we know that Ult(M,U) is closed under s-sequences in M,
and we can find an increasing continuous sequence (M; | i < k) of weak x-models in Ult(M,U) with the
properties that @ € My, that M; < H(0)V"(MU) "and that M;~* U {M; NU} C M;;, for all i < k. Then,
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r € M, < H(O)V™MU) and our construction ensures that U, = U N M, € Ult(M,U) is a k-amenable
M-ultrafilter in Ult(M,U). Moreover, since U is a normal ultrafilter in M, the filter U, is normal in
Ult(M,U). These computations show that x is AY-Ramsey in Ult(M,U), and therefore NAY ¢ U. This
allows us to conclude that the set NAY is contained in I%,,. d

Note that AY-Ramsey cardinals are in particular super Ramsey, and therefore the above theorem provides
a proof for the statement N7 , € I - from Theorem (o).

16. THE MEASURABLE IDEAL

We close our paper with the investigation of the ideal induced by the property ¥,,s(M, U) with respect to
Scheme [A] and Scheme [C] and its relations with the ideals studied above. We start by verifying Theorem
and Theorem , and then make some further observations concerning this ideal and its induced
partial order P (k) /1%

<ms*

K

fms 0nd this ideal is equal to the complement of

Lemma 16.1. If & is a measurable cardinal, then I35 =1
the union of all normal ultrafilters on k.

Proof. First, if A C k with A ¢ I55 N5, ., then there is a regular cardinal # > (2%)*, an infinite cardinal
A < Kk, aweak (A, k)-model M < H(f) with A € M and an M-ultrafilter U on x with A € U and U,,,,(M,U).
Then U is M-normal and U = F'N M for some F' in M. Therefore elementarity implies that F' is a normal
ultrafilter on k with A € F. In the other direction, assume that A < k is an infinite cardinal, F' is a normal
ultrafilter on k and A € F. If § > (2%)" is regular and z € H(f), then we can pick a weak (), x)-model
M < H(0) with z, A,F € M. In this situation, it is easy to see that W,,(M,F N M) holds and hence

A¢ISHUlIx O

<ms*

Lemma 16.2. If x is measurable, then IAY (k) UTE, U {NF Y C 1%~ and N%,, ¢ 1%

lms <ms <ms"

Proof. Assume that A C & is not in I, .. Using Lemma we may pick a normal ultrafilter U on k
such that A € U. But then, A ¢ IAY(k) UI% _ is easily seen to be witnessed using suitable models M that
contain U as an element together with the M-ultrafilter U N M. Moreover, if U is a normal ultrafilter on
k, then V and Ult(V,U) contain the same weak k-models and hence « is locally measurable in Ult(V,U).
By Lemma this shows that NP e I Finally, assume that there is a measurable cardinal x with

Ilms <ms-*
Nr eI, ., and let £ be minimal with this property. By Lemma we can pick a normal ultrafilter U
on r with Kk \N¥ - € U. Set M = Ult(V,U). Then « is measurable in M. Moreover, since H(k*) C M, we
have N% . = (N& )M and therefore, the minimality of x implies that N%, ¢ (1%, )M. Again, by Lemma
this yields a normal ultrafilter F' on x in M with N¥ . € F. Since the closure properties of M ensure
that F' is a normal ultrafilter on s in V, another application of Lemma shows that N¥ ¢ 1% a

contradiction. O

Note that if x is measurable, then we have

I“.. C IAY(k) C IAY(k) C I%

<cie <ms

and

fr C© IAL (k) C IAY(k) C 1%,
In particular, the above lemma implies the related statements in Theorem .
Lemma [T6.1] shows that the ideal 1%, can consistently be the complement of a normal ultrafilter on
k. For example, this holds when there is such a filter U on & with the property that V = L[U] holds (see
[22, Corollary 20.11]). This shows that it is possible that the canonical partial order P(k)/I% . induced by
this ideal is atomic. In contrast, Theorem directly implies that for every inaccessible cardinal x, the
corresponding partial order P(k)/I5" is not atomic. The following results will allow us to show that, for
many of the large cardinal properties characterized in this paper that are weaker than measurability, their

corresponding ideals do not induce atomic quotient partial orders.

Lemma 16.3. Let I be a normal ideal on an uncountable reqular cardinal k.
(1) If [A]1 is an atom in the partial order P(k)/1, then Uy = {B C x | A\ B € 1} is a normal ultrafilter
on K containing A, with It NP(A) = Ua NP(A).
(2) If the partial order P(k)/1 is atomic, then k is a measurable cardinal with 1%, . C 1, and the ideal I
18 precipitous.

Proof. Assume that there is B € P(k) \ Ua with k\ B ¢ Us. Then AN B, A\ B € I'", and this implies
that [A N B]; and [A \ B]; are incompatible conditions in P(k)/I below [A]1, a contradiction. Since I is
a normal ideal on k, this shows that U, is a normal ultrafilter on x. Moreover, if B € Usq NP(A), then
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A\ B eTand A €I implies that B € I't. Finally, if B € P(A) \ U4, then the above computations show
that A\ B € Uga, and hence, B € I.

By , the existence of an atom in P(x)/I implies the measurability of k. Next, if A € I™, then our
assumption yields a B € I* NP(A) with the property that [B]; is an atom in P(x)/I and, by , the filter
Ugp witnesses that A is an element of (I%,)". This shows that I C (I%,,)* and therefore I, C I. Finally,
let o be a strategy for the Player Nonempty in the precipitous game Gr (see [I7, Lemma 22.21]), with the
property that whenever Player Empty plays A € I for their first move of the game, then Nonempty replies
by playing B € I* N'P(A) so that [B]; is an atom in P(x)/I. Now, if (4, | n <w) is a run of Gy in which
Nonempty played according to o, then the above arguments show that U = Uy, is a normal ultrafilter on &
with A, € U for all n < w. Hence, § # (1,,,, An € U. This shows that ¢ is a winning strategy for Nonempty
in Gr, and therefore that I is precipitous. O

Note that the above lemma allows us to derive the statements on the non-atomicity of the induced ideals
in all items of Theorem [I.5} For any large cardinal notion weaker than measurability that is mentioned in
the theorem, the results of Theorem that we have already verified show that their corresponding ideals
on a measurable cardinal  are strictly contained in the measurable ideal 1%, . on k. Together with Lemma
16.3](2), this shows that these ideals can never be atomic.

In the remainder of this section, we consider the question whether the partial order induced by the
measurable ideal has to be atomic. The following lemma gives a useful criterion for the atomicity of these
partial orders. Note that the assumption of the lemma is satisfied if the Mitchell order on the collection
of normal ultrafilters on the given measurable cardinal is linear. As noted in [I1], this statement holds in
all known canonical inner models for large cardinal hypotheses, and is expected to also be true in potential
canonical inner models for supercompact cardinals.

Lemma 16.4. If k is a measurable cardinal with the property that any set of pairwise incomparable elements
in the Mitchell ordering at k has size at most k, then the partial order P(k)/I%,,, is atomic.

Proof. Let I=1%, ., and fix A € I'T. Let F denote the collection of all normal ultrafilters on  that contain
A, and let Fy denote the set of all elements of F that are minimal in F with respect to the Mitchell ordering.
Note that any two elements of F{ are incomparable, hence Fy has size at most x by our assumption. Lemma

implies that Fq # (). We may thus pick some U € Fy.
Claim. There exists B € P(A) N U with the property that U is the unique element of Fo that contains B.

Proof of the Claim. We may assume that Fo # {U}. Let u: k — Fo \ {U} be a surjection. Given o < k&,
fix B, € U\ u(a). Define B = AN Ay<rBao € P(A)NU. Then, B ¢ u(a) for any a < &, for otherwise
we would have BN (o, k) € u(a), and hence B, € u(«) for some o < k, contradicting our assumption on
B.. 0

Claim. There exists C € P(B) NU with the property that U is the unique normal ultrafilter on x that
contains C.

Proof of the Claim. First, assume that U has Mitchell rank 0. Then
C = {a € B | a is not measurable} € P(B)NU.

Let U’ be a normal ultrafilter on x that contains C. Then A, B € U’ and U’ has Mitchell rank 0. This
implies U’ € Fy and, by the previous claim, we can conclude that U = U’.
Now, assume that U has Mitchell rank greater than 0. Define

C = {a € B | «a is measurable and BN« & F for every normal ultrafilter F on a}.
Then U € Fy implies that C € P(B) NU. Let U’ be a normal ultrafilter on & that contains C. Then
A,B e U and U’ € Fy. By the above claim, we know that U = U’ . O

Claim. The condition [C]y is an atom in the partial order P(k)/I.

Proof of the Claim. Pick D,E € It with [D]y, [E]t <p(.);1 [Cli. By Theorem , we can find normal
ultrafilters Uy and Uy on k with D € Uy and E € U;. Then C c UgNU,, U =Uy=U;, DNE cU CTIF,
and [D n E]I SP(N)/I [D][, [E]I O

This completes the proof of the lemma. O

In contrast to the situation studied in the above lemma, the next result shows that it is possible to
combine ideas from a classical construction of Kunen and Paris from [25] with results of Hamkins from [I3]

to obtain a measurable cardinal x with the property that the ideal I%,,,, induces an atomless partial order.
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Theorem 16.5. Let k be a measurable cardinal. Then, in a generic extension of the ground model V,
the cardinal k is measurable and the partial order P(k)/1%,,, is atomless. Moreover, if the ideal 1%, . is

<ms
precipitous in V, then the ideal 1%, . is precipitous in the given generic extension.

Proof. Let Fy denote the collection of all normal ultrafilters on & in V, let ¢ be Add(w, 1)-generic over V,
let F denote the collection of all normal ultrafilters on  in V]¢] and set A = k* = (kT)VIl. By the Lévy-
Solovay Theorem (see [22, Proposition 10.13]) and results of Hamkins (see [I3 Corollary 8 and Lemma 13]),
there is a bijection b : F — Fo with b(U) = U NP(x)V and

U= {AePk)V|3BebU)ADB}

foral U € F. Given U € F, let jy : Vje] — My = Ult(V|[c],U) denote the corresponding ultrapower
embedding. Work in V][], and let P denote the Easton-support product of all partial orders of the form
Add(vT,1) for some infinite cardinal v < k. Then P has cardinality s and satisfies the x-chain condition.
Let f be the function with domain x and f(«) = P [a, k) for all @ < k. Given U € F, set Ry = [f]v € My
and let I@U denote the <A-support product of A-many copies of Ry constructed in M. Then both Ry
and @U are <\-closed partial orders in My. Moreover, there is a canonical isomorphism between j (@) and
P x Ry in My. Since we have "My C My, the partial orders Ry and RU are also <A-closed in V[¢|. Finally,
let S denote the <A-support product of all partial orders of the form ]ﬁU with U € F.

Let G x H be (Iﬁ x S)-generic over Vie]. Given U € F and v < A, we let Hy - denote the filter induced by
H on the y-th factor of Ry, and we let ju~ : Vie,G] — My|G, Hy 4| denote the corresponding canonical
lifting of jir (see [7, Proposition 9.1]). Finally, we set I = (I%,, )VIeGHl,

Claim. P(x)VI*&H C Ve, G).

Proof of the Claim. Fix A € P(k)VI=C-H] Then, there is a P-nice name A in V]e, H] with A = AS. Since
S is <A-closed in V(¢], the abpve remarks imply that P satisfies the x-chain conditiop and has cardinality &
in V[c, H]. This shows that A is an element of V[c] and we can conclude that A = A% € V[e,G]. O

The above claim directly implies that if U € F and v < A, then
Uy = {AeP(r)" | K € ju,(4)}
is a normal ultrafilter on « in Vie, G, H].

Claim. Given U € F, v < A and a P-name A € Vic] for a subset of k, the set AC is an element of U,
if and only if there is a condition § € G, an element E of U and a function g € V|c| with domain k and

[9]v € Hy., such that for all o € E, we have supp(p) C a, g(a) € P | [a, k) and FU g(a) ”_]‘;[c] “Gaec A

Proof of the Claim. Let K denote the filter on jU(Iﬁ) induced by G x Hy,. First, assume that AG is an
element of U,. Then r € ju,(A%) = jy(A)X and there exists a condition ¢ in K with the property
that ¢ IF;V[’ZH;) “ke€ju(A)”. Set = | k € G and pick a function g in V[c] with domain « satisfying
U
9lv =4 [k, ju(k)) € Hy . Moreover, define
E = {a<k| supp(p) C o, g(a) € P [a, k), pUg(a) ”_]\g[c] “Ge A’} e V.

By Los’ Theorem, our assumptions on ¢ directly imply that E is an element of U. In the other direction, if
p, g and F satisfy the properties listed in the statement of the claim, then Los’ Theorem implies that

— My o« . A1) »

PUlglu I ) “ R € ju(A)

and hence ji - (A%) = ju(A)X € U,. O
Claim. If W is a normal ultrafilter on k in Vie, G, H], then W N V][] € F.

Proof of the Claim. Since the partial order P x § is o-closed in V[¢], the results of [I3] mentioned above
yield an ultrafilter U € F with W NV =b{U) =U N V. Since

U={AePxVd|3BewnV AC B}
is an ultrafilter in V[c], we can conclude that U = W N V|¢]. O
Claim. We have
I =PV JU, | UeF, v< )}
{AePr)VIe4 | 3B e (15,)VI9 A C B}.
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Proof of the Claim. Fix a P-name A € V|c] for a subset of x, and let O denote the set of all 5 in P with
Dy = {a<n|p " ag A} e F

First, assume that there is a p € G N O. Then A% N Dy = ) and, if W is a normal ultrafilter on « in
Vie,G, H], then Dy € W NV[c] € F and hence A® ¢ W. By Theorem , this shows that A® € I. In
particular, we have A ¢ U, for all U € F and v < A. Finally, these arguments also directly show that
A% C K\ Dy € (I )V holds.

Now, assume that G N O = (). Since O is an open subset of P in V[¢], there is fo € G with the property

that no condition below 7y in P is an element of O. Fix some condition (P1,51) below (pp, 1) in P xS.
Then, there is U € F with

E = {a < k| «ais inaccessible with Py I}‘g[c] “od A7} e U.
This allows us to find a sequence (g, € P | a < ) in V[d with ¢, <g 7 and G, H—g[c] “¢e A7 for all
a € E. Then the set supp(q, | @) is bounded in « all for & € E and hence, using the normality of U and
the inaccessibility of the elements of E, we find a condition p’ below p; in P and an element F of U with
F CFand g, | a=pforall a € F. Now, pick a function g € V[c] with domain « and g(a) = ¢, | [, k)
for all &« € F. Then p'U g(«) H—%{[C] “G@ e A” for all @ € F. Finally, fix v € X\ supp(5,(U)). Then, there
is a condition § below 8, in S with the property that v € supp(5(U)) and §(U)(v) = [¢]y. By genericity,
these computations allow us to find a condition (7, 5) in G x H with the property that there are U € F,
E €U, v < X and a function g € V]c] with domain x and [¢g]y = §(U)(y), such that for all « € E, we have

supp(p) C «, g(a) € P [a, k) and pU g(a) \FE\;[C] “& e A”. By a previous claim, this shows that A is an
element of U, and hence A® ¢ I. Finally, if B € (I%,,)VI) then s\ B € U C U, and hence A® ¢ B. O

Claim. In V[e, G, H], the partial order P(k)/1 is atomless.

Proof of the Claim. Pick a P-name A in V[c] with AS ¢ I. By the previous claim, there is U € F and
v < X\ with A¢ € U,. In this situation, earlier remarks show that we can find (py,5) € G x H, E € U
and a function g € V[¢] with domain x and [g]y = 5,(U)(y) such that supp(7o) € a, g(a) € P | [a, ) and
PoUg(a) ”_]\g[c] “@ € A” for all & € E. Fix a condition (f, 51) below (7o, 50) in PxS and § € A\supp(5,(U)).
Then, we can find F' € U and a function h € V|c] with domain & and [h]y = §1(U)(y) such that supp(p1) C «
and g(a) € P | (o, k) holds for all a € F. Since partial orders of the form P | [a, k) with o < & are atomless,
we can find functions h., hs € V[c] with domain x with the property that h.(a) and hs(«) are incompatible
conditions below h(a) in P | [, &) for all & € F. Then, there is a P-name B € V|c] with the property that
whenever K is P-generic over V[c], then BX = {a € A | hy(a) € K}. Then py U hy () H—;[C] “Ge BCA”
and pj U hs(a) IF%{[C] “@ e A\ B” for all « € EN F. Moreover, there is a condition (7, 5) below (7, 51)
in P x S with 5(U)(y) = [hy]v and S(U)() = [hs]y. A genericity argument now shows that there is
B € U, NP(A%) with the property that A%\ B € Us for some § < \. In particular, the condition [A%]; is
not an atom in the partial order P(x)/I in Vie, G, H]. O

Claim. If the ideal 1%, is precipitous in V, then the ideal 1 is precipitous in V]c, G, H].

<ms

Proof of the Claim. A result of Kakuda (see [2I, Theorem 1]) shows that the set
{AeP'H | 3B e 1%,V ACB)

)V[c

is a precipitous ideal on & in V[¢]. As observed above, this ideal is equal to (I I. Since the partial

<ms
order S is <A-closed in V[c], this shows that (I%,,,)V[? is also a precipitous ideal on # in V¢, H]. Since the
partial order P satisfies the s-chain condition in Vle, H], another application of Kakuda’s result shows that
the set {A € P(k)VIeC) | 3B € (1%,,,)VIY) A C B} is a precipitous ideal on x in V[c, G, H]. By an above

claim, this collection is equal to the ideal I. O

This completes the proof of the theorem. O

17. CONCLUDING REMARKS AND OPEN QUESTIONS

A further property of ultrafilters for small models that has been considered in the literature (see [27])
before, and also in an earlier version of the present paper, is that of genuinity. However, it turned out that
for weak k-models, by quite a short argument, this property is already equivalent to normality.
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Definition 17.1. Under the assumptions of Definition an M-ultrafilter U is genuine if either |U| = &
and A,«,U, is unbounded in & for every sequence (U, | o < k) of elements of U, or |U| < k and (U is
unbounded in k.

Proposition 17.2. If M is a weak x-model, then every genuine M -ultrafilter U on k is normal.

Proof. Assume, towards a contradiction, that U is not normal and pick a sequence (z, | @ < k) of elements
of U with the property that A,.z, is not stationary. Pick a closed unbounded subset C of k in the
complement of A,<xz, that consists only of limit ordinals. For each o € C, we let a® denote the least
element of C' above a. Now, let (y, | @ < k) denote the unique sequence of elements of U with z, = y,
for all @ € kK \ C and y, = x4 N [a*, k) for all @ € C. Since y, C z, for each o < &k, we clearly have
Ap<rVa C ApcrkZo and hence CNA,«xyo = 0. Moreover, if min(C) < 8 € k\ C and a = max(CNB) < S,
then 8 < a*, 8 ¢ y, and hence 8 ¢ A,<xYyo. But, this shows that Ay<xys € min(C) + 1, contradicting the
fact that U is genuine. O

Let us remark that in [27], no actual results about genuineness are presented, except for its Theorem
3.2 (ii), where it is claimed that by results from [I], it follows that a cardinal x is weakly ineffable if and
only if it is genuine 0-Ramsey. This claim contradicts our above observation, and by carefully checking
[1, Theorem 1.2.1], it is easy to see that the characterization of weak ineffability that is presented in [I]
does not correspond to the one claimed in [27, Theorem 3.2 (ii)]. The correct characterization of weak
ineffability induced by the results of [I] should state that an uncountable cardinal « is weakly ineffable if
and only if every subset of k is contained in a transitive weak k-model M with the property that for every
enumeration (z, | o < k) of P(x)M, there is an enumeration (y, | a < x) of an M-ultrafilter such that
Ap<kYa is unbounded in x and y, € {Za, K \ T} holds for all @ < k. Finally, let us remark that the above
observation answers [27, Question 6.2] positively (in a trivial way).

We end this paper by stating several questions motivated by the above results. First, note that, for many
large cardinal properties corresponding to some property of models and filters, we either were able to show
or it was known that the collection of all smaller cardinals without the given property is not contained in
the induced ideal. Since each of these arguments has its individual proof that relies on the specific large
cardinal property, it is natural to ask whether this conclusion holds true in general.

Question 17.3. Assume that Scheme [A| (respectively, Scheme @ or Scheme @ holds true for some large
cardinal property ® (k) and some property W(M,U) of models and filters. Does N% ¢ 13" (respectively,
Ny ¢ 1§ or N§ € 1% ) hold for every cardinal k with ®(k)?

For some large cardinal properties that can be characterized through Scheme [C] we were not able to
show that N§ ¢ 1% always holds. The difficulties in these arguments are mostly caused by the fact that
elementary submodels of some large H(#)* cannot be transferred between some weak x-model M and its
ultrapowers. In particular, the following statements are left open:

Question 17.4. (1) Does N ¢ 1% hold for every w-Ramsey cardinal k?
(2) Does NE ¢ 1%, 1 hold for every A} -Ramsey cardinal k?

For Ramsey-like cardinals characterized through the validity of Scheme |B] Lemma [9.15|is our main tool
to show that N ¢ I . Since we considered several properties of models and ultrafilters that are not absolute
between V and the corresponding ultrapowers, we naturally arrive at the following question:

Question 17.5. Let x be a VP -Ramsey cardinal with o < k, ¥ € {k,x+} and ¥ € {cc, A}. Is it true that
NI () ¢ 105 ()7

The individual results of our paper strongly support the idea that most natural large cardinal notions
below measurability canonically induce large cardinal ideals in a way that the relationship between those
ideals reflects the relationship between the corresponding large cardinal notions, as is examplified by the
results listed in Theorem [I.5] Therefore, it is natural to ask whether this can be done more generally:

Question 17.6. Given large cardinal properties ®¢ and ®1 and properties Yo and ¥, of models and filters
that are each connected through one of our characterization schemes in a canonical wayﬁ .

o ...is it true that ®o(k) provabdly implies ®1(k) for every cardinal k if and only if it can be proven
that for every cardinal k satisfying ®o(k), the ideal on k induced by ®1 and Uy is contained in the
ideal on k induced by ®g and Vo ?

25Note that, in the case of weak compactness, the results of Sections EI and (7] already show that these questions can have
negative answers by showing that the various characterizations of weak compactness induce both the bounded and the weakly
compact ideal. Therefore, it does not make sense to consider these questions for arbitrary instances of our characterization
schemes.
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e ...is it true that ®y has strictly larger consistency strength than ®1 if and only if it can be proven
that for every cardinal x satisfying ®o(k), the set Ng is an element of the ideal on r induced by o
and Wq?

In this paper, we introduced several new large cardinal concepts, whose relationships to each other are
only partially established.

For example, every AY-Ramsey cardinal is trivially cc?-Ramsey. However, we do not know if this
implication can be reversed, and, in the light of Proposition we ask the following:

Question 17.7. Are cc’-Ramseyness and AY -Ramseyness distinct large cardinal notions? Are their con-
sistency strengths distinct?

The following related question is also open:

Question 17.8. Are ineffable Ramseyness and A -Ramseyness distinct large cardinal notions? Are their
consistency strengths distinct? What is their relationship with cc?,-Ramsey cardinals?

The results of Section [16[show that the atomicity of partial orders of the form P(x)/I%,, . depends on the

<ms
ambient model of set theory. In all models constructed in this section however, the ideal 1%, . . is precipitous,

<ms
which motivates the following question@

K

Question 17.9. If k is a measurable cardinal, is the ideal 1%, precipitous?
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