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Abstract. Given an uncountable cardinal x with kK = k<" and 2" regular, we show

that there is a forcing that preserves cofinalities less than or equal to 2" and forces the
existence of a well-order of H(xk™) that is definable over (H(x™1), €) by a ¥1-formula with
parameters. This shows that, in contrast to the case “x = w”, the existence of a locally
definable well-order of H(x") of low complexity is consistent with failures of the GCH
at k. We also show that the forcing mentioned above introduces a Bernstein subset of "k
that is definable over (H(k"), €) by a A;-formula with parameters.

1. Introduction. A classical theorem of Mansfield (see [Man75] and
[KecT8]) says that the existence of a well-ordering of R that is a 33-subset
of R x R is equivalent to the statement that there is a real number x such
that all reals are contained in L[z]. Since a set of reals is a 3i-subset of R
if and only if it is definable over the structure (H(w1), €) by a X;-formula
with parameters (see [Jec03, Lemma 25.25]), Mansfield’s theorem has the
following corollary: if there is a well-ordering of H(w1) that is definable over
the structure (H(w1), €) by a X1-formula with parameters, then CH holds.
Note that such well-orders of H(w;) exist in L{z] whenever x € R.

It is natural to ask whether the above corollary generalizes to higher
cardinalities: if Kk is an uncountable cardinal, does the existence of a well-
ordering of H(k™) that is definable over the structure (H(k™), €) by a 31-
formula @ with parameters imply that the GCH holds at ¢ In this paper,
we provide a negative answer to this question by proving the following result.

THEOREM 1.1. Let k be an uncountable cardinal such that k = K~ and
2% is regularl@. Then there is a partial order P with the following properties:

2010 Mathematics Subject Classification: 03E35, 03EA47.
Key words and phrases: definable well-orders, failures of the GCH, forcing.

(*) Note that every ¥,-definable well-order < is automatically A, -definable, because
x < y holds if and only if x # y and y £ .

(?) Note that every uncountable cardinal x with x = x<"

is regular.

(1]
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(i) P is <k-closed, and forcing with P preserves cofinalities less than or
equal to 2% and the value of 2%.

(ii) If G is P-generic over the ground model V, then there is a well-
ordering of H(kT)VIC that is definable over (H(kT)VIC] €) by a ;-
formula with parameters.

In order to motivate our construction of a forcing with the above prop-
erties, we give a brief history of results that allow us to obtain definable
well-orders of H(k™) of low complexity by forcing when & is an uncountable
cardinal with k = k<*. The following theorem is due to the second author.
Note that we use “x to denote the set of all functions from & to x, and *2 to
denote the set of all such functions whose range is a subset of {0, 1}.

THEOREM 1.2 ([Licl2) Theorem 1.5]). If k is an uncountable cardinal
with k = k<% and A 1is a subset of "k, then there is a <k-closed partial order
P(A) such that P(A) C H(k™"), P(A) satisfies the k*-chain condition and the
subset A is definable over (H(xH)VIG €) by a Xi-formula with parameters
whenever G is P(A)-generic over V.

This result can then be used to prove the following statement.

THEOREM 1.3 ([Liic12l Theorem 1.9]). If k is an uncountable cardi-
nal with k = k<%, then there is a <k-closed partial order P such that
P satisfies the k™ -chain condition and there is a well-ordering of H(/€+)V[G]
definable over (H(kT)VIG! €) by a Ba-formula with parameters whenever
G is P-generic over V.

The basic idea of the proof of the latter theorem is to choose (in the
ground model) an arbitrary well-order < of H(x™"), code it into a subset
of #k and force to make this subset definable using Theorem @ Since
this forcing satisfies the x*-chain condition and is contained in H(x)V,
every element of H(x1)VIS is represented by a name in H(x)V. Moreover,
it can be shown that IP, the generic filter G and its complement relative to P
are all definable over (H(k")VICl, €) by a ¥i-formula with parameters. In
this situation, we obtain a Ys-definable well-order of H(x1)VI? by setting
x <, y if and only if some name & that is evaluated to = by the generic filter
is <-less than any name gy that is evaluated to y.

Now, if the GCH holds at k, then every initial segment of < is an element
of H(k™) and we can instead code the set of all these initial segments. This
allows us to spare one quantifier and obtain the following result, which has
independently been obtained by Sy Friedman and the first author in [FH11]
using different techniques.

(*) Note that the forcing P(A) introduces new subsets of x. Hence the relation < does
not well-order H(x*)V(E],
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THEOREM 1.4. If k is an uncountable cardinal satisfying kK = k<% and
2% = kT, then there is a <k-closed partial order P such that P satisfies the
kt-chain condition and there is a well-ordering of H(H+)V[G} definable over
H(xHVIE €) by a Xy-formula with parameters whenever G is P-generic
over V.

The forcing used in [FH11] to prove the above theorem is an iteration of
length x* that satisfies the x'-chain condition and adds new subsets of &
at cofinally many stages of the iteration. These properties can be used to
show that Mansfield’s theorem itself does not generalize to higher cardinal-
ities, in the sense that the existence of a locally ¥i-definable well-ordering
of H(k™) does not imply that all subsets of k are contained in L[x] for some
x C k: Assume this were the case for some x C k in the model obtained by
forcing with the partial order P constructed in [FHI11] in the proof of the
above theorem. Then x is added by some initial segment of that iteration
(by the k*-chain condition) and there is a subset y C x which is added at
a later stage and hence cannot be an element of L[x]. However the ques-
tion remained open whether the existence of such a well-ordering of H(x™)
implies that the GCH holds at x (see [Liic12, Question 10.4]).

If the GCH does not hold at k, the above approaches can no longer be
used and a totally different strategy is needed to force the existence of a
¥1-definable well-order of H(x™) while preserving failures of the GCH at k.
We will recursively define a forcing IP that preserves all cofinalities less than
or equal to 27 while simultaneously performing the following two tasks:

e Generically add a sequence A = (A5 | § < 2%) of subsets of & in the
P-generic extension V[G] such that every element of H(x¥)VI¢ is coded
(in a sense made precise later on) by exactly one As.

e Generically code A to ensure that it is definable over (H(kt)VIC €)
by a Yi-formula with parameters.

In this situation, we can well-order H(x*)VIS! in the desired way by identi-
fying each element of H(x)VIC]l with the unique As coding it. The generic
coding used in this construction will be a variation of the almost disjoint
coding forcing (see |[JS70] for the original) introduced in [AHL, Section 2].
The recursive definition of our forcing heavily uses ideas from [AF12].

The coding techniques developed in the proof of Theorem are in fact
quite a general way of generically adding subsets of H(x™) with certain prop-
erties while simultaneously making them ¥;-definable (or even A;-definable)
over (H(x™), €). An example of another application of these techniques can
be found in [LS, Remark 5.2]. In the following, we discuss yet another ex-
ample: Equip the set ©x with the topology whose basic open subsets are of
the form Ny = {x € "k | s C x} for some function s : a — k with o < k.



4 P. Holy and P. Liicke

A closed subset of "k is perfect if it is homeomorphic to 2 equipped with
the subspace topology. Finally, a subset X of "k is a Bernstein subset of "k
if neither X nor its complement contain a perfect subset of “x.

With a slight modification of the construction presented in Section
one could obtain a <k-closed forcing that preserves cofinalities less than or
equal to 2 and the value of 2" and introduces a Bernstein subset of “x that
is Aj-definable over (H(x™), €). Instead of presenting this construction, we
will show that such a subset can already be found in any generic extension
obtained by forcing with the partial order P that witnesses Theorem @

COROLLARY 1.5. Forcing with the partial order P that witnesses Theo-
rem introduces a Bernstein subset of "k that is Aq-definable with para-
meters over (H(kT), €).

Note that this result again contrasts with the case when “k = w”, be-
cause [BL99, Theorem 7.1] shows that the existence of a Bernstein subset
of “w that is Aj-definable with parameters over (H(w;), €) is equivalent to
the existence of an z € R with R C L[z].

2. The forcing. For the remainder of this paper, we fix an uncountable
cardinal k with kK = k<% and \ = 2" regular. We use <"2 to denote the set of
all functions s : @ — 2 with a < k. Moreover, we let <-,-> : On x On — On
denote the Gadel pairing function.

We say that a subset A of k codes an element z of H(k™) if there is a
bijection b : k — tc({z}) such that

A ={<0,<a, B>~ | a, 5 < K, bla) € b(B)} U{=<1,a> | a < K, b(ar) € z}.

Note that z and b are uniquely determined by A.
Given z,y € "k, we define x @ y € "k by setting
z(p) if a =<0, 5>,
(z@y)(a):=q y(B) if a==<1 8-,
0 otherwise,

for all a < k. In addition, if a, 8 < k, then we define ¢(«, ) € ¥2 by setting

(o, B)(7) = {

1 ify e {<0,a~,<1,68>},
0 otherwise,
for all v < k.
Fix a sequence @ = (w, | v < A) consisting of pairwise distinct elements
of #2. We inductively construct a sequence Py = (P, | v < \) of partial

(*) Note that, in general, one can construct a locally Az-definable Bernstein subset
of " from a locally Aj-definable well-order of H(x™). The existence of a Bernstein set of
lower complexity follows from specific properties of our definable well-order.
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orders with the property that Ps is a complete subforcing of PP, whenever
6 <~ < A Fix v < X and assume that we constructed Ps with the above
property for every § < ~.

DEFINITION 2.1. We call a tuple

p = (Sp; tp, Cp, Ap)
a IPy-candidate if the following statements hold for some ordinals 3, < &
and 7, < min{y + 1, \}:
(i) sp:fp+1—<r2.
(i) t,: Bp+1—=2.
(ili) & = (cpa | © € ap) is a sequence with the following properties:
(a) ap is a subset of {ws ® c(a,i) | § < yp, a < K, i <2} of cardi-
nality less than x.
(b) If z € ap, then ¢, , is a closed subset of §,+1 and the implication

spla) Cax —ty(a) =1
holds for every a € ¢, ;.
(iv) A, = (A5 |8 < 7,) is a sequence such that:

(a) If 0 < p, then Ap,é is a Ps-nice name for a subset of x (and,
by our assumptions, also a Pz-nice name for a subset of x for
every 6 < < 7).

(b) If ¥ < 7 and G is P5-generic over the ground model V, then
either |A\|VI¢] = |5|VI¢] holds or in V[G] there is a sequence
(ys | 6 <) of pairwise distinct elements of H(x™) such that
AE(S codes ys for every d less than or equal to 7.

Given a P,-candidate p and J <+, we define p[d to be the tuple

—

(spstp, (Cpa | ¥ € apl), Ap[ min{v,, 6}),
where a,[§ = a, N {ws ® c(a,i) | § < 6, a < K, i < 2}.
DEFINITION 2.2. A P,-candidate p is a condition in P, if the following
statement holds for all § < 7,, o < k and ¢ < 2 with ws @& c(a, i) € ap:

(v) If p[d is a condition in Pg, then
pld e, “i=14ae A, |©)

(%) We will show later that this case never occurs (see Corollary .

() The idea behind this construction is that the set a, collects information about the
interpretations of names in /Yp that is already decided by the condition p. This will allow
us to use the almost disjoint coding part of the forcing (see clause (iii)) (b)) to add a subset
of  that in the end codes |J, s ap and thus also |J,cq A, whenever G is Py-generic.
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Given conditions p and ¢ in P, we define p <p ¢ to hold if 5, = s, [(8,+1),

tg = tpl(Bg + 1), ag C ay, “Yq = ffp[fyq and cqz = ¢pol(Bg + 1) for every
T € ag.

PRrOPOSITION 2.3. If p is a condition in P, and 6 < vy, then p[d is a
condition in Ps. In particular, every condition p in P, is also a condition
in Py, .

Proof. Let 6 < v and assume that p[§ is a condition in Ps for every
§ < 4. Then it is easy to see that p[d is a Ps-candidate. Fix § < 6, o < &
and i < 2 with ws @ c¢(a, i) € apys. Then (p[d)]d = p|d is a condition in Pj
and a5 = a,[d C ap. Since p is a condition in P, this implies 5 < vp and

(pIo)[6 kg, “i=1¢>a € A, 5"
We can conclude that p[é is a condition in Ps. =
The following statement is a direct consequence of the above definition.

PROPOSITION 2.4. Ifp is a condition in P, and Aisa sequence of length
smaller than min{vy 4 1, \} such that A, C A and A satisfies the statements
listed in Definition , then the tuple (sp,tp, Ep,/D is a condition in P,

that is stronger than p. m

PROPOSITION 2.5. If ¥ < min{y + 1, A}, then the set of all conditions p
in Py with v, > 7 is dense in P,

Proof. Fix a condition p in P, with 7, < 4. Since ¥ < A = 27, we
can recursively construct a sequence A of length 4 that satisfies the state-

ments listed in Definition [2.1|({iv]). By Proposition the resulting tuple
(8p,tp, Cp, A) is a condition in P, that is stronger than p. m

LEMMA 2.6. If § <y, then Ps is a complete subforcing of P,.

Proof. Every condition in Ps is a condition in P, <p, = <p_[(P5 x P;s)
and, if ¢ is a condition in Ps and p is a condition in P, with p <p_ ¢, then
Proposition [2.3] shows that p[d is a condition in Ps and it is easy to check
that p[d <p, q. Hence it suffices to show that every maximal antichain in Ps
is maximal in P,.

Fix a maximal antichain A of Ps and a condition pg in IP,. By Proposition
there is a condition p with p <p_ po and v, > ¢. Proposition implies
that pld is a condition in Ps. Hence we find a condition ¢ in Ps and r € A
with ¢ <p; p[d,r. Then ~, = 0. Define p* to be the tuple

(8grtgy (Cpa | T € ap \ ag) Ucqa | T € ag), Ap).

Then p* is a Py-candidate with ~,» = 7. Fix 5 < Yp, @ < k and 7 < 2 such
that p*[0 is a condition in P5 and z = w; ® ¢(«, i) € apUaq. If © € a4, then
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§< < ~Yp+ and /_fq = ffp [ implies that p*[§ <p, q!é. Hence

prlolhp “i=1¢acd,;”
holds in this case. Now assume that z € q, \ aq. Since ¢ <p, p[d, we have
p*[6 <p; pld and this implies that the above forcing statement also holds

in this case. Therefore p* is a condition in P, and our construction ensures
that p* <p_ p,q. Hence A is a maximal antichain in P,. =

This completes the construction of the sequence Iﬁw of partial orders.
In the remainder of this section, we prove some basic properties of these
forcings.

PROPOSITION 2.7. Let v < A\, A < A and (pa | a < ) be a sequence of
conditions in Py such that Ap, C Ap, for allo < B < \. Then A = J{4,, |
a < A} satisfies the statements listed in Definition . "

LEMMA 2.8. If v < X, then P, is <k-closed.

Proof. Let & € Lim Nk and (p, | @ < k) be a descending sequence of
conditions in P.. Define A= U{fl},a | « <k}, a =JH{ap, | <k} and
ce = U {¢paz | * € ap,} for each = € a. By Proposition A satisfies the
statements listed in Definition .

First assume that there is & < K such that g8, = 8,, for all @ < o < &.
Then the tuple p, = (sps,tps; (¢ | € a), A) is a P -candidate. To show that
P« is a condition in P, fix 6 <7, B < k and i < 2 with z = ws ® ¢(8,1) € a.
Then there is @ < a < K with € a,, and hence 6 < 7, <7p,. If p.[d is a
condition in P, then it is stronger than p,[d and hence it forces the desired
statement (v) in Definition This shows that p, is a condition in P, and
our construction ensures that p, <p, Pa for every a < R.

Now assume that for every & < & there is & < a < k with £, < B,
Define

B = sup Sy,

a<k

s = ({80 Ufspa | o < &),
t={(8, 1)} Htp | @ < &},
Py = <s,t, (c, U{B} |z € a>,ff>.

This construction ensures that p, is a P,-candidate and the same argument
as above shows that p, is actually a condition in P, with p. <p, p, for all
a<K.nm

PROPOSITION 2.9. If~vy < X and p is a condition in P, with vy = ~,, then
P., satisfies the kT -chain condition below p.



8 P. Holy and P. Liicke

Proof. Let A be a set of conditions below p in P, of cardinality ™. Then
/_fp = ff for all ¢ € A. By our assumptions and the A-system lemma, there
are qo,q1 € A such that qo # q1, 5S¢ = Sq1» tgo = tq1 and cgy z = g, o for all
T € ag, N ag, - Then the tuple

r= <SQO’tq07 <CQO,36 |z € a%) U <CQ1,I | > € QQ1>7AP>

is a Py-candidate. If 6 < + is such that r[¢ is a condition in Ps, then
r[d <py; q;[0 for i < 2. This shows that r is a condition in PP, witnessing
that the conditions go and ¢; are compatible in P,. =

LEMMA 2.10. If q is a condition in Py and D is a collection of less than
A-many dense open subsets of Py, then there is a condition p in Py such that
p <p, q and the set D NP, is dense below p in P, for every D € D.

Proof. We start by proving the following claim. An iterated application
of this claim will yield the statement of the lemma.

CLAIM. Let qo be a condition in Py and D be a dense open subset of Py.
Then there is a condition qg in P such that g5 = (8¢9, tqy, Cao» Agz) <Py Q0
and DN IP’,yq* is dense below g in qu*.

0 0

Proof. We inductively construct a sequence (g, | 0 < a < ) of incom-
patible conditions below ¢o in Py with 0 < § < k™ and ffq& C /_fqa for
all @ < a < 6: Assume that the sequence (g5 | 0 < @ < @) is already con-
structed. If there is a p, € D such that p, <p, (54 tg0>Co0» Ugecan A,.) and
the conditions p, and ¢g are incompatible in Py for all 0 < & < «, then
we set g, = po and we continue our construction. Otherwise, we stop our
construction and set 8 = a.

Define A = Ua<o /an and ¢} = <sqa,tqa,5’qa,/f> for all & < 6. Given
«a < 6, Proposition shows that ¢, is a condition in qug below ¢ and gq.
In particular, the set A = {¢}, | 0 < a < 0} is an antichain in ]P)qu below ¢g.
By Propositionﬁ7 ]P)’Yq(’; satisfies the £ T-chain condition below ¢f and there-

fore § < k*. This means that the above construction has stopped at stage
0 < kT, because no suitable condition pg could be found. This implies that
A is a maximal antichain in IP’,Y . below ¢. Pick a condition p in IP&, : be-

low g. Then there is 0 < o < 6 and a condition 7 in Py, : with r <P,y . p, qr.
Since ¢, is an element of D, we get r € D. This shows that the condltlon 4%
has the desired properties. »

Let (D, | @ < A) be an enumeration of D such that A < A is a limit
ordinal. By the above Claim and Proposition we can construct a de-
creasing sequence (¢, | @ < \) of conditions in Py with the property that
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q=q, qo = <sq,tq,é'q,14'qa> for all @« < A and D, N quaﬂ is dense below
Qot1 N IP’,an+1 for all a < .

Pick a condition 7 in P, below g5 and o < X. Then A, = /qu and
Va1 < Ax[Vgas1 = Gat1- S0 we can find 7, gpwqaﬂ Tan+1 such that
Toa € Do. Define ¢ = (¢, | « € ar Uar,) by letting ¢; = ¢, 5 if © € ar, and
letting ¢, = ¢, otherwise. Then r, = <sfa,t,:a,é’,ffr) is a P’Yq; -candidate
with 7o = 7a[7g,,,- Moreover, if 6 < 74, and r,[d is a condition in Py,
then this condition is stronger than r[é. We can conclude that r,, is actually
a condition in IP’qu that is a common extension of r and 7, contained in
Dy N PW‘?;' This shows that p = g5 has the desired properties. =

COROLLARY 2.11. Forcing with Py preserves all cofinalities less than or
equal to .

Proof. By Lemma[2.8] forcing with Py preserves cofinalities less than or
equal to k. Let v < X be a limit ordinal with cof(y) > x and let k < v <
cof(y) be a regular cardinal. Assume, towards a contradiction, that there
is a condition ¢ in Py and a Py-name ¢ with ¢q IFp, “¢: 7 — ¥ is cofinal”.
Given o < v, define

Do={pePr[38<yple, “éa) =757}
Let G be Py-generic over V. By Lemma there is a p € G with the
property that the set D, NP, is dense below p in P, for every a < v. By

Proposition [P, satisfies the kt-chain condition below p. Therefore we
can define ¢ : v — v in V by setting

cla) =lub{B <~y |IreP,, [r <p, PAT IFp, “é(a) = B7]}
for all @ < v. Pick @ <v. By Lemma G = GNP,, is P, -generic over V.
Since p € G, the above computations show that there is an » € D, N G. If

B < v witnesses that r is an element of D,, then ¢%(a) = B < c(a). This
shows that the range of ¢ is unbounded in v, a contradiction. =

COROLLARY 2.12. Let G be Py-generic over V, let A< A and let A be a
subset of A in V[G|. Then there is a v < A such that A = AGPy for some
P,-name A for a subset of \.

Proof. Let Ay be a Py-name for a subset of X\ with 4 = Ag and, given
a < A, let D, be the dense open subset of P consisting of all conditions in
P, that decide the statement “c € Ag”. By Lemma thereisape G
such that the set D, NP, is dense below p for every a < . Define

A = {{a,r) | a < A\, r€ DoNPy, r<p, p, 7lFp, “dEAO”}.

Then A is a ]P’%—name for a subset of A and we can use Lemma to
conclude that A = AG = AGPw g
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We use this corollary to show that forcing with Py can collapse cardinals.
PROPOSITION 2.13. Forcing with Py collapses 2<* to \.

Proof. Let G be Py-generic over V. Given v < A, we define A, to be
the unique set that is equal to AG for all p € G with v < 7,. A standard
density argument using Propos1t10n 4 and Corollary 2.12] shows that for
every ordinal A < X\ and every subset a of X there is a v < A such that a is
equal to the set {6 < A |0 € A,4s}. This yields the assertion. m

3. Proof of Theorem 1.1. We are now ready to show how the forcing
constructed in the last section can be used to produce a locally ¥;-definable
well-order of H(k™).

LEMMA 3.1. If G is Py-generic over V and y € H(kt)VIC, then there is
a unique ordinal 6 < X such that 6 < v, and Ap 5 codes y for some condition
peQG.

Proof. By Corollary there is a 7 < A and a P,-name ¢ such that
y = §¢". Fix a condition p in Py with v, > 7. Let A be a P,,-name
for a subset of k such that the following statements hold whenever H is
P, -generic over V with p € H and g € H(x+)VIc:

e If there is no ¢ < 7, such that Aﬁ; codes ¢, then A codes ¢
e Otherwise, A” codes an element of H(x)V that is not coded by some
i

Ap with § < 7, (note that Corollary [2.11|implies that such an element
always exists).

Define A = fl}, U {{7p, A)}. Then A satisfies the statements listed in
Definition and (s, tp, Cp, ff) is a condition in P, below p. The above
computations show that there is a condition q in G and a ¢ < 7y, such that
vq > v and A m 7= AG5 codes P = 4@

Now, assume towards a contradiction, .that there are §p < 61 < A
and pg,p1 € G such that both Aﬁ)’go and Agl,zh code y. Pick p € G With
p <p, po,p1- Then G=Gn Ps, is Ps,-generic over V and Corollary |2
implies |6;]VIC < |A|VIC] . The above assumption now implies that the sub—
sets AG = AG 5, and AC Ag 5, code the same element of H(xT)VIC,
contradlctlng Deﬁmtlon ﬁ. for the condition p. =

COROLLARY 3.2. Forcing with Py preserves the value of 2. =
LEMMA 3.3. If G is Py-generic over V, then the set
D(G) ={ws @ c(a,i) |i<2,peCG [ <y Ali=1 acAfy)}

is definable over the structure (H(kT)VIE) €) by a B -formula with parame-
ters.
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Proof. Let G be Py-generic over V. We prove a number of claims whose
combination will imply the statement of the lemma.

CramM 1. Ifx = ws ® c(a, i) € D(G), then there is a p € G with x € ap.

Proof. There is a ¢ € G witnessing that z is an element of D(G) and
qldlkp; “i =1 &€ A,5”. We may assume that ¢ a4. Fix pg € P\ with
po <p, q and = ¢ a,,. If we define

p= <Spo7tp07 {<JJ,®>} U <CPO7?/ ’ Yy € a’p0>7AP0>7
then the above assumptions imply that p is a condition in Py that is stronger
than pg. Hence the set of all conditions p in Py with x € a, is dense below
geG. n

CLAIM 2. k = sup{fp | p € G} and k = sup{supcy, | p€ G, x € a,}
whenever x € D(G).

Proof. Fix a condition ¢ in Py with x € a4 and fix 8, < 8 < k. Define
s =sqU{{a,0) [ By < < B},
t=t,U{{a,1) | By <a < B},
p=(s,t,{cqa U (B, Bl |z € aq>,ffq>.
Then p is a condition in Py with p <p, ¢, 8, = f and supc,; = (. =
We fix Py-names $ and f in V such that $7 = J{s, |p€ H} : k — <"2

and t! =J{t, |[p€ H} : k — 2 whenever H is Py-generic over V. The
following claim is a direct consequence of the definition of Py and of Claim 2.

Cram 3. If x € D(G), then C& = U{cpa | PE G, x € ap} is a club
subset of k such that the implication
(1) Ca)Cax—i%a)=1
holds for all « € Cf,. m

CLAIM 4. Assume that x € (%2)VICl is such that holds for every
element a of some club subset C' of k. Then x is an element of D(G).

Proof. Let @ be the canonical Py-name with the property that ¢ =
U{ap | p € H} whenever H is Py-generic over V. Assume, towards a con-
tradiction, that z is not an element of @“. Then we can find ¢ € G and
Py-names C and & such that z = ¢ and

qlFp, “z €®2\aAC C i club AVa € C [5(a) C & — f(a) = 1]".
Fix a condition py in Py that is stronger than ¢. By using the above

assumptions, we can recursively construct:

e a descending sequence (p, | n < w) of conditions in Py,
e strictly increasing sequences (o, | n < w) and (3, | n < w) of ordinals
less than k, and
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e a sequence (s, | n < w) of elements of <¥2
that satisfy the following statements for all n < w:
(i) Bpn <oy < Bn < /Ban-
(i) sp # ylay for all y € ap,.
(i) pnt1 e, “@ldn = 8n A B = min(C'\ G,,) 7.
Next, we define

B = sup ay, = sup fy,

n<w n<w

o= Uon I n <)
s ={(B:50)} U[Jlsp | n <},
t={(8,0)} U J{tp. | n <},
a=|Hap, |n<w},

cy ={B}U U{Cpnvy |n<w,y€ap}t forevery element y of a,
A= {4, In<w}

Since s, € y for every y € a, the tuple p = (s, ¢, (¢, | y € a), A) is a condition
in Py that is stronger than py. Our construction ensures
p ke, “BeCAS(B)=5CiAi(F)=0,

a contradiction. Hence we can conclude that z € a©.

The above computations show that there are p € G, § < 7,, @ < k and
i <2 with = ws & c¢(a,1) € ap. Since p[d € G NPy, Definition implies
that we have “¢ = 1”7 if and only if a € AggPa = Agé. Hence p witnesses
that x is an element of D(G). m

Claims 14 allow us to conclude that

D(G) = {z € ("2)VI¢ | 3C C &k club Va € C [5%(a) C 2 — i%(a) = 1]},

and this equality yields a ;-definition of D(G) over (H(kT)VI €) using
the parameters $¢ and {©. =

LEMMA 3.4. Let G be Py-generic over V and assume that the set
(2) =g = {{wg, ws) |(§<5<)\}
is definable over the structure (H(kT)VIE €) by a ¥y -formula with param-

eters. Then there is a well-ordering of H(/#)V[G] that is definable over the
structure (H(kT)VIE €) by a Xy -formula with parameters.

Proof. Define W = {ws | 6§ < A}. Then our assumptions imply that W
is also definable over the structure (H(x")VI®l €) by a ¥i-formula with
parameters.
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Cram 1. If pe G and 6 < vy, then
ACs ={a <k |ws @ c(a,1) € D(G)} = {a < k| ws & c(a,0) ¢ D(G)}.
Proof. By the definition of D(G), we have
acAS; & JeG i<y raedly] & wdc(al)eDG)
and
aé Ag(; & eGP <y Nad¢ Ag’j(;] < ws @ c(w,0) € D(G).
These equivalences imply the assertion. m
We define P to be the set of all pairs (z,w) such that z € H(x+)VIE],
w € W and there is a subset A of k coding z and satisfying
3) [aeAd—wdcla,1) e DIG)]A[ad A— wdc(a,0) € D(G)].
Lemma implies that P is definable over the structure (H(x1)VI¢, €) by
a Y1-formula with parameters.

Cram 2. Let z € H(kT)VIE) and let 5, be the unique ordinal (given by
Lemma D such that 6, < 7, and AG oo, codes z for some p € G. Then ws,
is the unique element of W with (z, w5 > e P.

Proof. By Claim 1, the subset Aféz of k witnesses that the pair (z, ws,)
is an element of P. Now assume, towards a contradiction, that there is a
0 < A with § # 6, and (z,ws) € P. Let A C & satisfy (3). Then these
implications together with Claim 1 show that A = AG for some ¢ € G with
¥ = max{4,8,} < 7. If we set G = G N P, then Corollary H implies
7|Vl < |A]VIE) and the subsets AG(S = AG(S and A = AG(S code the
same element of H(x+)VIG). This contradicts Deﬁmtlon E .

Define <, to be the set of all pairs (z,z) in H(k") such that

Jw,w e W [(z,w) € PA(z,0) € PANw <z w].

Then our assumptions and the above remarks imply that this relation is
definable over the structure (H(x)VI?, €) by a ¥1-formula with parameters.
Given 2z, z; € H(xH)VICl and 6y, 6, < A such that §; is the unique ordinal
with the property that §; < 7, and Agéi codes z; for some p € G, we have
zg < 21 if and only if dg < §1. This shows that <, is a well-ordering of
H(/i+). ]

The following absoluteness version of Theorem 1.2 proven in [Liic12] will

allow us to show that the hypotheses of Lemma can be forced to hold
by a forcing that preserves our assumptions on x and .

THEOREM 3.5 ([Liic12, Theorem 1.5]). Let k be an uncountable cardinal
with k = K<®. Given a subset A of "k, there is a partial order P(A) with the
following properties:



14 P. Holy and P. Liicke

(i) P(A) is <r-closed, satisfies the kt-chain condition and has cardi-
nality 2".

(i) If Q is a P(A)-name for a o-strategically closed partial order that
preserves the regularity of k and G+ H is (P(A) *Q)-generic over V,
then A is definable over the structure (H(xT)VIG*H] €) by a %;-
formula with parameters.

Proof of Theorem[1.1l Let k be an uncountable cardinal such that x =
k<" and A = 2% is regular. Fix an injective sequence W = (w, | 7 <)
of elements of #2 and define A = {ws ® w, | § <y < A}. Let P(A) be the
notion of forcing corresponding to A that is given by Theorem Since
forcing with P(A) preserves the above assumptions on x and A, there is a
canonical P(A)-name Q with the property that Q¢ = ]P’X[G] whenever G is
P(A)-generic over V and If’%[G] = (]P’X[G] | ¥ < A). Then the combination
of Lemma Corollary Corollary and Theorem implies that
P =P(A)*Q is <k-closed and forcing with P(A) *Q preserves all cofinalities
less than or equal to A and the value of 2*.

Let G % H be (P(A) * Q)-generic over V. By Theorem the set A is
definable over the structure (H(xT)VIE*H] €) by a ¥j-formula with param-
eters and this implies that the relation <;; defined by is definable in the
same way. In this situation, Lemma [3.4] implies that there is a well-ordering
of H(k1)VIG*H] that is definable over the structure (H(x1)VIC*H] ¢) by a
Y1-formula with parameters.

4. Definable Bernstein sets. In this short section, we prove Corol-
lary We start by introducing some vocabulary needed in this proof.
A subset T of <Fk is a subtree of <"k if T is closed under initial segments.
Given such a subtree T', we define [T] = {z € "k | Vo < k z[a € T'}. Note
that a subset of "k is closed with respect to the topology introduced at
the end of the first section if and only if it is equal to the set [T] for some
subtree T of <"k. An easy argument shows that a closed subset [T] of "k
contains a perfect subset if and only if there is an order-preserving injection
e: <2 —T.

Proof of Corollary|[1.5. We work in the setting of the proof of Theorem
and show that forcing with P = P(A) * Q adds a subset X of " such
that both X and its complement intersect every perfect subset of ©x and
such that X is Aj-definable with parameters over (H(k™),€). If z € "k
and a < k, we define y = o~z if y(0) = o and y(1 4+ B) = z(B) for every
B < k. We work in a P-generic extension V|G, H] of V. Assume that <* is
the locally Aj-definable well-order of H(k™) constructed in Section Define

X={ze" |0z <"1z}
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Let [T] be a perfect subset of "k and e : <"2 — T be an order-preserving
injection. Now work in V|G| and pick a condition p in Py = QC. By Corollary
there is a v < A with p € P,, a Py-name T for a subtree of <fx
with T = TH™+ and a P,-name é for an order-preserving injection of <*2
into 7. Note that this implies that [T] has cardinality 2* in every P,-generic
extension of V[G]. Hence we can find a P.,-name 4 for an element of [T such
that whenever H is P-generic over V[G] and g; is the canonical P--name
for ¢, then neither y{ff nor yf? are coded by any A§5 for 6 < 7,. Given

—

i < 2, we can extend p = (s, t,, &, Ay) to a condition g; = (sp, tp, Cp, Ag.)
in Py such that v, = v+ 2, Aqm is a P,-nice name for a subset of x
coding 7;, and Aqu is a P,-nice name for a subset of x coding y1—;. Let
X be the canonical Py-name for the set X. The above construction ensures
that qo IFp, “& € [T]NX” and ¢ IFp, “& € [T]\ X”. We can conclude
that, in V[G, H], the perfect subset [T] is contained neither in X nor in the
complement of X. m

5. Open questions. We close this paper with questions induced by the
above results.

The parameter in the Yi-definition of the well-order constructed above
is a subset of k that is added by forcing and therefore is, in a certain sense,
a very complicated object. It is natural to ask if it is possible to force -
definable well-orderings of H(k™) that use simpler parameters which are
contained in some prescribed set P.

QUESTION 5.1. Let k be an uncountable cardinal with k = k<% and let P
be a subset of H(k™). Is there a partial order P with the following properties?

(i) Forcing with P preserves cofinalities less than or equal to 2% and the
value of 2%,

(ii) If G is P-generic over the ground model V, then there is a well-
ordering of H(kT)VIC! that is definable over (H(kT)VIE] €) by a ;-
formula with parameters contained in P.

Interesting examples of such restricted parameter sets would be P = {x}
or P =H(x")V.

QUESTION 5.2. Is it possible to iterate forcings of the form Py to add
locally 31 -definable well-orderings of H(k™) for many different x simultane-
ously while preserving certain structural properties of the ground model?

Interesting examples of such structural properties would be the cardinal
structure, the continuum function and the existence of large cardinals.

A completely satisfactory positive answer to the above question would
probably depend on a positive answer to the following.
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QUESTION 5.3. Is it possible to obtain a result as in Theorem [L.1], how-
ever witnessed by a cofinality-preserving forcing P?

Note that by Proposition the forcing P constructed in the proof
of Theorem changes the cardinality of (2<27)V if this cardinal is larger
than (27)V.
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