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Non-absoluteness of Hjorth’s cardinal characterization

by

Philipp Lücke (Barcelona) and Ioannis Souldatos (Thessaloniki)

Abstract. In [J. Math. Log. 2 (2002), 113–144], Hjorth proved that for every count-
able ordinal α, there exists a complete Lω1,ω-sentence ϕα that has models of all cardi-
nalities less than or equal to ℵα, but no models of cardinality ℵα+1. Unfortunately, his
solution does not yield a single Lω1,ω-sentence ϕα, but a set of Lω1,ω-sentences, one of
which is guaranteed to work. It was conjectured in [Notre Dame J. Formal Logic 55 (2014),
593–551] that it is independent of the axioms of ZFC which of these sentences has the
desired property.

In the present paper, we prove that this conjecture is true. More specifically, we
isolate a diagonalization principle for functions from ω1 to ω1 which is a consequence of
the Bounded Proper Forcing Axiom (BPFA) and then we use this principle to prove that
Hjorth’s solution to characterizing ℵ2 in models of BPFA is different than in models of CH.
In addition, we show that large cardinals are not needed to obtain this independence result
by proving that our diagonalization principle can be forced over models of CH.

1. Introduction. The present paper contributes to the study of the
following model-theoretic concepts:

Definition 1.1.

(1) An Lω1,ω-sentence ψ characterizes an infinite cardinal κ if ψ has models
in all infinite cardinalities less than or equal to κ, but no models in
cardinality κ+.

(2) A countable model characterizes some cardinal κ if the same is true for
its Scott sentence.

We are interested in the following question: Given α < ω1, is there a
complete Lω1,ω-sentence ψα that characterizes ℵα? Although the problem is
quite easy to solve if we allow the Lω1,ω-sentence to be incomplete, it poses
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a genuine challenge as stated. The question was answered in the affirmative
by Hjorth, who proved the following theorem.

Theorem 1.2 ([5, Theorem 1.5]). For every α < ω1, there exists a com-
plete Lω1,ω-sentence that characterizes ℵα.

Unfortunately, Hjorth’s solution is unsatisfactory. As observed in [2], for
every countable ordinal α, Hjorth produces not a single Lω1,ω-sentence, but
a whole set Sα of Lω1,ω-sentences (1). In [2], the authors notice that if α is a
finite ordinal, then the set Sα is finite. Otherwise, they state that the set Sα of
Lω1,ω-sentences can be chosen to be countable. Below, we will argue that it is
possible to find a finite set Sα of Lω1,ω-sentences with the desired properties
for every countable ordinal α. Hjorth’s proof then shows that at least one of
the sentences in the set Sα characterizes the cardinal ℵα, but it provides no
evidence which element of Sα has this property.

To see why this is the case, we briefly explain Hjorth’s construction be-
hind Theorem 1.2. First, assume that for some countable ordinal α, there
is a countable model M whose Scott sentence characterizes ℵα. Working by
induction, Hjorth wants to create another countable model whose Scott sen-
tence characterizes ℵα+1. To achieve this, he first defines a countable model,
which he calls (M,N )-full, using M and what we will call the first Hjorth
construction (2). Hjorth proves that the Scott sentence of this (M,N )-full
model characterizes either ℵα or ℵα+1. If the latter is the case, we are done.
Otherwise, Hjorth proceeds one more round to use the (M,N )-full model
from the first step and what we will call the second Hjorth construction.
If the (M,N )-full model characterizes some κ, then Hjorth’s second con-
struction characterizes κ+. In particular, if the (M,N )-full model char-
acterizes ℵα, then the second Hjorth construction produces a model that
characterizes ℵα+1. Notice here that the failure of the (M,N )-full model to
characterize ℵα+1 is used to prove that the second Hjorth construction does
indeed characterize ℵα+1. In either case, there exists some Lω1,ω-sentence
that characterizes ℵα+1, and the induction step is complete.

At limit stages, Hjorth takes disjoint unions of the previously constructed
models. For instance for α = ω, Hjorth considers the disjoint union of count-
able models Mn, n < ω, where each Mn characterizes ℵn. This union char-
acterizes ℵω, but, as we mentioned, we do not know what the models Mn

are.
Since at successor stages we have to choose between the first and the

second Hjorth construction and we repeat this process for every countable

(1) There is no mention of a set Sα in Hjorth’s original proof. This notation was
introduced in [2].

(2) In Hjorth’s proof, the existence of the model M is an assumption. The existence
of N is something that comes out of the proof.
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successor ordinal, the result is a binary tree of Lω1,ω-sentences of height ω1.
The αth level of the tree gives us the set Sα. In particular, at least one of
the sentences at the αth level of the tree characterizes ℵα.

We now briefly observe that we can do slightly better for α = ω and
for each countable limit ordinal α in general. Consider the following count-
able models: M0 is a countable model which characterizes ℵ0, and Mn+1

is the second Hjorth construction which inductively uses Mn as input. If
Mn characterizes some ℵm, then we mentioned that the first Hjorth con-
struction characterizes either ℵm or ℵm+1. It follows that the second Hjorth
construction characterizes either ℵm+1 or ℵm+2. Therefore, we can prove in-
ductively that for each n < ω, the model Mn+1 characterizes some ℵk for
n < k ≤ 2(n+1). Although we will prove that the value of k is independent
of ZFC, the disjoint union of the Mn’s always characterizes ℵω. In other
words, we can isolate one Lω1,ω-sentence that belongs to the set Sω and
provably characterizes ℵω. A similar argument applies to all countable limit
ordinals α: There exists one Lω1,ω-sentence that belongs to the set Sα and
provably characterizes ℵα. This greatly reduces the complexity of the tree
whose levels are the Sα’s, as we can assume that for limit α the set Sα is a
singleton.

The problem for successor α remains, and in [10], it was conjectured
that it is independent of the axioms of ZFC whether the Scott sentence of
the (M,N )-full model characterizes ℵα or ℵα+1. This would imply that it
is independent of ZFC whether the first or the second Hjorth construction
characterizes ℵα+1. Some evidence towards the validity of this conjecture
was given by the following result.

Theorem 1.3 ([10, Theorem 2.20]). If M is a countable model that
characterizes ℵα and ℵω

α = ℵα, then there is no (M,N )-full structure of
size ℵα+1.

In contrast, for α = 0, Hjorth proves that the (M,N )-full model char-
acterizes ℵ1. The proof works both under CH and its negation, but it uses
results from descriptive set theory that cannot be used to prove the state-
ment for cardinals bigger than ℵ1.

The purpose of this paper is to prove the above conjecture by showing
that the axioms of ZFC do not answer the given question for α = 1. By
Theorem 1.3, it is relatively consistent that for every countable model M that
characterizes ℵ1, there is no (M,N )-full structure of size ℵ2. In the following,
we will prove that the negation of this statement is also relatively consistent.
In Section 2, we discuss a result from [10] that shows that the existence
of an (M,N )-full structure of size ℵα+1 is equivalent to the existence of
a coloring of the two-element subsets of ωα+1 with ℵα-many colors that
possesses certain almost disjointness and genericity properties. In Section 3,
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we isolate a combinatorial principle ( ) and prove that it is a consequence of
the Bounded Proper Forcing Axiom (see [4]). In Section 4, we then show that
the consistency of ZFC+( ) can be established from the consistency of ZFC
alone (3) by showing that the principle ( ) can be forced over models of CH.
Finally, in Section 5, we prove that the principle ( ) implies the existence
of an (M,N )-full structure of size ℵ2. We then end the paper by discussing
possibilities to characterize cardinals in an absolute way and we propose two
ways to formulate this concept in a mathematically sound way.

2. A reformulation. In the following, we recall the statement of a
result in [10] which provides an equivalent condition to the existence of an
(M,N )-full model of size ℵα+1. Since it is easier to work with this equivalent
condition, we will use it for the rest of this paper.

We start with some notation conventions. Given a set d, we let [d]2 denote
the set of all two-element subsets of d, and we let [d]<ω denote the set of
all finite subsets of d. Moreover, if c is a function whose domain is of the
form [d]2 for some set d, then we abbreviate c({x, y}) by c(x, y). In addition,
given such a function c with domain [d]2 and x, y ∈ d with x ̸= y, we define

Ac
x,y =

{
z ∈ d \ {x, y} | c(x, z) = c(y, z)

}
to be the corresponding set of agreements. Finally, given sets d ⊆ d′, a func-
tion c with domain [d]2 and a function c′ with domain [d′]2 and c′↾[d]2 = c,
we say that c′ introduces no new agreement over c if Ac

x,y = Ac′
x,y holds for

all x, y ∈ d.
Lemma 2.1 ([10, Theorem 5.1]). Assume that M is a countable model

that characterizes ℵα. Then the following statement are equivalent:
(1) There exists an (M,N )-full structure of cardinality ℵα+1.
(2) There exists a function c : [ωα+1]

2 → ωα and a function r : ωα+1 → ωα+1

with the following properties:
(a) (Finite agreement) For all β < γ < ωα+1, the set Ac

β,γ is finite (4).
(b) (Finite closure) For every a ∈ [ωα+1]

<ω, there is a ⊆ b ∈ [ωα+1]
<ω

that is closed under Ac, i.e. for all β, γ ∈ b with β ̸= γ, we have
Ac

β,γ ⊆ b.
(c) (Finite extension) If d is a finite set and e : [d]2 → ωα is a function

with e↾[d∩ωα+1]
2 = c↾[d∩ωα+1]

2 that introduces no new agreements
over c↾[d ∩ ωα+1]

2, then there exists an injection ι : d → ωα+1 with
ι↾(d ∩ ωα+1) = idd∩ωα+1 and e(β, γ) = c(ι(β), ι(γ)) for all β, γ ∈ d
with β ̸= γ.

(3) Note that the results of [4] show that the consistency strength of BPFA lies strictly
between the existence of an inaccessible cardinal and the existence of a Mahlo cardinal.

(4) Note that we allow the possibility that the set Ac
β,γ is empty.
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(d) (Coloring) The statement (c) holds true even if d is colored, i.e. if,
in addition, there exists a function s : d→ ωα+1 with s↾(d∩ωα+1) =
r↾(d ∩ ωα+1), then there exists an injection ι : d → ωα+1 with the
above properties that also satisfies s(β) = r(ι(β)) for all β ∈ d.

Remarks 2.2. (1) The requirement in (c) that “e introduces no new
agreements over c↾[d∩ωα+1]

2” was erroneously omitted in [10], but is needed
for the equivalence.

(2) Since (M,N )-full structures are defined as Fraïssé limits, they are
sufficiently generic. The finite extension property (c) is an expression of this
genericity.

(3) It follows from (c) that the function c is surjective. Given β < ωα,
consider the unique function e : [{ωα+1, ωα+1 + 1}]2 → ωα with the property
that e(ωα+1, ωα+1 + 1) = β. Then the assumptions of (c) are satisfied and
we find an injection ι : {ωα+1, ωα+1 + 1} → ωα+1 with the property that
c(ι(ωα+1), ι(ωα+1 + 1)) = β.

(4) The existence of the coloring function r : ωα+1 → ωα+1 is important for
Hjorth’s argument, but once one has constructed a function c : [ωα+1]

2 → ωα

satisfying the statements (a)–(c) of the above theorem, it is easy to modify
this function to also obtain a function r : ωα+1 → ωα+1 such that statement
(d) holds too.

3. A diagonalization principle. We now introduce and study a diag-
onalization principle for families of functions from ω1 to ω1 that will be
central for the independence results of this paper. In Section 5, we will use
Lemma 2.1 to prove that this principle implies the existence of an (M,N )-full
structure of size ℵ2.

Definition 3.1.

(1) Given a set X, we say that a map m : [X]<ω → [X]<ω is monotone if
a ⊆ m(a) holds for every finite subset a of X.

(2) We let ( ) denote the statement that for every sequence ⟨fα | α < ω1⟩ of
functions from ω1 to ω1, every finite subset F of ω1 and every monotone
function m : [ω1]

<ω → [ω1]
<ω, there exists a function g : ω1 → ω1 such

that F ∩ran(g) = ∅ and for every a ∈ [ω1]
<ω, there exists a ⊆ b ∈ [ω1]

<ω

with
{β < ω1 | fα(β) = g(β)} ⊆ m(b) for all α ∈ m(b).

A short argument shows that ( ) is not provable in ZFC:

Proposition 3.2. If ( ) holds, then 2ℵ0 > ℵ1.

Proof. If 2ℵ0 = ℵ1, then there is a sequence ⟨fα : ω1 → ω | α < ω1⟩
of functions with the property that the set {fα↾ω | α < ω1} contains all
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functions from ω to ω. In particular, for every function g : ω1 → ω1, there
exists α < ω1 with g(n) = fα(n) for all n < ω.

In addition, it is possible to use results of Baumgartner [3] to show that
( ) is also not a theorem of ZFC + ¬CH:

Proposition 3.3. If CH holds and G is Add(ω, ω2)-generic over V, then
( ) fails in V[G].

Proof. Work in V[G] and assume, towards a contradiction, that ( ) holds.
In this situation, we can construct a sequence ⟨fγ : ω1 → ω1 | γ < ω2⟩ of
functions such that for all δ < γ < ω2, the set {α < ω1 | fγ(α) = fδ(α)}
is finite. By considering the graphs of these functions und using a bijection
between ω1 × ω1 and ω1, we can now construct a sequence ⟨Aγ | γ < ω2⟩ of
unbounded subsets of ω1 with the property that for all δ < γ < ω2, the set
Aγ ∩Aδ is finite. But this contradicts results in [3, Section 6] that show that
no sequence of subsets with these properties exists in V[G].

In the remainder of this section, we use results of Larson to prove that
the principle ( ) is a consequence of forcing axioms. These arguments rely
on the following forcing notion defined in [7, Section 6]:

Definition 3.4. We let D denote the partial order defined by the fol-
lowing clauses:

(1) A condition in D is a triple p = ⟨ap,Fp,Xp⟩ such that the following
statements hold:

(a) ap is a function from a finite subset dp of ω1 into ω1.
(b) Fp is a finite set of functions from ω1 to ω1.
(c) Xp is a finite ∈-chain of countable elementary submodels of H(ω2).
(d) If X ∈ Xp and α ∈ dp ∩X, then ap(α) ∈ X.
(e) If X ∈ Xp, α ∈ dp \X and f ∈ X is a function from ω1 to ω1, then

ap(α) ̸= f(α).

(2) Given conditions p and q in D, we have p ≤D q if and only if the following
statements hold:

(a) dq ⊆ dp, aq = ap↾dq, Fq ⊆ Fp and Xq ⊆ Xp.
(b) If α ∈ dp \ dq and f ∈ Fq, then ap(α) ̸= f(α).

Given α < ω1, we define Dα to be the set of all conditions p in D with
α ∈ dp.

Proposition 3.5. If q is a condition in D and α < ω1, then there is a
condition p in Dα with p ≤D q, Fp = Fq and Xp = Xq.

Proof. First, assume that α ∈ X for some X ∈ Xq. Let Y ∈ Xq be
∈-minimal with this property. Then there exists β ∈ Y ∩ω1 with f(α) ̸= β for
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all f ∈ Fq and g(α) < β for all X ∈ Xq ∩ Y and every function g : ω1 → ω1

in X. Define
p = ⟨aq ∪ {⟨α, β⟩},Fq,Xq⟩.

Then p is a condition in D that is an element of Dα. Moreover, this con-
struction ensures that p ≤D q holds.

Now, assume that α /∈ X for all X ∈ Xq. Pick β < ω1 with f(α) ̸= β for
all f ∈ Fq and g(α) < β for all X ∈ Xq and every function g : ω1 → ω1 in X.
If we define p as above, then we again obtain a condition in Dα below q.

Next, for every function f : ω1 → ω1, we let Df denote the set of all
conditions p in D with f ∈ Fp.

Proposition 3.6. If q is a condition in D and f : ω1 → ω1 is a function,
then ⟨aq,Fq ∪{f},Xq⟩ is a condition in D below q that is an element of Df .

Lemma 3.7 ([7, Theorem 6.2]). The partial order D is proper.

We are now ready to show that ( ) is a consequence of BPFA. Our
proof relies on the following classical result of Bagaria that characterizes the
validity of BPFA in terms of generic absoluteness.

Theorem 3.8 ([1, Theorem 5]). The following statements are equivalent:

(1) BPFA holds.
(2) If φ(v) is a Σ1-formula (5), z is an element of H(ω2), P is a proper

forcing and p is a condition in P with p ⊩P φ(ž), then φ(z) holds.

Theorem 3.9. BPFA implies that ( ) holds.

Proof. Assume that BPFA holds and fix a sequence

f⃗ = ⟨fα : ω1 → ω1 | α < ω1⟩
of functions, a finite subset F of ω1 and a monotone function m : [ω1]

<ω →
[ω1]

<ω. Given α < ω1, let cα : ω1 → ω1 denote the constant function with
value α. Moreover, define pF = ⟨∅, {cα | α ∈ F}, ∅⟩. Then pF is a condition
in D. Finally, given d ∈ [ω1]

<ω, let Ed denote the set of all conditions p in D
with the property that there exists d ⊆ e ∈ [ω1]

<ω with dp = m(e) and
fα ∈ Fp for all α ∈ m(e).

Claim. For every d ∈ [ω1]
<ω, the set Ed is dense in D.

Proof of the Claim. Fix a condition r in D and set e = d ∪ dr ∈ [ω1]
<ω.

Since dr ⊆ e ⊆ m(e), we can now use Proposition 3.5 to find a condition q
in D with q ≤D r and dq = m(e). Finally, an application of Proposition 3.6

(5) See [6, p. 5] for the definition of the Levy hierarchy of formulas. Note that, using
a universal Σ1-formula, it is possible to phrase this statement as a single sentence in the
language of set theory.
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yields a condition p in D with p ≤D q, dp = dq = m(e) and fα ∈ Fp for all
α ∈ m(e). We then have p ≤D r and p ∈ Ed.

Now, let G be D-generic over the ground model V with pF ∈ G. Work in
V[G] and define g =

⋃
{ap | p ∈ G}. Then Proposition 3.5 ensures that g is

a function from ω1 to ω1.

Claim. F ∩ ran(g) = ∅.
Proof of the Claim. Fix α < ω1 and β ∈ F . By Proposition 3.5, we can

find p ∈ G with p ≤D pF and α ∈ dp. Since α /∈ dpF = ∅ and cβ ∈ FpF , the
definition of D ensures that g(α) = ap(α) ̸= cβ(α) = β.

Claim. For every d ∈ [ω1]
<ω, there exists d ⊆ e ∈ [ω1]

<ω with

{β < ω1 | fα(β) = g(β)} ⊆ m(e) for all α ∈ m(e).

Proof of the Claim. Using our first claim, we can find q ∈ Ed ∩G. Then
there exists d ⊆ e ∈ [ω1]

<ω with dq = m(e). Fix α ∈ m(e) and β ∈ ω1 \m(e).
By Proposition 3.5, there exists p ∈ G with p ≤D q and β ∈ dp. Since
β ∈ dp \ dq and fα ∈ Fq, the definition of D now implies that g(β) =
ap(β) ̸= fα(β).

The above claims show that, in V[G], there exists a function g : ω1 → ω1

with F ∩ ran(g) = ∅ and the property that for all d ∈ [ω1]
<ω, there is

d ⊆ e ∈ [ω1]
<ω such that {β < ω1 | fα(β) = g(β)} ⊆ m(e) for all α ∈ m(e).

Since this statement can be formulated by a Σ1-formula with parameters
f⃗ , F,m ∈ H(ω2)

V, we can use [1, Theorem 5] to conclude that the given
statement also holds in V.

4. Forcing without large cardinals. In this section, we prove the
following result that shows that no large cardinals are needed to establish
the consistency of the principle ( ).

Theorem 4.1. If CH holds, then there is a proper partial order P that
satisfies the ℵ2-chain condition such that 1P ⊩ ( ).

Following the arguments in [11, Section 4], we now introduce a matrix
version of Larson’s forcing D. We then use the results of [9, Section VIII.2]
to show that the constructed partial order possesses the properties listed in
Theorem 4.1.

Definition 4.2. We let E denote the partial order defined by the fol-
lowing clauses:

(1) A condition in E is a triple p = ⟨ap,Fp, tp⟩ such that the following
statements hold:

(a) ap is a function from a finite subset dp of ω1 into ω1.
(b) Fp is a finite set of functions from ω1 to ω1.
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(c) tp is a function from a finite ∈-chain Cp of countable transitive sets
to the set of non-empty finite subsets of H(ω2).

(d) If M ∈ Cp and X ∈ tp(M), then X is a countable elementary
submodel of H(ω2) and M is the transitive collapse of X.

(e) If M,N ∈ Cp with M ∈ N and X ∈ tp(M), then there is Y ∈ tp(N)
with X ∈ Y .

(f) If M ∈ Cp, X ∈ tp(M) and α ∈ dp ∩X, then ap(α) ∈ X.
(g) If M ∈ Cp, X ∈ tp(M), α ∈ dp \X and f ∈ X is a function from ω1

to ω1, then ap(α) ̸= f(α).

(2) Given conditions p and q in E, we have q ≤E p if and only if the following
statements hold:

(a) dp ⊆ dq, ap = aq↾dp, Fp ⊆ Fq, Cp ⊆ Cq and tp(M) ⊆ tq(M) for all
M ∈ Cp.

(b) If α ∈ dq \ dp and f ∈ Fp, then aq(α) ̸= f(α).

In order to prove that the partial order E is proper, we start by showing
that Lemma 6.1 of [7] can directly be adapted to the matrix forcing E, using
the same proof.

Lemma 4.3. Let p be a condition in E and let D be a subset of E that
is dense below p. Then there exists λ < ω1 with the property that for every
finite set F of functions from ω1 to ω1, there exists q ∈ D below p with
aq ⊆ λ× λ and aq(α) ̸= f(α) for all α ∈ dq \ dp and f ∈ F .

Proof. Assume, towards a contradiction, that the above statement fails.
Then there exists a sequence ⟨Fλ | λ < ω1⟩ of finite, non-empty sets of
functions from ω1 to ω1 with the property that for every λ < ω1 and every
q ∈ D below p with aq ⊆ λ × λ, there exists αλ

q ∈ dq \ dp and fλq ∈ Fλ

with aq(αλ
q ) = fλq (α

λ
q ). Without loss of generality, we may assume that there

is 0 < n < ω with |Fλ| = n for all λ < ω1. Given λ < ω1, pick functions
fλ0 , . . . , f

λ
n−1 from ω1 to ω1 with Fλ = {fλ0 , . . . , fλn−1}.

Now, fix a uniform ultrafilter U on ω1. For each q ∈ D below p, we can
now find αq ∈ dq \ dp and iq < n with the property that

Aq = {λ < ω1 | aq ⊆ λ× λ, αλ
q = αq, f

λ
q = fλiq} ∈ U.

Then, for all q, r ∈ D below p with αq = αr and iq = ir, we can find
λ ∈ Aq ∩Ar, and this allows us to conclude that

aq(αq) = fλiq(αq) = ar(αq).

This shows that there are functions h0, . . . , hn−1 : ω1 → ω1 such that
hiq(αq) = aq(αq) for all q ∈ D below p. Define

q = ⟨ap,Fp ∪ {hi | i < n}, tp⟩.
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Then it is easy to see that q is a condition in E below p. Pick r ∈ D below q.
Then αr ∈ dr \dp = dr \dq and ar(αr) = hir(αr), contradicting the fact that
r ≤E q.

Lemma 4.4. Let θ be a sufficiently large regular cardinal and let Z be a
countable elementary submodel of H(θ). If p is a condition in E with H(ω2)∩
Z ∈ tp(N) for some N ∈ Cp, then p is a (Z,E)-generic condition.

Proof. Pick a dense subset D of E that is contained in Z and a condition
q in E below p. Set C = Cq ∩ N . Then C is a finite ∈-chain of countable
transitive sets. Moreover, the definition of our forcing ensures that for every
M ∈ C , we can find X ∈ tq(M) and Y ∈ tq(N) with X ∈ Y . In particular,
we know that every element of C is countable in N , and this shows that C is
a subset of Z.

Now, let |tq(N)| = k > 0 and pick sets Z0, . . . , Zk−1 such that Z0 =
H(ω2)∩Z and tq(N) = {Z0, . . . , Zk−1}. Given i < k, since N is the transitive
collapse of Zi, there exists a unique isomorphism πi : ⟨Zi,∈⟩ → ⟨Z0,∈⟩. Next,
for all M ∈ C and X ∈ tq(M), we let I(X) denote the set of all i < k with
the property that X ∈ Zi and there exists a finite ∈-chain C of elements of
Zi with the property that for all M ′ ∈ C with M ∈M ′, there exists X ′ ∈ C
with X ∈ X ′ ∈ tq(M

′). Note that, since C is finite, the definition of E then
ensures that I(X) ̸= ∅ holds for all M ∈ C and X ∈ tq(M). Define t to be
the unique function with domain C and

t(M) = {πi(X) | X ∈ tq(M), i ∈ I(X)}
for all M ∈ C . Finally, set

q̄ = ⟨aq ∩ Z,Fq ∩ Z, t⟩.

Claim. q̄ is a condition in E that is an element of Z.

Proof of the Claim. First, fix M ∈ C and X ∈ t(M). Then there are
X ′ ∈ tq(M) and i ∈ I(X ′) with X = πi(X

′). Since X ′ ⊆ Zi and both
sets are elementary submodels of H(ω2), we know that X ′ is an elementary
submodel of Zi and therefore elementarity implies that X is an elementary
submodel of both Z0 and H(ω2). Moreover, since M is the transitive collapse
of X ′, we can conclude that M is also the transitive collapse of X.

Now, fix M0,M1 ∈ C with M0 ∈M1 and X0 ∈ t(M0). Then there exists
X ′ ∈ tq(M0) and i ∈ I(X ′) with X = πi(X

′). By the definition of I(X ′),
there exists a finite ∈-chain C of elements of Zi with the property that for
all M ∈ C with M0 ∈ M , there exists X ∈ C with X ′ ∈ X ∈ tq(M). Pick
X ′′ ∈ C∩tq(M1) and set X1 = πi(X

′′). Then the ∈-chain {X ∈ C | X ′′ ∈ X}
witnesses that i ∈ I(X ′′) and hence X1 is an element of t(M1) with X0 ∈ X1.

Next, pick M ∈ C , X ∈ t(M) and α ∈ dq ∩X ∩Z = dq ∩X. Then there
are X ′ ∈ tq(M) and i ∈ I(X ′) with X = πi(X

′). Since dq ∩ X = dq ∩ X ′,
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we have M ∈ Cq, X ′ ∈ tq(M) and α ∈ dq ∩X ′. By the definition of E, this
implies that aq(α) ∈ X ′, and since X ∩ ω1 = X ′ ∩ ω1, we can conclude that
aq(α) ∈ X.

Finally, fix M ∈ C , X ∈ t(M), α ∈ (dq∩Z)\X and a function f from ω1

to ω1 in X. Pick X ′ ∈ tq(M) and i ∈ I(X ′) with X = πi(X
′). Then the

fact that X ∩ ω1 = X ′ ∩ ω1 implies that α ∈ dq \X ′. In this situation, the
definition of E and the fact that π−1

i ↾(X ∩ ω1) = idX∩ω1 imply that

aq(α) ̸= (π−1
i (f))(α) = π−1

i (f(α)) = f(α).

The above computations show that q̄ is a condition in E. Since all relevant
sets are finite, the fact that C is a subset of Z allows us to conclude that
q̄ is an element of Z.

An application of Lemma 4.3 in Z now yields an ordinal λ ∈ Z ∩ω1 with
the property that for every finite set F of functions from ω1 to ω1, there
exists r ∈ D below q̄ with ar ⊆ λ×λ and ar(α) ̸= f(α) for all α ∈ dr \dq̄ and
f ∈ F . Hence, there exists r ∈ D below q̄ with ar ⊆ λ×λ and ar(α) ̸= f(α)
for all α ∈ dr \ dq̄ and f ∈ Fq. Since ar ⊆ λ× λ ⊆ Z, elementarity yields a
condition s ∈ D ∩ Z with ar = as and s ≤E q̄. Define C∗ = Cq ∪ Cs and let
t∗ denote the unique function with domain C∗ such that t∗(M) = tq(M) for
all M ∈ Cq \ Cs and

t∗(M) = {π−1
i (X) | i < k, X ∈ ts(M)}

for all M ∈ Cs. Finally, we set

u = ⟨aq ∪ as,Fq ∪ Fs, t∗⟩.
Claim. u is a condition in E.

Proof of the Claim. First, fix α ∈ dq ∩ ds. Since ds = dr ⊆ λ ⊆ Z, we
know that α ∈ dq ∩ Z = dq̄ and therefore the fact that r ≤E q̄ allows us to
conclude that

aq(α) = aq̄(α) = ar(α) = as(α).

In particular, we know that aq ∪ as is a function.
Now, fix M0 ∈ Cq \ Cs and M1 ∈ Cs \ Cq. Then M0 /∈ Cq ∩N = Cq̄ ⊆ Cs

and hence M0 /∈ N . Since M0 and N are both contained in the ∈-chain Cq,
we now know that either M0 = N or N ∈ M0. But M1 ∈ Cs ⊆ Z implies
that M1 ∈ N , and therefore we know that M1 ∈ M0 in both cases. These
computations show that C∗ is an ∈-chain.

Next, pick M0,M1 ∈ C∗ with M0 ∈ M1 and X0 ∈ t∗(M0). If M0,M1 ∈
Cq\Cs, then X0 = t∗(M0) = tq(M0) and there is X1 ∈ tq(M1) = t∗(M1) with
X0 ∈ X1. Now, assume that M1 ∈ Cs. Since Cs ⊆ Z, we then have M1 ∈ N
and, since Cq ∩N = Cq̄ ⊆ Cs, we know that M0 ∈ Cs. We can now find i < k
and X ′ ∈ ts(M0) with X0 = π−1

i (X ′). Pick X ′′ ∈ ts(M1) with X ′ ∈ X ′′ and
set X1 = π−1

i (X ′′). Then X0 ∈ X1 ∈ t∗(M1). Finally, assume that M0 ∈ Cs
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and M1 ∈ Cq \ Cs. As above, we know that either M1 = N or N ∈ M1. In
the first case, if M1 = N and X0 = π−1

i (X) with i < k and X ∈ ts(M), then
X0 ∈ Zi ∈ tq(N) = t∗(M1). In the other case, if M1 ∈ N and X0 = π−1

i (X)
with i < k and X ∈ ts(M), then Zi ∈ tq(N), there is X1 ∈ tq(M1) = t∗(M1)
with Zi ∈ X1, and elementarity implies that X0 ∈ X1. These computations
show that, in all cases, there exists X1 ∈ t∗(M1) with X0 ∈ X1.

Now, fix M ∈ C∗, X ∈ t∗(M) and α ∈ (dq ∪ ds) ∩X. First, assume that
M ∈ Cq\Cs and α ∈ ds∩X. SinceM,N ∈ Cq andM /∈ Cq∩N = Cq̄ ⊆ Cs, we
know that either M = N or N ∈ N , and both cases imply that Z ∩ω1 ⊆ X.
In particular, we know that (aq ∪ as)(α) = as(α) ∈ Z ∩ ω1 ⊆ X. Next, if
M ∈ Cq \ Cs and α ∈ dq ∩ X, then (aq ∪ as)(α) = aq(α) ∈ X. Finally,
assume that M ∈ Cs. Note that dq ∩X = dq̄ ∩X ⊆ ds ∩X. In particular,
we know that α ∈ ds ∩X. Pick i < k and X ′ ∈ ts(M) with X = π−1

i (X ′).
Then α ∈ ds ∩ X ′ and this implies that as(α) ∈ X ′. But this shows that
(aq ∪ as)(α) = as(α) ∈ X. These computations show that (aq ∪ as)(α) ∈ X.

Finally, assume that M ∈ C∗, X ∈ t∗(M), α ∈ (dq ∪ ds) \X and f is a
function from ω1 to ω1 in X. First, assume that M ∈ Cq \ Cs. As above, we
then know that either M = N or N ∈M , and in both cases we can conclude
that ds ⊆ Z ∩ ω1 ⊆ X. This shows that α ∈ dq \X and hence X ∈ tq(M)
implies that (aq ∪ as)(α) = aq(α) ̸= f(α). Next, assume that M ∈ Cs and
α ∈ dq \ (ds ∪ X). Since dq ∩ Z = dq̄ ⊆ ds, we now know that α /∈ Z and
therefore f ∈ X ⊆ Z0 ∈ tq(N) implies that (aq ∪ as)(α) = aq(α) ̸= f(α).
Finally, assume that M ∈ Cs and α ∈ ds \ X. Pick i < k and X ′ ∈ ts(M)
with X = π−1

i (X ′). Then α ∈ ds \X ′ and

(aq ∪ as)(α) = as(α) ̸= π−1
i (f)(α) = f(α).

These computations show that (aq ∪ as)(α) ̸= f(α) holds in all cases.

Claim. u ≤E q.

Proof of the Claim. The definition of u directly implies that dq ⊆ du,
aq = au↾dq, Fq ⊆ Fu and Cq ⊆ Cu. Now, assume that M ∈ Cq ∩ Cs and
X ∈ tq(M). Then M ∈ Z and therefore M ∈ Cq ∩ N = Cq̄. Fix i ∈ I(X).
Then πi(X) ∈ tq̄(M) ⊆ ts(M) and therefore X ∈ tu(M). Since we also have
tu↾(Cq \ Cs) = tq↾(Cq \ Cs), we can conclude that tq(M) ⊆ tu(M) for all
M ∈ Cq. Finally, fix α ∈ du \ dq and f ∈ Fq. Then ds ⊆ Z implies that
α ∈ ds \ dq = dr \ dq̄ and therefore au(α) = as(α) = ar(α) ̸= f(α).

Claim. u ≤E s.

Proof of the Claim. The definition of u together with the fact that π0 =
idZ0 directly implies that ds ⊆ du, as = au↾ds, Fs ⊆ Fu, Cs ⊆ Cu and
ts(M) ⊆ tu(M) for allM ∈ Cs. Fix α ∈ du\ds and f ∈ Fs. Since dq∩N ⊆ ds,
we then know that α ∈ dq \ Z0 and, since N ∈ Cq, Z0 ∈ tq(N) and f ∈ Z0,
we can conclude that au(α) = aq(α) ̸= f(α).
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Since s is an element of D ∩Z, the above claims show that p is a (Z,E)-
generic condition.

Corollary 4.5. The partial order E is proper.

Proof. Fix a sufficiently large regular cardinal θ, a countable elementary
submodel X of H(θ) and a condition p in E that is an element of X. Let M
denote the transitive collapse of H(ω2) ∩X and define

q = ⟨ap,Fp, tp ∪ {⟨M, {H(ω2) ∩X}⟩}⟩.
Then it is easy to see that q is a condition in E below p. Moreover, Lemma 4.4
shows that q is (X,E)-generic.

Following [9, Section VIII.2] and [11, Section 4], we give the following
definition.

Definition 4.6. A partial order P satisfies the ℵ2-isomorphism condi-
tion (6) if for

• all sufficiently large regular cardinals θ,
• all well-orderings ◁ of H(θ),
• all ordinals α < β < ω2,
• all countable elementary submodels Y and Z of ⟨H(θ),∈,◁⟩ with α ∈ Y ,
β ∈ Z and P ∈ Y ∩ Z, Y ∩ ω2 ⊆ β and Y ∩ α = Z ∩ β,

• all conditions p in P that are contained in Y , and
• all isomorphisms π : ⟨Y,∈⟩ → ⟨Z,∈⟩ with π(α) = β and π↾(Y ∩ Z)
= idY ∩Z ,

there exists a (Y,P)-generic condition q below both p and π(p) with the
property that π[G ∩ Y ] = G ∩ Z holds whenever G is P-generic over V with
q ∈ G.

Lemma 4.7. The partial order E satisfies the ℵ2-isomorphism condition.

Proof. In the following, pick θ,◁, α, β, Y, Z, p, π as in the definition of
the ℵ2-isomorphism condition. Then it is easy to see that π(p) is again a
condition in E with dp = dπ(p), ap = aπ(p) and Cp = Cπ(p). Let t denote
the unique function with domain Cp and t(M) = tp(M) ∪ tπ(p)(M) for all
M ∈ Cp. Then it is easy to see that the tuple

q = ⟨ap,Fp ∪ Fπ(p), t⟩
is a condition in E below both p and π(p).

Now, let N denote the transitive collapse of H(ω2) ∩ Y and define

r =
〈
aq,Fq, tq ∪

{
⟨N, {H(ω2) ∩ Y,H(ω2) ∩ Z}⟩

}〉
.

Since our assumptions imply that Y ∩ω1 = Z ∩ω1 and π↾(Y ∩ω1) = idZ∩ω1 ,

(6) In [9], this property is called ℵ2-properness isomorphism condition. We follow the
naming conventions of [11].
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it follows that r is a condition in E below q. Moreover, Lemma 4.4 directly
implies that r is both an (Y,E)- and a (Z,E)-generic condition.

In the following, let G be E-generic over V with r ∈ G. Assume, towards
a contradiction, that there is s ∈ G∩ Y with π(s) /∈ G. Fix a condition u in
E below both r and s. Set k = |tu(N)| > 1 and pick sets W0, . . . ,Wk−1 with
W0 = H(ω2) ∩ Y , W1 = H(ω2) ∩ Z and tu(N) = {W0, . . . ,Wk−1}. For all
M ∈ Cu∩N and all X ∈ tu(M), we let I(X) denote the set of all i < k with
the property that X ∈ Wi and there exists a finite ∈-chain C of elements
of Wi with the property that for all M ∈ M ′ ∈ C, there exists X ∈ X ′ ∈
C ∩ tu(M ′). Then I(X) ̸= ∅ for all M ∈ Cu ∩N and all X ∈ tu(M). Next,
given i, j < k, let πi,j : ⟨Wi,∈⟩ → ⟨Wj ,∈⟩ denote the unique isomorphism
between these structures. We then have π0,1 = π↾(W0). We now define t∗ to
be the unique function with domain Cu such that t∗(M) = tu(M) holds for
all M ∈ Cu \N and

t∗(M) = {πi,j(X) | X ∈ tu(M), i ∈ I(X), j < k}
for all M ∈ Cu ∩N . Set

v = ⟨au,Fπ(s) ∪ Fu, t∗⟩.
Claim. v is a condition in E below u.

Proof of the Claim. First, if M ∈ Cu ∩ N , X ∈ tu(M), i ∈ I(X) and
j < k, thenX is an elementary submodel ofWi and this allows us to conclude
that πi,j(X) is a countable elementary submodel of H(ω2) whose transitive
collapse is equal to M .

Next, fix M0,M1 ∈ Cu with M0 ∈ M1 and X0 ∈ t∗(M0). First, assume
that M1 ∈ N . Then M0 ∈ N , and we can find X ∈ tu(M0), i ∈ I(X)
and j < k with X0 = πi,j(X). Let C be the ∈-chain of elements of Wi

witnessing that i ∈ I(X), and pick X ′ ∈ C with X ∈ X ′ ∈ C ∩ tu(M1).
Then {W ∈ C | X ′ ∈W} is an ∈-chain witnessing that i ∈ I(X ′), and hence
we have X0 ∈ πi,j(X

′) ∈ t∗(M1). Next, if M0,M1 /∈ N , then X0 ∈ tu(M0)
and there exists X1 ∈ tr(M1) = t∗(M1) with X0 ∈ X1. Finally, assume that
M0 ∈ N and M1 /∈ N . Then there exists j < k with X0 ∈Wj ∈ tu(N). Since
M1 and N are both contained in Cu, we then know that either M1 = N or
N ∈ M1. If N ∈ M1, then we can find X1 ∈ tu(M1) with Wj ∈ X1 and we
then also have X0 ∈ X1. We can therefore conclude that, in all cases, there
exists X1 ∈ t∗(M1) with X0 ∈ X1.

We now fix M ∈ Cu, X ∈ t∗(M) and α ∈ du ∩ X. If M /∈ N , then
X ∈ tu(M) and therefore au(α) ∈ X. Now, assume that M ∈ N . Pick
X ′ ∈ tu(M), i ∈ I(X ′) and j < k with X = πi,j(X

′). Then α ∈ du ∩X ′ and
therefore au(α) ∈ X ′ ∩ ω1 ⊆ X.

Next, fix M ∈ Cu, X ∈ t∗(M), α ∈ du \X and a function f : ω1 → ω1

in X. If M /∈ N , then X ∈ tu(M) and au(α) ̸= f(α). In the other case, if
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M ∈ N and X = πi,j(X
′) for some X ′ ∈ tu(M), i ∈ I(X ′) and j < k, then

α ∈ du \X ′ and therefore au(α) ̸= π−1
i,j (f)(α) = f(α).

The above computations show that v is a condition in E with au = av,
Fu ⊆ Fv and Cu = Cv. Since our construction ensures that tu(M) ⊆ tv(M)
for all M ∈ Cu, we can now conclude that v ≤E u.

Claim. v ≤E π(s).

Proof of the Claim. The fact that v ≤E s directly implies that dπ(s) = ds
⊆ dv, av↾dπ(s) = as = aπ(s) and Cπ(s) = Cs ⊆ Cv. Moreover, the definition
of v ensures that Fπ(s) ⊆ Fv. In addition, the fact that π0,1 = π↾W0 and
Cs ⊆ Cu ∩N directly implies that

tπ(s)(M) = π[ts(M)] ⊆ π[{π0,1(X) | X ∈ tu(M), X ∈W0}] ⊆ tv(M)

for all M ∈ Cπ(s). Finally, fix α ∈ dv \ dπ(s) and f ∈ Fπ(s). Then α ∈ dv \ ds
and π−1(f) ∈ Fs. Since this allows us to conclude that

aπ(s)(α) = as(α) ̸= π−1(f)(α) = f(α),

the claim follows.

A density argument now shows that there is a condition v in G that
is stronger than π(s), which contradicts our assumption. This shows that
π[G ∩ Y ] ⊆ G.

Finally, assume, towards a contradiction, that there is u ∈ G ∩ Z with
the property that π−1(u) /∈ G. Let D denote the set of all conditions in E
that are either stronger than π−1(u) or incompatible with π−1(u). Then
D is a dense subset of E that is contained in Y . Since r ∈ G, we can find
v ∈ D∩G∩Y . In this situation, the above computations show that π(v) ∈ G,
and elementarity implies that the element u and π(v) are incompatible in E,
a contradiction.

The statements of the following proposition can be proven in the same
way as the corresponding results for the partial order D in Section 3. The
details are left to the reader.

Proposition 4.8. Let G be E-generic over V and set g =
⋃
{ap | p ∈ G}.

(1) The set g is a function from ω1 to ω1.
(2) For every sequence ⟨fα | α < ω1⟩ of functions from ω1 to ω1 in V, every

monotone map m : [ω1]
<ω → [ω1]

<ω in V and every a ∈ [ω1]
<ω, there

exists a ⊆ b ∈ [ω1]
<ω with

{β < ω1 | fα(β) = g(β)} ⊆ m(b) for all α ∈ m(b).

(3) Given a finite subset F of ω1, the tuple

qF = ⟨∅, {cβ | β ∈ F}, ∅⟩
is a condition in E in V and, if qF ∈ G, then ran(g) ∩ F = ∅.
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We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. Assume that CH holds and let ⟨Fγ | γ < ω2⟩
denote an enumeration of all finite subsets of ω1 with the property that
every such subset is enumerated unboundedly often in ω2. Let〈

⟨P⃗<γ | γ ≤ ω2⟩, ⟨Ṗγ | γ < ω2⟩
〉

denote a forcing iteration with countable support with the property that for
all γ < ω2, if G is P⃗<γ-generic over V, then ṖG

γ is equal to the suborder of
EV[G] consisting of all conditions below qFγ . Then Corollary 4.5 and the itera-
tion theorem for proper forcings ensure that the partial order P⃗<ω2 is proper.
In addition, Lemma 4.7 allows us to apply [9, Section VIII, Lemma 2.4] to
show that P⃗<ω2 satisfies the ℵ2-chain condition. In combination, these ar-
guments show that forcing with P⃗<ω2 preserves all cardinals. Moreover, we
know that every subset of ω1 in a P⃗<ω2-generic extension is contained in a
proper intermediate extension of the iteration.

Now, let G be P⃗<ω2-generic over V and, in V[G], fix a sequence f⃗ =
⟨fα | α < ω1⟩ of functions from ω1 to ω1, a finite subset F of ω1 and some
monotone map m : [ω1]

<ω → [ω1]
<ω. By the definition of our iteration

and the above remarks, there exists γ < ω2 with the property that, if Ḡ
denotes the filter on P⃗<γ induced by G, then Fγ = F and f⃗ ,m ∈ V[Ḡ]. Let
Gγ be the filter on Ṗγ induced by G, and set g =

⋃
{ap | p ∈ Gγ}. Then

Proposition 4.8 shows that g is a function from ω1 to ω1 with the property
that F ∩ ran(g) = ∅ and, for all a ∈ [ω1]

<ω, there exists a ⊆ b ∈ [ω1]
<ω with

{β < ω1 | fα(β) = g(β)} ⊆ m(b) for all α ∈ m(b). This shows that ( ) holds
in V[G].

5. The coloring. We now use the principle ( ) to construct an (M,N )-
full structure of cardinality ℵ2. This implication is an immediate consequence
of the next result.

Theorem 5.1. Assume that ( ) holds. Then there exists

• a map c : [ω2]
2 → ω1,

• a monotone map m : [ω2]
<ω → [ω2]

<ω, and
• a map r : ω2 → ω2

such that the following statements hold:

(1) If a ∈ [ω2]
<ω and α, β ∈ m(a) with α ̸= β, then Ac

α,β ⊆ m(a).
(2) Given

• a finite subset d of ω2 + ω,
• a function e : [d]2 → ω1, and
• a function s : d→ ω2
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such that

• c↾[d ∩ ω2]
2 = e↾[d ∩ ω2]

2,
• r↾d = s, and
• Ae

α,β ⊆ ω2 for all α, β ∈ d ∩ ω2 with α ̸= β,

there exists an injection ι : d→ ω2 with

• ι↾(d ∩ ω2) = idd∩ω2,
• c(ι(α), ι(β)) = e(α, β) for all α, β ∈ d with α ̸= β, and
• r(ι(α)) = s(α) for all α ∈ d.

Before we present the proof of the above theorem, we briefly show how
it can be applied to prove the desired independence result.

Corollary 5.2. Assume that ( ) holds and let M be a countable model
that characterizes ℵ1. Then there exists an (M,N )-full structure of cardi-
nality ℵ2.

Proof. Let c, m and r be the functions given by Theorem 5.1. Then the
function m directly witnesses that the function c possesses the properties (a)
and (b) listed in Lemma 2.1. Now, fix a finite set d, a function e : [d]2 → ωα

with e↾[d ∩ ω2]
2 = c↾[d ∩ ω2]

2 that introduces no new agreements over
c↾[d∩ω2]

2, and a function s : d→ ω2 with s↾(d∩ω2)=r↾(d∩ω2). Without loss
of generality, we may assume that d is a subset of ω2+ω. If α, β ∈ d∩ω2 with
α ̸= β, then the fact that e introduces no new agreements over c↾[d ∩ ω2]

2

implies that Ae
α,β = Ac↾[d∩ω2]2

α,β ⊆ ω2. This allows us to use conclusion (2)
of Theorem 5.1 to find an injection ι : d → ω2 with ι↾(d ∩ ω2) = idd∩ω2 ,
c(ι(α), ι(β)) = e(α, β) for all α, β ∈ d with α ̸= β, and r(ι(α)) = s(α) for all
α ∈ d. These computations allow us to conclude that the functions c and r
possess the properties (c) and (d) listed in Lemma 2.1. We can therefore
apply Lemma 2.1 to find an (M,N )-full structure of cardinality ℵ2.

Proof of Theorem 5.1. In the following, we let ≺·, ·≻ : On×On → On
denote the Gödel pairing function. In addition, let p0, p1 : ω1 → ω1 denote
the corresponding projections on ω1, i.e. the unique pair of functions on ω1

with α = ≺p0(α), p1(α)≻ for all α < ω1. For each 0 < α < ω2, fix a surjection
sα : ω1 → α. In addition, pick an enumeration ⟨⟨eξ, sξ⟩ | ξ < ω2⟩ of all pairs
⟨e, s⟩ of functions with e : [d]2 → ω1 and s : d → ω2 for some finite subset
d of ω2 + ω such that the enumeration has the property that for all ζ < ω2,
the set {ξ < ω2 | eξ = eζ} is unbounded in ω2.

Given 0 < α < ω2, a finite subset F of ω1, a map c0 : [α]2 → ω1

and a monotone map m0 : [α]<ω → [α]<ω, we call a pair (c,m) an F -good
extension of (c0,m0) if there exists a function g : α → ω1 such that the
following statements hold:

• F ∩ ran(g) = ∅.
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• c : [α+ 1]2 → ω1 is a map with c↾[α]2 = c0 and

c(α, β) = ≺g(β),min(s−1
α {β})≻

for all β < α.
• m : [α+ 1]<ω → [α+ 1]<ω is a map with m↾[α]<ω = m0 and the property

that for all a ∈ [α]<ω, there exists a ⊆ b ∈ [α]<ω satisfying

m(a ∪ {α}) = m0(b) ∪ {α}
and

{γ ∈ α \ {β} | p0(c0(β, γ)) = g(γ)} ⊆ m0(b)

for all β ∈ m0(b).

Note that ( ) implies that an F -good extension of (c0,m0) exists.
In the following, we construct

• a strictly increasing sequence ⟨αξ | ξ < ω1⟩ of ordinals less than ω2 with
α0 = 0,

• a sequence ⟨cξ : [αξ]
2 → ω1 | ξ < ω2⟩ of maps with cξ↾[αζ ]

2 = cζ for all
ζ ≤ ξ < ω2,

• a sequence ⟨mξ : [αξ]
<ω → [αξ]

<ω | ξ < ω2⟩ of monotone maps satisfying
mξ↾[αζ ]

<ω = mζ for all ζ ≤ ξ < ω2, and
• a sequence ⟨rξ : αξ → ω2 | ξ < ω2⟩ of functions with rξ↾αζ = rζ for all
ζ ≤ ξ < ω2.

Fix 0 < ξ < ω2 and assume that αζ , cζ and mζ with the above properties
are defined for all ζ < ξ. We define

• α∗ = supζ<ξ αζ ,
• c∗ =

⋃
ζ<ξ cζ : [α∗]

2 → ω1,
• m∗ =

⋃
ζ<ξmζ : [α∗]

<ω → [α∗]
<ω,

• r∗ : α∗ → ω2, and
• d = dom(sξ) ∈ [ω2 + ω]<ω.

If either d ⊆ α∗, or d ∩ ω2 ⊈ α∗, or c∗↾[d ∩ ω2]
2 ̸= eξ↾[d ∩ ω2]

2, or
r∗↾(d ∩ ω2) ̸= sξ↾(d ∩ ω2), or there exist β, γ ∈ d ∩ ω2 with β ̸= γ and
Aeξ

β,γ ⊈ ω2, then we say that ξ has Type 0, we set αξ = α∗ + 1, we define
rξ = r∗ ∪{⟨α∗, 0⟩}, and we pick cξ and mξ such that the pair (cξ,mξ) is a ∅-
good extension of (c∗,m∗). In the following, assume that d ⊈ α∗, d∩ω2 ⊆ α∗,
c∗↾[d ∩ ω2]

2 = eξ↾[d ∩ ω2]
2, r∗↾(d ∩ ω2) = sξ↾(d ∩ ω2) and Aeξ

β,γ ⊆ ω2 for all
β, γ ∈ d∩ω2 with β ̸= γ. We then say that ξ has Type 1. Let |d \ ω2| = n > 0,
set αξ = α∗ + n and pick an injection ιξ : d → αξ with ιξ↾(d ∩ ω2) = idd∩ω2

and ιξ[d \ ω2] = [α∗, αξ). In addition, set F = ran(p0 ◦ eξ). Pick a map
c∗ : [αξ]

2 → ω1 and a monotone map m∗ : [αξ]
<ω → [αξ]

<ω such that
c∗↾[α∗]

2 = c∗, m∗↾[α∗]
<ω = m∗ and for all i < n, the pair (c∗↾[α∗ + i + 1]2,

m∗↾[α∗ + i + 1]<ω) is an F -good extension of (c∗↾[α∗ + i]2,m∗↾[α∗ + i]<ω).
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Define cξ : [αξ]
2 → ω1 to be the unique map with cξ(ιξ(β), ιξ(γ)) = eξ(β, γ)

for all β, γ ∈ d with β ̸= γ and cξ(β, γ) = c∗(β, γ) for all β < γ < αξ with
{β, γ} ⊈ ran(ιξ). Our assumptions on eξ then ensure that cξ↾[α∗]

2 = c∗.
In addition, let mξ : [αξ]

<ω → [αξ]
<ω denote the unique function with

mξ↾[α∗]
<ω = m∗ and mξ(a) = m∗(a ∪ ran(ιξ)) for all a ∈ [αξ]

<ω with
a∩ [α∗, αξ) ̸= ∅. Finally, define rξ to be the unique function with domain αξ

satisfying rξ↾α∗ = r∗ and rξ(ιξ(α)) = sξ(α) for all α ∈ d.
We can now define

• c =
⋃

ξ<ω2
cξ : [ω2]

2 → ω1,
• m =

⋃
ξ<ω2

mξ : [ω2]
<ω → [ω2]

<ω, and
• r =

⋃
ξ<ω2

rξ : ω2 → ω2.

Our construction then ensures that m is a monotone map.

Claim. If 0 < ξ < ω2, a ∈ [αξ]
<ω and α, β ∈ m(a) with α ̸= β, then

Acξ
α,β ⊆ m(a).

Proof of the Claim. Assume that 0 < ξ < ω2 has the property that
Acζ

α,β ⊆ m(a) for all 0 < ζ < ξ, every a ∈ [αζ ]
<ω and all α, β ∈ m(a) with

α ̸= β. Set α∗ = supζ<ξ αζ and c∗ = c↾[α∗]
2. Then our assumptions imply

that Ac∗
β,γ ⊆ m(a) holds for every a ∈ [α∗]

<ω and all β, γ ∈ m(a) with β ̸= γ.
First, assume that ξ has Type 0. Then αξ = α∗ + 1. Fix a ∈ [αξ]

<ω

and let g : α∗ → ω1 denote the function used in the construction of cξ. If
γ < β < α∗, then

sα∗(p1(cξ(α∗, β))) = β ̸= γ = sα∗(p1(cξ(α∗, γ)))

and therefore cξ(α∗, β) ̸= cξ(α∗, γ). In particular, if a ⊆ α∗ and β, γ ∈ m(a)
with β ̸= γ, then Acξ

β,γ = Ac∗
β,γ ⊆ m(a). In the following, assume that α∗ ∈ a.

Then there exists a ∩ α∗ ⊆ b ∈ [α∗]
<ω with m(a) = m(b) ∪ {α∗} and{

γ ∈ α∗ \ {β} | p0(c∗(β, γ)) = g(γ)
}
⊆ m(b)

for all β ∈ m(b). Now, if β, γ ∈ m(a) ∩ α∗ = m(b) with β ̸= γ, then the
above computations show that Acξ

β,γ = Ac∗
β,γ ⊆ m(b) ⊆ m(a). Moreover, if we

have β ∈ m(a) ∩ α∗ = m(b) and γ ∈ α∗ \ {β} satisfying cξ(α∗, γ) = cξ(β, γ),
then p0(c∗(β, γ)) = g(γ) and therefore γ ∈ m(b) ⊆ m(a). This shows that
Acξ

α∗,β
⊆ m(a) for all β ∈ m(a) with α∗ ̸= β.

Now, assume that ξ has Type 1. Let d denote the unique finite subset
of ω2 + ω with the property that the domain of eξ is equal to the set [d]2.
In addition, let c∗ : [αξ]

2 → ω1 and m∗ : [αξ]
<ω → [αξ]

<ω denote the
functions used in the construction of cξ. Then the above computations show
that Ac∗

β,γ ⊆ α∗ for all γ < β < α∗ and Ac∗
β,γ ⊆ m∗(a) for every a ∈ [αξ]

<ω

and all β, γ ∈ m∗(a) with β ̸= γ.

Subclaim. If γ < β < α∗, then Acξ
β,γ ⊆ α∗.
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Proof of the Subclaim. Assume, towards a contradiction, that cξ(β, δ) =
cξ(γ, δ) holds for some α∗ ≤ δ < αξ. Then δ ∈ ran(ιξ) and we know that
{β, γ} ⊈ ran(ιξ), because otherwise we would have β, γ ∈ d∩ω2 and Aeξ

β,γ ⊈
ω2. Now, if γ /∈ ran(ιξ), then the fact that

p0(cξ(β, δ)) = p0(cξ(γ, δ)) = p0(c
∗(γ, δ)) /∈ ran(p0 ◦ eξ)

implies that β /∈ ran(ιξ). The same argument shows that β /∈ ran(ιξ) implies
that γ /∈ ran(ιξ). Hence, we can conclude that β and γ are both not contained
in ran(ιξ). But then our assumption implies that c∗(β, δ) = c∗(γ, δ) and, by
the above remarks, this shows that δ < α∗, a contradiction.

Fix a ∈ [αξ]
<ω. If a ⊆ α∗, then our subclaim shows that Acξ

β,γ = Ac∗
β,γ ⊆

m(a) for all β, γ ∈ m(a) with β ̸= γ. In the following, assume that a ∩
[α∗, αξ) ̸= ∅. Then m(a) = m∗(a∪ran(ιξ)). Pick β, γ ∈ m(a) with β ̸= γ and
δ ∈ Acξ

β,γ \ ran(ιξ). Then the definition of cξ ensures that c∗(β, δ) = c∗(γ, δ)

and hence we know that δ∈Ac∗
β,γ ⊆ m∗(a∪ ran(ιξ)) = m(a). This shows that

Acξ
β,γ ⊆ ran(ιξ) ∪ Ac∗

β,γ ⊆ m∗(a ∪ ran(ιξ)) = m(a)

for all β, γ ∈ m(a) with β ̸= γ.

Claim. If ζ < ω2 and β < α < αζ , then Ac
α,β ⊆ αζ .

Proof of the Claim. Fix αζ ≤ γ < ω2. Let ξ < ω2 be minimal with γ < αξ

and let d be the unique finite subset of ω2 + ω such that the domain of eξ is
equal to [d]2.

First, assume that ξ has Type 0. Then αξ = γ + 1 and the above con-
structions ensure that

sγ(p1(c(α, γ))) = α ̸= β = sγ(p1(c(β, γ))).

This allows us to conclude that c(α, γ) ̸= c(β, γ) in this case.
Next, assume that ξ has Type 1. Setα∗ = supη<ξ αη and let c∗ : [αξ]

2 → ω1

denote the function used in the construction of cξ. Then α < αζ ≤ α∗ ≤
γ < αξ and hence γ ∈ ran(ιξ). Moreover, the above computations show
that c∗(α, γ) ̸= c∗(β, γ). Set F = ran(p0 ◦ eξ) and n = |d \ ω2|. Now, if
α, β ∈ ran(ιξ), then α, β ∈ d ∩ α∗ and, since Aeξ

α,β ⊆ ω2, our construction
ensures that c(α, γ) ̸= c(β, γ). Next, if α ∈ ran(ιξ) and β /∈ ran(ιξ), then
we have c(α, γ) ∈ ran(eξ), p0(c(β, γ)) = p0(c

∗(β, γ)) /∈ ran(p0 ◦ eξ), and
therefore we know that c(α, γ) ̸= c(β, γ). The same argument shows that, if
α /∈ ran(ιξ) and β ∈ ran(ιξ), then c(α, γ) ̸= c(β, γ). Finally, if α, β /∈ ran(ιξ),
then c(α, γ) = c∗(α, γ) ̸= c∗(β, γ) = c(β, γ).

Claim. If a ∈ [ω2]
<ω and α, β ∈ m(a) with α ̸= β, then Ac

α,β ⊆ m(a).

Proof. Pick ξ < ω2 with m(a) ⊆ αξ. Then the previous claim shows that
Ac

α,β ⊆ αξ and we can use our first claim to conclude that Ac
α,β = Aαξ

α,β ⊆
m(a).
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Claim. Given a finite subset d of ω2 +ω, a function e : [d]2 → ω1 and a
function s : d→ ω2 such that e↾[d∩ω2]

2 = c↾[d∩ω2]
2, r↾(d∩ω2) = s↾(d∩ω2)

and Ae
α,β ⊆ ω2 for all α, β ∈ d ∩ ω2 with α ̸= β, there exists an injection

ι : d → ω2 with ι↾(d ∩ ω2) = idd∩ω2, r(ι(α)) = s(α) for all α ∈ d and
c(ι(α), ι(β)) = e(α, β) for all α, β ∈ d with α ̸= β.

Proof of the Claim. Without loss of generality, we may assume that d\ω2

̸= ∅. The above choices ensure that we can find ξ < ω2 with the property
that e = eξ, s = sξ and d ∩ ω2 ⊆ α∗ = supζ<ξ αζ . We define c∗ = c↾[α∗]

2 =⋃
ζ<ξ cζ and r∗ = r↾α∗ =

⋃
ζ<ξ rζ . We then know that d ⊈ α∗, d ∩ ω2 ⊆ α∗,

c∗↾[d ∩ ω2]
2 = eξ↾[d ∩ ω2]

2, r∗↾(d ∩ ω2) = sξ↾(d ∩ ω2) and Aeξ
α,β ⊆ ω2 for all

α, β ∈ d ∩ ω2 with α ̸= β. In particular, this shows that ξ has Type 1 and
ιξ : d→ αξ is an injection with ιξ↾(d ∩ ω2) = idd∩ω2 ,

r(ιξ(α)) = rξ(ι(α)) = sξ(α)

for all α ∈ d and

c(ιξ(β), ιξ(γ)) = cξ(ιξ(α), ιξ(β)) = eξ(α, β)

for all α, β ∈ d with α ̸= β.

This completes the proof of the theorem.

6. Concluding remarks and restating the problem. We summarize
the current situation of the problem motivating the results of this paper:
Hjorth proved that there exists some countable model M that belongs to the
constructible universe L and which characterizes ℵ1 in all transitive models of
ZFC. Using the Scott sentence of M, he constructed two complete sentences,
call them σ1 and σ2, using what we called the first and the second Hjorth
construction. Moreover, in all transitive models of ZFC, exactly one of these
sentences characterizes ℵ2. If CH holds, then σ1 characterizes ℵ1 and σ2
characterizes ℵ2. If ( ) holds (and CH necessarily fails by Proposition 3.2),
then σ1 characterizes ℵ2 and σ2 characterizes ℵ3.

Therefore, Hjorth’s solution to the problem of characterizing ℵ2 is de-
pendent on the underlying model of set theory. One may ask whether the
same holds true for ℵ3 and, in general, for successor ℵα with 2 < α < ω1. For
α < ω, this is easily seen to be true, because Hjorth’s characterization of ℵ3

uses inductively the characterization of ℵ2, etc. For α > ω our construction
does not yield an answer. One would have to extend our results for func-
tions from ω1 to ω1 into results for functions from ωω+1 to ωω+1. However,
we think the main question here is how to characterize ℵα, α < ω1, in an
absolute way. To make things precise:

Question 6.1. Does there exist a formula Φ(v0, v1) in the language of set
theory such that ZFC proves the following statements hold for all ordinals α?
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(1) In L, there exists a unique code (7) c for a complete Lα+,ω-sentence ψα

such that Φ(α, c) holds.
(2) If α is countable and ψα is as above, then ψα characterizes ℵα.

As we mentioned, this is true for limit ordinals α. In [2], the authors
provide a characterization of all ℵn, for n finite, that is absolute in the way
described above. For successor ordinals α > ω the question remains open.

Another canonical way to formulate the existence of absolute character-
izations is given by Shoenfield absoluteness (see [6, Theorem 13.15]) and the
fact that Σ1

3 -statements are upwards absolute between transitive models of
set theory with the same ordinals.

Question 6.2. Is there a Σ1
3 -formula Φ(v0, v1) in the language of second-

order arithmetic with the property that the axioms of ZFC prove that the
following statements hold?

(1) For every real a, there is a unique real b such that Φ(a, b) holds.
(2) If α is a countable ordinal, c is a code for a complete Lω1,ω-sentence that

characterizes ℵα and d is a real with the property that Φ(c, d) holds,
then d is a code for a complete Lω1,ω-sentence that characterizes ℵα+1.

Note that since it is possible to force CH over a model of ( ) without
adding new real numbers, the results of this paper show that the property of
an Lω1,ω-sentence to characterize ℵ2 is not absolute between models of set
theory with the same real numbers.

In the light of results of Woodin [12] that show the existence of a proper
class of Woodin cardinals implies that the theory of L(R) with real param-
eters is generically absolute, it also seems natural to consider the following
question:

Question 6.3. Is there a formula Φ(v0, v1) in the language of set theory
with the property that the theory

ZFC + “ there exists a proper class of Woodin cardinals ”

proves the following statements hold?

(1) For every real a, there is a unique real b such that Φ(a, b) holds in L(R).
(2) If α is a countable ordinal, c is a code for a complete Lω1,ω-sentence

that characterizes ℵα and d is a real with the property that Φ(c, d) holds
in L(R), then d is a code for a complete Lω1,ω-sentence that character-
izes ℵα+1.

We end this paper by considering the question whether versions of the
combinatorial principle ( ) can hold at cardinals larger than ω1. Note that
many of the techniques used in the consistency proofs of Sections 3 and 4

(7) Using some canonical Gödelization of Lκ,ω-formulas.
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have no obvious analogs at higher cardinals. The following question considers
two interesting test cases for such generalizations.

Question 6.4. Are the following statements consistent with the axioms
of ZFC?
(1) For every sequence ⟨fα : ω2 → ω2 | α < ω2⟩ of functions, there is a func-

tion g : ω2 → ω2 such that the set {ξ < ω2 | fα(ξ) = g(ξ)} is finite for
every α < ω2.

(2) For every sequence ⟨fα : ωω → ωω | α < ωω⟩ of functions, there is a func-
tion g : ωω → ωω such that the set {ξ < ωω | fα(ξ) = g(ξ)} is finite for
every α < ωω.
Note that the above question for ω2 should be closely connected with

recent work of Moore and Todorčević [8] and Neeman on Baumgartner’s
isomorphism problem for ℵ2-dense suborders of the reals, because, by adding
all constant functions from ω2 to ω2 to a given family of functions, the
statement can be used to show that for every family F of function from ω2

to ω2 of cardinality ℵ2, there exists a finite-to-one function g : ω2 → ω2 with
the property that the set {ξ < ω2 | f(ξ) = g(ξ)} is finite for all f ∈ F , and
therefore it implies the principle ED(ω2, ω2, ω), introduced in [8, Section 3].
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