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Closed maximality principles and generalized Baire spaces

Philipp Lücke

Abstract Given an uncountable regular cardinal κ, we study the struc-
tural properties of the class of all sets of functions from κ to κ that
are definable over the structure 〈H(κ+),∈〉 by a Σ1-formula with pa-
rameters. It is well-known that many important statements about these
classes are not decided by the axioms of ZFC together with large car-
dinal axioms. In this paper, we present other canonical extensions of
ZFC that provide a strong structure theory for these classes. These ax-
ioms are variations of the Maximality Principle introduced by Stavi and
Väänänen and later rediscovered by Hamkins.

1 Introduction

Given an infinite regular cardinal κ, the generalized Baire space of κ is the
set κκ of all functions from κ to κ equipped with the topology whose basic
open sets are of the form Ns = {x ∈ κκ | s ⊆ x} for some s contained in the
set <κκ of all functions t : α −→ κ with α < κ. For uncountable regular car-
dinals κ, these spaces are a natural generalization of the classical Baire space
ωω to these cardinalities. Moreover, many objects studied in set theory can
be identified with definable subsets of these spaces. For example, there is a
direct correspondence between the closed subsets of κκ and the sets of cofinal
branches through set theoretic trees of height κ. The investigation of gener-
alized Baire spaces of uncountable cardinals and their definable subsets was
initiated by Mekler and Väänänen (see [28] and [34]) and has recently gained
increasing attention (see, for example, [5], [6], [20] and [29]). Results of this
analysis have been used in model theory and infinitary logic (see, for example,
[6], [32] and [35]). In this paper, we are interested in the structural properties
of classes of definable subsets of κκ of low complexity for uncountable regular
cardinals κ.
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In the remainder of this paper, we let κ denote an uncountable regular
cardinal. We generalize the classical definition of analytic sets of reals to the
generalized Baire space of κ by calling a subset of (κκ)n a Σ1

1-subset if it is
equal to the projection of a closed subset of (κκ)n+1. A folklore results (see,
for example, [24, Section 2]) shows that for such cardinals κ, every subset of
(κκ)n that is definable over the structure 〈H(κ+),∈〉 by a Σ1-formula with
parameters is a Σ1

1-subset. If in addition κ = κ<κ holds, then it is easy to
see that the converse implication is also true (see Section 5). This shows that
the class of Σ1

1-subsets of κκ contains a great variety of set theoretically in-
teresting objects. Moreover, it shows that, in contrast to the classical Baire
space, many basic statements about the class of Σ1

1-subset are not settled by
the axioms of ZFC together with large cardinal axioms, because it is possi-
ble to manipulated these objects by set theoretic methods. In Section 2, we
will present important examples of such statements and present the corre-
sponding independence results. This leads to the question whether there are
other canonical extensions of ZFC that decide these statements by providing
a suitable structure theory for the class of Σ1

1-subsets of κκ. The aim of this
paper is to show that certain forcing axioms that are motivated by modal
logic are examples of such extensions of ZFC. These axioms are variations of
the Maximality Principle introduced by Stavi and Väänänen in [33] and later
rediscovered by Hamkins (see [12]).

Given a sentence ϕ in the language L∈ of set theory, we say that ϕ is
forceably necessary if there is a partial order P such that 1P∗Q̇ 
 ϕ holds for
every P-name Q̇ for a partial order. The Maximality Principle (MP) is the
scheme of axioms stating that every forceably necessary L∈-sentence is true.
This formulation can be motivated by the Maximality Principle ♦�ϕ −→ ϕ
of modal logic by interpreting the modal statement ♦ϕ (“ ϕ is possible ”) as
the statement “ ϕ holds in some forcing extension of the ground model ” and
the modal statement �ϕ (“ ϕ is necessary ”) as the statement “ ϕ holds in
every forcing extension of the ground model ”. The consistency of the theory
ZFC+MP follows from the consistency of ZFC (see [12, Theorem 2.1]). Similar
to standard forcing axioms, this principle states that the universe V is, in a
certain sense, maximal in the collection of its forcing extensions.

Following [8] and [22], we will consider variations of this principle that arise
from the following modifications of the above principle:

• A restriction of the complexity of the considered formulas.
• A restriction of the class of forcings that can be used to witness that

a given statement is possible.
• A restriction of the class of forcings that need to be considered to

show that a given statement is necessary.
• An extension of the principle to formulas containing parameters.

Note that the first two modifications weaken the principle, while the last
two strengthen it. The axioms discussed in this paper are restricted to cer-
tain classes of <κ-closed forcings and allow statements with parameters of
bounded hereditary cardinality. We will refer to these principle as boldface
closed maximality principles. Such principles were already intensively studied
by Fuchs in [8] and [9].
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We outline the content of this paper. In Section 2, we a present indepen-
dence results that show that a number of important basic questions about the
structural properties of the class of Σ1

1-subsets of generalized Baire spaces are
not decided by the axioms of ZFC together with large cardinal axioms. In the
following, these questions will serve as test questions to evaluate the influence
of other extension of ZFC on the structure theory of Σ1

1-subsets of κκ. Section
3 contains the formulation of the closed maximality principle for the class of
all <κ-closed forcing and statements with parameters in H(κ+). We present
results that show that these principles answer most of the questions posed in
the previous section. In contrast, we also present a question about the values
of certain cardinal characteristics of the space κκ that is not settled by such
principles. Motivated by this observation, we consider maximality principles
for formulas containing parameters of higher cardinalities in Section 4. A nat-
ural candidate for such a principle is the maximality principle for <κ-closed
forcing that satisfy the κ+-chain condition and statements with parameters
in H(2κ). We will prove that this principle always fails for ℵ1. Motivated
by this result, we will show that a restriction of this principle to a smaller
class of forcings can lead to a consistent maximality principle that provides
a strong structure for the the class of Σ1

1-subsets of generalized Baire spaces.
In particular, we will present an example of such a principle that answers all
questions posed in the second section. Section 5 contains a number of results
that demonstrate the influence of closed maximality principles on generalized
Baire spaces and show how these principles answer our test questions. In the
next section, we establish the consistency of the principles defined in Section
4 using iterated forcing. We close this paper with a discussion of extensions
of ZFC that provide a strong structure theory for the classes of Σ1

1-subsets of
the generalized Baire spaces of all regular uncountable cardinals. Moreover,
we present some open questions motivated by the results of this paper.

2 Independence results

In this section, we review several independence results showing that many
basic question about the class of Σ1

1-definable subsets of κκ for uncountable
regular cardinals κ are not decided by the axioms of ZFC together with large
cardinal axioms. In particular, these axioms do not provide a good structure
theory for these classes of subsets. This observation suggests two ways to
proceed:

(i) Consider subclasses of the class of all Σ1
1-subsets of κκ that contain

many interesting objects and have the property that ZFC together
with large cardinal axioms provides a strong structure theory for
them.

(ii) Consider other natural extensions of ZFC that provide a strong struc-
ture for the class of all Σ1

1-subsets of κκ.
The first approach is pursued in [25], where it is shown that large cardinals

axioms resolve most of the independence issues discussed below for the class
of subsets of ω1ω1 that are definable over 〈H(ω2),∈〉 by a Σ1-formula with
parameter ω1. In this paper, we will show that closed maximality principles
are examples of extensions of ZFC that are suitable for the second approach
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by showing that these principles are in some sense natural and proving that
the questions listed below are answered by these principles.

In the remainder of this paper, we let κ denote an uncountable regular
cardinal.

2.1 Sets separating the club filter from the non-stationary ideal As usual, we say that
a subset A of κκ is a Π1

1-subset if κκ \ A is a Σ1
1-subset. Moreover, a subset

of κκ is a ∆1
1-subset if it is both a Σ1

1- and a Π1
1-subset.

Given S ⊆ κ, we define

Club(S) = {x ∈ κκ | ∃C ⊆ κ club ∀α ∈ C ∩ S x(α) > 0}

and
NS(S) = {x ∈ κκ | ∃C ⊆ κ club ∀α ∈ C ∩ S x(α) = 0}.

Then Club(S) and NS(S) are disjointΣ1
1-subsets of κκ for every S ⊆ κ. We can

identify Club(κ) with the club filter on κ and NS(κ) with the non-stationary
ideal on κ. In the light of the Lusin Separation Theorem theorem (see [19,
Theorem 14.7]) the following question appears naturally.

Question 1 Is there a ∆1
1-subset A of κκ that separates Club(κ) from NS(κ),

in the sense that Club(κ) ⊆ A ⊆ κκ \ NS(κ) holds?

It is possible to combine results from [6] and [11] to show that forcing with
the partial order Add(κ, κ+) that adds κ+-many Cohen subsets of κ produces
a negative answer to this question. In Section 5, we will present a proof of
the following result.

Theorem 2.1 If κ = κ<κ and G is Add(κ, κ+)-generic over V, then there is
no ∆1

1-subset A of κκ that separates Club(κ) from NS(κ) in V[G].

In contrast, positive answers to Question 1 are also consistent. It was
observed in [7] that, if the non-stationary ideal on ω1 is ω1-dense, then Club(κ)
is a ∆1

1-subset of ω1ω1. Results of Woodin show that this assumption is
consistent (see [4, Section 7.14]). Moreover, Friedman, Kulikov and Hytinnen
used results on the existence of κ-Canary tree from [15] and [27] to establish
the consistency of positive answers to the above question for larger classes of
cardinals. Note that, if S is a stationary subset of κ, then Club(S) separates
Club(κ) from NS(κ). Given an infinite regular cardinal µ < κ, we use Sκµ to
denote the set of all limit ordinals less than κ of cofinality µ.

Theorem 2.2 ([6, Theorem 49.5]) Assume that the GCH holds and κ is not
the successor of a singular cardinal. Let µ < κ be an infinite regular cardinal.
Then there is a partial order P satisfying the κ+-chain condition with the
property that forcing with P adds no bounded subsets of κ and Club(Sκλ) is a
∆1

1-subset of κκ in every P-generic extension of the ground model.

We will later show that certain closed maximality principles imply that all
∆1

1-subsets posses a regularity property that generalizes the Baire property
to higher cardinalities. Since the results of [11] show that sets with this
property cannot separate Club(κ) from NS(κ), this implications shows that
these principles answer Question 1.
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2.2 The Bernstein and the perfect set property We say that a subset A of κκ
contains a perfect subset if there is a continuous injection ι : κ2 −→ κκ with
ran(ι) ⊆ A. A subset of κκ has the Bernstein property if either A or κκ \ A
contains a perfect subset. Finally, we say that a subset A of κκ has the perfect
set property if either A has cardinality at most κ or A contains a perfect subset.
It is easy to see that this definition of the perfect set property is equivalent
to the definition using transfinite games given in [28, Section 5].

We say that a subset of κκ is κ-Borel if it is contained in the smallest
algebra of sets on κκ that contains all open subsets of κκ is closed under κ-
unions. An easy argument (see Corollary 5.21) shows that, if κ = κ<κ holds,
then all κ-Borel subsets of κκ have the Bernstein property. Since all κ-Borel
subsets are ∆1

1-subsets and there are always ∆1
1-subsets of κκ that are not

κ-Borel (see [6, Theorem 18]), one naturally arrives at the following question.

Question 2 Does every ∆1
1-subset of κκ have the Bernstein property?

Using forcing, it is possible to establish the consistency of a negative answer
to this question.

Theorem 2.3 ([13, Corollary 1.5]) Assume that κ = κ<κ and 2κ is regular.
Then there is a <κ-closed partial order P with the property that forcing with
P preserves cardinals less than or equal to 2κ and adds a ∆1

1-subset of κκ
without the Bernstein property.

In Section 5, we will show that it is consistent that all ∆1
1-subsets of κκ

have the Bernstein property.

Theorem 2.4 Assume that κ = κ<κ and let G be Add(κ, κ+)-generic over
V. In V[G], all ∆1

1-subsets of κκ have the Bernstein property.

Since classical results in descriptive set theory show that all Σ1
1-subsets of

ωω have the perfect set property, it is also natural to consider the following
question.

Question 3 Does every Σ1
1-subset of κκ have the perfect set property?

Theorem 2.3 already established the consistency of a negative answer to this
question. In addition, a small modification of a classical argument of Solovay
(see [17, Section 4]) shows that the non-existence of inaccessible cardinals in
L implies the existence of closed counterexamples to the perfect set property.

In the other direction, results of Schlicht show that a positive answer to
the above question can be established by collapsing inaccessible cardinals.

Theorem 2.5 ([29, Theorem 1.2]) Let θ > κ be an inaccessible cardinal and
let G be Col(κ,<θ)-generic over V. In V[G], every subset of κκ contained in
HOD(κOrd) has the perfect set property.

We will later show that closed maximality principles imply that all ∆1
1-

subsets of κκ have the Bernstein property. Moreover, we will show that certain
principles also yield an affirmative answer to Question 3.

2.3 The lengths of Σ1
1-definable wellorders We call a wellorder 〈A,C〉 a Σ1

1-
wellordering of a subset of κκ if C is a Σ1

1-subset of κκ × κκ. Note that
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this implies that the domain A of C is also a Σ1
1-subset of κκ. It is easy to

see that, for every α < κ+, there is a Σ1
1-wellordering of a subset of κκ of

order-type α. Moreover, if there is an x ⊆ κ such that κ+ is not inaccessible
in L[x], then there is a Σ1

1-wellordering of a subset of κκ of order-type κ+.
The following question is motivated by the classical Kunen-Martin Theorem
(see [19, Theorem 31.5]).

Question 4 What is the least upper bound for the order-types of Σ1
1-

wellorderings of subsets of κκ?

With the help of generic coding techniques (see, for example, [14], [24]
and Section 5 of this paper), it is possible to make arbitrary subsets of κκ of
the ground model Σ1

1-definable in a cofinality preserving forcing extension. In
particular, these techniques allow us to force the existence of aΣ1

1-wellordering
of a given length α. The following theorem is a direct consequence of the main
result of [24].

Theorem 2.6 ([24, Theorem 1.5]) Assume that κ = κ<κ. Given α < (2κ)+,
there is a partial order P with the property that forcing with P preserves all
cofinalities and the value of 2κ and there is a Σ1

1-wellordering of a subset of
κκ of order-type α in every P-generic extension of the ground model.

In the other direction, the results of [24, Section 9] also show that both
κ+ and 2κ > κ+ can consistently be upper bounds for the length of these
wellorders.

Theorem 2.7 ([24, Corollary 9.5]) Assume that κ = κ<κ. Let ν > κ be a
cardinal, let G be Add(κ, ν)-generic over V and let 〈A,C〉 be a Σ1

1-wellordering
of a subset of κκ in V[G]. Then A 6= (κκ)V[G] and the order-type of 〈A,C〉
has cardinality at most (2κ)V in V[G].

Remember that a cardinal θ is Σn-reflecting if θ is inaccessible and 〈H(θ),∈〉
is an Σn-elementary submodel of 〈V,∈〉.

Theorem 2.8 ([24, Corollary 9.10]) Let ν > κ is an inaccessible cardinal and let
µ > 0 be a cardinal. Assume that either θ is Σ2-reflecting or µ > θ. If G×H
is (Col(κ,<θ)×Add(κ, µ))-generic over V and 〈A,C〉 is a Σ1

1-wellordering of
a subset of κκ in V[G,H], then A has cardinality κ in V[G,H].

Note that the above remarks show that the conclusion of the last theorem
implies that κ+ is inaccessible in L[x] for every x ⊆ κ.

We will show that certain closed maximality principle exactly determine
the least upper bound of the order-types of Σ1

1-wellorderings of subsets of κκ.
Depending on the specific principle, this upper bound will either be equal to
κ+ or 2κ > κ+.

2.4 Cardinal characteristics of tree orderings We close this section with a question
of a somewhat different nature. Let κ be an uncountable cardinal satisfying
κ = κ<κ, let Tκ denote the class of all trees of cardinality and height κ and let
T Oκ denote the class of all trees in Tκ without a branch of length κ. Given
T0,T1 ∈ Tκ, we write T0 � T1 to denote that there is a function f : T0 −→ T1

with f(s) <T0 f(t) for all s, t ∈ T0 with s <T1 t. The resulting partial order
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〈T Oκ,�〉 arises naturally in infinitary model theory (see, for example, [16]
and [36]) and it can be viewed as a substitute for the ordering of all countable
ordinals in the uncountable setting (see [28, Section 1]).

In the following, we use ≺·, ·� : Ord×Ord −→ Ord to denote the Gödel
pairing function. Given x ∈ κκ, define ∈x to be the set of all pairs 〈α, β〉 in
κ × κ with x(≺α, β�) = 1. Let Tκ denote the set of all x ∈ κκ such that
Tx = 〈κ,∈x〉 is an element of Tκ and let TOκ denote the set of all x ∈ Tκ
such that Tx is an element of T Oκ. It is easy to check that Tκ is a κ-Borel
subset of κκ and TOκ is a Π1

1-subset of κκ. Moreover the relation induced by
� on Tκ is easily seen to be Σ1

1-definable. Therefore we may view the partial
order 〈T Oκ,�〉 as a Σ1

1-definable ordering of a Π1
1-subset of κκ.

We are interested in the order-theoretic properties of 〈T Oκ,�〉. More
specifically, we want to study the values of the following cardinal characteris-
tics of this ordering of trees:

(i) The bounding number of 〈T Oκ,�〉 is the smallest cardinal bT Oκ with
the property that there is a B ⊆ T Oκ of this cardinality such that
there is no tree T ∈ T Oκ with S � T for all S ∈ B.

(ii) The dominating number of 〈T Oκ,�〉 is the smallest cardinal dT Oκ
with the property that there is a subset D ⊆ T Oκ of this cardinality
such that for every S ∈ T Oκ there is a T ∈ D with S ≤ T.

It is easy to see that

κ+ ≤ bT Oκ ≤ dT Oκ ≤ 2κ (1)

holds. In particular, if the GCH holds at κ, then these cardinal characteristics
are equal. We may therefore ask if this is always the case.

Question 5 Is bT Oκ equal to dT Oκ?

Assuming CH, [28, Theorem 15] shows that for every regular cardinal ν in
the interval [ω2, 2

ω1 ] there is a forcing that preserves all cofinalities and the
value of 2ℵ1 and forces ν = bT Oℵ1

= dT Oℵ1
. In unpublished work, Schlicht

and Thompson strengthened this result by showing that these values can be
forced to be equal to any pair of regular cardinals that satisfies the inequalities
in (1). In Section 5, we will prove the following result that shows that it is also
possible to produce a negative answer to Question 5 by adding many Cohen
subsets of κ.

Theorem 2.9 If κ = κ<κ holds and G is Add(κ, (2κ)+)-generic over V, then

b
V[G]
T Oκ ≤ (2κ)V < (2κ)V[G] = d

V[G]
T Oκ .

We will later show that certain closed maximality principles imply that
both of the above cardinal characteristics are equal to 2κ.

3 Closed maximality principles

We introduce the boldface maximality principles for the class of all <κ-closed
partial orders first formulated by Fuchs in [8] and present results showing how
this principle answers most questions stated in the previous section.

Definition 3.1 Let Φ(v0, v1) be an L∈-formula.
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(i) We say that Φ defines a class of partial orders if

ZFC ` ∀P ∀z [Φ(P, z) −→ “ P is a partial order ”].

(ii) If Φ defines a class of partial order, then Φ is suitable if

ZFC ` ∀z ∀P [“ P is a trivial partial order ” −→ Φ(P, z)].

The following definition contains our general formulation of boldface max-
imality principles.

Definition 3.2 Let Φ0(v0, v1) and Φ1(v0, v1) be L∈-formulas defining classes
of partial orders and let z be a set.

(i) Given an L∈-formula ϕ(v0, . . . , vn−1) and parameters x0, . . . , xn−1,
the statement ϕ(x0, . . . , xn−1) is (Φ0,Φ1, z)-forceably necessary if
there is a partial order P with Φ0(P, z) and 1P∗Q̇ 
 ϕ(x̌0, . . . , x̌n−1)

for every P-name Q̇ with 1P 
 Φ1(Q̇, ž).
(ii) Given an infinite cardinal θ and n < ω, we let (Φ0,Φ1, z)−MPn(θ)

denote the statement that every (Φ0,Φ1, z)-forceably necessary Σn-
statement with parameters in H(θ) is true.

With the help of universal Σn-formulas, we can formulate principles of the
form (Φ0,Φ1, z)−MPn(θ) as single statements in the language of set theory
that only use the parameters θ and z. Moreover, if (Φ0,Φ1, z)−MP1(θ) holds
and P is a partial order with Φ0(P, z), then forcing with P preserves all cardi-
nals less than θ.

Let Φcl(v0, v1) be the canonical suitable formula defining a class of partial
orders such that Φcl( · , κ) defines the class of all <κ-closed partial orders
if κ is an infinite regular cardinal and Φcl( · , z) defines the class of all
partial orders if z is not an infinite regular cardinal. In the following, we
abbreviate (Φcl,Φcl, κ)−MPn(κ+) by CMPn(κ). Principles of this form and
their consequences were studied in depth by Fuchs in [8] and [9]. These
principles may be viewed as a natural extension of ZFC, because a classical
argument of Silver shows that the principle CMP1(κ) is always true. The
short proof of the next proposition can be found in [24, Section 7].

Proposition 3.3 (Silver) Let P be a <κ-closed partial order and let G be
P-generic over V. Then 〈H(κ+)V,∈〉 is a Σ1-elementary substructure of
〈H(κ+)V[G],∈〉.

Corollary 3.4 The principle CMP1(κ) holds.

Proof Fix a Σ1-formula ϕ(v0, . . . , vn−1) and x0, . . . , xn−1 ∈ H(κ+) with the
property that the statement ϕ(x0, . . . , xn−1) is (Φcl,Φcl, κ)-forceably neces-
sary. Pick a <κ-closed partial order P witnessing this. Since the trivial partial
order is <κ-closed, we have 1P 
 ϕ(x̌0, . . . , x̌n−1). Let G be P-generic over
V. By the Σ1-Reflection Principle, we know that ϕ(x0, . . . , xn−1) holds in
H(κ+)V[G]. In this situation, Proposition 3.3 implies that ϕ(x0, . . . , xn−1)
holds in H(κ+)V and therefore it holds in V.

We present a typical application of the principle CMP2(κ). Note that, by the
above remarks, the conclusion κ = κ<κ implies that the class of Σ1

1-subsets of
κκ coincides with the class of subsets of κκ that are definable over 〈H(κ+),∈〉
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by a Σ1-formula with parameters. Moreover, this assumption allows us to
generalize basic results on the structure of κ-Borel subsets to the uncountable
setting (see [6, Section 1.2.1] for a discussion).

Proposition 3.5 If CMP2(κ) holds, then κ = κ<κ.

Proof The statement that there is a surjection of κ onto the collection <κκ
can be expressed by a Σ2-formula with parameter κ and the partial order
Add(κ, 1) witnesses that this statement is (Φcl,Φcl, κ)-forceably necessary.

We now discuss the consistency of the above principles. In [8] and [9], Fuchs
derived the following bounds for their consistency strength.

Theorem 3.6 ([8, Theorem 3.8], [9, Lemma 3.9]) Let 1 < n < ω.
(i) If CMPn(κ) holds and θ = κ+, then θ is Σn-reflecting in L.
(ii) If θ > κ is a Σn+2-reflecting cardinal and G is Col(κ,<θ)-generic

over V, then CMPn(κ) holds in V[G].

The above result also allow us to establish the consistency of closed max-
imality principles for statements of arbitrary complexity. Let L∗ denote the
first-order language that extends L∈ by an additional constant symbols κ̇
and θ̇. We let REFL denote the L∗-theory consisting of the axioms of ZFC
together with the scheme of L∗-sentences stating that θ̇ is a Σn-reflecting car-
dinal for all 0 < n < ω and the sentence stating that κ̇ is an uncountable
regular cardinal smaller than θ̇. Note that, given a Mahlo cardinal µ and a
regular uncountable cardinal κ < µ, the set of θ < µ with the property that
〈H(µ),∈, κ, θ〉 is a model of REFL is stationary in µ. Next, let CMP denote
the L∗-theory consisting of the axioms of ZFC together with the scheme of
L∗-sentences stating that CMPn(κ̇) holds for all 0 < n < ω. The follow-
ing meta-result shows that these theories are equiconsistent. It is a direct
consequence of the above theorem.

Corollary 3.7 (i) Assume that 〈V,∈, κ, θ〉 is a model of CMP and
θ = κ+. Then 〈L,∈, κ, θ〉 is a model of REFL.

(ii) Assume that 〈V,∈, κ, θ〉 is a model of REFL. If G is Col(κ,<θ)-
generic over V, then 〈V[G],∈, κ, θ〉 is a model of CMP.

In Section 5, we will show that the principle CMP2(κ) induces a strong
structure theory for the class of Σ1

1-subsets of κκ. These results will allow us
to show that this axiom settles most of the questions posed in Section 2.

Theorem 3.8 Assume that CMP2(κ) holds.
(i) No ∆1

1-subset of κκ separates Club(κ) from NS(κ).
(ii) Every Σ1

1-subset of κκ has the perfect set property.
(iii) The least upper bound for the order-types of Σ1

1-wellorderings of sub-
sets of κκ is equal to κ+.

In contrast, a combination of results from [8] and observations about the
structure of 〈T Oκ,�〉 in Add(κ, ν)-generic extensions will allow us to show
that axioms of the form CMPn(κ) do not answer Question 5. We will prove
the following result in Section 5.
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Theorem 3.9 If the theory CMP is consistent, then it does not decide the
statement bT Oκ̇ = dT Oκ̇ .

The proof of this result suggests that it is also interesting to consider closed
maximality principles for statements containing parameters of higher cardi-
nalities. We present an example of such a principles in the next section.

4 Closed maximality principles with more parameters

Motivated by Theorem 3.9, we want to consider closed maximality principle
for statements with parameters of larger cardinalities. In order to obtain a
consistent principle, we have to restrict ourselves to classes of forcings that
preserve more cardinalities. If we assume that κ = κ<κ holds, then the class of
all <κ-closed partial orders that satisfy the κ+-chain condition is a canonical
candidate for a rich class of partial orders that preserve all cardinals. Note
that the cardinal arithmetic assumption κ = κ<κ is needed to make this class
of partial orders non-trivial. Moreover, the discussion preceding Proposition
3.5 shows that this assumption has many desirable implications on the basic
structure of generalized Baire spaces.

In the following, we will argue that we have to restrict the class of partial
orders even further. This will follow from a connection between boldface
maximality principles and generalizations of classical forcing axioms to larger
cardinalities.

Given a partial order P and an infinite cardinal µ, we let FAµ(P) denote
the statement that, for every collection D of µ-many dense subsets of P, there
is a filter G on P that meets all elements of D. The following proposition
reformulates results of Bagaria (see [1]) and Stavi-Väänänen (see [33, Theorem
25]) to connect maximality principles for Σ1-statements with forcing axioms.

Proposition 4.1 Let Φ0(v0, v1) and Φ1(v0, v1) be formulas defining classes of
partial orders, let z be set and let µ ≥ κ be a cardinal.

(i) If (Φ0,Φ1, z)−MP1(µ+) holds and P is a partial order of cardinality
at most µ with Φ0(P, z), then FAµ(P) holds.

(ii) Assume that every partial order P with Φ0(P, z) satisfies the µ+-chain
condition and has the property that FAµ(P) holds. If Φ1 is suitable,
then (Φ0,Φ1, z)−MP1(µ+) holds.

Proof (i) We may assume that the underlying set of P is an ordinal less
than or equal to µ. Let D be a collection of µ-many dense subsets of P. Then
D,P ∈ H(µ+) and the statement that there is a D-generic filter on P can be
expressed by a Σ1-formula with parameters P and D. Moreover, P witnesses
that this statement is (Φ0,Φ1, z)-forceably necessary and therefore true in V.

(ii) Fix a Σ0-formula ϕ(v0, . . . , vn) and x0, . . . , xn−1 ∈ H(µ+). Assume that
P is a partial order with Φ0(P, z) that witnesses that the corresponding Σ1-
statement ∃x ϕ(x0, . . . , xn−1, x) is (Φ0,Φ1, z)-forceably necessary. Since Φ1

is suitable, this implies that 1P 
 “ ∃x ϕ(x0, . . . , xn−1, x) ”. Pick a sufficiently
large regular cardinal θ and an elementary submodel M of H(θ) of cardinality
µ with P, x0, . . . , xn−1 ∈ N and µ + 1 ⊆ M . Let π : M −→ N be the
corresponding transitive collapse and let D be the collection of all dense open
subsets of P contained in M . Then FAµ(P) holds and there is a D-generic
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filter G on P. Since P satisfies the µ+-chain condition and π � µ = idµ, it
follows that Ḡ = π[G ∩M ] is π(P)-generic over N . By elementarity, we have
π(xi) = xi for all i < n and ∃x ϕ(x0, . . . , xn−1, x) holds in N [Ḡ]. Since N [Ḡ]
is transitive, we can conclude that this statement also holds in V.

Let Φclc(v0, v1) be the canonical suitable formula defining a class of partial
orders such that Φclc( · , κ) defines the class of all <κ-closed partial orders sat-
isfying the κ+-chain condition if κ is an infinite regular cardinal and Φclc( · , z)
defines the class of all partial orders if z is not an infinite regular cardinal. We
will use the following result of Shelah to show that the corresponding closed
maximality principle (Φclc,Φclc,ℵ1)−MP2(ℵ3) is provably false.

Theorem 4.2 ([31, Theorem 6]) Assume that 2ℵ0 = ℵ1 and 2ℵ1 > ℵ2. Then
there is a σ-closed partial order P of cardinality ℵ2 such that P satisfies the
ℵ2-chain condition and FAℵ2(P) fails.

Corollary 4.3 If 2ℵ0 = ℵ1 holds, then (Φclc,Φclc,ℵ1)−MP2(ℵ3) fails.

Proof Assume that (Φclc,Φclc,ℵ1)−MP2(ℵ3) holds. Then the partial order
Add(ℵ1,ℵ2) has cardinality ℵ2 and the first part of Proposition 4.1 shows
that our assumption implies that FAℵ2(Add(ℵ1,ℵ2)) holds. This implies that
2ℵ1 > ℵ2 and we can use Theorem 4.2 to find a partial order P with the prop-
erty that Φclc(P,ℵ1) holds and FAℵ2(P) fails. By the first part of Proposition
4.1, this contradicts our assumption.

The above result suggests that, in order to obtain consistent maximality prin-
ciples for statements containing parameters of cardinality greater than κ, we
should restrict the class of forcings that can be used to witness that a given
statement is forceably necessary even further. In particular, it should be con-
sistent that FAκ+(P) holds for every partial order P in this class. An example
of such a class is contained in Shelah’s work on generalization of Martin’s
Axiom to higher cardinalities (see [30]). Remember that a partial order P is
well-met if all compatible conditions have a greatest lower bound in P. Given
a infinite regular cardinal µ, we say that a partial order P is stationary µ+-
linked if for every sequence 〈pγ | γ < µ+〉 of conditions in P, there is a club C
in µ+ and a regressive function r : µ+ −→ µ+ with the property that the con-
ditions pγ and pδ are compatible in P for all γ, δ ∈ C ∩ Sµ+

µ with r(γ) = r(δ).
Let ΦSh(v0, v1) be the canonical suitable formula defining a class of partial
orders such that ΦSh( · , κ) defines the class of all stationary κ+-linked, well-
met partial orders that are <κ-closed with greatest lower bounds if κ is an
infinite regular cardinal and ΦSh( · , z) defines the class of all partial orders if
z is not an infinite regular cardinal. Following [30], we let GMAκ denote the
statement that FAµ(P) holds for every µ < 2κ and all partial orders P with
ΦSh(P, κ). The results of [30] show that, if κ = κ<κ holds, then GMAκ holds
in a cofinality-preserving forcing extension of the ground model.

In the following, we study the principles (ΦSh,Φclc, κ)−MPn(2κ) associated
to this class. We use SMPn(κ) to denote the conjunction of this principle and
the statement κ = κ<κ. Note that similar principles were already studied
in [33, Section 2.5]. The following proposition shows that these principles
are natural in the sense that they directly generalize Shelah’s forcing axiom
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GMAκ. We will later show (see Theorem 4.7) that the assumption of this
proposition is a consequence of SMP2(κ).

Proposition 4.4 Assume that µ<κ < 2κ holds for all µ < 2κ. Then SMP1(κ)
holds if and only if GMAκ and κ = κ<κ hold.

Proof By standard arguments, our cardinal arithmetic assumption implies
that GMAκ holds if and only if FAµ(P) holds for all µ < 2κ and every partial
order P of cardinality less than 2κ with ΦSh(P, κ). Using this observation, the
statement of the proposition follows directly from Proposition 4.1.

The following result gives bounds for the consistency strength of the above
principles that resemble the bounds given by Theorem 3.6. The proof of this
theorem is contained in Section 6.

Theorem 4.5 (i) If SMPn(κ) holds for some 1 < n < ω and θ = 2κ,
then θ is Σn-reflecting in L.

(ii) Let θ > κ be an inaccessible cardinal and let C be a wellordering
of H(θ) of order-type θ. Assume that κ = κ<κ holds. Then there
is a <κ-closed partial order B(κ,C) that is uniformly definable in
parameters κ and C with the property that, if θ is Σn+2-reflecting
for some 1 < n < ω, then SMPn(κ) holds in every B(κ,C)-generic
extension of the ground model V.

As above, we also consider versions of this maximality principle for state-
ments of unbounded complexity. We let SMP denote the L∗-theory consisting
of the axioms of ZFC together with the scheme of L∗-sentences stating that
SMPn(κ̇) holds for all 0 < n < ω.

Corollary 4.6 (i) Assume that 〈V,∈, κ, θ〉 is a model of the theory SMP
and θ = 2κ. Then 〈L,∈, κ, θ〉 is a model of REFL.

(ii) Assume that κ = κ<κ holds, 〈V,∈, κ, θ〉 is a model of REFL and C is
a wellordering of H(θ) of order-type θ. If G is B(κ,C)-generic over
V, then 〈V[G],∈, κ, θ〉 is a model of SMP.

The following theorem summarizes several results that will be proven in the
next section. In combination, they show that the principle SMP2(κ) answers
all questions posed in Section 2. Moreover, we can combine these results with
Proposition 4.4 to conclude that SMP2(κ) implies GMAκ.

Theorem 4.7 Assume that SMP2(κ) holds.
(i) The cardinal 2κ is weakly inaccessible and µ<κ < 2κ holds for all

µ < 2κ.
(ii) No ∆1

1-subset of κκ separates Club(κ) from NS(κ).
(iii) Every Σ1

1-subset of κκ of cardinality 2κ contains a perfect subset. In
particular, every ∆1

1-subset of κκ has the Bernstein property.
(iv) Every subset of κκ of cardinality less than 2κ is equal to the union of

κ-many closed subsets of κκ.
(v) The least upper bound for the order-types of Σ1

1-wellorderings of sub-
sets of κκ is equal to 2κ.

(vi) bT Oκ = dT Oκ = 2κ.
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5 Structural implications

In this section, we show that the principles CMP2(κ) and SMP2(κ) induce
a strong structure theory for the class of Σ1

1-subsets of κκ. We start by
reviewing some basic definitions concerning Σ1

1-subsets of κκ.
We call a subset T of (<κκ)n a subtree of (<κκ)n if lh(t0) = . . . = lh(tn−1)

and 〈t0 � α, . . . , tn−1 � α〉 ∈ T holds for all 〈t0, . . . , tn−1〉 ∈ T and α < lh(t0).
Given such a subtree, we define

[T ] = {〈x0, . . . , xn−1〉 ∈ (κκ)n | ∀α < κ 〈x0 � α, . . . , xn−1 � α〉 ∈ T}
to be the set of all cofinal branches though T . It is easy to see that a subset
A of (κκ)n is closed if and only if it is of the form [T ] for some subtree T of
(<κκ)n. This shows that the Σ1

1-subsets of (κκ)n are exactly of the form

p[T ] = {〈x0, . . . , xn〉 ∈ (κκ)n | ∃xn 〈x0, . . . , xn〉 ∈ [T ]}
for some subtree T of (<κκ)n+1. This also shows that the assumption κ = κ<κ

implies that the class of all Σ1
1-subsets of κκ coincides with the class of all

subsets of κκ that are definable over the structure 〈H(κ+),∈〉 by a Σ1-formula
with parameters.

We now start to derive structural implications from closed maximality prin-
ciples. It turns out that many of these implications factor through the follow-
ing concept.

Definition 5.1 Given a partial order P, we say that Σ2(H(κ+))-absoluteness
holds for P if 〈H(κ+)V,∈〉 is a Σ2-elementary substructure of 〈H(κ+)V[G],∈〉
whenever G is P-generic over V.

Proposition 5.2 If Σ2(H(κ+))-absoluteness holds for the partial order
Add(κ, 1), then κ = κ<κ.

Proof If G is Add(κ, 1)-generic over V, then κ = κ<κ holds in V[G] and this
implies that the collection κ<κ is a set in H(κ+)V[G]. Since this statement
can be formulated by a Σ2-formula with parameter κ, it also holds in H(κ+)V

and hence κ = κ<κ holds in V.

The following lemma is essentially a reformulation of [9, Theorem 3.6].

Lemma 5.3 If Φ is an L∈-formula that is either equal to Φcl or to ΦSh
and (Φ,Φcl, κ)−MP2(κ+) holds, then Σ2(H(κ+))-absoluteness holds all P with
Φ(P, κ).

Proof Let P be a partial order with Φ(P, κ) and let G be P-generic
over V. Fix a Σ2-formula ϕ(v0, . . . , xn−1) and x0, . . . , xn−1 ∈ H(κ+). If
ϕ(x0, . . . , xn−1) holds in H(κ+)V, then Proposition 3.3 directly implies that
this statement also holds in H(κ+)V[G]. In the other direction, assume that
ϕ(x0, . . . , xn−1) holds in H(κ+)V[G]. Pick a condition p in P that forces this
and let P̄ denote the partial order consisting of all extensions of p in P. Since
Φ is either equal to Φcl or to ΦSh, we know that Φ(P̄, κ) holds. If Q̇ is a
P̄-name for a <κ-closed partial order and Ḡ∗H is (P̄∗Q̇)-generic over V, then
Proposition 3.3 implies that ϕ(x0, . . . , xn−1) also holds in H(κ+)V[Ḡ,H]. This
argument shows that P̄ witnesses that the statement that ϕ(x0, . . . , xn−1)
holds in H(κ+) is (Φ,Φcl, κ)-forceably necessary. Since we can formulate this
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statement by a Σ2-formula with parameters κ, x0, . . . , xn−1 ∈ H(κ+), our as-
sumptions imply that this statement holds in V and therefore ϕ(x0, . . . , xn−1)
holds in H(κ+)V.

Next, we show that Σ2(H(κ+))-absoluteness implies that all ∆1
1-subsets of κκ

possess a regularity property that generalizes the Baire property to subsets
of the generalized Baire space of κ. A detailed discussion of this regularity
property can be found in [6, Section IV.3.].

Definition 5.4 We say that a subset X of κκ has the κ-Baire property if there
is an open subset U of κκ and a sequence 〈Aα | α < κ〉 of closed nowhere dense
subsets of κκ with the property that X∆U ⊆

⋃
{Aα | α < κ}.

A standard proof shows that the assumption κ = κ<κ implies that every
κ-Borel subset of κκ has the κ-Baire property (see [10] and Corollary 5.10
below). Moreover, it is also known that the Σ1

1-subsets Club(κ) and NS(κ) do
not have the κ-Baire property (see [11, Theorem 4.2]). Finally, it is consistent
that every ∆1

1-subset has the κ-Baire property (see [6, Theorem 49]). In the
following, we will present an alternative proof of this result that makes use of
the following notion.

Definition 5.5 Given a partial order P, we say that a subset X of κκ is a
P-absolutely ∆1

1-definable if there are subtrees T0 and T1 of <κκ × <κκ with
the property that p[T0] = X, p[T1] = κκ \X and 1P 
 “ κ̌κ̌ = p[Ť0] ∪ p[Ť1] ”.

The following observation is a direct consequence of Definition 5.1.

Proposition 5.6 If Σ2(H(κ+))-absoluteness holds for a partial order P, then
every ∆1

1-subset of κκ is P-absolutely ∆1
1-definable.

Moreover, the proof of [26, Lemma 1.11] yields the following statement.

Proposition 5.7 If P is a <κ-closed partial order, then every κ-Borel subset
of κκ is P-absolutely ∆1

1-definable.

A careful review of the definition of the forcing relation (see, for example,
[21, Section VII.3]) yields the following observation that is used throughout
this paper.

Proposition 5.8 Given 0 < n < ω and a Σn-formula ϕ(v0, . . . , vk−1), there
are Σn-formulas ψ0(v0, . . . , vk+1) and ψ1(v0, . . . , vk+1) such that1

ZFC− ` ∀x0, . . ., xk−1 ∀P partial order ∀p ∈ P[
(ψ0(x0, . . . , xk−1,P, p) ←→ p 
P ϕ(x̌0, . . . , x̌k−1))

∧ (¬ψ1(x0, . . . , xk−1,P, p) ←→ p 
P ¬ϕ(x̌0, . . . , x̌k−1))
]
.

Lemma 5.9 If κ = κ<κ, then every Add(κ, 1)-absolutely ∆1
1-definable subset

of κκ has the κ-Baire property.

Proof LetX be such a subset of κκ and let T0 and T1 be subtrees of <κκ×<κκ
with p[T0] = X, p[T1] = κκ \X and

1Add(κ,1) 
 “ κ̌κ̌ = p[Ť0] ∪ p[Ť1] ”. (2)

Since the assumption κ = κ<κ implies that (2) can be formulated by a Σ1-
formula with parameters in H(κ+), Proposition 5.8 and the Σ1-Reflection
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Principle imply that (2) also holds in H(κ+). Let M be an elementary sub-
model of H(κ+) of cardinality κ with κ + 1 ⊆ M and T0, T1 ∈ M . Then M
is transitive, the assumption κ = κ<κ implies that <κκ ⊆ M and elemen-
tarity implies that (2) holds in M . Let 〈Aα | α < κ〉 enumerate all closed
nowhere dense subsets of κκ contained in M . We let ẋ denote the canonical
Add(κ, 1)-name for the generic function from κ to κ and define

U =
⋃
{Ns | s 
MAdd(κ,1) “ ẋ ∈ p[Ť0] ”} ⊆ κκ.

Claim X \ U ⊆
⋃
{Aα | α < κ}.

Proof of the Claim Pick x ∈ X \
⋃
{Aα | α < κ}. Since x is an element of

every dense open subset of κκ contained inM , the filter Gx = {x � α | α < κ}
is Add(κ, 1)-generic over M . Moreover, we have p[T1]M [Gx] ⊆ p[T1] = κκ \X.
Since (2) holds in M , we know that

κκ ∩M [Gx] = p[T0]M [Gx] ∪ p[T1]M [Gx]

and therefore x ∈ p[T0]M [Gx]. Then there is α < κ with

x�α 
MAdd(κ,1) “ ẋ ∈ p[Ť0] ”.

This allows us to conclude that x ∈ Nx�α ⊆ U .

Claim U \X ⊆
⋃
{Aα | α < κ}.

Proof of the Claim Pick x ∈ U \
⋃
{Aα | α < κ}. As above, the function x

is an element of every dense open subset of κκ contained in M and therefore
the filter Gx = {x � α | α < κ} is Add(κ, 1)-generic over M . Since x ∈ U , we
can conclude that x ∈ p[T0]M [Gx] ⊆ p[T0] = X.

In combination, the above claims show that the open subset U and the se-
quence 〈Aα | α < κ〉 witness that X has the κ-Baire property.

Corollary 5.10 If κ = κ<κ holds, then every κ-Borel subset of κκ has the
κ-Baire property.

Corollary 5.11 If Σ2(H(κ+))-absoluteness holds for Add(κ, 1), then every
∆1

1-subset of κκ has the κ-Baire property.

Corollary 5.12 If κ = κ<κ and G is Add(κ, κ+)-generic over V, then all
∆1

1-subsets of κκ have the κ-Baire property in V[G].

Proof By [24, Lemma 9.1], Σ2(H(κ+))-absoluteness holds for Add(κ, 1) in
V[G]. Therefore the statement of the corollary follows directly from Lemma
5.9.

We now show that the first statement of Theorem 3.8 and the second state-
ment of Theorem 4.7 are direct consequences of the above lemma and the
results of [11].

Definition 5.13 A subset X of κκ super-dense if
⋂
{Uα ∩X | α < κ}) 6= ∅ for

all sequences 〈Uα | α < κ〉 of dense open subsets of non-empty open subsets
U of κκ.
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Proposition 5.14 ([26, Proposition 3.7]) Assume that A and B are disjoint
super-dense subsets of κκ. If A ⊆ X ⊆ κκ \ B, then X does not have the
κ-Baire property.

The following statement is essentially shown in the proof of [11, Theorem
4.2].

Theorem 5.15 The subsets Club(κ) and NS(κ) of κκ are super-dense.

Other interesting examples of disjoint super-dense Σ1
1-subsets of κκ are

constructed in [26, Section 3].

Corollary 5.16 If all ∆1
1-subsets of κκ have the κ-Baire property, then no

∆1
1-subset of κκ separates Club(κ) from NS(κ).

Proof of Theorem 2.1 Assume that κ = κ<κ and let G be Add(κ, κ+)-generic
over V. Then Corollary 5.12 implies that all ∆1

1-subsets of κκ have the κ-
Baire property in V[G]. By Corollary 5.16, there is no ∆1

1-subset of κκ in
V[G] that separates Club(κ) from NS(κ).

Proof of Clause (i) of Theorem 3.8 and Clause (ii) of Theorem 4.7 If we assume
that either CMP2(κ) or SMP2(κ) holds, then Lemma 5.3 implies that
Σ2(H(κ+))-absoluteness holds every Add(κ, 1) and Lemma 5.9 shows that all
∆1

1-subsets of κκ have the κ-Baire property. This allows us to use Corollary
5.16 to conclude that there is no ∆1

1-subset of κκ separates Club(κ) from
NS(κ).

Next, we discuss the Bernstein property and the perfect set property. We will
make use of the following notion defined in [24].

Definition 5.17 Given a subtree T of (<κκ)n+1, a map ι : <κ2 −→ T is a ∃x-
perfect embedding into T if the following statements hold for all s0, s1 ∈ <κ2
with ι(si) = 〈ti0, . . . , tin〉.

(i) If s0 ( s1, then t0k ( t1k for all k ≤ n.
(ii) If the sequences s0 and s1 are incompatible, then there is a k < n

such that the sequences t0k and t1k are incompatible.
(iii) If lh(s0) ∈ Lim and k ≤ n, then

t0k =
⋃
{uαk | ∃α < lh(s0) ι(s0 � α = 〈uα0 , . . . , uαn〉)}.

Proposition 5.18 ([24, Proposition 7.5]) If T is a subtree of (<κκ)n+1 such that
there is a ∃x-perfect embedding into T , then p[T ] contains a perfect subset.

Lemma 5.19 ([24, Lemma 7.6]) Assume κ = κ<κ and let T be a subtree of
(<κκ)n+1. Then there exists a ∃x-perfect embedding into T if and only if
there is a <κ-closed partial order P with 1P 
 “ p[Ť ] * V̌ ”.

Lemma 5.20 If κ = κ<κ, then every Add(κ, 1)-absolutely ∆1
1-definable sub-

set of κκ has the Bernstein property.

Proof Let X be such a subset of κκ, let T0 and T1 be subtrees of <κκ
witnessing this, let G be Add(κ, 1)-generic over V and let x denote the generic
function in V[G]. By our assumptions, there is i < 2 with x ∈ p[Ti]V[G] and
hence p[Ti]V[G] * V. By Lemma 5.19, this shows that there is a ∃x-perfect
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embedding into Ti in V and Proposition 5.18 shows that either X or κκ \X
contains a perfect subset in V.

Corollary 5.21 If κ = κ<κ holds, then every κ-Borel subset of κκ has the
Bernstein property.

Corollary 5.22 If Σ2(H(κ+))-absoluteness holds for Add(κ, 1), then every
∆1

1-subset of κκ has the Bernstein property.

Proof of Theorem 2.4 Assume that κ = κ<κ and let G be Add(κ, κ+)-generic
over V. By [24, Lemma 9.1], Σ2(H(κ+))-absoluteness holds for Add(κ, 1)
holds in V[G]. In this situation, Corollary 5.22 implies the statement of the
theorem.

Proof of Clause (ii) of Theorem 3.8 Assume that CMP2(κ) holds and let T be
a subtree of <κκ×<κκ. If Q̇ is a Col(κ, 2κ)-name for a <κ-closed partial order
and G∗H is (Col(κ, 2κ)∗Q̇)-generic over V, then either p[T ]V ( p[T ]V[G,H] or
p[T ]V[G,H] has cardinality κ in V[G,H]. By Lemma 5.19, the first alternative
implies that there is a ∃x-perfect embedding into T in V and this function is
still a ∃x-perfect embedding into T in V[G,H]. This shows that Col(κ, 2κ)
witnesses that the statement that either p[T ] has cardinality κ or there is a
∃x-perfect embedding into T is (Φcl,Φcl, κ)-forceably necessary. By Proposi-
tion 3.5, this statement can be formulated by a Σ2-formula with parameters
in H(κ+). Hence CMP2(κ) implies that the statement is true in V and Propo-
sition 5.18 shows that p[T ] has the perfect subset property in V.

Proof of Clause (iii) of Theorem 4.7 Assume that SMP2(κ) holds and let T be a
subtree of <κκ×<κκ. Let Q̇ be an Add(κ, (2κ)+)-name for a <κ-closed partial
order satisfying the κ+-chain condition and let G ∗H is (Add(κ, (2κ)+) ∗ Q̇)-
generic over V. Since forcing with (Add(κ, (2κ)+) ∗ Q̇) preserves all cardinals,
we know that either p[T ]V ( p[T ]V[G,H] holds or there is no surjection from
p[T ]V[G,H] onto P(κ)V[G,H] in V[G,H]. As above, the first alternative im-
plies that there is a ∃x-perfect embedding into T in V[G,H]. This shows
that Add(κ, (2κ)+) witnesses that the statement that either there is a ∃x-
perfect embedding into T or there is no surjection from p[T ] onto P(κ) is
(ΦSh,Φclc, κ)-forceably necessary. Since SMP2(κ) entails κ = κ<κ, we can
formulate this statement by a Σ2-formula with parameters in H(κ+) and there-
fore SMP2(κ) implies that the statement holds in V. We can conclude that
p[T ] either contains a perfect subset or has cardinality less than 2κ.

In the following, we will use the above results to prove statements about the
length of Σ1

1-wellorderings in the presence of closed maximality principles.
The starting point is the following result from [24] that is used in the proof
of Theorem 2.7 and Theorem 2.8.

Lemma 5.23 ([24, Lemma 7.15]) Assume that Σ2(H(κ+))-absoluteness holds
for Add(κ, 1). If 〈A,C〉 is a Σ1

1-wellordering of a subset of κκ, then A does
not contain a perfect subset.

Proof of Clause (iii) of Theorem 3.8 Assume that CMP2(κ) holds. Then
Lemma 5.3 shows that the assumption of Lemma 5.23 is satisfied. Since



18 P. Lücke

the domains of Σ1
1-wellorderings of subsets of κκ are Σ1

1-subsets of κκ, a
combination of Lemma 5.23 with the second part of Theorem 3.8 shows that
these domains have cardinality at most κ. In the other direction, it is easy
to see that every subset of (κκ)n of cardinality at most κ is a Σ1

1-subset. In
particular, for every γ < κ+, there is a Σ1

1-wellordering of a subset of κκ of
order-type γ.

In order to prove the corresponding result for the principle SMP2(κ), we first
need to derive the fourth statement of Theorem 4.7 to show that this principle
implies that for every γ < 2κ there is a Σ1

1-wellordering of a subset of κκ of
order-type γ. The proof of this result relies on the generic coding techniques
studied in [14, Section 2].

Definition 5.24 Assume that A is a subset of κκ and ~s = 〈sβ | β < κ〉 is an
enumeration of <κκ with the property that every element of <κκ is enumerated
unboundedly often. We let C~s(A) denote the unique partial order defined by
the following clauses:

(i) A condition in C~s(A) is a pair p = 〈tp, ap〉 such that tp : αp −→ 2 for
some αp < κ and ap is a subset of A of cardinality less than κ.

(ii) Given conditions p and q in C~s(A), we have p ≤C~s(A) q if and only if
tq ⊆ tp, αq ≤ αp and

sβ ⊆ x −→ tp(β) = 1

for all x ∈ aq and αq ≤ β < αp.

Proposition 5.25 In the situation of Definition 5.24, the partial order C~s(A)
is stationary κ+-linked, well-met and <κ-closed with greatest lower bounds.

Proof By [14, Proposition 2.2], C~s(A) is κ-linked and <κ-closed with great-
est lower bounds. In particular, this implies that C~s(A) is stationary κ+-
linked. Fix compatible conditions p and q in C~s(A) with αp ≥ αq. Then we
have tq ⊆ tp and r = 〈tp, ap ∪ aq〉 is a condition in C~s(A) that extends p.
Pick x ∈ aq and αq ≤ β < αp with sβ ⊆ x. Pick a condition s in C~s(A) with
s ≤C~s(A) p, q. Then tp ⊆ ts, β < αs and tp(β) = ts(β) = 1. This shows that r
is also an extension of q. Finally, it is easy to check that u ≤C~s(A) r holds for
all conditions u in C~s(A) with u ≤C~s(A) p, q.

Under the assumptions listed in Definition 5.24, there is a canonical sequence
〈Ṫα | α < κ〉 of C~s(A)-names for subtrees of <κκ with the property that,
whenever G is C~s(A)-generic over V and tG =

⋃
{tp | p ∈ G} : κ −→ 2, then

ṪGα = {t ∈ <κκ | ∀α < β < κ [tG(β) = 0 −→ sβ * t]}

for all α < κ.

Theorem 5.26 ([14, Corollary 4.3]) In the situation of Definition 5.24, if Q̇ is
a C~s(A)-name for a <κ-closed partial order and G ∗H is (C~s(A) ∗ Q̇)-generic
over V, then A =

⋃
{[ṪGα ]V[G,H] | α < κ}.

Proof of Clause (iv) of Theorem 4.7 Assume that SMP2(κ) holds and A is a
subset of κκ of cardinality less than 2κ. Since κ = κ<κ holds, there is an
enumeration ~s of <κκ that satisfies the requirements of Definition 5.24. If
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Q̇ is a C~s(A)-name for a <κ-closed partial order and G ∗ H is (C~s(A) ∗ Q̇)-
generic over V, then Theorem 5.26 implies that A =

⋃
{[ṪGα ]V[G,H] | α < κ} is

equal to the union of κ-many closed subsets of κκ in V[G,H]. By Proposition
5.25, this shows that the partial order C~s(A) witnesses that the statement
that there is a sequence 〈Tα | α < κ〉 of subtrees of <κκ with the property
that A =

⋃
{[Tα] | α < κ} is (ΦSh,Φcl, κ)-forceably necessary. Since this

statement can be expressed by a Σ2-formula with parameters κ,A ∈ H(2κ),
our assumptions imply that it holds in V.

Proof of Clause (v) of Theorem 4.7 Assume that SMP2(κ) holds. Then
Lemma 5.3 shows that the assumption of Lemma 5.23 is satisfied. Hence we
can apply the third part of Theorem 4.7 to conclude that the domains of
Σ1

1-wellorderings of subsets of κκ have cardinality less than 2κ and therefore
these orderings have order-type less than 2κ. In the other direction, the
fourth part of Theorem 4.7 implies that every subset of κκ× κκ of cardinality
less than 2κ is a Σ1

1-subset. In particular, for every γ < 2κ, there is a
Σ1

1-wellordering of a subset of κκ of order-type γ.

In the remainder of this section, we will study the influence of closed maxi-
mality principles on the cardinal characteristics of the partial order 〈T Oκ,�〉.
These results will also allow us to prove Theorem 2.9. The starting point of
this investigation is the following Boundedness Lemma. This result was first
proven for κ = ω1 in [28] and the proof given there directly generalizes to
higher regular cardinalities (see [24, Lemma 8.1]).

Lemma 5.27 ([28, Corollary 13]) If κ = κ<κ holds and A is a Σ1
1-subset of

TOκ, then there is a tree T in T Oκ with Tx � T for all x ∈ A.

Proof of Clause (vi) of Theorem 4.7 Assume that SMP2(κ) holds. Let B be a
subset of T Oκ of cardinality less than 2κ. Pick a subset A of TOκ of the
same cardinality such that for every S ∈ B, there is an x ∈ A such that the
trees S and Tx are isomorphic. In this situation, the fourth part of Theorem
4.7 implies that A is a Σ1

1-subset of κκ and Lemma 5.27 shows that there is
a tree T in T Oκ with S � T for all S ∈ B. In combination with (1), these
computations show that SMP2(κ) implies that bT Oκ = dT Oκ = 2κ.

In order to prove Theorem 2.9 and Theorem 3.9, we study the behaviour of the
partial order 〈T Oκ,�〉 in Add(κ, ν)-generic extensions of the ground model.

Lemma 5.28 If κ = κ<κ holds, G is Add(κ, 1)-generic over V and
T ∈ T OV[G]

κ , then there is S ∈ T OV
κ such that S 6� T in V[G].

Proof Work in V. Let ẋ be an Add(κ, 1)-nice name for an element of TOκ.
Then ẋ ∈ H(κ+). Define

A(ẋ) = {x ∈ Tκ | ∃p ∈ Add(κ, 1) p 
Add(κ,1) “ Tx̌ � Tẋ ”}.
Since the ordering � is defined by a Σ1-formula with parameter κ, we can use
Proposition 5.8 and the Σ1-Reflection Principle to show that A(ẋ) is definable
over 〈H(κ+),∈〉 by a Σ1-formula with parameters.

Next, pick x ∈ A(ẋ) and let G be Add(κ, 1)-generic over V such that
Tx � TẋG holds in V[G]. Since TẋG ∈ T O

V[G]
κ , we have x ∈ TOV[G]

κ and
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Proposition 3.3 implies that x ∈ TOV
κ . These computations show that A(ẋ) is

a Σ1
1-subset of TOκ in V. Since results of Kurepa (see [16, Lemma 2.1]) show

that the assumption κ = κ<κ implies that 〈T Oκ,�〉 contains no maximal
elements, we can use Lemma 5.27 to find a tree T(ẋ) in T OV

κ with Tx � T(ẋ)
and T(ẋ) 6� Tx for all x ∈ A(ẋ).

Now, let G be Add(κ, 1)-generic over V and let T be an element of T OV[G]
κ .

Pick an Add(κ, 1)-nice name ẋ for an element of TOκ such that the tree
TẋG is isomorphic to T in V[G]. Then T(ẋ) ∈ T OV

κ . Assume, towards a
contradiction, that T(ẋ) � T holds in V[G]. Then there is an x ∈ A(ẋ) such
that the tree Tx is isomorphic to T(ẋ) in V. But this is a contradiction,
because x ∈ A(ẋ) implies that T(ẋ) 6� Tx holds in V.

Lemma 5.29 Assume that κ = κ<κ holds. If ν > κ and G is Add(κ, ν)-
generic over V, then b

V[G]
T Oκ ≤ (2κ)V.

Proof Assume, towards a contradiction, that there is T ∈ T OV[G]
κ with the

property that Tx � T holds in V[G] for all x ∈ TOV
κ . Pick y ∈ TOV[G]

κ with
the property that the trees T and Ty are isomorphic in V[G]. Then we can find
H ∈ V[G] such that H is Add(κ, 1)-generic over V with y ∈ V[H] and V[G] is
an Add(κ, ν)-generic extension of V[H]. In this situation, Lemma 5.28 yields
an x ∈ TOV

κ with the property that Tx 6� Ty holds in V[H]. By Proposition
3.3, this implies that Tx 6� Ty also holds in V[G], a contradiction.

In the other direction, the following lemma will enable us to find lower bounds
for dT Oκ in Add(κ, ν)-generic extensions of the ground model.

Lemma 5.30 If κ = κ<κ holds, then there is a Add(κ, 1)-name Ṫ for an
element of T Oκ such that 1Add(κ,1) 
 “ Ṫ 6� Tx̌ ” holds for all x ∈ TOκ.

Proof Let ẋ be the canonical Add(κ, 1)-name for the generic function from κ

to 2 and let Ṫ be a canonical Add(κ, 1)-name for the subtree of <κκ with the
property that, whenever G is Add(κ, 1)-generic over V, then ṪG consists of
all strictly increasing, continuous functions s in <κκ with ẋG(s(α)) = 1 for all
α ∈ dom(s). IfG is Add(κ, 1)-generic over V, then the set {α < κ | ẋG(α) = 1}
is both a stationary and costationary subset of κ in V[G] and this implies that
ṪG ∈ T OV[G]

κ .
Assume, towards a contradiction, that there is an x ∈ TOV

κ , an Add(κ, 1)-
name ḟ for a function with domain Ṫ and a condition p0 in Add(κ, 1) with

p0 
Add(κ,1) “ f : 〈Ṫ ,⊆〉 −→ Tx̌ witnesses that 〈Ṫ ,⊆〉 � Tx̌ ”.

This allows us to inductively construct sequences 〈sα ∈ <κκ | α < κ〉,
〈γα < κ | α < κ〉 and 〈pα ∈ Add(κ, 1) | α < κ〉 such that the following
statements hold for all α < κ.

(i) If ᾱ < α, then sᾱ ( sα and pα ≤Add(κ,1) pᾱ.
(ii) sα is a strictly increasing, continuous function and pα(s(γ)) = 1 for

all γ ∈ dom(sα).
(iii) dom(sα) has a maximal element and sα(max(dom(sα))) is the max-

imum of dom(pα).
(iv) pα+1 
Add(κ,1) “ ḟ(ṡα) = γ̌α ”.
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But then γᾱ ∈x γα for all ᾱ < α < κ and the set {γ < κ | ∃α < κ γ ∈x γα} is
a cofinal branch through Tx in V, a contradiction.

Lemma 5.31 Assume that κ = κ<κ and ν ≥ 2κ is a cardinal with cof(ν) > κ.
If G is Add(κ, ν) over V, then d

V[G]
T Oκ = ν = (2κ)V[G].

Proof Assume, towards a contradiction, that, in V[G], there is a subset D
of TOκ of cardinality less than ν with the property that, for every T ∈ T Oκ,
there is x ∈ D with T � Tx. Since Add(κ, ν) satisfies the κ+-chain condition
in V, we can fnd H ∈ V[G] such that H is Add(κ, ν)-generic over V with
D ∈ V[H] and V[G] is an Add(κ, 1)-generic extension of V[H]. In this situ-
ation, Lemma 5.30 shows that there is a tree T ∈ T OV[G]

κ such that T 6� Tx
holds in V[G] for all x ∈ TOV[H]

κ . But our assumptions imply that there is an
x ∈ D ⊆ TOV[H]

κ with T � Tx, a contradiction.

Proof of Theorem 2.9 Assume that κ = κ<κ holds and G is Add(κ, (2κ)+)-
generic over V. Then Lemma 5.29 implies that

b
V[G]
T Oκ ≤ (2κ)V < ((2κ)+)V = (2κ)V[G].

In addition, we can apply Lemma 5.31 to conclude that dV[G]
T Oκ = (2κ)V[G].

The following absoluteness result of Fuchs is the last ingredient needed for the
proof of Theorem 3.9.

Theorem 5.32 ([8, Lemma 4.10]) Assume that 〈V,∈, κ, κ+〉 is a model of CMP.
If G is Add(κ, ν)-generic over V, then 〈V[G],∈, κ, κ+〉 is also a model of CMP.

Proof of Theorem 3.9 Assume that the theory CMP is consistent. By Corol-
lary 3.7, this assumption implies that the theory CMP+GCH is also consistent
and this theory proves that “ bT Oκ̇ = dT Oκ̇ ”. In the other direction, we can
combine our assumption with Theorem 2.9 and Theorem 5.32 to conclude
that the theory CMP + “ bT Oκ̇ < dT Oκ̇ ” is also consistent.

6 Equiconsistency results

This section contains results that provide upper and lower bounds for the
consistency strength of closed maximality principles of the form SMPn(κ).
We start by completing the proof of Theorem 4.7.

Proof of Clause (i) of Theorem 4.7 Assume that SMP2(κ) holds and let µ de-
note a cardinal smaller than 2κ.

First, let Q̇ be an Add(κ, (µ<κ)+)-name for a <κ-closed partial order that
satisfies the κ+-chain condition. If G∗H is (Add(κ, (µ<κ)+)∗ Q̇)-generic over
V, then (<κµ)V[G,H] ⊆ V and hence µ<κ < 2κ holds in V[G,H]. This shows
that the partial order Add(κ, (µ<κ)+) witnesses that the statement that there
is no surjection from <κµ onto P(κ) is (ΦSh,Φclc, κ)-forceably necessary. Since
this statement can be expressed by a Σ2-formula with parameters contained
in H(2κ), our assumptions imply that it holds in V and we can conclude that
µ<κ < 2κ.

Next, pick an injection ι : µ −→ κκ. Given X ⊆ µ, we can use the fourth
part of Theorem 4.7 to find a subtree TX of <κκ × <κκ with ι[X] = p[TX ].
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Since κ = κ<κ holds, there is an x ∈ Tκ such that TX is isomorphic to the
tree Tx. This allows us to construct an injection from 2µ into 2κ and we can
conclude that 2κ = 2µ holds for all µ < 2κ.

Finally, let Q̇ be an Add(κ, (2κ)+)-name for a partial order that satisfies
the κ+-chain condition. If G ∗H is (Add(κ, (2κ)+) ∗ Q̇)-generic over V, then
we know that, in V[G,H], there is a set X with the property that there is no
surjection from µ onto X and no surjection from X onto P(κ). In particular,
the partial order Add(κ, (2κ)+) witnesses that this statement is (ΦSh,Φclc, κ)-
forceably necessary. Since this statement can be expressed by a Σ2-formula
with parameters contained in H(2κ), it holds in V and hence we have µ+ < 2κ.

The above computations show that 2κ is a limit cardinal with 2κ = 2µ for
all κ ≤ µ < 2κ. By [18, Corollary 5.17], we can conclude that 2κ is regular.

A similar argument also allows us to prove the first part of Theorem 4.5.

Proof of Clause (i) of Theorem 4.5 Assume that 1 < n < ω and SMPn(κ)
holds. Set θ = 2κ. By the first part of Theorem 4.7, θ is weakly inacces-
sible and therefore θ is an inaccessible cardinal in L. By induction, we show
that 〈Lθ,∈〉 is a Σn-elementary substructure of 〈L,∈〉.

Assume that 〈Lθ,∈〉 is a Σm-elementary substructure of 〈L,∈〉 for some
m < n. Fix a Πm-formula ϕ(v0, . . . , vk) and z0, . . . , zk−1 ∈ Lθ with the
property that the statement ∃x ϕ(x, z0, . . . , zk−1) holds in L. Pick a cardinal µ
with the property that there is some y ∈ Lµ such that ϕ(y, z0, . . . , zk−1) holds
in L. Let Q̇ be an Add(κ, µ)-name for a <κ-closed partial order satisfying the
κ+-chain condition and letG∗H be (Add(κ, ν)∗Q̇)-generic over V. In V[G,H],
there is an ordinal λ with the property that there is no surjection from λ onto
P(κ) and ϕ(y, z0, . . . , zk−1) holds in L for some y ∈ Lλ. This shows that
the partial order Add(κ, ν) witnesses that this statement is (ΦSh,Φclc, κ)-
forceably necessary. By our assumptions, this statement can be expressed
by a Σn-formula with parameters in H(2κ) and therefore it holds in V. This
shows that there is y ∈ Lθ with the property that ϕ(y, z0, . . . , zk−1) holds in L.
Using our induction hypothesis, we can conclude that ϕ(y, z0, . . . , zk−1) holds
in Lθ. In combination with our induction hypothesis, these computations
show that 〈Lθ,∈〉 is a Σm+1-elementary substructure of 〈L,∈〉.

In the remainder of this section, we use iterated forcing to prove the second
part of Theorem 4.5. The main difficulty in this argument arises from the fact
that the class of partial orders P satisfying ΦSh(P, κ) is not closed under <κ-
support iterations. We deal with this complication by proving the consistency
of a maximality principle for the class of <κ-support iterations of such partial
orders.

Definition 6.1 Let Φ be an L∈-formula defining a class of partial orders.
(i) A forcing iteration ~P = 〈〈~P<α | α ≤ λ〉, 〈Ṗα | α < λ〉〉 is a (Φ, κ)-

iteration if it has <κ-support and 1~P<α 
 Φ(Ṗα, κ̌) holds for all
α < λ.

(ii) A partial order Q is equivalent to a (Φ, κ)-iteration if there exists a
(Φ, κ)-iteration 〈〈~P<α | α ≤ λ〉, 〈Ṗα | α < λ〉〉 with the property that
the partial order ~P<λ isomorphic to Q.
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The following iteration result is contained in the proof of [30, Theorem 1.1]
and motivates the above definition of stationary κ+-linked partial orders.

Theorem 6.2 ([30]) Assume that κ = κ<κ and let

〈〈~P<α | α ≤ λ〉, 〈Ṗα | α < λ〉〉

be a (ΦSh, κ)-iteration. Then the partial order ~P<λ is <κ-closed and satisfies
the κ+-chain condition.

Our proof of Theorem 4.5 relies on two technical lemmas that are conse-
quences of Baumgartner’s detailed analysis of the tails of forcing iterations
in [2]. Given such an iteration 〈〈~P<α | α ≤ λ〉, 〈Ṗα | α < λ〉〉 and α ≤ λ, we
let Ṗ[α,λ) denote the canonical ~P<α-name for the corresponding tail forcing
constructed in [2, Section 5].

Lemma 6.3 If Φ defines a class of partial orders and

〈〈~P<α | α ≤ λ〉, 〈Ṗα | α < λ〉〉

is a (Φ, κ)-iteration, then

1~P<α 
 “ Ṗ[α,λ) is equivalent to a (Φ, κ̌)-iteration ”

for all α < λ with the property that ~P<α is <κ-distributive.

We will show that this lemma is a direct consequence of the results of [2,
Section 5]. Following Baumgartner, we say that a set X of ordinals is κ-thin
if X ∩ δ is bounded in δ for every limit ordinal δ of cofinality greater than or
equal to κ.

Proposition 6.4 Let P be a <κ-distributive partial order and let G be P-
generic over V. If X is a κ-thin set of ordinals in V[G], then X ∈ V and X
is κ-thin in V.

Proof Since X is κ-thin, we know that the club of limit points of X contains
no ordinal of cofinality κ in V[G] and therefore X has cardinality less than
κ in V[G]. In particular, X is contained in V. Given a limit ordinal δ with
cof(δ)

V ≥ κ, we have cof(δ)
V[G] ≥ κ and X ∩ δ is bounded in δ. Hence X is

κ-thin in V.

Proof of Lemma 6.3 Fix α < λ such that ~P<α is <κ-distributive and pick
λ̄ ≤ λ with λ = α + λ̄. Let G be ~P<α-generic over V and work in V[G]. By
[2, Theorem 5.2], there is a canonical forcing iteration

~Q = 〈〈~Q<β | β ≤ λ̄〉, 〈Q̇β | β < λ̄〉〉

and a sequence 〈iβ : ṖG[α,α+β) −→ ~Q<β | β ≤ λ̄〉 of isomorphisms of partial
orders such that the following statements hold for all β ≤ λ̄:

(i) If ~p ∈ ṖG[α,α+β) and γ ≤ β, then iγ(~p � [α, α+ γ)) = iβ(~p ) � γ.
(ii) If β < λ̄, H is ~Q<β-generic over V[G] and F is the filter on ~P<α+β

induced by G∗(i−1
β [H]), then Q̇Hβ = ṖFα+β and iβ(~p )(β)H = ~p(α+β)F

for all ~p ∈ ṖG[α,λ).
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These properties imply that 1~Q<β 
 Φ(Q̇β , κ̌) holds in V[G] for all β < λ̄.
Moreover, Proposition 6.4 implies that the assumptions of [2, Theorem 5.4]
are satisfied and hence we can use this result together with [2, Theorem 5.3]
to conclude that ~Q has <κ-support. This shows that ~Q is a (Φ, κ)-iteration
and the partial order ṖG[α,λ) is equivalent to such an iteration in V[G].

The next lemma shows that the converse of the above implication is also true.

Lemma 6.5 Let Φ be a suitable formula defining a class of partial order,
let ~P = 〈〈~P<α | α ≤ λ〉, 〈Ṗα | α < λ〉〉 be a (Φ, κ)-iteration and let Q̇ be a
~P<λ-name for a partial order. If ~P<λ is <κ-distributive and

1~P<λ 
 “ Q̇ is equivalent to a (Φ, κ̌)-iteration ”,

then there is a (Φ, κ)-iteration 〈〈~P<α | α ≤ λ+ η〉, 〈Ṗα | α < λ+ η〉〉 extending
~P with the property that, whenever G is ~P<λ-generic over V, then the partial
orders ṖG[λ,λ+η) and Q̇G are isomorphic in V[G].

Proof With the help of a maximal antichain in ~P<λ, we find a set of or-
dinals A with the property that, whenever G is ~P<λ-generic over V, then
there is a λ̄ ∈ A and a (Φ, κ)-iteration 〈〈~Q<α | α ≤ λ̄〉, 〈Q̇α | α < λ̄〉〉 in
V[G] such that the partial orders Q̇G and ~Q<λ̄ are isomorphic in V[G].
Set η = sup(A). Since Φ is suitable, we can find sequences 〈İα | α ≤ η〉
and 〈Ṗα | α < η〉 of ~P<λ-names with the property that, whenever G is
~P<λ-generic over V, then ~IG = 〈〈İGα | α ≤ η〉, 〈ṖGα | α < η〉〉 is a (Φ, κ)-
iteration in V[G] and the partial orders Q̇G and İGη are isomorphic in V[G].
In the following, we will derive the statement of the lemma by construct-
ing a (Φ, κ)-iteration 〈〈~P<α | α ≤ λ+ η〉, 〈Ṗα | α < λ+ η〉〉 that extends ~P
and has the property that, whenever G is ~P<λ-generic over V and α ≤ η,
then 〈〈İGβ | β ≤ α〉, 〈ṖGβ | β < α〉〉 is the canonical forcing iteration in V[G]

such that there is a sequence 〈iβ : ṖG[λ,λ+β) −→ İGβ | β ≤ α〉 of isomorphisms
satisfying the properties (i) and (ii) listed in the proof of Lemma 6.3.

First, pick α < η and assume that we have constructed such an extension
of ~P of length η + α. Then there is an extension

〈〈~P<β | β ≤ λ+ α+ 1〉, 〈Ṗβ | β ≤ λ+ α〉〉

of this iteration with the property that, whenever F is ~P<λ+α-generic over
V, G ∗ H is the filter on the partial order ~P<λ ∗ Ṗ[λ,λ+α) induced by F and
〈iβ : ṖG[λ,λ+β) −→ İGβ | β ≤ α〉 is the sequence of isomorphisms with the above
properties, then ṖFλ+α = (ṖGα )eα[H]. This definition ensures that we find an
isomorphism iα+1 : ṖG[λ,λ+α+1) −→ İGα+1 with the desired properties whenever
G is ~P<λ-generic over V.

Next, assume that α ≤ η is a limit ordinal and we constructed a (Φ, κ)-
iteration 〈〈~P<β | β ≤ λ+ α〉, 〈Ṗβ | β < λ+ α〉〉 such that every initial segment
satisfies the above properties. LetG be ~P<λ-generic over V. Then our assump-
tions imply that there is a sequence 〈iβ : ṖG[λ,λ+β) −→ IGβ | β < λ+ α〉 of iso-
morphisms in V[G] that satisfy the above properties. Let iα : ṖG[λ,λ+α) −→ İGα
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denote the function defined by iα(~p) =
⋃
{iβ(~p � [λ, λ+ β)) | β < α}. Since

Proposition 6.4 shows that we can use [2, Theorem 5.4] to show that the
canonical iteration corresponding to ṖG[λ,λ+α) also has <κ-support in V[G], we
can conclude that iα is also an isomorphism.

Proof of Clause (ii) of Theorem 4.5 Assume that κ = κ<κ, θ > κ is an inacces-
sible cardinal and C is a wellordering of H(θ) of order-type θ.

Let Φ(v0, v1) be the canonical suitable formula defining a class of partial
orders such that Φ( · , κ) defines the class of all partial orders that are
equivalent to a (ΦSh, κ)-iteration if κ is an infinite regular cardinal and Φ( · , z)
defines the class of all partial orders if z is not an infinite regular cardinal.

Following [3, Section I.9], let Fml ⊆ Vω denote the set of all formalized
L∈-formulas, let # : Fml −→ ω denote the corresponding arity function and
let Sat denote the corresponding formalized satisfaction relation. Given an
L∈-formula ϕ, let pϕq ∈ Fml denote the canonical code for this formula.
Let f : Fml −→ Fml be the canonical recursive function with the prop-
erty that #(f(a)) = #(a) + 2 for all a ∈ Fml and f(pϕq) = pψq whenever
ϕ(v0, . . . , vn−1) is an L∈-formula and ψ(v0, . . . , vn+1) is the induced formula
stating that

“ vn+1 witnesses that ϕ(v0, . . . , vn−1) is (Φ,Φclc, vn)-forceably necessary ”.

In the following, we inductively construct a continuous, strictly increasing
sequence 〈cγ < θ | γ < θ〉, a (ΦSh, κ)-iteration ~Pθ = 〈〈~P<δ | δ ≤ θ〉, 〈Ṗδ | δ < θ〉〉
and a sequence 〈ḃδ | δ < θ〉 such that ~Pγ = 〈〈~P<δ | δ ≤ cγ〉, 〈Ṗδ | δ < cγ〉〉
is an element of H(θ) for every γ < θ and ḃδ is a ~P<δ-name for a bijection
between θ and H(θ) for every δ < θ.

Assume that γ = ≺δ, ε� < θ and we already constructed 〈cδ | δ ≤ γ〉, ~Pγ
and 〈ḃδ | δ < cγ〉 with the above properties. Then there is a ~P<cγ -name Q̇ with
the property that the following statements hold whenever G is ~P<cγ -generic
over V and Ḡ is the filter on ~P<δ induced by G:

(a) If ḃḠδ (ε) = 〈a, x0, . . . , xn−1〉 with a ∈ Fml and #a = n and there is a
partial order Q in H(θ)V[G] such that

Sat(H(θ)V[G], f(a), 〈x0, . . . , xn−1, κ,Q〉)

holds in V[G], then Q̇G ∈ H(θ)V[G] and

Sat(H(θ)V[G], f(a), 〈x0, . . . , xn−1, κ, Q̇G〉)

holds in V[G].
(b) If the above assumptions are not satisfied, then Q̇G is the trivial

partial order in H(θ)V[G].

Since ~P<cγ is contained in H(θ), there is a ~P<cγ -name with these properties
in H(θ) and we let Q̇ denote the C-least such name. Then the statement

1~P<cγ

 “ Q̇ is equivalent to a (ΦSh, κ̌)-iteration ”

holds in H(θ) and an application of Lemma 6.5 in H(θ) yields cγ < cγ+1 < θ

and a (ΦSh, κ)-iteration 〈〈~P<δ | δ ≤ cγ+1〉, 〈Ṗδ | δ < cγ+1〉〉 extending ~Pγ with
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the property that, whenever G is ~P<cγ -generic over V, then the partial or-
ders ṖG[cγ ,cγ+1) and Q̇G are isomorphic in H(θ)V[G]. Let ~Pγ+1 denote the C-

least iteration with these properties in H(θ). In V, ~Pγ+1 is also a (ΦSh, κ)-
iteration that extends ~Pγ . Given cγ ≤ δ < cγ+1, let ḃδ be the canonical
~P<δ-name with the property that, whenever G is ~P<δ-generic over V and
CG is the canonical wellordering of H(θ)V[G] of order-type θ induced by C
(i.e. given x, y ∈ H(θ)V[G], we have y CG y if and only if there is a ~P<γ-
name2 ẋ ∈ H(θ)V with x = ẋG and ẋ C ẏ for all ~P<γ-names ẏ ∈ H(θ)V

with y = ẏG), then ḃGγ : θ −→ H(θ)V[G] is the monotone enumeration of the
wellorder 〈H(θ)V[G],CG〉.

Since our assumptions on the support of the iteration determine the defi-
nition of cγ and ~Pγ for all γ ∈ Lim ∩ θ, this completes the definition of our
forcing iteration.

Set B(κ,C) = ~P<θ. Note that the above definition ensures that this partial
order is uniformly definable in the parameters κ and C. By Theorem 6.2, the
partial order B(κ,C) is <κ-closed and satisfies the κ+-chain condition.

From now on, assume that θ is a Σn+2-reflecting cardinal for some
1 < n < ω and let G is B(κ,C)-generic over V. Given δ < θ, let Gδ denote
the filter on ~P<δ induced by G.

Claim If ϕ(v0, . . . , vk−1) is a Σn-formula and x0, . . . , xk−1 ∈ H(θ)V[G] such
that the statement ϕ(x0, . . . , xk−1) is (ΦSh,Φclc, κ)-forceably necessary in
V[G], then ϕ(x0, . . . , xk−1) holds in V[G].

Proof of the Claim Since ~Pθ is a <κ-support iteration of forcings of size less
than θ, we can find δ < θ with x0, . . . , xk−1 ∈ H(θ)V[Gδ]. Then there is an ordi-
nal ε < θ with ḃGδδ (ε) = 〈pϕq, x0, . . . , xk−1〉. Set γ = ≺δ, ε�. Since the formula
ΦSh is suitable, there is a (ΦSh, κ)-iteration 〈〈~P<δ | δ ≤ θ + 1〉, 〈Ṗδ | δ ≤ θ〉〉 in
V extending ~Pθ such that ṖGθ witnesses that the statement ϕ(x0, . . . , xk−1) is
(ΦSh,Φclc, κ)-forceably necessary in V[G]. In this situation, an application of
Lemma 6.3 shows that ṖGcγ[cγ ,θ+1) witnesses that the statement ϕ(x0, . . . , xk−1)

is (Φ,Φclc, κ)-forceably necessary in V[Gcγ ].
Note that, given a partial order P, the statement ΦSh(P, κ) holds if and

only if there is an ordinal α such that ΦSh(P, κ) holds in H(ν) for all regular
cardinals ν > α. This shows that, given a partial order P with Φclc(P, κ), a
condition p in P and a P-name Q̇ for a partial order, we have p 
P ΦSh(Q̇, κ̌)

if and only if there is an ordinal α such that p 
H(ν)
P ΦSh(Q̇, κ̌) holds for all

regular cardinals ν > α, because H(ν)V[G] = H(ν)[G] holds for all sufficiently
large regular cardinals ν whenever G is P-generic over V. In combination with
Theorem 6.2, these observations show that Φ(P, κ) holds for a partial order P
if and only if there is an ordinal α such that this statement holds in H(ν) for
all regular cardinals ν > α. In particular, the class of these forcings can be
uniformly defined by a Σ3-formula with parameter κ.

Together with Proposition 5.8, these remarks show that we can formu-
late the statement that ϕ(x0, . . . , xk−1) is (Φ,Φclc, κ)-forceably necessary by
a Σn+2-formula using parameters contained in H(θ)V[Gcγ ]. Using the fact
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that ~P<cγ is contained in H(θ)V, a routine application of Proposition 5.8
shows that θ is still Σn+2-reflecting in V[Gcγ ] and we can conclude that the
ϕ(x0, . . . , xk−1) is also (Φ,Φclc, κ)-forceably necessary in H(θ)V[Gcγ ]. This
shows that there is a partial order Q in H(θ)V[Gcγ ] such that

Sat(H(θ)V[Gcγ ], f(pϕq), 〈x0, . . . , xk−1, κ,Q〉)

holds in V[Gcγ ]. By our definition of ~Pcγ+1 , we know that

Sat(H(θ)V[Gcγ ], f(pϕq), 〈x0, . . . , xk−1, κ, Ṗ
Gcγ
[cγ ,cγ+1)〉)

holds in V[Gcγ ] and this means that ṖG[cγ ,cγ+1) witnesses that ϕ(x0, . . . , xk−1)

is (Φ,Φclc, κ)-forceably necessary in H(θ)V[Gcγ ]. As above, our assumptions
imply that this statement also holds in V[Gcγ ]. By Theorem 6.2 and Lemma

6.3, we know that Φclc(Ṗ
Gcγ+1

[cγ+1,θ)
) holds in V[Gcγ+1

]. This allows us to conclude
that the statement ϕ(x0, . . . , xk−1) holds in V[G].

Claim θ = (2κ)V[G].

Proof of the Claim In V, θ is inaccessible and B(κ,C) is a partial order of car-
dinality θ that satisfies the κ+-chain condition. This implies that there are at
most θ-many B(κ,C)-nice names for subset of κ in V and hence (2κ)V[G] ≤ θ.

Given a cardinal µ < θ, the partial order Add(κ, µ+) witnesses that the
statement that there is no surjection from µ onto P(κ) is (ΦSh,Φclc, κ)-
forceably necessary in V[G]. Since this statement can be formulated by a
Σ2-formula with parameters in H(θ)V[G], the above claim shows that it holds in
V[G] and hence µ < (2κ)V[G]. This shows that we also have (2κ)V[G] ≥ θ.

The combination of the above claims shows that SMPn(κ) holds in V[G].

7 Concluding remarks and open questions

We close this paper with some open questions motivated by the above results
and a discussion of possible directions of further research.

The above results show that closed maximality principles exactly determine
the possible lengths of Σ1

1-definable wellorders. Since definable prewellorders
play a more important role in classical descriptive set theory, one naturally
arrives at the following question.

Question 7.1 Do axioms of the form CMPn(κ) or SMPn(κ) determine the
least upper bound of the lengths of ∆1

1-definable prewellorders on κκ?

The results of this paper show that the principles CMP2(κ) and SMP2(κ)
induce a strong structure theory for the class of Σ1

1-subsets of κκ. Therefore
it is natural to ask whether similar implications hold for stronger maximality
principles and larger classes of definable subsets of κκ.

Question 7.2 Assume that 〈V,∈, κ, κ+〉 is a model of CMP.
(i) Does every subset of κκ that is an element of L(P(κ)) have the perfect

set property?
(ii) Does the axiom of choice fail in L(P(κ))?

Question 7.3 Assume that 〈V,∈, κ, 2κ〉 is a model of SMP.
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(i) Does every subset of κκ that is an element of L(P(κ)) have the Bern-
stein property?

(ii) Does the axiom of choice fail in L(P(κ))?

Note that in both cases, an affirmative answer to the first part of the ques-
tion yields an affirmative answer to the second part of the question, because a
wellordering of κκ allows us to construct a subset of κκ without the Bernstein
property.

Since the principles CMP2(κ) and SMP2(κ) settle many questions about
the class of Σ1

1-subsets of the generalized Baire space of κ, it is natural to
ask whether these closed maximality principles can hold for all uncountable
regular cardinals κ. In [8, Section 6], Fuchs shows that the full maximality
principles for the class of all closed partial orders cannot hold globally. A
closer look at the proof of [8, Theorem 6.9] shows that the class of uncountable
regular cardinals κ with the property that CMP3(κ) holds is bounded in the
ordinals. A similar argument shows that the same is true for the class of all
uncountable regular cardinals κ such that SMP3(κ) holds. In a subsequent
paper [23], we will prove that this is also true for the class of cardinals such
that SMP2(κ) holds. This leaves open the following question.

Question 7.4 Is it consistent that CMP2(κ) holds for all uncountable regular
cardinals κ?

In [8, Section 5], Fuchs introduces a weakening of CMP that restricts this
principle to local statements that are provably forceably necessary and shows
that it is consistent that this principle holds for every uncountable regular
cardinal. Moreover, he argues that many interesting consequences of CMP
derived in [8] are also consequences of this weaker principles. In [23], we will
show that the consequences listed in Theorem 3.8 can also be derived from
this restricted principle. Therefore we may view it as a natural example of
an extension of ZFC that can answers the questions posed in Section 2 in a
global way.

In [23], we will also formulate a similar restriction of the principle SMP to
local statements that are provably forceably and construct a model in which
this principles holds for all uncountable regular cardinals κ satisfying κ = κ<κ

and unboundedly many cardinals with this property exist. Finally, we will also
show that the statements listed in Theorem 4.7 are also consequences of this
weaker principle.

Notes

1. By ZFC−, we mean the usual axioms of ZFC without the power set axiom,
however including the Collection scheme instead of the Replacement scheme.
Note that, if ν is an uncountable regular cardinal, then the set H(ν) is a model
of this theory.

2. Note that the first statement implies that for every x ∈ H(θ)V[G], there is a
~P<γ-name ẋ ∈ H(θ)V with x = ẋG.
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