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Abstract. Let κ be an infinite cardinal. A subset of (κκ)n is a Σ1
1
-subset if it

is the projection p[T ] of all cofinal branches through a subtree T of (<κκ)n+1

of height κ. We define Σ1
k
-, Π1

k
- and ∆1

k
-subsets of (κκ)n as usual.

Given an uncountable regular cardinal κ with κ = κ<κ and an arbitrary
subset A of κκ, we show that there is a <κ-closed forcing P that satisfies the
κ+-chain condition and forces A to be a ∆1

1
-subset of κκ in every P-generic

extension of V. We give some applications of this result and the methods used

in its proof.
(i) Given any set x, we produce a partial order with the above properties

that forces x to be an element of L(P(κ)).
(ii) We show that there is a partial order with the above properties forcing

the existence of a well-ordering of κκ whose graph is a ∆1
2
-subset of κκ × κκ.

(iii) We provide a short proof of a result due to Mekler and Väänänen by
using the above forcing to add a tree T of cardinality and height κ such that
T has no cofinal branches and every tree from the ground model of cardinality
and height κ without a cofinal branch quasi-order embeds into T .

(iv) We will show that generic absoluteness for Σ1
3
(κκ)-formulae (i.e., for-

mulae with parameters which define Σ1
3
-subsets of κκ) under <κ-closed forc-

ings that satisfy the κ+-chain condition is inconsistent.
In another direction, we use methods from the proofs of the above results

to show that Σ1
1
- and ∆1

1
-subsets have some useful structural properties in

certain ZFC-models.

1. Introduction

Let κ be an uncountable regular cardinal. The set of all functions f : κ −→ κ is
called generalized Baire space for κ. We study the definable subsets of this space
and their structural properties. A systematic study of this space was initiated by
Alan Mekler and Jouko Väänänen (see [17] and [22]) and was extended by Philipp
Schlicht, Samuel Coskey and others. A discussion of some of these results can
be found in [8, Chapter IV]. In addition, a number of publications revealed deep
connections to infinitary logic and model theory (see, for example, [8], [12], [18] [20]
and [21]).

Before we start a more detailed introduction to this paper, we give a brief review
of our notation.

• Given a nonempty set X and A ⊆ Xn+1, we define

∃xA = {〈x0, . . . , xn−1〉 ∈ X
n | (∃xn) 〈x0, . . . , xn〉 ∈ A}.

• Given a cardinal κ and a class C, we let [C]<κ denote the class of all sets
x of cardinality less than κ with x ⊆ C.
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• For all λ ∈ On, we let λX denote the set of all functions f with dom(f) = λ
and ran(f) ⊆ X. We set <λX =

⋃

α<λ
αX. If κ is a cardinal, then we let

κ<λ denote the cardinality of <λκ.
• Given a nonempty set X, we call a set T a tree on Xn if there is a γ ∈ On

such that T ⊆ (<γX)n and the following statements hold.
(1) If 〈s0, . . . , sn−1〉 ∈ T , then lh(s0) = · · · = lh(sn−1).
(2) If 〈s0, . . . , sn−1〉 ∈ T and α < lh(s0), then 〈s0 ↾ α, . . . , sn−1 ↾ α〉 ∈ T .

In the above situation, we call T a subtree of (<γX)n. Given a tuple
t = 〈t0, . . . , tn−1〉 ∈ T , we define lh(t) = lh(t0) and call the ordinal ht(T ) =
lub{lh(t) | t ∈ T} the height of T .
• We say that a tree T0 on X is an end-extension of a tree T1 on X if
T1 = T0 ∩

<ht(T1)X holds.
• Given a tree T on X, a tuple of functions 〈x0, . . . , xn−1〉 ∈

(

ht(T )X
)n

is
called a cofinal branch through T if the tuple 〈x0 ↾ α, . . . , xn−1 ↾ α〉 is an
element of T for every α < ht(T ). We let [T ] denote the set of all cofinal
branches through T . If T is a tree on Xn+1 of height λ, then we define
p[T ] = ∃x[T ] ⊆ (λX)n.

We equip the spaces (κκ)n with the usual topological structure induced by basic
open sets of the form

Us0,...,sn−1
= {〈x0, . . . , xn−1〉 ∈ (κκ)n | s0 ⊆ x0, . . . , sn−1 ⊆ xn−1}

with s0, . . . , sn−1 ∈
<κκ. Note that closed sets in this topology are of the form [T ]

for some tree T on κn of height κ.

Definition 1.1. Let κ be an infinite cardinal. A subset A of (κκ)n is a κ-Borel
subset if it is contained in the smallest algebra of sets on (κκ)n that contains all
open subsets and is closed under unions of size κ.

The following definition directly generalizes the notion of a projective subset of
Baire Space to our setting.

Definition 1.2. Let κ be an infinite cardinal.

(1) A subset A of (κκ)n is a Σ1
1-subset if there is a tree T on κn+1 with A = p[T ].

(2) A subset A of (κκ)n is a Π1
k-subset if (κκ)n \A is a Σ1

k-subset.
(3) A subset A of (κκ)n is a Σ1

k+1-subset if there is a Π1
k-subset B of (κκ)n+1

with A = ∃xB.
(4) A subset A of (κκ)n is a ∆1

k-subset if it is both a Σ1
k-subset and a Π1

k-subset.

Fix an uncountable regular κ with κ = κ<κ. In Section 2 we will present a
folklore result showing that the Σ1

1-subsets are exactly the subsets of (κκ)n that
are definable in the structure 〈H(κ+),∈〉 by a Σ1-formula with parameters. This
shows that the Σ1

1-subsets form an interesting and rich class of subsets. Moreover,
this result can be used to show that the κ-Borel subsets of κκ form a proper subclass
of the class of ∆1

1-subsets (see [8, Theorem 18]).
The initial motivation of this work was to find generalizations of the following

coding result due to Leo Harrington to uncountable regular cardinals κ.

Theorem 1.3 ([10, Theorem 1.7]). Assume ω1 = ωL
1 . For every subset A of ωω,

there is a partial order P with the following properties.

(1) P satisfies the countable chain condition.
(2) If G is P-generic over V, then A is a Π1

2-subset of ωω in V[G].
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We give a brief overview of related existing results. If “V = L[x] ” holds in the
ground model for some x ⊆ κ, then we can apply Solovay’s almost disjoint coding
forcing (see [14]) to make an arbitrary subset of κκ Σ1

1-definable in a forcing exten-
sion of L[x] and in any further forcing extension in which κ remains a cardinal. This
follows from the absoluteness properties of this coding and the fact that (κκ)L[x] is
a Σ1

1-subset of κκ in all such extensions. Section 4 of this paper contains a detailed
outline of the properties of this forcing.

Now, assume that the (GCH) holds at κ. If A is an arbitrary subset of κκ,
then results of Sy-David Friedman show that there is a <κ-closed partial order
that satisfies the κ+-chain condition and adds a Σ1

1-definition of A. Moreover, this
coding is absolute with respect to all further forcing extensions that preserve the
regularity of κ and κ+. This coding technique is called Canonical Function coding.
A detailed discussion of this technique can be found in [1], [6] and [7].

We will present a coding result which only requires the assumption that the
set of bounded subsets of κ has cardinality κ in the ground model. In particular,
the hypothesis “2κ = κ+ ” is not needed. Before we state this result, we need to
introduce some vocabulary.

Definition 1.4. Let κ be an infinite regular cardinal and Γ be a class of partial
orders that contains the trivial partial order. We say that a subset A of κκ is Γ-
persistently Σ1

1 if there is a tree T on κ × κ such that 1lP 
 “ Ǎ = p[Ť ] ” holds for
every P in Γ.

We are now ready to state our first main result. See [4, Definition 5.14] for the
definition of α-strategically closed partial orders. As usual, we write σ-strategically
closed instead of (ω + 1)-strategically closed.

Theorem 1.5. Let κ be a regular uncountable cardinal with κ = κ<κ. For every
subset A of κκ, there is a partial order P that satisfies the following statements.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality at most
2κ.

(2) If G is P-generic over V, then A is Γ-persistently Σ1
1 in V[G], where Γ is

the class of all σ-strategically closed partial orders in V[G] that preserve the
regularity of κ.

By combining the above absoluteness properties with uncountable versions of
results from the proof of Theorem 1.3 in [10], we are able to prove our second main
result.

Theorem 1.6. Let κ be a regular uncountable cardinal with κ = κ<κ. For every
subset A of κκ, there is a partial order P that satisfies the following statements.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality at most
2κ.

(2) If G is P-generic over V, then A is a ∆1
1-subset of κκ in V[G].

This coding will also have certain absoluteness properties.

Definition 1.7. Let κ be an infinite regular cardinal and Γ be a class of partial
orders that contains the trivial partial order. We say that a subset A of κκ is Γ-
persistently ∆1

1 if there are trees T0 and T1 on κ× κ such that T0 witnesses that A
is Γ-persistently Σ1

1 and 1lP 
 “p[Ť1] = κ̌κ̌ \ p[Ť0] ” holds for all P in Γ.
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The proof of this result will show that there is a nontrivial class Γ of <κ-closed
partial orders that satisfy the κ+-chain condition such that the set coded in The-
orem 1.6 is actually Γ-persistently ∆1

1 in the generic extension. Both the forcing
Add(κ, 1) that adds a Cohen-subset of κ and the almost disjoint coding forcings
at κ are contained in this class Γ and this allows us to analyze certain structural
properties of A in V[G].

In the following, we present some applications of the above results and the meth-
ods used in their proofs.

The Anticoding Theorem, proven by Itay Neeman and Jindřich Zapletal (see
[19]), says that in the presence of large cardinals proper forcings do not code any
set of ordinals from the ground model into L(R) of the forcing extension unless
that set is already an element of L(R) of the ground model. Given an uncountable
regular cardinal κ with κ = κ<κ, an easy application of the above results shows that
it is possible to code new sets of ordinals into L(P(κ)) by forcing with a κ-proper
partial order (see [11, Definition 3.4] for a definition of this class of partial orders).

Corollary 1.8. If κ is a regular uncountable cardinal with κ = κ<κ and X is an
arbitrary set, then there is a partial order P with the following properties.

(1) P is <κ-closed and satisfies the κ+-chain condition.
(2) If G is P-generic over V, then 1lQ 
 “ X̌ ∈ L(P(κ̌))” holds in V[G] for every

σ-strategically closed partial order Q in V[G] that preserve the regularity of
κ.

Next, we consider definable well-orders of κκ. In [7], Sy-David Friedman and
Peter Holy construct a class-sized partial order preserving ZFC and large cardinals
that forces (GCH) and adds a well-order of κκ whose graph is a ∆1

1-subset of κκ×κκ
for every uncountable regular cardinal κ. In another direction, David Asperó and
Sy-David Friedman showed in [2] that there is a class-sized partial order with the
above preservation properties that forces (GCH) and adds a well-order κκ that is
definable in the structure 〈H(κ+),∈〉 by a formula without parameters for every
uncountable regular cardinal κ. A detailed discussion of the above results and the
related problem of obtaining lightface well-orders of low quantifier complexity can
be found in the first part of [6].

In the following result, we apply Theorem 1.5 to add a definable well-order of
κκ with a forcing that preserves both cofinalities and the value of 2κ.

Theorem 1.9. If κ is a regular uncountable cardinal with κ = κ<κ, then there is
a partial order P with the following properties.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality 2κ.
(2) If G is P-generic over V, then there is a well-ordering of (κκ)V[G] whose

graph is a ∆1
2-subset of κκ× κκ in V[G].

Our next application deals with a quasi-ordering of trees that arises naturally in
infinitary model theory (see [12] and [23]). Remember that a structure 〈T,⊳T〉
is a tree if ⊳T is a well-founded strict ordering on T and the set precT(t) =
{u ∈ T | t ≤T u} is well-ordered by ⊳T for each t ∈ T. As usual, we will just
write T instead of 〈T,⊳T〉. As above, a branch through a tree T is a linearly or-
dered subset of T. Given an infinite cardinal κ, we let Tκ denote the class of all
trees T of cardinality at most κ such that every branch through T has length less
than κ.
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Let T0 and T1 be elements of Tκ. We say that T0 is order-preserving embeddable
into T1(abbreviated by T0 ≤ T1) if there is a function f : T0 −→ T1 such that

t0 ⊳T0
t1 −→ f(t0) ⊳T1

f(t1)

holds for all t0, t1 ∈ T0. Note that f need not be injective.
There is a natural correspondence between elements of Tω and countable ordinals

and the above ordering of trees is equal to the ordering of the ordinals under this
correspondence. We may therefore think of elements of Tκ as analogs of ordinals.
We can combine Theorem 1.5 with the Boundedness Lemma for κκ to get an easy
and short proof of the following statement that was proved in [17, Proof of Theorem
15] in the case “κ = ω1 ”.

Theorem 1.10. If κ is a regular uncountable cardinal with κ = κ<κ, then there is
a partial order P with the following properties.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality at most
2κ.

(2) If G is P-generic over V, then there is a TG ∈ T
V[G]

κ such that T ≤ TG

holds for every tree T ∈ T V
κ .

Next, we consider generalizations of notions of projective absoluteness to our
uncountable setting. Given an uncountable regular cardinal κ with κ = κ<κ, the
constructions carried out in the proof of Theorem 1.9 show that we can define a
Σ1

3-subset of κκ that is empty in every Add(κ, κ+)-generic extension of the ground
model and nonempty in a generic extension of the ground model by a certain
<κ-closed forcing that satisfies the κ+-chain condition. This shows that generic
absoluteness for Σ1

3(
κκ)-formulae under forcings with the above properties is incon-

sistent with the axioms of ZFC for such cardinals κ.

Theorem 1.11. Let κ be an uncountable regular cardinal with κ = κ<κ and a ⊆ κ
such that <κκ ∈ L[a]. Then there is a tree T on κ3 contained in L[a] and a partial
order P such that the following statements hold.

(1) P is <κ-closed and satisfies the κ+-chain condition.
(2) 1lP 
 “ (∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) 〈x, y〉 ∈ p[Ť ]”.
(3) 1lAdd(κ,κ+) 
 “ (∀x ∈ κ̌κ̌)(∃y ∈ κ̌κ̌) 〈x, y〉 /∈ p[Ť ]”.

Again, the above result was known in the case where (GCH) holds at κ. The
Canonical Function coding mentioned above can be applied to construct such trees
and extensions under this assumption.

In the last section, we will construct ZFC-models in which generic absoluteness
for Σ1

2-subsets of κκ under certain classes of <κ-closed forcings holds for a regular
uncountable cardinal κ with κ = κ<κ. Together with methods developed in the
proofs of the above results, this will allow us to show that various statements about
the lengths of Σ1

1-definable well-orders of subsets of κκ (whose consistency can be
established with the help of the above coding results) are independent from the
axioms of ZFC.

Acknowledgements. The results presented in this paper form a part of the au-
thor’s Ph.D. thesis supervised by Ralf Schindler. The author would like to thank
him for his support and many valuable comments. In addition, the author is in-
debted to Sy-David Friedman and Philipp Schlicht for helpful discussions of the
subject of this paper. Finally, the author would like to thank the anonymous ref-
eree for numerous useful suggestions and corrections.
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2. Some preliminary basic results

Given an uncountable regular cardinal κ, it is a well-known that a subset of
κκ is Σ1

1 if and only if it is definable in the structure 〈H(κ+),∈〉 by a Σ1-formula
with parameters. In this section, we will give a proof of this folklore result that
emphasises the absoluteness properties of this correspondence.

Before we start, we fix some more notation. We let ≺·, ·≻ : On×On −→ On
denote Gödel’s Pairing function. Given an ordinal λ closed under Gödel-Pairing,
f ∈ λX for some nonempty set X and α < λ, we define (f)α to be the unique
function g ∈ λX with g(β) = f(≺α, β≻) for all β < λ.

Using Gödel-Pairing to code κ-many branches into one branch, it is easy to prove
the following proposition.

Proposition 2.1. Let κ be an infinite cardinal.

(1) If 〈Tα | α < κ〉 is a sequence of trees on κn+1, then there are trees TU and
TI on κn+1 such that

p[TU ] =
⋃

α<κ

p[Tα] and p[TI ] =
⋂

α<κ

p[Tα]

hold in every transitive ZFC-model that contains V.
(2) If T is a tree on κn+2, then there is a tree T∗ on κn+1 such that p[T∗] =
∃xp[T ] holds in every transitive ZFC-model that contains V. �

Given a limit ordinal λ closed under Gödel-Pairing and x ∈ λ2, we define ∈x to
be the unique binary relation on λ such that

α ∈x β ⇐⇒ x(≺α, β≻) = 1

holds for all α, β < λ.

Proposition 2.2. Let κ be an uncountable regular cardinal. There is a tree T on
κ× κ such that

(1) p[T ] = {x ∈ κ2 | 〈κ,∈x〉 is well-founded and extensional }

holds in every transitive ZFC-model that contains V and has the same <κκ as V.

Proof. Given λ < κ closed under Gödel-Pairing, we define Tλ to be the set of all
pairs 〈s, t〉 ∈ λ2 × λκ such that 〈λ,∈s〉 is well-founded and, if α, β, γ < λ with
α 6= β and t(≺α, β≻) = γ, then s(≺γ, α≻) 6= s(≺γ, β≻). We define T to be the
tree on κ× κ consisting of all 〈s, t〉 with lh(s) = lh(t) and 〈s ↾ λ, t ↾ λ〉 ∈ Tλ for all
λ ≤ lh(s) closed under Gödel-Pairing. �

Proposition 2.3. Let κ be an infinite cardinal, ϕ(v0, . . . , vn−1) be a formula in
the language of set theory and α0, . . . , αn−1 < κ. There is a tree T on κ × κ such
that

(2) p[T ] = {x ∈ κ2 | 〈κ,∈x〉 |= ϕ(α0, . . . , αn−1)}

holds in every transitive ZFC-model that contains V and has the same <κκ as V.

Proof. We can assume that ϕ(v0, . . . , vn−1) is in prenex normal form. We construct
the corresponding trees inductively. If ϕ is atomic (or the negation of an atomic
formula), then T is simply the tree of all 〈s, t〉 ∈ <κκ× <κκ with lh(s) = lh(t) and
either lh(s) ≤ ≺α0, α1≻ or s(≺α0, α1≻) = 1 (or s(≺α0, α1≻) = 0 in the case of a
negated atomic formula).
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If ϕ(v0, . . . , vn−1) ≡ (∃x) ϕ0(v0, . . . , vn−1, x) and α < κ, then we can use the
induction hypothesis to find a tree Tα on κ× κ such that

p[Tα] = {x ∈ κ2 | 〈κ,∈x〉 |= ϕ0(α0, . . . , αn−1, α)}

holds in every transitive ZFC-model that contains V and has the same <κκ as V. By
Proposition 2.1, there is a tree T on κ×κ with the property that p[T ] =

⋃

α<κ p[Tα]
holds upwards-absolutely. This implies that T satisfies (2) in every transitive ZFC-
model that contains V and has the same <κκ as V.

The trees in the universal quantifier case, the disjunction case and the conjunc-
tion case are constructed in the same fashion using Proposition 2.1. �

Note that the sets mentioned in (1) and (2) are actually κ-Borel subsets of κκ.
In particular, if κ has uncountable cofinality, then the set of codes for well-founded
relations on κ is closed in κκ.

Lemma 2.4. Let κ be an uncountable regular cardinal. Given a Σ1-formula ϕ ≡
ϕ(u0, . . . , un−1, v0, . . . , vm) and p0, . . . , pm ∈ H(κ+), there is a tree T on κn+1 such
that

(3) p[T ] = {〈x0, . . . , xn−1〉 ∈ (κκ)n | 〈H(κ+),∈〉 |= ϕ(x0, . . . , xn−1, p0, . . . , pm)}

holds in every transitive ZFC-model that contains V and has the same <κκ as V.

Proof. Fix bijections bj : κ −→ tc({pj} ∪ κ) for all j ≤ m. Let M be a transi-
tive ZFC-model containing V with the same <κκ as V and x0, . . . , xn−1 ∈ (κκ)M .
Now, 〈H(κ+)M ,∈〉 is a model of ϕ(x0, . . . , xn−1, p0, . . . , pm) if and only if there is a
transitive N ∈ H(κ+)M with κ, x0, . . . , xn−1, p0, . . . , pm ∈ N and 〈N,∈〉 is a model
of this statement. If ϕ(~u,~v) ≡ (∃x)ϕ0(~u, x,~v), then the above statement is equiv-
alent to the existence of x ∈ (κ2)M and y, z0, . . . , zm ∈ (κκ)M with the following
properties.

(1) 〈κ,∈x〉 is well-founded and extensional and

〈κ,∈x〉 |= ϕ0(0, . . . , n, ω, . . . , ω +m).

(2) 〈κ,∈x〉 |= “ω3 ∈ On”, 〈κ,∈x〉 |= “ω2 + j = tc({ω + j} ∪ ω3)” for all j ≤ m
and 〈κ,∈x〉 |= “ i : ω3 −→ ω3 ” for all i ≤ n.

(3) For all α, β < κ, 〈κ,∈x〉 |= “α∈̇β ∧ β∈̇ω3 ” if and only if α = y(γ) and
β = y(δ) for some γ < δ < κ.

(4) For all α, β < κ and i < n, 〈κ,∈x〉 |= “ i(α) = β ” if and only if α = y(γ)
and β = (y ◦ xi)(γ) for some γ < κ.

(5) For all α, β < κ and j ≤ m, 〈κ,∈x〉 |= “α∈̇β ∧ β∈̇(ω2 + j)” if and only if
α = (zj ◦ bj)(γ) and β = (zj ◦ bj)(δ) for some γ, δ < κ with bj(γ) ∈ bj(δ).

Using Proposition 2.2 and 2.3, there is a tree T0 on κm+n+3 with the property
that, for all M as above, 〈x0, . . . , xn−1, x, y, z0, . . . , zm〉 ∈ [T ]M if and only if x, y, ~z
witness that 〈H(κ+)M ,∈〉 |= ϕ(~x, ~p) holds. By Proposition 2.1, this completes the
proof of the lemma. �

Let κ be an infinite cardinal with κ = κ<κ. Given n < ω, there is a Σ1-formula
ϕ(u0, . . . , un−1, v0, v1) such that for every tree T on κn+1 the equality (3) holds
with m = 2, p0 = κ and p1 = T in every transitive ZFC-model that contains V.
This shows that Σ1

1-subsets of κκ correspond to Σ1(H(κ+))-subsets in a way that
is upwards-absolute between transitive ZFC-models with the same <κκ. We will
often use this folklore fact to keep constructions in our proofs simple.
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There is a similar correspondence for κ-Borel subsets: a subset A of κκ is κ-
Borel if and only if there is a transitive set M of cardinality κ, a formula ϕ ≡
ϕ(v0, . . . , vn−1) in the language of set theory expanded by an unary relation symbol
and parameters z0, . . . , zm−1 ∈M such that κ ∈M , 〈M,∈〉 |= ZF− and

x ∈ A ⇐⇒ 〈M,∈, x〉 |= ϕ(z0, . . . , zn−1)

holds for all x ∈ κκ.

3. Generic tree coding

This section contains the proof of Theorem 1.5. For the rest of this paper,
we fix a regular uncountable cardinal κ with κ = κ<κ and an enumeration

〈sα | α < κ〉 of <κκ with lh(sα) ≤ α for all α < κ and {α < κ | s = sα} unbounded
in κ for all s ∈ <κκ.

Our coding forcing will be a modification of the standard forcing that adds a
Kurepa tree (see [13, §3]). The main idea behind this modification is that it is
possible to code information about the elements of a subset A of κκ into the cofinal
branches of the generic tree.

Definition 3.1. Given a nonempty subset A of κκ, we define P(A) to be the partial
order consisting of conditions p = 〈Tp, fp, hp〉 with the following properties.

(1) Tp is a subtree of <κ2 that satisfies the following statements.
(a) Tp has cardinality less than κ.
(b) If t ∈ Tp with lh(t) + 1 < ht(Tp), then t has two immediate successors

in Tp.

(2) fp : A
part
−−−→ [Tp] is a partial function such that dom(fp) is a nonempty set

of cardinality less than κ.

(3) hp : A
part
−−−→ κ is a partial function with the following properties.

(a) dom(hp) = dom(fp).
(b) For all x ∈ dom(hp) and α, β < ht(Tp) with α = ≺hp(x), β≻, we have

sβ ⊆ x ⇐⇒ fp(x)(α) = 1.

We define p ≤P(A) q to hold if the following statements are satisfied.

(a) Tp is an end-extension of Tq.
(b) For all x ∈ dom(fq), x ∈ dom(fp) and fq(x) is an initial segment of fp(x).
(c) hq = hp ↾ dom(hq).

Lemma 3.2. P(A) is <κ-closed, satisfies the κ+-chain condition and has cardinal-
ity at most 2κ.

Proof. If λ ∈ Lim ∩ κ and 〈pµ | µ < λ〉 is a strictly ≤P(A)-descending sequence in
P(A), then we define T =

⋃

µ<λ Tpµ
, h =

⋃

µ<λ hµ and

f(x) =
⋃

{fpµ
(x) | µ < λ, x ∈ dom(fpµ

)}

for all x ∈ dom(h). It is easy to see that p = 〈T, f, h〉 ∈ P(A) and p ≤P(A) pµ holds
for all µ < λ.

Next, assume that 〈pµ | µ < κ+〉 enumerates an antichain in P(A). By our
assumptions, we can assume Tpµ

= Tpρ
for all µ, ρ < κ+. A ∆-system argument

allows us to assume the existence of an r ⊆ A with r = dom(fpµ
) ∩ dom(fpρ

),
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fpµ
↾ r = fpρ

↾ r and hpµ
↾ r = hpρ

↾ r for all µ < ρ < κ+. But this shows that
〈Tp0

, fp0
∪ fp1

, hp0
∪ hp1

〉 is a common extension of p0 and p1, a contradiction.
Finally, the assumption κ = κ<κ implies that there are only κ-many subtrees of

<κ2 of height less than κ and 2κ-many partial functions with the above properties.
�

The next lemma will allow us to show that various subsets of P(A) are dense.

Lemma 3.3. Fix a condition p in P(A) and a sequence 〈cx ∈
κ2 | x ∈ dom(fp)〉.

There exists a ≤P(A)-descending sequence 〈pµ ∈ P(A) | ht(Tp) ≤ µ < κ〉 such that
p = pht(Tp) and the following statements hold for all ht(Tp) ≤ µ < κ.

(1) dom(fpµ
) = dom(fp) and ht(Tpµ

) = µ.
(2) If x ∈ dom(fp) and µ 6= ≺hp(x), β≻ for all β < κ, then

fpµ+1
(x)(µ) = cx(µ).

(3) If µ ∈ Lim, then ran(fpµ
) = Tpµ+1

∩ µ2.

Proof. We construct the sequences inductively. If µ ∈ Lim, then we define Tpµ
=

⋃

{Tpµ̄
| ht(Tp) ≤ µ̄ < µ}. Given x ∈ dom(fp), we define

fpµ
(x) =

⋃

{fpµ̄
(x) | ht(Tp) ≤ µ̄ < µ}.

If µ = µ̄ + 1 with µ̄ /∈ Lim, then Tpµ̄
has a maximal level and there is only one

suitable tree Tpµ
of height µ end-extending it. In particular, fpµ̄

(x) ∈ Tpµ
for all

x ∈ dom(fp). For all x ∈ dom(fp), we define fpµ
(x) to be the unique element t of

µ2 with fpµ̄
(x) ⊆ t and

t(µ̄) =







1, if µ̄ = ≺hp(x), β≻ and sβ ⊆ x,
0, if µ̄ = ≺hp(x), β≻ and sβ * x,
cx(µ̄), otherwise.

Finally, if µ = µ̄+ 1 with µ̄ ∈ Lim, then we set Tpµ
= Tpµ̄

∪ ran(fpµ̄
) and define

fpµ
as in the first successor case. �

Corollary 3.4. The following sets are dense subsets of P(A).

(1) Cµ = {p ∈ P(A) | ht(Tp) > µ} for all µ < κ.
(2) Dx = {p ∈ P(A) | x ∈ dom(fp)} for all x ∈ A.
(3) Ex,y = {p ∈ P(A) | x, y ∈ dom(fp), fp(x) 6= fp(y)} for all x, y ∈ A.
(4) Fz = {p ∈ P(A) | ht(Tp) = µ+ 1, z ↾ µ /∈ Tp} for all z ∈ κ2.

Proof. (i) This statement follows directly from Lemma 3.3.
(ii) Given p ∈ P(A) with x /∈ dom(fp) and b ∈ [Tp] 6= ∅, we define

q = 〈Tp, fp ∪ {〈x, b〉}, hp ∪ {〈x,ht(Tp)〉}〉.

Then q ∈ Dx and q ≤P(A) p.
(iii) Given p ∈ P(A), we can apply the above result to find q ≤P(A) p with

x, y ∈ dom(fq). There is ht(Tq) ≤ µ < κ with ≺hq(x), β0≻ 6= µ 6= ≺hq(y), β1≻ for
all β0, β1 < κ and we can use Lemma 3.3 to find q∗ ≤P(A) q with ht(Tq∗) = µ + 1
and fq∗(x)(µ) 6= fq∗(y)(µ).

(iv) Fix p ∈ P(A) and ht(Tp) ≤ µ < κ with µ 6= ≺hp(x), β≻ for all x ∈ dom(fp)
and β < κ. Using Lemma 3.3, we can find q ≤P(A) p with ht(Tq) = µ + 1,
dom(fq) = dom(fp) and fq(x)(µ) = 1− z(µ) for all x ∈ dom(fp).
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In particular, z ↾ (µ + 1) /∈ ran(fq). Another application of the above lemma
gives us conditions s ≤P(A) r ≤P(A) q with ht(Ts) = ht(Tr) + 1 = ht(Tq) + ω + 1,

dom(fs) = dom(fp) and Ts ∩
ht(Tr)2 = ran(fr). Since z ↾ ht(Tr) 6= fr(x) for all

x ∈ dom(fp), we have z ↾ ht(Tr) /∈ Ts. �

Corollary 3.5. Let G be P(A)-generic over V. The following statements hold true
in V[G].

(1) TG =
⋃

p∈G Tp is subtree of <κ2 of height κ with [TG] ∩V = ∅.

(2) If we define FG(x) =
⋃

{fp(x) | p ∈ G, x ∈ dom(fp)} for all x ∈ A, then
FG : A −→ [TG] is an injection.

(3) Let HG =
⋃

p∈G hg. Then HG : A −→ κ and

(4) sβ ⊆ x ⇐⇒ FG(x)(≺HG(x), β≻) = 1

for all x ∈ A and β < κ. �

We now show how the branches of TG correspond to elements of A in an absolute
and bijective way.

Lemma 3.6. Let Q̇ be a P(A)-name such that

1lP(A) 
 “ Q̇ is a σ-strategically closed partial order and

forcing with Q̇ preserves the regularity of κ̌”.
(5)

If G0∗G1 is (P(A)∗Q̇)-generic over V, then FG0
: A −→ [TG0

]V[G0][G1] is surjective.

Proof. Fix names Ḟ , Ṫ ∈ VP(A)∗Q̇ such that ḞH0∗H1 = FH0
and ṪH0∗H1 = TH0

holds whenever H0 ∗H1 is (P(A) ∗ Q̇)-generic over V. Assume, toward a contradic-

tion, that there is a name τ ∈ VP(A)∗Q̇ and a condition 〈p, q̇〉 in P(A) ∗ Q̇ with

〈p, q̇〉 
 “τ ∈ [Ṫ ] ∧ τ /∈ V̌ ∧ τ /∈ ran(Ḟ )”.

For each r ≤P(A)∗Q̇ 〈p, q̇〉, we define a partial function tr : κ
part
−−−→ 2 in V by

setting

tr =
⋃

{s ∈ <κ2 | r 
 “ š ⊆ τ ”}.

We have tr ∈
<κ2 for all r ≤P(A)∗Q̇ 〈p, q̇〉, because r 
 “τ /∈ V̌ ”. Moreover, since

〈p, q̇〉 
 “(∀α < κ̌) τ ↾ α ∈ V̌ ”, the set {r ≤P(A)∗Q̇ 〈p, q̇〉 | α ⊆ dom(tr)} is dense

below 〈p, q̇〉 for all α < κ.
Let 〈p′, q̇′〉 ≤P(A)∗Q̇ 〈p, q̇〉 and d = dom(fp′). Since

〈p, q̇〉 
 “The cardinality of ď is less than cof(κ̌) and τ 6= Ḟ (x) for all x ∈ ď”,

there is an r ≤P(A)∗Q̇ 〈p
′, q̇′〉 and an α < κ such that

r 
 “(∀x ∈ ď)(∃β < α̌) τ(β) 6= Ḟ (x)(β)”.

Then there is a condition r∗ = 〈p′′, q̇′′〉 ≤P(A)∗Q̇ r such that α ⊆ dom(tr∗
) and

ht(Tp′′) ≥ α. This implies that for all x ∈ dom(fp′) there is a β ∈ dom(tr∗
) such

that fp′′(x)(β) 6= tr∗
(β).

Let σ̇ be a P(A)-name with

1lP(A) 
 “ σ̇ is a winning strategy for Player Even in Gω+1(Q̇)”.

Given 〈p0, q̇1〉 ≤P(A)∗Q̇ 〈p, q̇〉, the above remarks allow us to construct a strictly

≤P(A)∗Q̇-descending sequence 〈〈pn, q̇2n+1〉 | n < ω〉 of conditions in P(A) ∗ Q̇ and a
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sequence 〈q̇2n ∈ VP(A) | n < ω〉 of names such that the following statements hold
for all n < ω.

(1) q̇0 = 1̇lQ̇, 1lP(A) 
 “ q̇2n ∈ Q̇”, pn 
 “ q̇2n+1 ≤Q̇ q̇2n ” and

pn 
 “ q̇2n+2 = σ̇(q̇0, . . . , q̇2n+1)”.

(2) ht(Tpn
) ⊆ dom(t〈pn+1,q̇2n+3〉) and dom(t〈pn,q̇2n+1〉) ( ht(Tpn+1

).
(3) If x ∈ dom(fpn

), then there is an α ∈ dom(t〈pn+1,q̇2n+3〉) with

fpn+1
(x)(α) 6= t〈pn+1,q̇2n+3〉(α).

By the proof of Lemma 3.2, the sequence 〈pn | n < ω〉 has a greatest lower bound
pω in P(A). Note that Tpω

=
⋃

n<ω Tpn
and dom(fpω

) =
⋃

n<ω dom(fpn
) hold. If

Ṙ ∈ VP(A) is the canonical name for the sequence 〈q̇n | n < ω〉, then

pω 
 “ Ṙ is a run of the game Gω(Q̇) in which Even played according to σ̇ ”.

Hence there is a name q̇ω ∈ VP(A) with 1lP(A) 
 “ q̇ω ∈ Q̇” and pω 
 “ q̇ω ≤Q̇ q̇n ”

for all n < ω. This implies 〈pω, q̇ω〉 ≤P(A)∗Q̇ 〈pn, q̇2n+1〉 for all n < ω. We define

t = t〈pω,q̇ω〉 ↾ ht(Tpω
) ∈ [Tpω

]. Since 〈pω, q̇ω〉 
 “ ť ⊆ τ ∧ τ ∈ [Ṫ ] ” holds, we can

conclude 〈pω, q̇ω〉 
 “ ť ∈ Ṫ ”.
By our construction, we have ht(Tpω

) ∈ Lim and t /∈ ran(fpω
). We can apply

Lemma 3.3 to find a condition p∗ ≤P(A) pω with ht(Tp∗) = ht(Tpω
)+ 1 and t /∈ Tp∗ .

This obviously implies 〈p∗, q̇ω〉 
 “ ť /∈ Ṫ ”, a contradiction. �

Corollary 3.7. Let Q̇ be a P(A)-name such that (5) holds. If G0∗G1 is (P(A)∗Q̇)-
generic over V, then the following statements are equivalent for all y ∈ (κκ)V[G0][G1].

(1) y ∈ A.
(2) There is z ∈ [TG0

]V[G0][G1] and γ < κ such that

(6) sβ ⊆ y ⇐⇒ z(≺γ, β≻) = 1

holds for all β < κ

Proof. If y ∈ A, then the equivalence (6) holds with z = FG0
(y) and γ = HG0

(y)
by Corollary 3.5.

In the other direction, let z ∈ [TG0
]V[G0][G1] and γ < κ witness that (6) holds for

y ∈ (κκ)V[G0][G1]. By Lemma 3.6, we have z = FG0
(x) ∈ V[G0] for some x ∈ A.

Pick p ∈ G0 with x ∈ dom(fp).
Assume, toward a contradiction, that γ 6= hp(x) = HG0

(x). By Lemma 3.3, this
implies that the set

Ds = {q ≤P(A) p | ht(Tq) = µ+ 1, µ = ≺γ, β≻, fq(x)(µ) = 0, sβ = s}

is dense below p for all s ∈ <κκ and there is a q ∈ G0 ∩Dy↾1 with q ≤P(A) p. Then
there is a β < κ with ht(Tq) = ≺γ, β≻ + 1, z(≺γ, β≻) = 0 and sβ = y ↾ 1 ⊆ y,
contradicting (6). This shows γ = HG0

(x) and we can conclude that

sβ ⊆ y ⇐⇒ z(≺γ, β≻) = 1 ⇐⇒ FG0
(x)(≺HG0

(x), β≻) = 1 ⇐⇒ sβ ⊆ x

holds for all β < κ. This proves y = x ∈ A. �

We are now ready to prove our first main result.
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Proof of Theorem 1.5. Let G0 be P(A)-generic over V. In V[G0], define T to be
the set consisting of pairs 〈t, u〉 such that t ∈ <κκ, u ∈ <κκ and there is γ < κ and
v ∈ TG0

with lh(z) = lh(u) = lh(v), u(α) = ≺γ, v(α)≻ for all α < lh(s) and

sβ ⊆ t ⇐⇒ v(≺γ, β≻) = 1

for all β < lh(s) with ≺γ, β≻ < lh(s). It is easy to check that T is a tree.
Let Q be a σ-strategically closed partial order in V[G0] and G1 be Q-generic

over V[G0]. There is a name Q̇ ∈ VP(A) such that Q = Q̇G0 and (5) holds in V.
If 〈x, y〉 ∈ [T ]V[G0][G1], then there is z ∈ [TG0

]V[G0][G1] and γ < κ with y(β) =
≺γ, z(β)≻ and

sβ ⊆ x ⇐⇒ z(≺γ, β≻) = 1

for all β < κ. By Corollary 3.7, this implies x ∈ A.
Conversely, if x ∈ A and y ∈ (κκ)V[G0] with y(α) = ≺HG0

(x), FG0
(x)(α)≻, then

〈x, y〉 ∈ [T ]V[G0][G1] by our assumptions on s and Corollary 3.7. �

We close this section by showing that Theorem 1.5 directly implies the statement
of Corollary 1.8. Given functions x, y ∈ κκ, we let ≺x, y≻ denote the unique
function z ∈ κκ with x = (z)0, y = (z)1 and (z)α = idκ for all 1 < α < κ.

Proof of Corollary 1.8. Let ν be the cardinality of tc({X}) and let ė ∈ VAdd(κ,ν+)

be a name for an injection of tc({X}) into κκ \ {idκ}. Let Ȧ ∈ VAdd(κ,ν+) be a
name such that

ȦG = {≺ėG(b), ėG(c)≻ | b, c ∈ tc({X}), b ∈ c} ∪ {≺idκ, ė
G(b)≻ | b ∈ X}

holds whenever G is Add(κ, ν+)-generic over V. Pick a name Ṗ ∈ VAdd(κ,ν+)

with 1lAdd(κ,ν+) 
 “ Ṗ = P(Ȧ)”. The partial order Add(κ, ν+) ∗ Ṗ is <κ-closed and

satisfies the κ+-chain condition.
Let G0 ∗ G1 be (Add(κ, ν+) ∗ Ṗ)-generic over V, Q be a σ-strategically closed

partial order in V[G0][G1] that preserve the regularity of κ and H be Q-generic

over V[G0][G1]. By Theorem 1.5, ȦG0 is a Σ1
1-subset of κκ in V[G0][G1][H]. This

shows that both ran(ėG0) and the relation

E = {〈ėG0(b), ėG1(c)〉 | b, c ∈ tc({X}), b ∈ c}

are elements of L(P(κ)) in V[G0][G1][H]. Since this model can compute the tran-

sitive collapse of the well-founded and extensional relation 〈ran(ḃG0), E〉 and this
function is equal to the inverse of ėG0 , we can conclude that tc({X}) is an element
of L(P(κ)) in V[G0][G1][H]. Finally, we have

X = {b ∈ tc({X}) | ≺idκ, ė
G0(b)≻ ∈ ȦG0}

and we can conclude that X is also an element of L(P(κ)) in V[G0][G1][H]. �

4. Almost disjoint coding

In [10, Section 1], Leo Harrington uses the method of almost disjoint coding forc-
ing invented by Robert Solovay (see [14]) to prove Theorem 1.3. Working towards
a proof of Theorem 1.6, we generalize this approach to uncountable cardinalities.
Note that all results of this section are also true if κ is countable.

Definition 4.1. Given A ⊆ κκ, we define Q(A) to be the partial order consisting
of conditions p = 〈tp, ap〉 with tp ∈

<κ2 and ap ∈ [A]<κ. The ordering p ≤Q(A) q is
defined by the following clauses.
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(1) tq ⊆ tp and aq ⊆ ap.
(2) (∀x ∈ aq)(∀α ∈ dom(tp) \ dom(tq)) [sα ⊆ x −→ tp(α) = 0].

It is easy to check that this is in fact a partial order. In addition, it is easy to see
that two conditions p and q are compatible if and only if tp and tq are compatible
as elements of <κ2 and 〈tp ∪ tq, ap ∪ aq〉 ≤Q(A) p, q.

Lemma 4.2. Q(A) is <κ-closed, satisfies the κ+-chain condition and has cardi-
nality at most 2κ.

Proof. If µ < κ, 〈pα | α < µ〉 is a ≤Q(A)-descending sequence, t =
⋃

α<µ tpα
and

a =
⋃

α<µ apα
, then 〈t, a〉 ∈ Q(A) and 〈t, a〉 ≤Q(A) pα for all α < µ. It is easy to

see that any two conditions in Q(A) with the same first coordinate are compatible
and this shows that any antichain in Q(A) has cardinality at most κ<κ = κ. The
cardinality statement follows directly from our assumptions on κ. �

Proposition 4.3. The following sets are dense subsets of Q(A).

(1) Cµ = {p ∈ Q(A) | µ ∈ dom(tp)} for all µ < κ.
(2) Dx = {p ∈ Q(A) | x ∈ ap} for all x ∈ A.
(3) Eα,y = {p ∈ Q(A) | (∃β ∈ dom(tp) \ α) [tp(β) = 1 ∧ sβ ⊆ y]} for all α < κ

and y ∈ κκ \A.

Proof. (i) Given α < κ and p ∈ Q(A) with α /∈ dom(tp), we define

t(β) =

{

tp(β), if β ∈ dom(tp),
0, if β ∈ (α+ 1) \ dom(sp).

Obviously, 〈t, ap〉 ≤Q(A) p and 〈t, ap〉 ∈ Cα.
(ii) For all p ∈ Q(A), p∗ = 〈tp, ap ∪ {x}〉 ≤Q(A) p and p∗ ∈ Dx.
(iii) Given p ∈ Q(A), there is an α < β ∈ κ \ dom(sp) with x ↾ β 6= y ↾ β for all

x ∈ ap. We can find β ≤ γ < κ with sγ = y ↾ β and define t : γ + 1 −→ 2 by

t(δ) =







tp(δ), if δ ∈ dom(sp),
0, if δ ∈ γ \ dom(tp).
1, if δ = γ.

Then 〈t, ap〉 ≤Q(A) p and 〈t, ap〉 ∈ Eα,y. �

The following theorem summarizes the properties of Q(A).

Theorem 4.4. Let G be Q(A)-generic over V. If we define tG =
⋃

{tp | p ∈ G},
then tG ∈

κ2 and

(7) x ∈ A⇐⇒ (∃β < κ)(∀β ≤ α < κ) [sα ⊆ x→ tG(α) = 0]

for all x ∈ (κκ)V. Moreover,
(8)
G = {p ∈ Q(A) | tp ⊆ tG ∧ (∀α ∈ κ \ dom(tp))(∀x ∈ ap) [sα ⊆ x→ tG(α) = 0]}.

Proof. By Proposition 4.3, tG is a function with domain κ and for every x ∈ A
there is a p ∈ G with x ∈ ap.

Assume, toward a contradiction, that tG(α) = 1 and sα ⊆ x holds for some
α ∈ κ \ dom(tp). There is a q ∈ G with q ≤Q(A) p and α ∈ dom(tq). But this
means 0 = tq(α) = tG(α), a contradiction. Given <∈ κκ \ A and β < κ, there is
p ∈ G∩Eβ,y and this shows that there is an β < α < κ with tG(α) = 1 and sα ⊆ y.
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Given p ∈ G, the above argument shows that p is also an element of the right
set. Next, assume p ∈ Q(A) is a member of the set on the right. There is a q ∈ G
with ap ⊆ aq and tp ⊆ tq. If α ∈ dom(tq) \ dom(tp) and x ∈ ap with sα ⊆ x, then
tq(α) = tG(α) = 0. This shows q ≤Q(A) p and p ∈ G. �

We close this section by introducing two forcing-theoretical properties and in-
vestigating their relevance to Q(A).

Definition 4.5. A partial order P is a q-lattice (“quasi-lower-semi-lattice”) if the
P-minimum p0 ∧P p1 exists for all compatible conditions p0, p1 ∈ P. Let Q be a
suborder of P and a q-lattice itself. We call Q a sublattice of P if q0∧P q1 = q0∧Q q1
holds for all q0, q1 ∈ Q, which are compatible in Q.

The partial order Add(κ, 1) is clearly a q-lattice and the remark following the
definition of Q(A) directly implies that Q(A) is also a q-lattice with

p ∧Q(A) q = 〈tp ∪ tq, ap ∪ aq〉

for all compatible p, q ∈ Q(A). Moreover, if B ⊆ A, then Q(B) is a sublattice of
Q(A), every antichain in Q(B) is an antichain in Q(A) and every Q(B)-nice name
is a Q(A)-nice name.

Definition 4.6. Let P be a partial order. We call Q̇ ∈ VP a P-innocuous forcing
if there is a q-lattice Q0 with 1lP 
 “ Q̇ is a sublattice of Q̌0 ”.

We give a simple example of P-innocuous forcings that will be important later.

Proposition 4.7. If P is a <κ-closed forcing and Q̇ ∈ VP with

1lP 
 (∃B)
[

B ⊆ Ǎ ∧ Q̇ = Q(B)
]

,

then Q̇ is a P-innocuous forcing.

Proof. Set Q0 = Q(A). We show 1lP 
 “ Q̇ is a sublattice of Q̌0 ”. Let G be P-
generic over V. We have Q0 = Q(A)V[G], because P is <κ-closed. An application

of the above remarks in V[G] shows that Q̇G is a sublattice of Q0 in V[G]. �

5. Innocent forcings

In this section, we complete the proof of Theorem 1.6. As mentioned in the
Introduction, the ∆1

1-coding we construct will have certain absoluteness properties.
We are now ready to introduce the corresponding class of partial orders.

Definition 5.1. Let M be an inner model, ν be a cardinal, P be a partial order
contained in M and G be P-generic over M . We define ΓM (P, G, ν) to be the class
of all <ν-closed partial orders Q that satisfy the ν+-chain condition and have the
property that there is a P-name Q̇ in M with Q = Q̇G and

〈M,∈〉 |= “ Q̇ is a P-innocuous forcing”.

If P is a partial order and G is P-generic over V, then results of Richard Laver
(see [16, Theorem 3]) show that V is a class in V[G]. In particular, ΓV(P, G, ν) is
a class in V[G] for every cardinal ν.

In the following, we continue to modify coding results from [10] to our context
to prove the following absoluteness version of Theorem 1.6.
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Theorem 5.2. Let κ be a regular uncountable cardinal with κ = κ<κ. For every
subset A of κκ, there is a partial order P with the following properties.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality at most
2κ.

(2) If G is P-generic over V, then A is a ΓV(P, G, κ)-persistently ∆1
1 in V[G].

Following [10], we start by introducing another notion of forcing.

Definition 5.3. Given A ⊆ κκ, we define Q+(A) =
⊕

γ<κ+ Q(A) to be the κ+-

product forcing of Q(A) with <κ-support.

Lemma 5.4. Q+(A) is a <κ-closed q-lattice that satisfies the κ+-chain condition
and has cardinality at most 2κ.

Proof. Since Q+(A) is the product with <κ-support and Q(A) is <κ-closed, it
follows directly that Q+(A) is also <κ-closed.

Given two compatible conditions ~q0 =
(

q0γ
)

γ<κ+ and ~q1 =
(

q1γ
)

γ<κ+ , it is easy

to check that q0γ and q1γ are compatible for all γ < κ+ and
(

q0γ ∧Q(A) q
1
γ

)

γ<κ+ is the

Q+(A)-minimum of ~q0 and ~q1.
Assume, toward a contradiction, that 〈~qδ | δ < κ+〉 enumerates an anti-chain in

Q+(A) with ~qδ =
(

qδ
γ

)

γ<κ+ for each δ < κ+. By the ∆-System Lemma, we may

assume that there is an r ⊆ κ+ of cardinality less than κ such that supp(~qδ) ∩
supp(~qδ̄) = r holds for all δ < δ̄ < κ+. The set {〈tqδ

γ
∈ <κκ | γ ∈ r〉 | δ < κ+} is

a subset of r(<κκ) and this set has cardinality κ by our assumptions. Hence there
are δ < δ̄ < κ+ with tqδ

γ
= tqδ̄

γ
for all γ ∈ r. But this shows that ~qδ and ~qδ̄ are

compatible in Q+(A), a contradiction.
By our assumptions, the set S = {supp(~q) | ~q ∈ Q+(A)} has cardinality κ+ and

for each s ∈ S there are at most 2κ-many ~q ∈ Q+(A) with supp(~q) = s. �

Let G =
⊕

γ<κ+ Gα be Q+(A)-generic over V and x ∈ (κκ)V[G]. Since Q+(A)

satisfies the κ+-chain condition in V, there is an δ < κ+ with x ∈ V[〈Gβ | γ < δ〉].
Now, Theorem 4.4 shows that

(9) x ∈ A ⇐⇒ (∀γ < κ+)(∃β < κ)(∀β ≤ α < κ) [sα ⊆ x −→ tGγ
(α) = 0]

holds in V[G]. This shows that a Σ1
1-definition of the set {tGγ

∈ κκ | γ < κ+}
would yield a Π1

1-definition of A in V[G]. In order to make the set of all tGγ
’s

Σ1
1-definable, we need to show that the equivalence (9) also holds in certain forcing

extensions of V[G]. We introduce a class of forcings with this property.

Definition 5.5. Let P be a q-lattice. We call Q̇ ∈ VP a P-innocent forcing if
1lP 
 “ Q̇ is a partial order” and there is a dense subset D ⊆ P ∗ Q̇ such that

p0 ∧P p1 
 “ q̇0 and q̇1 are compatible in Q̇”

holds for all compatible 〈p0, q̇0〉, 〈p1, q̇1〉 ∈ D.

Lemma 5.6. Let Ṗ be an Q+(A)-innocent forcing with

1lQ+(A) 
 “ Ṗ is <κ̌-closed and satisfies the κ̌+-chain condition”.

If G0 ∗G1 is (Q+(A) ∗ Ṗ)-generic over V with G0 =
⊕

γ<κ+ Ḡγ , then

x ∈ A ⇐⇒ (∀γ < κ+)(∃β < κ)(∀β ≤ α < κ) [sα ⊆ x −→ tḠγ
(α) = 0]

holds in V[G0][G1] for all x ∈ (κκ)V[G0][G1].
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Proof. Let D be a dense subset of Q+(A)∗ Ṗ witnessing that Ṗ is a Q+(A)-innocent
forcing. Let η̇0 be a Q+(A)-name with with the property that, whenever G is
Q+(A)-generic over V and G =

⊕

γ<κ∗ Ḡγ , then

η̇G
0 : κ+ −→ (κ2)V[G]; γ 7−→ tḠγ

Let η̇ denote the canonical (Q+(A) ∗ Ṗ)-name corresponding to η̇0.

Assume, towards a contradiction, that there is a name ẋ ∈ VQ+(A)∗Ṗ and a
condition r0 ∈ Q+(A) ∗ Ṗ such that

r0 
 “ ẋ ∈ (κ̌κ̌ \ Ǎ) ∧ (∀γ < κ̌+)(∃β < κ̌)(∀β ≤ α < κ̌) [šα ⊆ ẋ −→ η̇(γ)(α) = 0]”

holds. Given α < κ, we pick a maximal antichain Aα in {r ∈ D | r 
 “ šα̌ ⊆ ẋ”}
and define A =

⋃

{Aα | α < κ}. Our assumptions imply that Q+(A) ∗ Ṗ satisfies
the κ+-chain condition and therefore A has cardinality κ. This shows that there
is a γ∗ < κ+ with the property that, whenever 〈~q, ṗ〉 ∈ A and ~q = (qγ)

γ<κ+ , then

qγ∗
= 1lQ(A).

We can find an r1 ∈ D and β∗ < κ with r1 ≤Q+(A)∗Ṗ r0 and

r1 
 “(∀β̌∗ ≤ α < κ̌) [šα ⊆ ẋ −→ η(γ̌∗)(α) = 0]”.

Let r1 = 〈~q1, ṗ1〉, ~q1 =
(

q1γ
)

γ<κ+ and q1γ∗
= 〈t1, a1〉.

Now, let G0 ∗ G1 be (Q+(A) ∗ Ṗ)-generic over V with r1 ∈ G0 ∗ G1 and set
x = ẋG0∗G1 . Since this partial order is <κ-closed and every initial segment of x is
an element of V, we can find an α∗ < κ with β∗ < α∗, dom(t1) < α∗, sα∗

⊆ x and
sα∗

* y for all y ∈ a1.
Our construction ensures that there is an r2 ∈ Aα∗

∩ G. Let r2 = 〈~q2, ṗ2〉 and
~q2 =

(

q2γ
)

γ<κ+ . The conditions r1 and r2 are compatible and elements of D. Hence,

we can find an r = 〈~q, ṗ〉 ≤Q+(A)∗Ṗ r1, r2 with ~q = (qγ)
γ<κ

and qγ = q1γ ∧Q(A) q
2
γ for

all γ < κ+. In particular, qγ∗
= q1γ∗

= 〈t1, a1〉.
We define t∗ ∈

<κκ by setting

t∗(δ) =







t1(δ), if δ ∈ dom(t1),
0, if δ ∈ α∗ \ dom(t1),
1, if δ = α∗.

By the choice of α∗, we have 〈t∗, a1〉 ≤Q(A) 〈t1, a1〉 = qγ∗ . If we define

q∗γ =

{

qγ , if γ 6= γ∗,
〈t∗, a1〉, if γ = γ∗,

then r∗ = 〈
(

q∗γ
)

γ<κ+ , ṗ〉 ≤ r. Let H be (Q+(A) ∗ Ṗ)-generic over V with H =

H0 ∗ H1, H0 =
⊕

γ<κ+ H̄γ and r∗ ∈ H. The above construction yields r1 ∈ H,

sα∗
⊆ ẋH and tH̄γ∗

(α∗) = 1, a contradiction. �

Let P be a partial order, Q̇ ∈ VP with 1lP 
 “ Q̇ is a partial order ” and G be
P-generic over V. Using P, Q̇ and G as parameters, we can recursively define a
class function

tG : VP∗Q̇ −→ V[G]Q̇
G

in V[G] that satisfies

tG(σ) = {〈tG(τ), q̇G〉 | 〈τ, 〈p, q̇〉〉 ∈ σ, p ∈ G}
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for all σ ∈ VP∗Q̇. If H is Q̇G-generic over V[G], then an easy induction shows that

σG∗H = tG(σ)H holds for all σ ∈ VP∗Q̇. Given σ ∈ VP∗Q̇, we let T(σ) denote the
class of all τ ∈ VP such that τG = tG(σ) whenever G is P-generic over V.

Next, suppose Ṙ ∈ VP∗Q̇ with 1lP∗Q̇ 
 “ Ṙ is a partial order ” and Ṡ ∈ VP. We

write Ṡ = Q̇ ∗P Ṙ if there is a σ ∈ T(Ṙ) with 1lP 
 “ Ṡ = Q̇ ∗ σ ”.
By the above remarks, there is a map

ι : (P ∗ Q̇) ∗ Ṙ −→ P ∗ Ṡ

such that for every 〈〈p, q̇〉, ṙ〉 ∈ (P ∗ Q̇) ∗ Ṙ there is an ṡ ∈ VP and ρ ∈ T(ṙ) with
ι(〈p, q̇〉, ṙ) = 〈p, ṡ〉 and 1lP 
 “ ṡ = 〈q̇, ρ〉”.

Lemma 5.7. The map ι is a dense embedding. �

Lemma 5.8. Let P be a q-lattice, Q̇ ∈ VP be a P-innocuous forcing and Ṙ ∈ VP∗Q̇

be a (P∗Q̇)-innocuous forcing. If Ṡ ∈ VP satisfies Ṡ = Q̇∗P Ṙ, then Ṡ is a P-innocent
forcing.

Proof. Let Q0 witness that Q̇ is a P-innocuous forcing and R0 witness that Ṙ is a
(P ∗ Q̇)-innocuous forcing. We define D0 to be the set

{〈〈p, q̇〉, ṙ〉 ∈ (P ∗ Q̇) ∗ Ṙ | (∃q ∈ Q0)(∃r ∈ R0) [p 
 “ q̇ = q̌ ” ∧ 〈p, q̇〉 
 “ ṙ = ř ”]}.

Pick 〈〈p0, q̇0〉, ṙ〉 ∈ (P ∗ Q̇) ∗ Ṙ. There is a 〈p1, q̇〉 ≤P∗Q̇ 〈p0, q̇0〉 and r ∈ R0 with

〈p1, q̇〉 
 “ ṙ = ř ”. In addition, there is a p ≤P p1 and a q ∈ Q0 with p 
 “ q̇ = q̌ ”.
This means 〈〈p, q̇〉, ṙ〉 ∈ D0 and 〈〈p, q̇〉, ṙ〉 ≤(P∗Q̇)∗Ṙ 〈〈p0, q̇0〉, ṙ〉.

Let 〈〈p0, q̇0〉, ṙ0〉, 〈〈p1, q̇1〉, ṙ1〉, 〈〈p2, q̇2〉, ṙ2〉 ∈ (P ∗ Q̇) ∗ Ṙ with

〈〈p0, q̇0〉, ṙ0〉 ≤(P∗Q̇)∗Ṙ 〈〈p1, q̇1〉, ṙ1〉, 〈〈p2, q̇2〉, ṙ2〉

and 〈〈p1, q̇1〉, ṙ1〉, 〈〈p2, q̇2〉, ṙ2〉 ∈ D0. Fix conditions q1, q2 ∈ Q0 and r1, r2 ∈ R0

with pi 
 “ q̇i = q̌i ” and 〈pi, q̇i〉 
 “ ṙi = ři ”. Clearly, p1 ∧P p2 exists and there is a
p ∈ P and q ∈ Q0 such that p ≤P p0 and p 
 “ q̌ = q̇0 ≤Q̇ q̌1, q̌2 ”. But this shows

that q ≤Q0
q1, q2 and q1 ∧Q0

q2 exists. If we pick q̇ ∈ VP with 1lP 
 “ q̇ ∈ Q̇” and
(p1 ∧P p2) 
 “ q̇ = q̌1 ∧Q̌0

q̌2 ”, then 〈p1 ∧P p2, q̇〉 ≤P∗Q̇ 〈p1, q̇1〉, 〈p2, q̇2〉.

In the same way, we can show that r1 ∧R0
r2 exists and there is an ṙ ∈ VR with

1lP∗Q̇ 
 “ ṙ ∈ Ṙ” and 〈p1 ∧P p2, q̇〉 
 “ ṙ = ř1 ∧Ř0
ř2 ”. This means

〈〈p1 ∧P p2, q̇〉, ṙ〉 ≤(P∗Q̇)∗Ṙ 〈〈p1, q̇1〉, ṙ1〉, 〈〈p2, q̇2〉, ṙ2〉.

Define D ⊆ P ∗ Ṡ to be the image of D0 under ι. By the above Lemma, D is
a dense subset of D ⊆ P ∗ Ṡ. Given two compatible conditions d0, d1 ∈ D with

di = ι(〈pi, q̇i〉, ṙi) = 〈pi, ṡi〉, we have shown that there are q̇ ∈ VP and ṙ ∈ VP∗Q̇

with

〈〈p1 ∧P p2, q̇〉, ṙ〉 ≤(P∗Q̇)∗Ṙ 〈〈p1, q̇1〉, ṙ1〉, 〈〈p2, q̇2〉, ṙ2〉.

This gives us an ṡ ∈ VP with

〈p1 ∧P p2, ṡ〉 = ι(〈p1 ∧P p2, q̇〉, ṙ) ≤P∗Ṡ d0, d1.

�

The techniques developed above allow us to prove the absoluteness version of
our second main result.
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Proof of Theorem 5.2. For the remainder of the proof, we fix a subset B of κκ of
cardinality κ+ such that

(x)α = (y)β ⇐⇒ [x = y ∧ α = β]

holds for all x, y ∈ B and α, β < κ. In addition, we fix an injective enumeration
〈bγ | γ < κ+〉 of B.

By Theorem 1.5, there is a <κ-closed forcing P0 of cardinality at most 2κ satisfy-
ing the κ+-chain condition with the property that, whenever G0 is P0-generic over
V and Q ∈ V[G0] is a <κ-closed partial order, then both A and B are Σ1

1-subsets
of (κκ)V[G0][G1] in every Q-generic extension V[G0][G1] of V[G0].

If G0 is P0-generic over V, then Q(A)V = Q(A)V[G0] and Q+(A)V = Q+(A)V[G0].
This shows that P0 × Q+(A) is a <κ-closed forcing that satisfies the κ+-chain

condition in V. In addition, there are names Ċ, Ṙ ∈ VP0×Q+(A) with the property
that, whenever G0×G1 is (P0×Q+(A))-generic over V with G1 =

⊕

γ<κ+ Ḡγ , then

ĊG0×G1 = {(bγ)≺ᾱ,α≻ ∈
κκ | α, ᾱ < κ, γ < κ+, ᾱ = tḠγ

(α)}

and ṘG0×G1 = Q(ĊG0×G1) in V[G0][G1]. Notice ĊG0×G1 ⊆ (κκ)V and ṘG0×G1 is
a sublattice of Q(κκ)V in V[G0][G1]. We define

P = (P0 ×Q+(A)) ∗ Ṙ.

This partial order is <κ-closed and satisfies the κ+-chain condition.
In V, we define

D0 = {〈p, ~q, r〉 ∈ P0 ×Q+(A)×Q(κκ) | 〈p, ~q 〉 
 “ ř ∈ Ṙ”}.

For each ~d = 〈p, ~q, r〉 ∈ D0, there is an s~d
∈ (P0×Q+(A))∗Ṙ with s~d

= 〈〈p, ~q〉, ṙ〉 and
〈p, ~q〉 
 “ ṙ = ř ”. Clearly, there is a subset D of P that is closed under descending
≤P-sequences of length less than κ, has cardinality at most 2κ and contains the

dense subset {s~d
| ~d ∈ D0}. The partial order 〈D,≤P↾ (D × D)〉 satisfies the κ+-

chain condition and is forcing-equivalent to P. We continue to work with P.
Let G = (G0 × G1) ∗ G2 be P-generic over V. There are trees T0, TB ∈ V[G0]

on κ × κ such that A = p[T0]
V[G0][Ḡ] and B = p[TB ]V[G0][Ḡ] hold in every generic

extension V[G0][Ḡ] of V[G0] by a <κ-closed forcing.
The results of Section 2 show that there is a tree TS ∈ V[G] on κ× κ such that

p[TS ] is the set of all x ∈ κκ with

(∃y ∈ p[TB ])(∀α, ᾱ < κ) [x(α) = ᾱ←→ (∃β < κ)(∀β ≤ β̄ < κ)

[sβ̄ ⊆ (y)≺ᾱ,α≻ −→ tG2
(β̄) = 0]]

(10)

in every transitive ZFC-model that contains V[G] and has the same <κκ as V[G].

Fix a γ < κ+. The definition of Ċ and the equivalence (7) imply that the
function bγ ∈ B = p[TB ]V[G] witnesses that tḠγ

∈ p[TS ]V[G] holds.

By the results of Section 2, there is a tree T1 ∈ V[G] on κ× κ such that

(11) p[T1] = {x ∈ κκ | (∃y ∈ p[TS ])(∀β < κ)(∃β ≤ α < κ) [sα ⊆ x ∧ y(α) = 1]}

holds in every transitive ZFC-model that contains V[G] and has the same <κκ as
V[G].

Let S be an element of ΓV(P, G, κ). We work in V[G0]. Since ṘG0×G1 is a

sublattice of Q(κκ)V[G0], we can find a Q+(A)-innocuous forcing Ṙ0 ∈ V[G0]
Q+(A)

with ṘG1
0 = ṘG0×G1 . By our assumptions, there is a (Q+(A)∗Ṙ0)-innocuous forcing



Σ
1
1-DEFINABILITY AT UNCOUNTABLE REGULAR CARDINALS 19

Ṡ ∈ V[G0]
Q+(A)∗Ṙ0 with S = ṠG1∗G2 . Pick Ṫ ∈ V[G0]

Q+(A) with Ṫ = Ṙ0 ∗Q+(A) Ṡ.
This means

1lQ+(A) 
 “ Ṫ is <κ̌-closed and satisfies the κ̌+-chain condition”

and Ṫ is a Q+(A)-innocent forcing by Lemma 5.8.
Let H be S-generic over V[G]. We have A = p[T0]

V[G][H], B = p[TB ]V[G][H] and
{tḠγ

| γ < κ+} ⊆ p[TS ]V[G][H].

Suppose x ∈ p[TS ]V[G][H]. Then x satisfies (10) in V[G][H] and there is a γ < κ+

with

x(α) = ᾱ ⇐⇒ (∃β̄ < κ)(∀β̄ ≤ δ < κ) [sδ ⊆ (bγ)≺ᾱ,α≻ → tG2
(δ) = 0]

⇐⇒ (bγ)≺ᾱ,α≻ ∈ Ċ
G0×G1

for all α, ᾱ < κ. We can conclude x = tḠγ
and p[TS ]V[G][H] = {tḠγ

| γ < κ+}.

There is a H̄ ∈ V[G][H] that is ṪG1-generic over V[G0][G1] with V[G][H] =
V[G0][G1][H̄]. The above remarks and Lemma 5.6 show that x ∈ (κκ)V[G][H] is an
element of A if and only if

(∀γ < κ+)(∃β < κ)(∀β ≤ α < κ) [sα ⊆ x −→ tḠγ
(α) = 0].

By the above computations, x ∈ (κκ)V[G][H] is not an element of A if and only if

(∃y ∈ p[TS ])(∀β < κ)(∃β ≤ α < κ) [sα ⊆ x ∧ y(α) = 1]

holds in V[G][H]. Since the equality (11) still holds in V[G][H], we can conclude

p[T1]
V[G][H] = (κκ)V[G][H] \A.

�

6. Definable well-orders of κκ

This section is devoted to the proof of the following result that directly implies
the statement of Theorem 1.9.

Theorem 6.1. Let ⊳ be a well-ordering of κκ,

A = {≺x, y≻ | x, y ∈ κκ with either x = y or x⊳ y}

and G be P(A)-generic over V.

(1) There is a well-ordering of (κκ)V[G] whose graph is a ∆1
2-subset of κκ in

V[G].
(2) The set (κκ)V[G] is Γκ-persistently Σ1

1 in V[G], where Γκ is the class of all
<κ-closed partial orders in V[G].

The idea behind the proof of this statement is to use ⊳ in the P(A)-generic ex-
tension to define a well-ordering ⊳∗ of H(κ+)V in H(κ+)V[G] and well-order (κκ)V[G]

by identifying functions in κκ with the ⊳∗-least nice name in H(κ+)V representing
this function. We introduce some vocabulary needed in the following arguments.

Definition 6.2. Let Γ be a class of partial orders that contains the trivial partial
order. We say that a set X is Γ-persistently Σ1(H(κ+)) if there is a Σ1-formula
ϕ ≡ ϕ(u, v0, . . . , vn−1) and parameters y0, . . . , yn−1 ∈ H(κ+) such that

X = {x ∈ H(κ+)V[G] | 〈H(κ+)V[G],∈〉 |= ϕ(x, y0, . . . , yn−1)}

holds whenever Q is a partial order in Γ and G is Q-generic over V.
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Proposition 6.3. Let A be a subset of κκ and G be P(A)-generic over V. If Γκ

denotes the class of all <κ-closed partial orders in V[G], then the sets A, P(A)V,
G, P(A)V \G and the relation

⊥P(A)V = {〈p, q〉 ∈ P(A)V × P(A)V | p and q are incompatible in P(A)V}

are Γκ-persistently Σ1(H(κ+)V[G]).

Proof. We work in V[G]. Theorem 1.5 directly implies that A is Γκ-persistently
Σ1(H(κ+)V[G]). If V[G][H] is a generic extension of V[G] by a forcing in Γκ, then
P(A)V = P(A) = P(A)V[G][H] ⊆ H(κ+) and the absoluteness of the definition of A
implies that P(A) is Γκ-persistently Σ1(H(κ+)V[G]).

A pair 〈p, q〉 of conditions in P(A) is an incompatible in P(A) if and only if one
of the following statements holds true.

(1) Tp is not an end-extension of Tq or Tq is not an end-extension of Tp.
(2) Tp is an end-extension of Tq and there is an x ∈ dom(fp) ∩ dom(fq) with

either fq(x) * fp(x) or hp(x) 6= hq(x).
(3) Same as (2), but with the roles of p and q exchanged.
(4) Tp is an end-extension of Tq and there is an x ∈ dom(fq)\dom(fp) such that

for all z ∈ [Tp] with fq(x) ⊆ z there is β < κ with ≺hq(x), β≻ < ht(Tp) and
either sβ ⊆ x and z(≺hq(x), β≻) = 0 or sβ * x and z(≺hq(x), β≻) = 1.

(5) Same as (4), but with the roles of p and q exchanged.

Since all of those statements are absolute between V[G] and generic extensions of
V[G] by forcings in Γκ, we can conclude that ⊥P(A)V is Γκ-persistent Σ1(H(κ+)).

Given y ∈ A and γ < κ, the proof of Corollary 3.7 shows that HG(x) = γ
holds if and only if there is a z ∈ [TG] such that (6) holds for all β < κ. By
Lemma 3.6, [TG] = [TG]V[G][H] holds whenever V[G][H] is a generic extension of
V[G] by a forcing in Γκ. This shows that the graph of HG is Γκ-persistently
Σ1(H(κ+)). In combination with (4), this implies that the graph of FG is Γκ-
persistently Σ1(H(κ+)).

The filter G consists of all conditions p in P(A) such that TG is an end extension
of Tp and, if x ∈ dom(fp), then fp(x) = FG(x) ↾ ht(Tp) and hp(x) = HG(x). In
combination with the above computations, this allows us to conclude that G is
Γκ-persistently Σ1(H(κ+)).

Finally, a condition p in P(A) is not an element of G if there is a q in G that is
incompatible with p. Using the above computations, P(A)V \ G is Γκ-persistently
Σ1(H(κ+)). �

Proof of Theorem 6.1. (i) Work in V[G] and let Γκ denote the class of all <κ-closed
partial orders in V[G]. We have

x ∈ V ⇐⇒ 〈H(κ+),∈〉 |= (∃z ∈ A)(∀α < κ) x(α) = z(≺0, α≻)

for all z ∈ κκ. This shows that (κκ)V is Γκ-persistently Σ1
1(H(κ+)).

Define ψ ≡ ψ(u, v, w) to be the Σ1-formula

(∃f : w −→ tc({u} ∪ w) bijection)(∀α, β < w)

[(v(≺0,≺α, β≻≻) = 1↔ f(α) ∈ f(β)) ∧ (v(≺1, α≻) = 1↔ f(α) ∈ u)].
(12)

Let V[G][H] be a generic extension of V[G] by a forcing in Γκ. Given a function
x ∈ (κ2)V[G][H], we let ex denote the relation on κ defined by

α ex β ⇐⇒ x(≺0,≺α, β≻≻) = 1.



Σ
1
1-DEFINABILITY AT UNCOUNTABLE REGULAR CARDINALS 21

If 〈κ, ex〉 is well-founded and extensional, then we let tx denote image of the corre-
sponding collapsing map cx and ax = {cx(α) | x(≺1, α≻) = 1}.

Given a ∈ H(κ+)V[G][H], there is an x ∈ (κ2)V[G][H] such that ψ(a, x, κ) holds
in H(κ+)V[G][H]. Moreover, if ψ(a, x, κ) holds in H(κ+)V[G][H], then 〈κ, ex〉 is well-
founded and extensional, a = ax, tc({a} ∪ κ) = tx and cx is the unique bijection
witnessing that ψ(a, x, κ) holds. In particular, if a, b ∈ H(κ+)V[G][H] and x ∈
(κ2)V[G][H] such that both ψ(a, x, κ) and ψ(b, x, κ) hold in H(κ+)V[G][H], then a = b.
Finally, these computations show that a is an element of H(κ+)V if and only if
ψ(a, x, κ) holds in H(κ+)V[G][H] for some x ∈ (κ2)V. We can conclude that H(κ+)V

is Γκ-persistently Σ1(H(κ+)).
Let N denote the set of all functions n : κ× κ −→ P(A) in V with the property

that the set An
α = {n(α, β) ∈ P(A) | β < κ} is an anti-chain in P(A) for all α < κ.

By Proposition 6.3 and the above computations, N is Γκ-persistently Σ1(H(κ+)).
By the results of Section 2, there is a tree T on κ3 with the property that,

whenever V[G][H] is a generic extension of V[G] by a forcing in Γκ, then p[T ]V[G][H]

is equal to the set of all 〈x, y〉 ∈ (κκ)V[G][H] × (κ2)V such that

ψ(n, y, κ) ∧ (∀α, β < κ) [(x(α) = β → (∃γ < κ) n(≺α, β≻, γ) ∈ G)

∧ (x(α) 6= β → (∀γ < κ) n(≺α, β≻, γ) /∈ G)].
(13)

holds in 〈H(κ+)V[G][H],∈〉 for some n ∈ N . For every x ∈ κκ there is a y ∈ (κ2)V

with 〈x, y〉 ∈ p[T ], because there is an n ∈ N such that

τG
n = {≺α, β≻ | α, β < κ, x(α) = β},

where τn is the P(A)-nice name
⋃

α<κ{α̌}×A
n
α. Moreover, if 〈x0, y〉, 〈x1, y〉 ∈ p[T ],

then x0 = x1.
Now, define a relation ⊳∗ on κκ by setting

x0⊳
∗x1 ⇐⇒ (∃z0, z1 ∈ (κ2)V) [〈x0, z0〉, 〈x1, z1〉 ∈ p[T ] ∧ z0 ⊳ z1

∧ (∀z̄0, z̄1 ∈ (κ2)V)[(z̄0 ⊳ z0 ∧ z̄1 ⊳ z1)→ (〈x0, z̄0〉 /∈ p[T ] ∨ 〈x1, z̄1〉 /∈ p[T ])]].

By the above constructions and the results of Section 2, the graph of this relation
is a Σ1

2-subset of κκ × κκ. It is easy to check that this relation is linear, strict
and total. In particular, its graph is a ∆1

2-subset of κκ × κκ. Assume, toward a
contradiction, that there is a strictly ⊳∗-descending sequence of elements in κκ of
length ω. The definition gives us a strictly ⊳-descending sequence of elements in
(κ2)V of the same length. Since P(A) is σ-closed, this sequence is an element of V,
a contradiction.

(ii) By Proposition 2.1, there is a tree T∗ on κ × κ such that p[T∗]
V[G][H] =

∃x(p[T ]V[G][H]) holds whenever V[G][H] is a generic extension of V[G] by a forcing
in Γκ. Let V[G][H] be such an extension and x be an element of p[T∗]

V[G][H].
There is a y ∈ (κκ)V[G][H] with 〈x, y〉 ∈ p[T ]V[G][H]. By the construction of T ,
y is an element of (κ2)V and there is an n ∈ N witnessing that (13) holds in
H(κ+)V[G][H]. In V, we can construct the P(A)-nice name τn and, since τG

n ∈ V[G],
we can conclude x ∈ V[G]. This shows that p[T∗]

V[G][H] ⊆ (κκ)V[G] and the above
computations already show (κκ)V[G] = ∃x(p[T ]V[G]) = p[T∗]

V[G] ⊆ p[T∗]
V[G][H]. �
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7. The perfect subset property and absoluteness

We generalize the perfect subset property of subsets of Baire space to subsets of
arbitrary function spaces κκ and establish a connection between this property and
generic absoluteness.

Definition 7.1. Let λ be a limit ordinal.
We say that a map ι : <λ2 −→ (<λλ)n is a continuous order-embedding if the

following statements hold for all s0, s1 ∈
<λ2 with ι(si) = 〈ti0, . . . , t

i
n−1〉.

(1) If s0 ( s1, then t0k ( t1k for all k < n.
(2) If s0 and s1 are incompatible in <λ2, then there is a k < n such that t0k and

t1k are incompatible in <λλ.
(3) If lh(s0) ∈ Lim ∩ λ and k < n, then

t0k =
⋃

{uα
k | (∃α < lh(s0)) ι(s0 ↾ α) = 〈uα

0 , . . . , u
α
n−1〉}.

Definition 7.2. Let λ be a limit ordinal and A be a subset of λλ. We say that A
contains a perfect subset if there is a continuous order-embedding ι : <λ2 −→ <λλ
such that [Tι] ⊆ A, where Tι is the tree

Tι = {t ∈ <λλ | (∃s ∈ <λ2) t ⊆ ι(s)}.

on λ.

Let C be a class of subsets of κκ. We say that subsets in C have the perfect subset
property if every subset in C of cardinality bigger than κ contains a perfect subset.
We present existing results related to the above definitions following [8, Chapter
IV].

• We call a tree T on κ a weak κ-Kurepa tree if ht(T ) = κ, [T ] has cardinality
at least κ+ and there are stationary many α < κ such that T ∩ ακ has the
same cardinality as α. The idea of using Kurepa trees to construct closed
subsets without the perfect subset property goes back to [17, Section 5].

Let ι : <κ2 −→ <κκ be a continuous order-embedding and T be a tree
on κ of height κ with [Tι] ⊆ [T ]. First, assume that there is an α < κ
such that ι”α2 * <βκ for all β < κ. Let α be minimal with this property.

By the regularity of κ, there is a β < κ with ι”<α2 ⊆ <βκ. The set
C = {s ∈ α2 | lh(ι(s)) ≥ β} has cardinality κ and ι(s) ↾ β ∈ T for all
s ∈ C. We can conclude that T ∩ βκ has cardinality at least κ in this case.
Now, assume that for every α < κ there is a β < κ with ι”α2 ⊆ T ∩ <βκ.
Then the set {α < κ | ι”α2 ⊆ T ∩ ακ} is closed and unbounded in κ. In
both cases, T is not a weak κ-Kurepa tree.

The existence of weak κ-Kurepa trees therefore provides examples for the
failure of the perfect subset property for closed subsets of κκ. In particular,
if “V = L” holds, then the perfect subset property for closed sets fails for
all uncountable regular cardinals (see [8, Section IV.2]).
• If all closed subsets of κκ have the perfect subset property, then there are

no κ-Kurepa trees and κ+ is inaccessible in L by an argument of Robert
Solovay (see [13, Section 4]).
• Let ν > κ be an inaccessible cardinal and G be Col(κ,<ν)-generic over V.

An argument of Philipp Schlicht shows that Σ1
1-subsets of κκ in V[G] have

the perfect subset property. We will provide a proof of this statement in
Section 9 (Proposition 9.9).
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• Large cardinal properties of κ do not imply the perfect subset property for
closed subsets of κκ. If κ is a supercompact cardinal, then there is a partial
order that preserves the supercompactness of κ and adds a weak κ-Kurepa
tree (see [8, Section IV.2]).

To further investigate the perfect subset property for Σ1
1-subsets of κκ, we need

a well-known result saying that ZFC proves generic absoluteness for Σ1
1-subsets

under <κ-closed forcings.

Proposition 7.3. Let T be a tree on κn of height κ and P be a <κ-closed partial
order. If there is a p ∈ P with p 
 “ [Ť ] 6= ∅”, then [T ] 6= ∅.

Proof. Let p 
 “ 〈τ0, . . . , τn−1〉 ∈ [Ť ] ” for some names τ0, . . . , τn−1 ∈ VP. Given
α < κ, the set of conditions q ∈ P with

(∃〈t0, . . . , tn−1〉 ∈ T )
[

lh(t0) ≥ α ∧ q 
 “ ť0 ⊆ τ0 ∧ · · · ∧ ťn−1 ⊆ τn−1 ”
]

is dense below p. Since P is <κ-closed, we can define a ≤P-descending sequence
〈pα ∈ P | α < κ〉 and an ascending sequence 〈〈tα0 , . . . , t

α
n−1〉 ∈ T | α < κ〉 in V such

that p0 = p, lh(tα0 ) ≥ α and pα 
 “ ťαi ⊆ τi ” holds for all α < κ and i < n. But this
construction implies that the tuple 〈

⋃

α<κ t
α
0 , . . . ,

⋃

α<κ t
α
n−1〉 is an element of [T ]

in V. �

We look at a stronger version of the perfect subset property for Σ1
1-subsets.

Definition 7.4. Let T be a tree on κn+1. A ∃x-perfect (“projection-perfect”)
embedding into T is a continuous order-embedding ι : <κ2 −→ (<κκ)n+1 with the
following properties.

(1) ran(ι) ⊆ T .
(2) If s0, s1 ∈

<κ2 are incompatible sequences with ι(si) = 〈ti0, . . . , t
i
n〉, then

there is a k < n such that the sequences t0k and t1k are incompatible in <κκ.

The idea behind the above definition is that a ∃x-perfect embedding into T
witnesses that the projection p[T ] has a perfect subset.

Proposition 7.5. Let T be a tree on κ × κ and ι be a ∃x-perfect embedding into
T . If we define ῑ : <κ2 −→ <κκ to be the continuous order-embedding such that
ῑ(s) = t0 for all s ∈ <κ2 with ι(s) = 〈t0, t1〉, then ῑ witnesses that p[T ] has a perfect
subset in every transitive ZFC-model containing V. �

The following lemma establishes a connection between the existence of ∃x-perfect
embeddings and absoluteness properties of Σ1

1-subsets of κκ.

Lemma 7.6. The following statements are equivalent for every tree T on κ× κ of
height κ.

(1) There is a ∃x-perfect embedding into T .
(2) If P is <κ-closed partial order, then 1lP 
 “P(κ̌) * V̌→ p[Ť ] * V̌”.

(3) 1lAdd(κ,1) 
 “p[Ť ] * V̌”.

(4) There is a <κ-closed partial order P with 1lP 
 “p[Ť ] * V̌”.

Proof. Assume (i) holds, ι is a ∃x-perfect embedding into T and P is a <κ-closed
partial order that adds a new subset of κ. If we define

S = {〈t0 ↾ α, t1 ↾ α〉 ∈ T | 〈t0, t1〉 ∈ ran(ι), α ≤ lh(t0)},

then S is a subtree of T of height κ.
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Let G be P-generic over V, x0 ∈ (κ2)V[G] \V and define

y =
⋃

{t0 | (∃α < κ) ι(x0 ↾ α) = 〈t0, t1〉},

Clearly, y ∈ p[S]V[G] ⊆ p[T ]V[G]. Assume, toward a contradiction, that y ∈ V holds.
Then the tree Sy = {t ∈ <κκ | 〈y ↾ lh(t), t〉 ∈ S} is an element of V and [Sy]V[G] 6= ∅.
By Proposition 7.3, there is a z ∈ [Sy]V and this means 〈y, z〉 ∈ [S]V. But this
means that there is an x1 ∈ (κ2)V with y =

⋃

{t0 | (∃α < κ) ι(x1 ↾ α) = 〈t0, t1〉}.
Given α < κ with x0(α) 6= x1(α) and ι(xi ↾ (α + 1)) = 〈ti0, t

i
1〉, we have t00 and t10

incompatible and t00, t
1
0 ⊆ y, a contradiction.

Now, assume (iv) holds. Fix τ0, τ1 ∈ VP with 1lP 
 “τ0 /∈ V ∧ 〈τ0, τ1〉 ∈ [Ť ] ”. We
inductively construct order-embeddings i : <κ2 −→ P and ι : <κ2 −→ T with the
following properties.

(1) ι is continuous.
(2) If s ∈ <κ2 and ι(s) = 〈t0, t1〉, then i(s) 
 “ ť0 ⊆ τ0 ∧ ť1 ⊆ τ1 ”.
(3) If s0, s1 ∈

<κ2 are incompatible, then ι(s0), ι(s1) ∈ T are incompatible.

Assume that i ↾ <α2 and ι ↾ <α2 are already constructed for some α < κ. If
α ∈ Lim and s ∈ α2, then there is a condition i(s) ∈ P with p ≤P i(s ↾ ᾱ) for all
ᾱ < α. Define 〈t0, t1〉 ∈

<κκ× <κκ by setting

ti =
⋃

{t̄i | (∃ᾱ < α) ι(s ↾ α) = 〈t̄0, t̄1〉}.

By construction, i(s) 
 “ ťi ⊆ τi ” and this means 〈t0, t1〉 ∈ T . Moreover, given
incompatible s0, s1 ∈

α2, there is an ᾱ < α such that s0 ↾ ᾱ and s1 ↾ ᾱ are
incompatible and our assumptions imply that ι(s0) and ι(s1) are also incompatible.

If α = ᾱ+1 and s ∈ ᾱ2, then there are conditions q0, q1 ≤P i(s) and β, γ0, γ1 < κ
with β ≥ lh(ι(s)), qi 
 “τ0(β̌) = γ̌i ” and γ0 6= γ1, because we have i(s) 
 “τ0 /∈ V”.
Given i < 2, we can find i(s⌢〈i〉) ∈ P and ι(s⌢〈i〉) = 〈ti0, t

i
1〉 ∈ T with i(s⌢〈i〉) ≤ qi,

lh(ti0) = β + 1 and i(s⌢〈i〉) 
 “ ťi0 ⊆ τ0 ∧ ť
i
1 ⊆ τ1 ”. It is easy to check that this

partial embedding also satisfies the above properties. �

In the following, we investigate the correlation between the existence of a perfect
subset of ∆1

1-subsets of the form p[T0] and the existence of ∃x-perfect embeddings
into T0. We need another notion of absoluteness.

Definition 7.7. Let Γ be a class of partial orders. We say that a subset A of κκ is
weakly Γ-persistently ∆1

1 if there are trees T0 and T1 on κ× κ such that p[T0] = A,
p[T1] = κκ \A and 1lP 
 “p[Ť1] = κ̌κ̌ \ p[Ť0] ” holds for all partial orders P in Γ.

Proposition 7.8. Let P be a <κ-closed partial order that adds a new subset of
κ, A be a subset of κκ and T0, T1 be trees on κ × κ witnessing that A is weakly
P-persistently ∆1

1. Then A has a perfect subset if and only if 1lP 1 “ Ǎ = p[Ť0]”.

Proof. Pick p ∈ P with p 
 “ Ǎ 6= p[Ť0] ”. Assume, towards a contradiction, that
there is a q ≤P p with q 
 “p[Ť0] ⊆ V̌ ”. Let G be P-generic over V with q ∈ G
and pick y ∈ p[T0]

V[G] \ A ⊆ V. Define Ty = {t ∈ <κκ | 〈y ↾ lh(t), t〉 ∈ T0} ∈ V.

Then [Ty]V[G] 6= ∅ and this means [Ty]V 6= ∅ by Proposition 7.3. But this implies

y ∈ p[T0]
V = A, a contradiction. Therefore p 
 “p[Ť0] * V̌ ” and A has a perfect

subset by Lemma 7.6.
In the other direction, let ι : <κ2 −→ <κκ witnesses that A has a perfect subset

and assume, toward a contradiction, that 1lP 
 “ Ǎ = p[Ť0] ” holds. Let G be P-
generic over V. By construction, [Tι]

V[G] * V, p[T0]
V[G] = A ⊆ V and p[T1]

V[G] =
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(κκ)V[G] \ p[T0]
V[G] = (κκ)V[G] \ A. If we define T = {〈t0, t1〉 ∈ T1 | t0 ∈ Tι} ∈ V,

then [T ]V[G] 6= ∅ and therefore [T ]V 6= ∅. But this shows that ∅ 6= [Tι]
V ∩ p[T1]

V ⊆
p[T0]

V ∩ p[T1]
V = ∅, a contradiction. �

Corollary 7.9. Let A be a subset of κκ that is weakly Γ-persistently ∆1
1, where Γ

is a class of <κ-closed partial orders that contains both the trivial partial order and
a partial order that adds a new subset of κ. Then A contains no perfect subset if
and only if it is Γ-persistently ∆1

1. �

In particular, if A is a subset of κκ and G is P(A)-generic over V, then A contains
no perfect subset in V[G].

In combination with Theorem 6.1, the above results allow us to show that generic
absoluteness for Σ1

3-subsets of κκ under <κ-closed forcings that satisfy the κ+-chain
condition is inconsistent.

Proof of Theorem 1.11. We fix an a ∈ P(κ) with <κκ ∈ L[a] and bijections

f : κ −→ {〈t0, t1〉 ∈
<κκ× <κκ | lh(t0) = lh(t1)}

and g : κ −→ <κ2 contained in L[a]. Given x ∈ κκ, we define ιx = f ◦ x ◦ g−1 and
Tx = {f(α) | x(α) = 1}. By the results of Section 2, there is a tree T ∈ L[a] on κ3

such that

p[T ] = {〈x, y〉 ∈ κκ× κκ | “Tx is a tree on κ× κ” ∧ y ∈ p[Tx]

∧ “ ιy is not a ∃x-perfect embedding into Tx ”}

holds in every transitive ZFC-model that contains L[a] and has the same <κκ as
L[a]. This implies that in any ZFC-model with the above properties

(14) (∃x ∈ κκ)(∀y ∈ κκ) 〈x, y〉 ∈ p[T ]

is equivalent to the existence of a tree T∗ on κ × κ such that “p[T∗] = κκ” holds
and there is no ∃x-perfect embedding into T∗.

We show that 1lAdd(κ,κ+) 
 “(∀x ∈ κ̌κ̌)(∃y ∈ κ̌κ̌) 〈x, y〉 /∈ p[Ť ] ” holds in V. As-

sume, toward a contradiction, that G is Add(κ, κ+)-generic over V and T∗ ∈ V[G]
witnesses that (14) holds in V[G]. Since T∗ = Tx for some x ∈ (κ2)V[G], there is an
α < κ+ with T∗ ∈ V[G ∩ Add(κ, α)] and V[G] is an Add(κ, κ)+-generic extension
of V[G ∩Add(κ, α)] with (κκ)V[G∩Add(κ,α)] ( (κκ)V[G] = p[T∗]

V[G]. This means

〈V[G ∩Add(κ, α)],∈〉 |=
[

(∃p ∈ Add(κ, κ+)) p 
 “p[Ť∗] * V̌ ”
]

and there is a ∃x-perfect embedding into T∗ in V[G ∩ Add(κ, α)] by Lemma 7.6.
But this map is also a ∃x-perfect embedding into T∗ in V[G], a contradiction.

In the other direction, define A ⊆ κκ as in Theorem 6.1 and let G be P(A)-generic
over V. By the second part of the Theorem, there is a tree T∗ on κ × κ in V[G]
such that p[T∗]

V[G][H] = (κκ)V[G] holds whenever V[G][H] is a generic extension of
V[G] by a <κ-closed forcing in V[G]. This obviously implies that “p[T∗] = κκ”
holds in V[G] and we can apply Lemma 7.6 to show that there are no ∃x-perfect
embeddings into T∗ in V[G]. We can conclude that

1lP(A) 
 “(∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) 〈x, y〉 ∈ p[Ť ] ”

holds in V. �

In the remainder of this section, we generalize the notion of Σ1
2-absoluteness to

our uncountable context and investigate its structural implications.
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Definition 7.10. Let Γ be a class of partial orders. We say that generic absolute-
ness holds for Σ1

2-subsets of κκ under forcings in Γ if the implication

p 
“(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈

κ̌κ̌)〈x0, . . . , xn, y0, . . . , ym〉 /∈ [Ť ] ”

−→ (∃x0, . . . , xn ∈
κκ)(∀y0, . . . , ym ∈

κκ)〈x0, . . . , xn, y0, . . . , ym〉 /∈ [T ]

holds true for every partial order P in Γ, every condition p ∈ P and every tree T on
κm+n+2.

In Section 9, we will show that the consistency of generic absoluteness for Σ1
2-

subsets of κκ under forcing with <κ-closed partial orders can be established from a
relatively mild large cardinal assumption (Lemma 9.7). We will also show that such
generic absoluteness for Cohen forcing Add(κ, 1) holds in every Add(κ, κ+)-generic
extension of the ground model (Corollary 9.3).

The referee pointed out that it is possible to establish the consistency of Σ1
2-

absoluteness under certain classes of <κ-closed partial orders without the use
of large cardinals. Let Γ be a class of <κ-closed partial orders such that ele-
ments of Γ satisfy the κ+-chain condition and Γ is closed under forcing iterations
with <κ-support in the ground model and every generic extension by a forcing
in Γ. If “2κ = κ+ ” holds in the ground model, then there is a forcing iteration

〈〈~P<α | α ≤ κ
+〉, 〈Ṗα | α < κ+〉〉 of partial orders in Γ with <κ-support and a se-

quence 〈ṫα ∈ V
~P<α | α < κ+〉 of names such that the following statements hold

whenever α < κ+ with α = ≺≺β, γ≻, δ≻, G is ~P<α-generic over V and Ḡ is the

corresponding filter in ~P<β .

(1) ṫḠβ is an enumeration of all subtrees of <κκ in V[Ḡ] of length κ+.

(2) If ṫḠβ (γ) = T and (∃Q ∈ Γ) 1lQ 
 “p[Ť ] 6= κ̌κ̌” holds in V[G], then 1lṖG
α




“p[Ť ] 6= κ̌κ̌” holds in V[G].

If G is ~P<κ+ -generic over V, then generic absoluteness for Σ1
2-subsets of κκ under

forcings in Γ holds in V[G].

Proposition 7.11. Let Γ be a class of <κ-closed partial order that contains the
trivial partial order and assume that generic absoluteness holds for Σ1

2-subsets of
κκ under forcings in Γ. Then every ∆1

1-subset of κκ is weakly Γ-persistently ∆1
1.

Proof. Let T0 and T1 witness that p[T0] is a ∆1
1-subset of κκ. By Proposition 2.1,

there is a tree T such that “p[T ] = p[T0] ∪ p[T1] ” holds in V and every generic
extension of V by a forcing in Γ.

Assume, toward a contradiction, that 1lP 1 “ κ̌κ̌ = p[Ť0] ∪ p[Ť1] ” holds for some
P ∈ Γ. Then there is a p ∈ P with

p 
 “(∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) 〈x, y〉 /∈ [Ť ] ”.

By Σ1
2-absoluteness, there is an x ∈ κκ with x /∈ p[T ] = κκ, a contradiction.

In the same way, we can use Proposition 7.3 to see that 1lP 
 “p[Ť0] ∩ p[Ť1] = ∅”
holds for every partial order P in Γ. �

Proposition 7.12. Assume that generic absoluteness holds for Σ1
2-subsets of κκ

under Add(κ, 1). If T is a tree on κ × κ of height κ, then p[T ] contains a perfect
subset if and only if 1lAdd(κ,1) 
 “p[Ť ] * V̌”.

Proof. Let ι : <κ2 −→ <κκ witness that p[T ] has a perfect subset and assume,
toward a contradiction, that there is a p ∈ Add(κ, 1) with p 
 “p[Ť ] ⊆ V̌ ”. By the
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results of Section 2, there is a tree T∗ on κ× κ such that p[T∗] = p[T ] ∪ (κκ \ [Tι])
holds in V and every Add(κ, 1)-generic extension of V. Since p 
 “ [Ťι] * V̌ ”, we

get p 
 “(∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) 〈x, y〉 /∈ [Ť∗] ” and absoluteness gives us an x ∈ κκ
with x /∈ p[T∗] = κκ, a contradiction. �

We apply the above results to prove statements about the length of definable
well-orders on subsets of κκ in the presence of Σ1

2-absoluteness.

Definition 7.13. A Σ1
1-well-ordering of a subset of κκ is a Σ1

1-subset R of κκ×κκ
such that 〈dom(R), R〉 is a well-ordering, where

dom(R) = {x ∈ κκ | (∃y) [R(x, y) ∨R(y, x)]}.

Clearly, every Σ1
1-well-ordering of a subset of κκ has order type less than (2κ)+

and for every γ < κ+ there is such a well-ordering with order type γ. Moreover,
Theorem 1.5 shows it is consistent to have a Σ1

1-well-ordering of a subset of κκ of
order-type greater than 2κ.

Proposition 7.14. Let Γ be a class of <κ-closed partial orders and assume that
generic absoluteness holds for Σ1

2-subsets of κκ under forcings in Γ. If T is a tree
on κ3 of such that p[T ] is a Σ1

1-well-ordering of a subset of κκ and P ∈ Γ, then

1lP 
 “p[Ť ] is a Σ1
1-well-ordering of a subset of κ̌κ̌ ”.

Proof. We prove that p[T ] is a linear and well-founded relation in every generic
extension by a forcing in Γ; the other properties of a well-ordering can be deduced
in the same manner.

By the results of Section 2, there is a tree Tw in κ× κ such that

p[Tw] = {x ∈ κκ | (∀n < ω) 〈(x)n+1, (x)n〉 ∈ p[T ]}

holds in V and every generic extension of V by a forcing in Γ. By our assumptions,
p[Tw] = ∅ and Proposition 7.3 shows that 1lP � “p[Ťw] = ∅” holds for all P in Γ.
This shows that p[T ]V[G] is a well-founded relation in every P-generic extension
V[G] of V with P ∈ Γ.

As above, there is a tree Tl on κ7 such that p[Tl] is equal to the set

{〈x, x0, x1, y, y0, y1〉 ∈ (κκ)6 | 〈x, y〉 ∈ p[T ] ∨ 〈y, x〉 ∈ p[T ]]

∨ [〈x, x0, x1〉 /∈ [T ] ∧ 〈x0, x, x1〉 /∈ [T ]] ∨ [〈y, y0, y1〉 /∈ [T ] ∧ 〈y0, y, y1〉 /∈ [T ]]}

in V and every generic extension of V by a forcing in Γ. Assume, toward a con-
tradiction, that there is a P in Γ and a P-generic extension V[G] of V such that
p[T ]V[G] is not a linear order on its domain. Then there is a p ∈ P with

p � “(∃x, x0, x1, y, y0, y1 ∈
κ̌κ̌)(∀z ∈ κ̌κ̌) 〈x, x0, x1, y, y0, y1, z〉 /∈ [Tl] ”

and, by Σ1
2-absoluteness, p[T ] is not linear on its domain in V, a contradiction. �

The proof of the following lemma uses an idea of Philipp Schlicht to show that
Σ1

2-absoluteness implies that Σ1
1-well-orders have small domains.

Lemma 7.15. Assume that generic absoluteness holds for Σ1
2-subsets of κκ under

Add(κ, 1). If T is a tree on κ3 such that p[T ] is a Σ1
1-well-ordering of a subset of

κκ, then ∃xp[T ] contains no perfect subset.
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Proof. There is a tree T∗ on κ × κ such that p[T∗] = dom(p[T ]) holds in V and
every Add(κ, 1)-generic extension of V. Assume, toward a contradiction, that p[T∗]
contains a perfect subset and let G be Add(κ, 1)-generic over V. We will construct
sequences 〈Gn ∈ V[G] | n < ω〉 and 〈xn ∈ (κκ)V[G] | n < ω〉 such that the following
statements hold true for all n < ω.

(1) There is a Ḡ ∈ V[G] such that (Gn × Ḡ) is (Add(κ, 1)×Add(κ, 1))-generic
over V[G0, . . . , Gn−1] and V[G] = V[G0, . . . , Gn−1][Gn][Ḡ].

(2) We have xn ∈ V[G0, . . . , Gn], 〈xn+1, xn〉 ∈ p[T ]V[G0,...,Gn+1] and

(15) 〈V[G0, . . . , Gn],∈〉 |=
[

1lAdd(κ,1) 
 (∃x)
[

x /∈ V̌ ∧ 〈x, x̌n〉 ∈ p[Ť ]
]]

.

There are H0,H1 ∈ V[G] such that H0 ×H1 is (Add(κ, 1) × Add(κ, 1))-generic
over V with V[G] = V[H0][H1]. By our assumptions and Proposition 7.12, there are
y0, y1 ∈ V[G] with yi ∈ p[T∗]

V[Hi] \ V. Since V[H0] ∩ V[H1] = V, we have y0 6= y1
and there is an i∗ < 2 with 〈y1−i∗ , yi∗〉 ∈ p[T ]V[G]. Define x0 = yi∗ and G0 = Hi∗ .
The homogeneity of Add(κ, 1) in V[G0] and y1−i∗ ∈ V[G] \V[G0] imply (15).

Now assume G0, . . . , Gn and x0, . . . , xn with the above properties are already
constructed. Hence there are H0,H1 ∈ V[G] such that (H0 ×H1) is (Add(κ, 1) ×
Add(κ, 1))-generic over V[G0, . . . , Gn] and V[G] = V[G0, . . . , Gn][H0][H1]. By (15),
there are y0, y1 ∈ V[G] with yi ∈ V[G0, . . . , Gn,Hi] \ V[G0, . . . , Gn] and 〈yi, xn〉 ∈
p[T ]V[G0,...,Gn,Hi]. Again, there is an i∗ < 2 with 〈y1−i∗ , yi∗〉 ∈ p[T ]V[G] and we can
define Gn+1 = Hi∗ and xn+1 = yi∗ . As above, (15) holds true.

Our construction shows 〈xn+1, xn〉 ∈ p[T ]V[G] for all n < ω. But p[T ]V[G] is a
Σ1

1-well-ordering of a subset of κκ in V[G] by Proposition 7.14, a contradiction. �

Corollary 7.16. Assume that generic absoluteness holds for Σ1
2-subsets of κκ un-

der Add(κ, 1). Then there is no well-ordering of κκ whose graph is a Σ1
1-subset of

κκ× κκ. �

8. Embeddings of trees

In this short section, we present an easy proof of Theorem 1.10 with the help of
our first main result. Let T Oκ denote the class of all x ∈ κκ such that Tx = 〈κ,∈x〉
is a tree that is an element of Tκ.

Let T̄ be the set of all pairs 〈s, t〉 in <κκ × <κκ such that lh(s) = lh(t) = γ + 1
for some γ < κ and either 〈λ,∈s↾λ〉 is not a tree for some λ ≤ γ closed under
Gödel-Pairing or t is injective and

(∀α < β ≤ γ) [≺t(α), t(β)≻ ≤ γ → s(≺t(α), t(β)≻) = 1] .

We define T to be the tree {〈s ↾ α, t ↾ β〉 | 〈s, t〉 ∈ T̄ , α ≤ lh(s)} on κ×κ. It is easy
to check that T Oκ = κκ \ p[T ] holds in V and every generic extension of V by a
<κ-closed forcing.

Given y ∈ κκ, we define T (y) to be the tree {t ∈ <κκ | 〈y ↾ lh(t), t〉 ∈ T} on
κ. If y ∈ T Oκ and α < κ, then 〈{α} ∪ precTy

(α),∈y〉 is a well-order of successor

length and we let ty(α) ∈ <κκ denote the corresponding uncollapsing map. Our
construction yields ty(α) ∈ T (y) and the map [α 7→ ty(α)] shows that Ty is order-
preserving embeddable into 〈T (y),(〉.

The following result was proved in [17] in the case “κ = ω1 ”, but the proof given
there directly generalizes to higher cardinalities. It is the uncountable version of
the classic Boundedness Lemma.
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Lemma 8.1 (Boundedness Lemma for κκ, [17, Corollary 13]). If A is a Σ1
1-subset

of κκ with A ⊆ T Oκ, then there is a tree T in Tκ such that Ty ≤ T holds for every
y ∈ A.

Proof. Let S be a tree on κ× κ with A = p[S] and T be the tree on κ× κ defined
above. Define S∗ to be the tree on κ3 consisting of triples 〈s, t, u〉 with 〈s, t〉 ∈ T and
〈s, u〉 ∈ S. Assume towards a contradiction, that there is a 〈x, y, z〉 ∈ [S∗]. Then
x ∈ p[S]∩p[T ] = A∩(κκ\T Oκ) = ∅, a contradiction. If y ∈ A with 〈y, z〉 ∈ [S] and
t ∈ T (y), then 〈y ↾ lh(t), t, z ↾ lh(t)〉 ∈ S∗ and the map [t 7→ 〈y ↾ lh(t), t, z ↾ lh(t)〉]
shows that 〈T (y),(〉 is order-preserving embeddable into T = 〈S∗,⊳∗〉, where ⊳∗

is the natural order on S∗. By the above remarks, this shows that Ty ≤ T holds
for every y ∈ A. �

Proof of Theorem 1.10. Let P = P(T Oκ) be the forcing given by Theorem 1.5 that
codes the subset T Oκ of κκ and G be P-generic over V. By the above remarks and

Proposition 7.3, we have T OV
κ ⊆ T O

V[G]
κ and T OV

κ is a Σ1
1-subset of κκ in V[G].

Lemma 8.1 shows that there is a TG ∈ T
V[G]

κ with Tx ≤ TG for all x ∈ T OV
κ . For

every T ∈ T V
κ there is an x ∈ T OV

κ with T isomorphic to Tx and this completes
the proof of the theorem. �

9. Two models with a nice structure theory for Σ1
1-subsets

We show that certain fragments of Σ1
2-absoluteness hold in two well-known

classes of ZFC-models and derive some consequences about the possible length
of Σ1

1-well-orders of subsets of κκ in these models. We start with a standard result
about Cohen-generic extensions of a ground model.

Lemma 9.1. Let ν > κ be a cardinal and X be a subset of ν of cardinality κ+. If
G is Add(κ, ν)-generic over V and Ḡ = G∩Add(κ,X), then there is an elementary
embedding

j : L(P(κ)V[Ḡ]) −→ L(P(κ)V[G])

with j ↾ On = idOn and j ↾ P(κ)V[Ḡ] = idP(κ)V[Ḡ] .

Proof. We define P = P(κ)V [G] and P̄ = P(κ)V[Ḡ]. By the construction of L(P̄ ),
there is a surjection

s : [On]<ω × P̄ −→ L(P̄ )

definable in L(P̄ ) by a formula ϕ ≡ ϕ(u, v0, v1, w) and the parameter P̄ . Define

j(a) = b ⇐⇒ (∃x ∈ P̄ )(∃A ∈ [On]<ω)

[〈L(P̄ ),∈〉 |= ϕ(a, x,A, P̄ ) ∧ 〈L(P ),∈〉 |= ϕ(b, x,A, P )].

In order to show that j is a well-defined function and an elementary embedding with
the above properties, it suffices to show that for all x0, . . . , xn−1 ∈ P̄ , A ∈ [On]<ω

and every L∈-formula ψ ≡ ψ(u0, . . . , un−1, v0, . . . , vm−1, w)

〈L(P̄ ),∈〉 |= ψ(~x,A, P̄ ) ⇐⇒ 〈L(P ),∈〉 |= ψ(~x,A, P ).

holds. There exist Ḡ0, Ḡ1 ∈ V[Ḡ] such that Ḡ0 is Add(κ, 1)-generic over V and Ḡ1

is Add(κ, κ+)-generic over V[Ḡ0] with ~x ∈ V[Ḡ0] and V[Ḡ] = V[Ḡ0][Ḡ1]. Moreover,
there is G1 ∈ V[G] that is Add(κ, ν)-generic over V[Ḡ0] with V[G] = V[Ḡ0][G1].

Let F be Col(ω, 2κ)V[G]-generic over V[G]. We show that there is a H ∈ V[G][F ]

that is Add(κ, κ+)V-generic over V[Ḡ0] and satisfies P(κ)V[G] = P(κ)V[Ḡ0][H].
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We work in V[G][F ]. Let 〈xn | n < ω〉 enumerate P(κ)V[G] and let 〈αn | n < ω〉 be

strictly increasing and cofinal in κ+V
. We define P = Add(κ, 1)V[Ḡ0], Pn =

∏

i<n P,

Q = Add(κ, κ+)V[Ḡ0] and Qn = Add(κ, αn)V[Ḡ0]. Using the factor-property of
Cohen-Forcing, it is easy to define a sequence 〈Hn | n < ω〉 of filters in P that
satisfy the following properties for all n < ω.

(1) Hn ∈ V[G].
(2) Hn is P-generic over V[Ḡ0][H0, . . . ,Hn−1] and xn ∈ V[Ḡ0][H0, . . . ,Hn].
(3) There is a G′ ∈ V[G] that Add(κ, ν)-generic over V[Ḡ0][H0, . . . ,Hn] and

satisfies V[G] = V[Ḡ0][H0, . . . ,Hn][G′].

For all n < ω, we let en : Pn −→ Pn+1 denote the natural inclusion. In V[Ḡ0], there
are isomorphisms in : Pn −→ Qn with in = in+1 ◦ en for all n < ω. For all n < ω,
H0 × · · · ×Hn−1 is Pn-generic over V[Ḡ0] and we can define

H =
⋃

n<ω

in”(H0 × · · · ×Hn−1) ∈ P(Q)V[G][F ].

Since Qn ⊆ Qn+1 ⊆
⋃

n<ω Qn = Q, e−1
n ”(H0 × · · · × Hn) = H0 × · · · × Hn−1,

in”H0 × · · · ×Hn−1 = H ∩Qn is a filter in Qn for all n < ω, it is easy to see that
H is a filter in Q. We show that H is also Q-generic over V[Ḡ0]. If A ∈ V[Ḡ0] is a
maximal antichain in Q, then A ⊆ Qn for some n < ω, because the Q satisfies the
κ+-chain condition in V[Ḡ0]. By the above remarks, H∩Qn = in”(H0×· · ·×Hn−1)
is Qn-generic over V[Ḡ0]. Therefore, we get A ∩H 6= ∅. Since Q satisfies the κ+-

chain condition, it is easy to see that P(κ)V[G] = P(κ)V[Ḡ0][H] holds.
The weak homogeneity of Add(κ, κ+) in V[Ḡ0] yields the following equivalences.

〈L(P̄ ),∈〉 |= ψ(~x,A, P̄ )

⇐⇒ 〈V[Ḡ0][Ḡ1],∈〉 |= (∃p)
[

p = P(κ) ∧ ψ(~x,A, p)L(p)
]

⇐⇒ 〈V[Ḡ0],∈〉 |=
[

1lAdd(κ,κ+) 
 (∃p)
[

p = P(κ̌) ∧ ψ(~̌x, Ǎ, p)L(p)
]]

⇐⇒ 〈V[Ḡ0][H],∈〉 |= (∃p)
[

p = P(κ) ∧ ψ(~x,A, p)L(p)
]

⇐⇒ 〈L(P ),∈〉 |= ψ(~x,A, P ).

�

This result has two useful corollaries in our context.

Corollary 9.2. Let ν > κ be a cardinal and G be Add(κ, ν)-generic over V. Then
the axiom of choice fails in 〈L(P(κ)V[G]),∈〉. In particular, the graph of a well-order
of κκ is not a Σ1

n-subset of κκ× κκ in V[G].

Proof. This follows directly from Lemma 9.1 and [15, Proposition 5.1(b)]. �

Corollary 9.3. Let λ and ν be cardinals with ν > κ. If G is Add(κ, ν)-generic
over V, then generic absoluteness for Σ1

2-subsets of κκ under Add(κ, λ) holds in
V[G].

Proof. Let T ∈ V[G] be a tree on κm+n+1 and assume

1lAdd(κ,λ) 
 “(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈

κ̌κ̌)〈x0, . . . , xn, y0, . . . , ym〉 /∈ [Ť ] ”

holds in V[G]. We may assume that T ∈ V[Ḡ] with Ḡ = G ∩Add(κ, κ+).
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Let γ = max{λ+, ν+} and F be Add(κ, γ)-generic over V withG = F∩Add(κ, ν).
There are H0,H1 ∈ V[F ] such that H0 is Add(κ, λ)-generic over V[G], H1 is
Add(κ, γ)-generic over V[G][H0] and V[F ] = V[G][H0][H1]. By the above assump-
tion, the statement

(∃x0, . . . , xn ∈
κκ)(∀y1, . . . , ym ∈

κκ)〈x0, . . . , xn, y0, . . . , ym〉 /∈ [T ]

holds in V[G][H0]. An application of Proposition 7.3 shows that this statement also
holds in V[F ] = V[G][H0][H1] and hence in L(P(κ)V[F ]). By Lemma 9.1, it holds in

L(P(κ)V[Ḡ]) and in V[Ḡ]. Since V[G] is either equal to V[G] or an Add(κ, ν)-generic
extension of V[Ḡ], we can use Proposition 7.3 again to conclude that the statement
holds in V[G]. �

Proposition 9.4. Let ν > κ be a cardinal. If G is Add(κ, ν)-generic over V and A
is a Σ1

1-subset of κκ of cardinality bigger than (2κ)V in V[G], then A has a perfect
subset in V[G].

Proof. Fix a tree T on κ×κ with A = p[T ]V[G]. There are G0, G1 ∈ V[G] such that
G0 is Add(κ, κ+)-generic over V, T ∈ V[G0], G1 is Add(κ, ν)-generic over V[G0]
and V[G] = V[G0][G1]. Since (2κ)V[G0] = (2κ)V, we get p[T ]V[G0] ( p[T ]V[G] and
there is a ∃x-perfect embedding into T in V[G0] by Lemma 7.6. Proposition 7.5
implies that p[T ] has a perfect subset in V[G]. �

By combining the above results with Lemma 7.15, we derive the following corol-
lary. Note that the absoluteness property Theorem 1.5 shows that this bound on
the cardinality of order-types is optimal.

Corollary 9.5. If ν > κ is a cardinal, G is Add(κ, ν)-generic over V and R is Σ1
1-

well-ordering of a subset of κκ in V[G], then dom(R) 6= (κκ)V[G] and the order-type
of 〈dom(R), R〉 has cardinality at most (2κ)V in V[G]. �

Using large cardinals and the Levy-Collapse, models with a nice structure theory
for Σ1

1-subsets of κκ can be obtained by mimicking classical constructions. We will
repeatedly use the following folkloristic fact.

Lemma 9.6. Let ν be a cardinal with ν = ν<κ and P be a <κ-closed partial order.

(1) If P has cardinality at most ν, then Col(κ, ν) and P×Col(κ, ν) are forcing
equivalent.

(2) If P has cardinality less than ν and λ<κ < ν holds for all λ < ν, then
Col(κ,<ν) and P× Col(κ,<ν) are forcing equivalent.

Proof. See [9, Corollary 2.3] and [9, Corollary 2.4]. �

Generic absoluteness for Σ1
3-subsets of ωω is equiconsistent with the existence

of a Σ2-reflecting cardinal, i.e. an inaccessible cardinal ν such that 〈Vν ,∈〉 is
a Σ2-elementary submodel of 〈V,∈〉 (see [3] and [5]). The consistency of generic
absoluteness for Σ1

2-subsets of κκ under forcing with<κ-closed partial orders follows
from a direct generalization of the proof of this result.

Lemma 9.7. Let ν > κ be a Σ2-reflecting cardinal and γ be a cardinal. If G×H is
(Col(κ,<ν)×Add(κ, γ))-generic over V, then generic absoluteness for Σ1

2-subsets
of κκ under <κ-closed forcings holds in V[G][H].
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Proof. In V[G][H], let T be a tree on κm+n+1 and Q be a <κ-closed partial order
such that

p 
 “(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈

κ̌κ̌)〈x0, . . . , xn, y0, . . . , ym〉 /∈ [Ť ] ”

holds for some p ∈ Q.
We can find F ∈ V[G][H], ν̄ < ν and i < 2 such that F is (Col(κ, ν̄)×Add(κ, i))-

generic over V, T ∈ V[F ] and V[G][H] is a (Col(κ, ν)×Add(κ, γ̄))-generic extension
of V[F ] for some γ̄ ∈ {0, γ}. Then ν is a Σ2-reflecting cardinal in V[F ]. Let

Q̇ ∈ V[F ] be a (Col(κ, ν)×Add(κ, γ̄))-name for Q such that

1lCol(κ,ν)×Add(κ,γ̄) 
 “ Q̇ is a <κ-closed partial order”.

By Lemma 9.6, there is a cardinal λ > ν̄ such that the partial order

((Col(κ, ν)×Add(κ, γ̄)) ∗ Q̇)× Col(κ,<λ)

is forcing equivalent to Col(κ,<λ) in V[F ]. Proposition 7.3 and the weak homo-
geneity of Col(κ,<λ) imply that

(∃λ > ν̄)(∃P)
[

λ is a cardinal, P = Col(κ,<λ) and

1lP 
 “(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈

κ̌κ̌)〈x0, . . . , xn, y0, . . . , ym〉 /∈ [Ť ] ”
](16)

holds in V[F ]. We can apply Σ2-elementarity to see that (16) holds in Vν [F ] and
hence there is a cardinal λ∗ < ν that witnesses that (16) holds in V[F ]. There
is F∗ ∈ V[G][H] such that F∗ is Col(κ,<λ∗)-generic over V[F ] and V[G][H] is a
generic extension of V[F ][F∗] by a <κ-closed partial order. A final application of
Proposition 7.3 shows that

(∃x0, . . . , xn ∈
κκ)(∀y0, . . . , ym ∈

κκ) 〈x0, . . . , xny0, . . . , ym〉 /∈ [T ]

holds in V[G][H]. �

Note that the consistency strength of the above assumption is bounded by the
existence of a Mahlo cardinal. Another generalization of the proof of the absolute-
ness result mentioned above shows that the consistency strength of Σ1

2-absoluteness
under <κ-closed partial orders is exactly a Σ2-reflecting cardinal.

Lemma 9.8. Assume that generic absoluteness holds for Σ1
2-subsets of κκ under

<κ-closed forcings. Then κ+ is a Σ2-reflecting cardinal in L.

Proof. Let ν = κ+. First, assume, toward a contradiction, that there is an α < κ+

such that ν = (α+)L. By the results of Section 2, there is a tree T on κ × κ such
that p[T ] is equal to the set of all x ∈ κ2 with

〈H(κ+),∈〉 |= “ 〈κ,∈x〉 is a well-order of order-type β and there is a

surjection f : α −→ β that is an element of L”

in V and every generic extension of V by a <κ-closed forcing.
Let G be Col(κ, ν)-generic over V and x ∈ (κ2)V[G] such that 〈κ,∈x〉 is a well-

order of order-type ν. Then x /∈ p[T ]V[G] and there is a x0 ∈ (κκ)V with x0 /∈ p[T ]V,
a contradiction. Hence ν is inaccessible in L.

Let ϕ(u, v, w0, . . . , wn−1) be a ∆0-formula, z0, . . . , zn−1 ∈ Lν and µ > ν such
that

〈L,∈〉 |= (∀y) ϕ(x, y, z0, . . . , zn−1)
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holds for some x ∈ Lµ. By the results of Section 2, there is a tree T on κ× κ such
that p[T ] is the set of all x0 ∈

κ2 with

〈H(κ+),∈〉 |= (∃x, y)[x, y ∈ L ∧ ¬ϕ(x, y, z0, . . . , zn−1) ∧ ψ(x0, x, κ)]

in V and every generic extension of V by a <κ-closed forcing, where ψ ≡ ψ(u, v, w)
is the Σ1-formula defined by (12) in Section 6. Let G be Col(κ, µ+)-generic over V.
Then x ∈ H(κ+)V[G] witnesses that p[T ]V[G] 6= (κκ)V[G]. By Σ1

2-absoluteness, we
have p[T ]V 6= (κκ)V and there is an x∗ ∈ Lν with

〈Lν ,∈〉 |= (∀y) ϕ(x∗, y, z0, . . . , zn−1).

Since 〈Lν ,∈〉 is a Σ1-elementary submodel of 〈L,∈〉, we can conclude

〈Lν ,∈〉 |= (∃x)(∀y) ϕ(x, y, z0, . . . , zn−1).

�

Next, we present an argument due to Philipp Schlicht showing that it is consistent
that the class of all Σ1

1-subsets of κκ has the perfect subset property.

Proposition 9.9. Let ν > κ be an inaccessible cardinal and γ be a cardinal. If
G × H is (Col(κ,<ν) × Add(κ, γ))-generic over V and A is a Σ1

1-subset of κκ of
cardinality greater than κ in V[G][H], then A contains a perfect subset in V[G][H].

Proof. Let A = p[T ]. As above, there is a ν̄ < ν, i < 2 and F ∈ V[G][H] such
that F is Col(κ,<ν̄)×Add(κ, i)-generic over V, T ∈ V[F ] and V[G][H] is a generic
extension of V[F ] by a <κ-closed forcing. The set p[T ]V[F ] has cardinality κ in
V[G][H] and this means p[T ]V[F ] ( p[T ]V[G][H]. By Lemma 7.6, there is a ∃x-perfect
embedding into T in V[F ] and p[T ]V[G][H] contains a perfect subset in V[G][H] by
Proposition 7.5. �

As above, we can combine these results with Lemma 7.15.

Corollary 9.10. Let ν > κ be an inaccessible cardinal, γ be a cardinal and assume
that either γ > ν holds or ν is a Σ2-reflecting cardinal. If G×H is (Col(κ,<ν)×
Add(κ, γ))-generic over V and R is Σ1

1-well-ordering of a subset of κκ in V[G][H],
then the order-type of 〈dom(R), R〉 has cardinality at most κ in V[G][H]. �

10. Open problems

We close this paper with some questions motivated by the above results.
It is natural to ask whether Theorem 1.6 is optimal with respect to the complexity

of the coded subset in the generic extension of the ground model.

Question 10.1. Is there a partial order P with the following properties?

(1) P preserves cofinalities and cardinalities.
(2) If G is P-generic over V, then (κκ)V is a κ-Borel subset of κκ without a

perfect subset in V[G].

A positive answer to this question would imply that every subset of κκ is κ-Borel
in a cofinality-preserving generic extension of the ground model, because such a
forcing could be combined with almost disjoint coding. In the other direction, an
answer to the following question might provide a negative answer to Question 10.1.
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Question 10.2. Does ZFC (plus large cardinal axioms) prove nontrivial statements
about the possible lengths of well-orders of subsets of κκ whose graph is a κ-Borel
subset of κκ× κκ ?

A positive answer to Question 10.1 would also show that the absoluteness state-
ment of Theorem 5.2 holds for other classes of partial orders.

Question 10.3. Does the statement of Theorem 5.2 hold if we replace ΓV(P, G, κ)
by the class of all <κ-closed partial orders?

If we restrict the canonical well-order of L to κκ, then we get a well-order whose
graph is a ∆1

1-subset of κκ× κκ. Results of Sy-David Friedman and Peter Holy in
[7] show that there is a partial order that forces “2κ = κ+ ” and the existence of a
∆1

1-well-order of κκ. We may therefore ask whether the existence of a ∆1
1-well-order

of κκ is compatible with a failure of the (GCH) at κ.

Question 10.4. Does the existence of a well-order of κκ whose graph is a ∆1
1-subset

of κκ× κκ imply that 2κ = κ+ holds?

There are many open questions concerning the perfect subset property and weak-
enings of it. We present two interesting examples.

Question 10.5. Is it consistent that all Π1
1-subsets of κκ have the perfect subset

property?

Question 10.6. Is it consistent that every subset of κκ in L(P(κ)) either has
cardinality less than 2κ or contains a perfect subset?
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[19] Itay Neeman and Jindřich Zapletal. Proper forcings and absoluteness in L(R). Comment.
Math. Univ. Carolin., 39(2):281–301, 1998.
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