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Abstract. We investigate symmetric and asymmetric partition relations for linear orders with-

out choice, i.e. the existence of a subset in one of finitely many given order types which is homo-

geneous for a given colouring of the finite subsets of a linear order. More specifically, we consider
linear orders of the form 〈γ2, <lex〉, where γ is an ordinal and <lex denotes the lexicographical

order. We obtain stronger partition relations than what is possible with choice, for instance it

is consistent that 〈κ2, <lex〉 −→ (〈κ2, <lex〉)22 where κ<κ = κ > ω. Motivated by work of Erdős,
Milner and Rado, we prove various negative partition relations with finite exponents for linear

orders of the form 〈γ2, <lex〉. We use these results to determine which partition relations of the

forms 〈ω2, <lex〉 −→ (K,M)n and 〈ω2, <lex〉 −→ (
∨
ν<λKν ,

∨
ν<µMν)n for n ≤ 4 and linear

orders K,M,Kν ,Mν are consistent.
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1. Introduction

In this paper, we study Ramsey theory of linear orders without the axiom of choice in the
theory ZF. We work in this theory throughout the paper.

1.1. Some Ramsey theory. We begin with some definitions and facts from Ramsey theory.
Structures with finitely many relations (usually linear orders) are denoted as K,L,M and a struc-
ture is identified with its underlying set. We use greek letters to denote ordinals, i.e. a cardinal ν
is always assumed to be an ordinal.

Definition 1.1. Suppose that L,M are structures in the same signature and ν is a cardinal.
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(i) [L]M denotes the set of substructures of L which are isomorphic to M .
(ii) Suppose that f : [L]M → ν is a colouring and i < ν. A set H ⊆ L is (f, i)-homogeneous if

f(x) = i for all x ∈ [H]M .
(iii) Suppose that f : [L]M → ν is a colouring and i < ν. A set H ⊆ L is f -homogeneous if it is

(f, i)-homogeneous for some i < ν.

We will consider the following partition relations.

Definition 1.2. Suppose that K,L,M are structures and ν is a cardinal.

(i) L −→ (M)Kν states that for every colouring f : [L]K → ν, there is some f -homogeneous
H ∈ [L]M .

(ii) L −→ [M ]Kν states that for every f : [L]K → ν, there is some H ∈ [L]M with range(f �
[H]K) 6= ν.

(iii) L −→ (M0, . . . ,Mn−1)K states that for every f : [L]K → n, there are i < n and H ∈ [L]Mi

such that H is (f, i)-homogeneous.
(iv) L −→ (M0,0 ∨ . . . ∨ M0,k0 , . . . ,Mn−1,0 ∨ . . . ∨ Mn−1,kn−1

)K states that for every f : [L]K →
n, there are i < n, k 6 ki, and H ∈ [L]Mi,k such that H is (f, i)-homogeneous.

If L is a linear order and each Mi,j is an ordinal αi,j , then Definition 1.2(iv) is equivalent to
L −→ (α0, . . . , αn−1)K where αi := minj6ki αi,j for every i < n.

We consider partition relations with exponent at least 2, and Proposition 1.3 below motivates
the focus on linear orders. Let us first mention the case of exponent 1.

A structure L is indivisible if it satisfies L −→ (L)12. If L is an indivisible structure with only
one unary relation, then the relation is trivial, i.e. either full or empty. If L is any non-scattered
countable linear order, i.e. L contains a copy of Q, then L is indivisible. There are many interesting
indivisible structures, for instance some countable metric spaces [007D].

If on the other hand L is a structure with a single binary relation, L −→ (L)22 holds, and the
domain of L can be linearly ordered (by a linear order which may be unrelated to L), then L is
necessarily a linear order or trivial, by the following result. We will identify a relation with its
restriction to the set of tuples with pairwise different coordinates.

Proposition 1.3. Suppose that L is an infinite structure with a single binary relation and L −→
(L)22.

(1) If the domain of L can be linearly ordered (by a linear order which may be unrelated to
L), then L is a linear order or trivial, i.e. either full or empty.

(2) If the domain of L can be wellordered, then L is a wellorder with order type ω or a weakly
compact cardinal.

Proof. Note that L −→ (L)22 implies L −→ (L)2n for all n ∈ ω. For the first claim, suppose that
RL is the binary relation of L and R is a linear order on the domain of L. Let

f0(x, y) = 0 if [(x, y) ∈ R⇒ (x, y) ∈ RL] and [(y, x) ∈ R⇒ (y, x) ∈ RL]

f1(x, y) = 0 if [(x, y) ∈ R⇒ (y, x) ∈ RL] and [(y, x) ∈ R⇒ (x, y) ∈ RL]

and choose the value 1 otherwise in each case. Let f(x, y) = 2f0(x, y) + f1(x, y). The remaining
claims follow. �

This generalises to dimensions n > 3 as follows.

Definition 1.4. Let P (Sn) denote the power set of the symmetric group Sn.

(i) If L is a structure whose only relation is a linear order <L and t ∈ P (Sn), let L(t) denote the
structure whose only relation is the set of tuples (xσ(0), . . . , xσ(n−1)) with xσ(0) <L xσ(1) <L
· · · <L xσ(n−1) and σ ∈ t.

(ii) If M is a structure whose only relation is n-ary, then M is induced by a linear order if there
is a linear order L with the same domain as M and some t ⊆ P (n) with M = L(t).

Proposition 1.5. (1) If N is the structure of the natural numbers with the standard order
and t ∈ P (Sn), then N(t) −→ (N(t))mk for all k,m ∈ ω.

(2) Suppose that L is a structure whose only relation is n-ary relation for some n > 2, L −→
(L)n2 , and the domain of L can be linearly ordered. Then L is induced by a linear order.
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Proof. The first claim follows from Ramsey’s theorem. The second claim is proved as in Proposi-
tion 1.3. �

In this paper, we consider the following problem.

Problem 1.6. Suppose that n > 1. For which pairs (L,M) of linear orders is there a linear order
K with K −→ (L,M)n?

Since the answer depends on whether the axiom of choice holds, we consider Problem 1.6 in
the following contexts.

(1) For arbitrary linear orders, assuming the the axiom of choice.
(2) For linear orders on κκ, the set of functions f : κ → κ, assuming that κ<κ = κ, so in

particular µκ is wellordered for all µ < κ, but assuming that κκ is not wellordered.
(3) For arbitrary linear orders without the axiom of choice, and more specifically for linear

orders on κκ assuming that µ2 is not wellordered for some µ < κ.

For instance, the situation in 2 occurs in the model L(P (κ)) after forcing with Col(κ,< λ),
where λ > κ is inaccessible, and 3 is fulfilled for linear orders of size at least ℵ1 in models of the
axiom of determinacy.

The lexicographical order 〈κκ,<lex〉 is defined by x<lexy if x 6= y and x(α) < y(α) for the least
α < κ with x(α) 6= y(α).

Section 2 is concerned with partition relations for 〈γ2, <lex〉. Sections 3 and 4 is concerned
with asymmetric negative partition relations without choice. The combined results of Section 2
and Sections 3 and 4 determine which partition relations of the form 〈ω2, <lex〉 −→ (L,M)n with
n > 2 are consistent without choice.

The results in Sections 3 and 4 were proved by the last author together with the second author
and extend results from [014We2]. We would like to thank Paul Larson for letting us include his
Theorem 1.25.

1.2. Partition relations assuming the axiom of choice. We recall some known results on
partition relations with choice. Partition relations for linear orders, in contrast to well-orders,
were studied in [956ER, 963EH, 965Kr, 971E, 972EM, 974La].

Lemma 1.7. Suppose that ZFC holds. Then L 6−→(ω∗, ω)2 for all linear orders L.

Proof. The proof is similar to the proof of ω1 6−→(ω1)22 in [933Si]. We consider a well-order on the
domain of L and colour a pair depending on whether the well-order agrees with the natural order
on this pair. �

This strongly limits the possibilities for positive partition relations under the axiom of choice. In
particular, in any partition relation of the form K −→ (L,M)2, we can assume that L,M are well-
ordered, or that M is finite. Even for well-orders K,L,M , there are many difficult open questions
for these relations (see [010HL, 979No, 993B, 008Jo, 010Sc, 014We]). Instead of considering these
relations, we focus on linear orders L such that L,L∗ are not well-ordered.

For partition relations with exponent at least 3, similar ideas as in Lemma 1.7 led to the
following results.

Theorem 1.8. [965Kr, 971E] Suppose that ZFC holds. For any linear order L

(1) L 6−→(ω∗ + ω, 4)3 and
(2) L 6−→(ω + ω∗, 4)3.

The linear orders on the right side of the arrows are optimal, since ω −→ (ω)mn and ω∗ −→ (ω∗)mn
hold by Ramsey’s theorem.

A further problem is to determine the valid partition relations which allow finitely many order
types linked by a disjunction, instead of a single order type. For example, in the context of choice,
the occurence of ω∗ ∨ ω in a partition relation for a linear order states that there is an infinite
homogeneous set with arbitrary order type. The occurence of ω∗ + ω ∨ ω + ω∗ in a partition
relation for a linear order states that there is an infinite homogeneous set L such that L and L∗

are not well-ordered.

Theorem 1.9. [971E] Suppose that ZFC holds. Then L 6−→(ω∗ + ω ∨ ω + ω∗, 5)3 for all linear
orders L.
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Question 1.10. [971E] Suppose that ZFC holds. Is there a linear order L with L −→ (ω∗ + ω ∨
ω + ω∗, 4)3?

Let us mention two negative relations for 〈κ2, <lex〉 with choice. In the following proof, the
topology on κκ is given by the basic open sets Nt = {x ∈ κκ | t ⊆ x} for t ∈ <κκ. A perfect subset
of κκ is a set of the form [T ] = {x ∈ κκ | ∀α < κ(x � α ∈ T )}, where T ⊆ <κκ is a perfect tree, i.e.
a < κ-closed tree whose splitting nodes are cofinal in T .

Theorem 1.11. [908Be] Suppose that ZFC holds and κ<κ = κ. Then 〈κ2, <lex〉 6−→(〈κ2, <lex〉)12.

Proof. The counterexample is a κ-Bernstein set, i.e. a set A ⊆ κκ such that A and its complement
do not have perfect subsets. The set is constructed by diagonalization along an enumeration of
the perfect subsets of κκ. �

A meagre subset of κκ is a union of κ nowhere dense subsets of κκ, and a comeagre set is such
that its complement is meagre.

Theorem 1.12. Suppose that ZFC holds and κ<κ = κ. Then 〈κ2, <lex〉 6−→(〈κ2, <lex〉, 3)2.

Proof. Suppose that 〈Cα | α < 2κ〉 enumerates all perfect subsets of κ2. We choose an injective
sequence (xα, yα)α<2κ as follows. In step α, we find distinct xα, yα ∈ Cα with xα 6= xβ , xα 6= yβ ,
yα 6= xβ , and yα 6= xβ for all β < α. Let

G = {(xα, yα) | α < 2κ} ∪ {(yα, xα) | α < 2κ}.
Let f : [κ2]2 → 2 denote the characteristic function of G, i.e. f(x, y) = 1 if (x, y) ∈ G and
f(x, y) = 0 otherwise. Note that every order preserving injection f : 〈κ2, <lex〉 ↪→ 〈κ2, <lex〉 is
discontinuous in at most κ points for the following reason. Every point in which f is discontinuous
defines a nontrivial interval in 〈κκ,<lex〉, and the intervals from two distinct such points are are
disjoint. It follows that f is continuous on a perfect set. This implies that for every isomorphism
f : 〈κ2, <lex〉 → 〈κ2, <lex〉, there is a perfect set C such that f � C is a homeomorphism (see e.g.
[014L, Cor. 5.3]). Hence 〈κ2, G〉 contains no independent set isomorphic to 〈κ2, <lex〉 and no
complete subgraph of size 3. �

1.3. Partition relations assuming κ<κ = κ. We consider the lexicographical order 〈κ2, <lex〉
for cardinals κ such that κ<κ = κ, but κκ is not necessarily well-ordered. The following is our
first main result.

Theorem 1.13. Suppose that V is a model of ZFC and κ is regular. There is a symmetric
extension of V by a < κ-closed κ+-c.c. forcing in which 〈κ2, <lex〉 −→ (〈κ2, <lex〉)22 holds.

It follows from Theorem 3.3 and Theorem 3.1 that Theorem 1.13 cannot be extended to expo-
nent 3. For instance, the colouring which maps a triple to its splitting type does not have a large
homogeneous set. The splitting type is defined as follows.

Definition 1.14. Suppose that γ ∈ Ord.

(1) Let
δx,y = δ(x, y) = min{α < γ | x(α) 6= y(α)}

for x, y ∈ γγ.
(2) Let

∆x,y = ∆(x, y) = x � δ(x, y)

for x, y ∈ γγ.
(3) Let

β(h)
x,y = βh(x, y) = h(δ(x, y))

for x, y ∈ γγ and h : γ ↪→ |γ| one-to one.
(4) Suppose that A,B ∈ Mn(Z) and Ā = {Ai,j | i, j < n}, B̄ = {Bi,j | i, j < n}. Then A,B

are (order) isomorphic if A can be converted into B by a composition of a permutation of
the indices with an order isomorphism π : Ā↔ B̄.

(5) The branching type or splitting type of a tuple x0<lex . . . <lexxn−1 in 〈γ2, <lex〉 is the
isomorphism type of the matrix (∆xi,xj , <)i,j<n.

(6) 〈γ2, <lex〉 −→t (〈γ2, <lex〉)mn holds if for every colouring f : [γ2]m → n, there is a set
isomorphic to 〈γ2, <lex〉 which is separately homogeneous for f in each branching type.
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Therefore we consider sets which are separately homogeneous in each splitting type. Partition
relations −→t for the linear order 〈ω2, <lex〉 were considered by Blass [981Bl].

Lemma 1.15. Suppose that κ is a regular cardinal.

(1) The linear orders 〈κ2, <lex〉 and 〈κκ,<lex〉 are bi-embeddable.
(2) The linear orders 〈ω2, <lex〉, 〈ωω,<lex〉, and 〈R, <〉 are bi-embeddable.

Proof. The linear order 〈κκ,<lex〉 is embeddable into 〈κ2, <lex〉 by the map f : κκ → κ2, where
f((αi)i<κ) is the concatenation of 1(αi)a0 for all i < κ.

The linear order 〈R, <〉 is isomorphic to 〈ωω,<lex〉 · 〈Z, <〉. �

Since these linear orders are bi-embeddable, they satisfy the same partition relations.

Theorem 1.16. [981Bl] 〈R, <〉 −→t 〈R, <〉mn holds for continuous colourings for all m,n.

Proof. This is proved in [981Bl] using the Halpern-Läuchli theorem. To see that this holds without
choice, suppose that a real x codes the continuous colouring. We apply Blass’ theorem in L[x] and
obtain a closed set coded by a tree T . The statement that [T ] is homogeneous up to the branching
type for the colouring coded by x is a Π1

1 statement in x and T , and hence this holds in V . �

For uncountable cardinals κ, the analogue of Blass’ theorem is connected with large cardinal
properties of κ.

Theorem 1.17. If κ > ω and 〈κ2, <lex〉 −→t (κ∗ ∨ κ)32, then κ is weakly compact.

Proof. If f : [κ]2 → 2 is a colouring, we define gf : [κ2]3 → 2 as follows. Suppose that x, y, z ∈ κ2
are distinct and A = {x, y, z}. Let ∆A := {∆(x, y),∆(y, z),∆(z, x)}. Note that |∆A| = 2. Let
gf (A) := f(∆A). Suppose that H ⊆ κ2 is homogeneous for gf up to the branching type and
that H is isomorphic to κ∗ or to κ. Then I := {∆(x, y) | x, y ∈ H} has order type κ and is
homogeneous for f . �

Note that 〈κ2, <lex〉 −→t (κ∗ ∨ κ)22 does not imply that κ is weakly compact, by Theorem 1.13.

Question 1.18. (1) Is it consistent that κ = κ<κ > ω and 〈κ2, <lex〉 −→t (〈κ2, <lex〉)mn holds
for all m,n?

(2) If κ = κ<κ > ω and 〈κ2, <lex〉 −→t (〈κ2, <lex〉)32, is κ measurable?

1.4. Partition relations in models of determinacy. Partition relations for cardinals in models
of determinacy have been intensively studied. Let us recall some results.

Definition 1.19. (1) The strong partition property holds for a cardinal κ if κ −→ (κ)κµ for all
µ < κ.

(2) Let θ denote the supremum of the ordinals α such that there is a surjection f : P (ω) →−→ α.

Note that the strong partition property for ω is equivalent to the statement that all subsets of
[ω]ω are Ramsey.

Theorem 1.20. (1) [976Pr] The axiom of determinacy of games of reals ADR implies that ω
has the strong partition property.

(2) Martin [003Ka, Theorem 18.12], [004JM, 990Ja, 981K] The axiom of determinacy AD im-
plies that ω1 has the strong partition property.

(3) [008KW, 983KW] Suppose that V = L(R). Then AD holds if and only if there are unboundedly
many strong partition cardinals below θ.

It is open whether the strong partition property for ω follows from AD [003Ka, Question 27.18]
and what is its consistency strength [003Ka, Question 11.16]. The strong partition property for
ω1 has more consistency strength than the strong partition property for ω by the next result.

Theorem 1.21. (1) [977Ma] It is consistent from an inaccessible cardinal that ω has the strong
partition property.

(2) [970Kl] Every uncountable cardinal with the strong partition property is measurable.

We ask which partition relations for linear orders hold if AD holds and V = L(R). Note that
the strong partition property for κ implies that 〈ω12, <lex〉 is indivisible.
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Theorem 1.22. Suppose that κ has the strong partition property. Then 〈κ2, <lex〉 −→ (〈κ2, <lex〉)12
holds.

Proof. The claim follows from the strong partition property by identifying elements of [κ]κ with
their characteristic functions in 2κ. �

We ask if this generalises to exponent 2.

Question 1.23. Suppose that the axiom of determinacy holds in V = L(R). Does this imply
〈ω12, <lex〉 −→ (〈ω12, <lex〉)22?

1.5. Embedding linear orders into 〈κ2, <lex〉. Every linear order of size κ embeds into 〈κ2, <lex〉
by a result of Hausdorff (see [949Ha, Chapter 6, Section 8]). If 〈κ,<L〉 is a linear order, we map
each γ < κ to the characteristic function in κ2 of the set of predecessors of γ in <L with α < γ.

The negative partition results for suborders of 〈κ2, <lex〉 in the following sections suggest the
question whether every linear order embeds into 〈κ2, <lex〉 for some cardinal κ. In models such
that every linear order embeds into 〈κ2, <lex〉 for some cardinal κ, Theorem 4.16 and Theorem
4.26 hold for all linear orders.

Let P denote the forcing P (ω) ordered by inclusion up to finite error. We asked whether in a
P-generic extension of L(R), there is a linear order which does not embed into 〈κ2, <lex〉 for any
cardinal κ, if L(R) is a model of determinacy. This was solved by Paul Larson in unpublished
work (see Theorem 1.25 below).

The following is stated in [011CK, Section 1.1] without a proof.

Lemma 1.24. Suppose that there is a measurable cardinal above ω Woodin cardinals. Let (x, y) ∈
E0 if x(n) = y(n) for all but finitely many n, for x, y ∈ ωω. Then there is no linear order in L(R)
of the equivalence classes of E0.

Proof. Suppose that in L(R), φ(x, y, z, α) defines a linear order on the equivalence classes of E0,
where z ∈ ω2 and α ∈ Ord. Let Q denote Cohen forcing. Suppose that (x, y) is Q2-generic over
L(R).

There is an elementary embedding L(R) ↪→ L(R)V [x,y] which fixes the ordinals by [001NZ,
Theorem 1] . Therefore in L(R)[x, y], φ defines a linear order on the equivalence classes of E0

from α. Suppose that (p, q) 
VQ2 φL(R)(x, y, z, α). Suppose that (x̄, x) ∈ E0, (ȳ, y) ∈ E0, p ⊆ ȳ,

and q ⊆ x̄. Then (p, q) 
VQ2 φL(R)(ȳ, x̄, z, α). Since the definition of the linear order from α is

invariant under E0, this implies (p, q) 
VQ2 φL(R)(y, x, z, α), contradicting the assumption. �

Let 〈ωω,<〉 denote ωω partially ordered pointwise.

Theorem 1.25 (Paul Larson). Suppose that there is a measurable cardinal above ω Woodin
cardinals and that U is P-generic over L(R). Then in L(R)[U ], the linear order 〈ωω/U,< /U〉
does not embed into 〈κ2, <lex〉 for any cardinal κ.

Proof. Forcing with P preserves measurable cardinals by the Levy-Solovay theorem [010Cu, Theo-
rem 9.6] and Woodin cardinals by [000HW]. Therefore M#

ω is absolute between V and V [G], where
G is generic over V for a forcing in Vδ, where δ is the least Woodin cardinal. Then the supremum
of the Woodin cardinals of Mω is countable. Therefore Mω satisfies the assumption Aκ in [001NZ,
Theorem 1], where κ is below the least Woodin cardinal. Hence forcing with P does not add new
sequences of ordinals, and in particular 〈κ2, <lex〉 = 〈κ2, <lex〉V [G] for any P-generic filter G over
V .

The theories of L(R) and L(R)V [H] are both determined by Mω by [010St, Theorem 7.19]
and hence equal, where H is Col(ω,< κ)-generic over V and κ is the least inaccessible cardinal.
Therefore we can apply [003DT, Corollary 7.4] to any colouring in L(R).

Suppose that p ∈ P forces that ḟ is such an embedding. Let P/p = {q ∈ P | q 6 p}. Let

g : [ω]ω × (P/p)→ 2, g(x, q) = 0 if q decides ḟ(x), and g(x, q) = 1 otherwise.
There is an infinite set A ⊆ ω and a sequence (ci)i∈ω of subsets of ω of size 2 such that g

is constant on [A]ω ×
∏
i ci by [003DT]. It follows from the definition of g that the value is 0.

Therefore in L(R), there is a linear order on the equivalence classes of E0, contradicting Lemma
1.24. �
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Note that if there is a supercompact cardinal, then every Ramsey ultrafilter is P-generic over
L(R) by a result of Todorcevic [998Fa, Theorem 4.9].

2. Partition relations for 〈κκ,<lex〉

We consider the linear orders 〈κκ,<lex〉 and 〈κ2, <lex〉 for cardinals κ with κ<κ = κ > ω. These
two linear orders are bi-embeddable and hence satisfy the same partition relations.

Definition 2.1. (1) A perfect subtree of <κκ is a < κ-closed subtree of <κκ whose branching
nodes are cofinal.

(2) A perfect subset of κκ is a set of the form [T ], where T is a perfect subtree of <κκ.

We identify [κ2]n with the set of injective n-tuples (x0, . . . , xn−1) in κ2 with x0<lex . . . <lexxn−1.

2.1. Partition relations for 〈ω2, <lex〉. We first consider the linear order 〈ω2, <lex〉. The follow-
ing is a variant of a theorem of Mycielski and Taylor.

Lemma 2.2. If f : [ω2]m → ω2 is Baire measurable, then there is a perfect set C ⊆ ω2 such that
f � [C]m is continuous.

Proof. Suppose that (Un)n∈ω is a sequence of open dense subsets of (ω2)n such that f is continuous
on their intersection. We construct a family (ts)s∈2n, n∈ω by induction on n such that

(1) ts ⊆ tu if s ⊆ u and
(2) Nt0 × · · · ×Ntm−1

⊆ Un if t0, . . . , tm−1 ∈ ωn and ti 6= tj for all i < j < m.

This is achieved by enumerating the tuples (t0, . . . , tm−1) with t0, . . . , tm−1 ∈ ωn and ti 6= tj for
all i < j < m in step n and shrinking the sets Ut for t ∈ ωn successively for each tuple. Let T
denote the downwards closure of the set of ts for s ∈ 2<ω. Let C = [T ]. Then f is continuous on
the set of m-tuples of distinct elements of C, and thus on [C]m, by the construction. �

Theorem 2.3. Suppose that all sets of reals have the property of Baire. Then 〈ω2, <lex〉 −→
(〈ω2, <lex〉)2n for all n.

Proof. Note that 〈ω2, <lex〉 −→ (〈ω2, <lex〉)22 implies 〈ω2, <lex〉 −→ (〈ω2, <lex〉)2n for all n ∈ ω.
Suppose that f : (ω2)2 → 2 is Baire measurable. There is a perfect set C such that f � [C]m

is continuous by Lemma 2.2. Since C is order isomorphic with 〈ω2, <lex〉, we can assume that
C = ω2. We can assume that no interval is homogeneous for f in colour 0.

Using this assumption, we construct a family (ts)s∈2n, n∈ω by induction on n such that

(1) ts ⊆ tu if s ⊆ u and
(2) f [Nt

sa0
×Nt

sa1
] = {1} for all s ∈ 2n.

This is possible since f is continuous. Let T denote that downwards closure of the set of ts for
s ∈ 2<ω. Then f � [T ]2 is constant with value 1. �

Note that the assumption in Theorem 2.3 is consistent relative to ZF by [984Sh]. The consis-
tency also follows as a special case of the result for cardinals κ with κ<κ = κ below.

The next two results are consequences of Theorem 1.16 and Lemma 2.2. The following result
is used together with the negative partition relations in Section 3 to determine the consistent
partition relations for 〈ω2, <lex〉 with exponent 3.

Theorem 2.4. Suppose that all sets of reals have the property of Baire. Then

(1) 〈ω2, <lex〉 −→ (〈ω2, <lex〉, 1 + ω∗ ∨ ω + 1)3.
(2) 〈ω2, <lex〉 −→ (〈ω2, <lex〉, n)3 for all natural numbers n.

Proof. Suppose that f : [〈ω2, <lex〉]3 → 2 is a colouring. We can assume that f is continuous
by Lemma 2.2. Moreover we can assume that the colour f(~x) of a triple ~x depends only on the
splitting type of ~x by Theorem 1.16. Let Xi for i = 0, 1 denote the set of x ∈ ω2 such that
x(n) = i for at most one n. Then X0 and X1 have order types ω+ 1 and 1 +ω∗, respectively and
are homogenous. If the colour of the splitting types for triples in X0 and in X1 is 0, then there is
a homogeneous set of order type 〈ω2, <lex〉 in colour 0.

Otherwise one of the splitting types has colour 1. In this case, there is a homogeneous set in
colour 1 of order type 1 + ω∗ or ω + 1. This shows (1).

(2) follows directly from (1). �
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The following results are used in Section 4 to determine the consistent partition relations for
〈ω2, <lex〉 with exponent 4.

Theorem 2.5. Suppose that all sets of reals have the property of Baire. Then 〈ω2, <lex〉 −→
(ω + 1)mn for all natural numbers m and n.

Proof. Suppose that there is a colouring of [ω2]m in n colours. By lemma 2.2 and theorem 1.16
we may assume that the colour is given by the splitting-type. Consider the set

S := {x ∈ ω2 | |{n < ω | x(n) = 0}| < 2}.
S has order-type ω + 1 and [S]m only contains one splitting-type, the one where ∆(ti, ti+1) v
∆(ti+1, ti+2) whenever i + 2 < m where 〈ti | i < m〉 is an order-preserving enumeration of an
element of [S]m. So S provides what was demanded. �

Note that the above is also a theorem in ZFC, cf.[970Ga, 986MP]. As stated before, a further
problem is to determine the relations which allow finitely many order types linked by a disjunction,
instead of a single order type. For example, assuming a fragment of choice, the occurence of
ω∗ ∨ ω in a partition relation for a linear order states that there is an infinite homogeneous set
with arbitrary order type. The occurence of ω∗ + ω ∨ ω + ω∗ in a partition relation for a linear
order states that there is an infinite homogeneous set such that L and L∗ are not well-ordered.

Theorem 2.6. Suppose that all sets of reals have the property of Baire. Then 〈ω2, <lex〉 −→
(1 + ω∗ + ω + 1 ∨ m+ ω∗ ∨ ω + n, 6)4 for all natural numbers m and n.

Proof. Let m,n < ω be given and assume towards a contradiction that f is a colouring of [ω2]4

in two colours not admitting any homogeneous set of a relevant order-type. By Lemma 2.2 and
Theorem 1.16 we may assume without loss of generality that the f depends only on the splitting
type. Consider the six possible splitting types of a quadruple {t0, . . . , t3}<lex

. We write lt(s) for
the length of s.

(1) ∆(t0, t1) v ∆(t1, t2) v ∆(t2, t3),
(2) ∆(t2, t3) v ∆(t1, t2) v ∆(t0, t1),
(3) ∆(t0, t1) v ∆(t2, q3) v ∆(t1, t2),
(4) ∆(t2, t3) v ∆(t0, t1) v ∆(t1, t2),
(5) ∆(t1, t2) v ∆(t0, t1),∆(t2, t3) and lt(∆(t2, t3)) 6 lt(∆(t0, t1),
(6) ∆(t1, t2) v ∆(t0, t1),∆(t2, t3) and lt(∆(t0, t1)) 6 lt(∆(t2, t3).

Since it is easy to define arbitrarily large finite sets which either only contain quadruples of
type (1) or (2) we may assume without loss of generality that f(T ) = 0 for any such quadruple
T . Consider the following sets:

Z := {x ∈ ω2 ||{k < ω | x(k) 6= x(0)}| < 2},
M := {x ∈ ω2 ||{k ∈ ω \m | x(k) = 1}| < 2 ∧ ∀k < m(x(k) = 0→ ∀l ∈ ω \ k : x(l) = 0)},
N := {x ∈ ω2 ||{k ∈ ω \ n | x(k) = 0}| < 2 ∧ ∀k < n(x(k) = 1→ ∀l ∈ ω \ k : x(l) = 1},
H0 := {x ∈ ω2 |∀i < 6∀k < ω(x(6k + i) = x(i)) ∧ ∃i < 2(x(3i) = x(3i+ 1) = x(3i+ 2) = 0)

∧ x(0) = 0→ x(1) = x(2) = 0 ∧ ∃i < 3(x(i) = 0)},
H1 := {x ∈ ω2 |∀i < 6∀k < ω(x(6k + i) = x(i)) ∧ ∃i < 2(x(3i) = x(3i+ 1) = x(3i+ 2) = 1)

∧ x(0) = 1→ x(1) = x(2) = 1 ∧ ∃i < 3(x(i) = 1)}.
Note that Z has order-type 1 + ω∗ + ω + 1, both H0 and H1 are sextuples and M has order-type
m + 1 + ω∗, even more than neccessary as does N which has type ω + n + 1. Note that in [Z]4

only the splitting-types (1),(2),(5) and (6) appear.
Consider Z. Since the splitting-types (1) and (2) got colour 0 and there is a T ∈ [Z]4 with

f(T ) = 1 either splitting-type (5) or (6) get colour 1.
Now consider M , only the splitting-types (1),(2) and (3) appear in [M ]4. Since both the

splitting-types (1) and (2) get colour 1 and by assumption there is a T ∈ [M ]4 we may assume
that quadruples of the splitting-type (3) get colour 1.

Simlarly consider N , only the splitting-types (1),(2) and (4) appear in [N ]4. Since both the
splitting-types (1) and (2) get colour 1 and by assumption there is a T ∈ [N ]4 we may assume
that quadruples of the splitting-type (4) get colour 1.
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But now notice that [H0]4 only contains the splitting types (3),(4) and (5) while [H1]4 only
contains the splitting types (3),(4) and (6). So either H0 or H1 is a sextuple which is homogeneous
in colour 1. �

Note that in contrast to Theorem 2.5 the above theorem fails under ZFC by Theorem 4.22.

Theorem 2.7. Suppose that all sets of reals have the property of Baire. Then 〈ω2, <lex〉 −→
(ω + 1 + ω∗ ∨ 1 + ω∗ + ω + 1, 5)4 holds.

Proof. Suppose that there is a colouring f with no homogeneous sets of order types ω + 1 + ω∗

or 1 + ω∗ + ω + 1 in colour 0 and no homogeneous sets of size 5 in colour 1. We can assume that
the colour of a tuple depends only on the splitting type by Lemma 2.2 and Theorem 1.16.

If tuples (q0, q1, q2, q3) with q0<lexq1<lexq2<lexq3 and type ∆q0,q1 < ∆q1,q2 < ∆q2,q3 have colour
1, then any set {qi | i < 5} with q0<lexq1<lexq2<lexq3<lexq4 and ∆q0,q1 < ∆q1,q2 < ∆q2,q3 < ∆q3,q4

is homogeneous in colour 1, contrary to our assumption. So the tuples of this type have colour
0. For the same reason, the tuples (q0, q1, q2, q3) with q0<lexq1<lexq2<lexq3 and type ∆q3,q2 <
∆q2,q1 < ∆q1,q0 have colour 0.

Let z(n) = 0 if n is even and z(n) = 1 if n is odd. We consider the sets

X :={x ∈ ω2 | ∀i < j [(x(i) < z(i)⇒ x(j) = 0) ∧ (x(i) > z(i)⇒ x(j) = 0)]}
Y :={y ∈ ω2 | |{n | y(n) 6= y(0)}| 6 1}

s with order types ω + 1 + ω∗ and 1 + ω∗ + ω + 1, respectively. Consider the following types of
triples (q0, q1, q2) with q0<lexq1<lexq2.

(1) (a) ∆q1,q2 < ∆q2,q3 < ∆q0,q1

(b) ∆q1,q2 < ∆q0,q1 < ∆q2,q3

(2) (a) ∆q0,q1 < ∆q2,q3 < ∆q1,q2

(b) ∆q2,q3 < ∆q0,q1 < ∆q1,q2

There is no triple in [X]3 with a type in (1) and no triple in [Y ]3 with a type in (2). This implies
that some type in (1) and some type in (2) has colour 1. If the types (1)(a) and (2)(a) have colour
1, then any set {qi | i < 5} with the type ∆q1,q2 < ∆q3,q4 < ∆q2,q3 < ∆q0,q1 is homogeneous in
colour 1. All other cases are symmetric, and in each case we obtain a homogeneous set of size 5
in colour 1. �

The Theorem above is not provable in ZFC by Theorem 4.22 or Theorem 1.9. The following is
analogous to Lemma 2.2 for Lebesgue measurable colourings.

Lemma 2.8. Suppose that the Axiom of Dependent Choices DC holds. Suppose that f : [ω2]m → ω2
is a colouring such that f � A is Lebesgue measurable for all closed sets A ⊆ [ω2]n. Then there is
a perfect set C ⊆ ω2 such that f � [C]m is continuous.

Proof. We construct a family (Ts)s∈2n, n∈ω of perfect subtrees of <ω2 by induction on n such that

(1) Ts ⊆ Tu if s ⊆ u,
(2) Ts, Tu have the same ith splitting levels for all i 6 n if s ⊆ u and s ∈ 2n, and
(3) If s0, . . . , sm−1 ∈ ωn and si 6= sj for all i < j < m, then there is some u ∈ 2n such that

f [[Ts0 ]× · · · × [Tsm−1
]] ⊆ Nu.

If A ⊆ (ω2)n has positive measure, then there are perfect sets C0, . . . , Cn−1 with
∏
i Ci ⊆ A

by [967My, Theorem 1]. This is used in the successor step as follows. We enumerate the tuples
(s0, . . . , sm−1) with s0, . . . , sm−1 ∈ ωn such that each si is on the nth splitting level of some tree
Ts for s ∈ 2n and si 6= sj for all i < j < m in step n. We shrink the trees Ts above si for each
i to perfect subtrees, successively for each tuple, and thus preserve the kth splitting levels for all
k 6 n. Let T denote the tree of nodes s such that s ∈ Tu for some n and some u ∈ 2n, and s is
below the nth splitting level of Tu. Let C = [T ]. Then f is continuous on the set of m-tuples of
distinct elements of C, and thus on [C]m, by the construction. �

Theorem 2.9. Suppose that the Axiom of Dependent Choices DC holds and that all sets of reals
are Lebesgue measurable. Then the conclusions of Theorem 2.3, Theorem 2.4, and Theorem 2.7
hold.

Proof. The proofs are identical to those for Baire measurable colourings, using Lemma 2.8 instead
of Lemma 2.2. �
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2.2. Partition relations for 〈κ2, <lex〉. We now consider the analogous questions for 〈κ2, <lex〉.

Lemma 2.10. Suppose that κ is regular and V is a model of ZFC.

(1) Suppose that G is Add(κ, 1)-generic over V . Then in V [G], for every function f : [κ2]n →
κ2 definable from ordinals, there is a perfect set C such that f � [C]n is continuous.

(2) Suppose that H is Add(κ, λ)-generic over V and λ > κ+. Then in V [H], for every function
f : [κ2]n → κ2 definable from ordinals and subsets of κ, there is a perfect set C such that
f � [C]n is continuous.

Proof. For the first claim, note that there is a perfect set C of Add(κ, 1)-generics in V [G] such
that the quotient forcing in V [G] of each n-tuple ~x = (x0, . . . , xn−1) of distinct elements of
C is equivalent to Add(κ, 1) by [014Sc]. Suppose that φ(~x, α, t) holds in V [G] if and only if
f(~x) � α = t, where φ is a formula with an ordinal parameter, which we omit. Then V [G] �

φ(~x, α, t)⇔ 1 
V [~x]
Add(κ,1) φ(~x, α, t) for all ~x ∈ [C]n. Therefore f(~x) ∈ V [~x] for all ~x ∈ [C]n.

Let ψ(~x, α, t) denote the formula 1 
V [~x]
Add(κ,1) φ(~x, α, t). Let σ denote an Add(κ, 1)n-name for

the n-tuple of Add(κ, 1)-generic reals, so that σ~x = ~x for all ~x ∈ [C]n.

Claim 2.11. f � [C]n is continuous.

Proof. If ~x ∈ [C]n and α < κ, then there is a condition p ∈ Add(κ, 1)n with p ⊆ ~x and p 
VAdd(κ,1)n
ψ(σ, α, f(~x) � α). So f(~x) � α = f(~y) � α for all ~y ∈ C with p ⊆ ~y. This proves that f � [C]n is
continuous. �

The proof of the second claim is analogous. We force with Add(κ, 1)n over an intermediate
model which contains the parameters and whose quotient forcing is equivalent to Add(κ, λ). �

Theorem 2.12. Suppose that κ is regular and V is a model of ZFC.

(1) Suppose that G is Add(κ, 1)-generic over V . Then in V [G]

〈κ2, <lex〉 −→ (〈κ2, <lex〉)2n
holds for all n and for all colourings f : [κ2]2 → 2 definable from ordinals.

(2) Suppose that H is Add(κ, λ)-generic over V and λ > κ+. Then in V [G]

〈κ2, <lex〉 −→ (〈κ2, <lex〉)2n
holds in HODP (κ) and therefore in L(P (κ)) for all n.

Proof. It is sufficient to prove 〈κ2, <lex〉 −→ (〈κ2, <lex〉)22. Suppose that f : [κ2]2 → 2 is a colouring
definable from ordinals in V [G]. There is a perfect set C such that f � [C]2 is continuous by
Lemma 2.10. Since 〈C,<lex〉 is order isomorphic to 〈κ2, <lex〉, we can assume that f is continuous.

We can assume that no interval in 〈κ2, <lex〉 is homogeneous for f in colour 0. Using this
assumption, we construct a family (ts)s∈2α, α<κ by induction on α such that

(1) ts ⊆ tu if s ⊆ u and
(2) f [Nt

sa0
×Nt

sa1
] = {1} for all s ∈ 2α.

The successor step is straightforward, since f is continuous. If u ∈ 2β and β < κ is a limit, let
tu =

⋃
s(u ts. Let T denote the downwards closure of the set of ts for s ∈ 2<κ. Then f � [T ]2 is

constant with value 1.
The proof of the second claim is analogous from the second claim in Lemma 2.10. �

The size of 2κ is measured by the ordinal θκ in contexts without choice.

Definition 2.13. Let θκ denote the supremum of the ordinals α such that there is a surjection
f : P (κ) →−→ α.

The following result shows that the partition relation 〈κ2, <lex〉 −→ (〈κ2, <lex〉)2n is not linked
to the size of θκ.

Corollary 2.14. Suppose that κ is regular and V is a model of ZFC.

(1) There is a < κ-closed forcing P such that for any P-generic filter G over V , HOD
V [G]
P (κ)

and L(P (κ))V [G] satisfy
(a) κ = κ<κ,
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(b) θκ = κ+, and
(c) 〈κ2, <lex〉 −→ (〈κ2, <lex〉)2n.

(2) For any cardinal λ, there is a < κ-closed forcing Q such that for any Q-generic filter H

over V , HOD
V [H]
P (κ) and L(P (κ))V [G] satisfy

(a) κ = κ<κ,
(b) θκ > λ, and
(c) 〈κ2, <lex〉 −→ (〈κ2, <lex〉)2n.

Moreover HOD
V [G]
P (κ) and L(P (κ))V [G] satisfy dependent choice DCκ for sequences of length κ.

Proof. For the first claim, we force GCH at κ with Add(κ+, 1) and then apply Theorem 2.12 for
λ = κ+.

For the second claim, we force θκ > λ with the forcing P given by [012Lü, Theorem 1.5] and
again apply Theorem 2.12 for λ = κ+. Forcing with P followed by < κ-closed forcing does not
decrease θκ.

The model HOD
V [G]
P (κ) in Theorem 2.12 is closed under κ-sequences in V [G] and therefore satisfies

DCκ. Every element of L(P (κ))V [G] is definable in L(P (κ))V [G] from an ordinal and a subset of κ.
To prove DCκ in L(P (κ))V [G] for a given relation, we construct a witnessing sequence in V [G] with
the ordinals in the definitions chosen as minimal. This sequence is an element of L(P (κ))V [G]. �

3. Negative partition relations for triples

Theorem 2.3 cannot be improved to exponent 3 for asymmetric partition relations.

Theorem 3.1. 〈α2, <lex〉 6−→(ω∗, ω)3 for all ordinals α.

Proof. Suppose that x, y, z ∈ α2 with x<lexy<lexz. Let f(x, y, z) = 0 if ∆x,y < ∆y,z and let
f(x, y, z) = 1 otherwise. Suppose that H is homogeneous in colour 0 with order type ω∗ and that
(xi)i∈ω is the decreasing enumeration of H. Let αi = ∆xi,xi+1

. Then (αi)i∈ω is decreasing. The
argument for colour 1 is symmetric. �

Theorem 2.4 shows that Theorem 3.1 is optimal. The relation 〈ω2, <lex〉 −→ (〈ω2, <lex〉)2n holds
for all n if all sets of reals have the property of Baire by Theorem 2.3. This cannot be improved
to exponent 3 in symmetric partition relations (see Theorem 3.3 below).

Lemma 3.2. If a regular initial ordinal κ embeds into 〈α2, <lex〉, then κ 6 α.

Proof. Suppose that this were false. Let κ be the smallest counterexample. Then κ is regular and
there is an α < κ such that κ embeds into 〈α2, <lex〉 via an embedding which we call ι. Recall
that in 〈α2, <lex〉, every strictly ascending sequence 〈rν | ν < γ〉 has a supremum. This is because
the supremum can simply be defined as the function mapping an ordinal β < α to limν<γ rν(β).
These limits exist, since if there were a β < α on which this were not the case, then there would be
the least one having this property, thus contradicting the assumption that 〈rν | ν < γ〉 is strictly
ascending.

Consider the supremum s of the image of κ under ι in 〈α2, <lex〉. Since κ is regular, it is in
particular a limit ordinal, so s is not attained, and κ even embeds intoX := 〈{t ∈ α2 | t<lexs}, <lex〉
via ι. Note that the cofinality of 〈α2 \ {s}, <lex〉 is equal to γ := cof(α) < κ by the following
argument. Let 〈ξν | ν < γ〉 be cofinal in α. For ν < γ, we define fν : α −→ 2, where

fν(β) =

{
s(β) if β < ξν ,

0 otherwise.

Then 〈fν | ν < γ〉 is cofinal in X and has order type γ. Let ρν := otyp(ι“κ ∩ fν) for all ν < γ.
Then the sequence 〈ρν | ν < γ〉is cofinal in κ, contradicting the assumption that κ is regular. �

Theorem 3.3. Let κ be an infinite initial ordinal and α < κ+. Then 〈α2, <lex〉 6−→(2 + κ∗ ∨
ω, ω∗ ∨ κ+ 2)m for all m > 3.

Proof. Suppose that m = 3. Let h : α ↔ κ be a bijection and β(x, y) := h(lt(∆(x, y))) for
x, y ∈ α2. We consider the following colouring f : [α2]3 → 2. If x, y, z ∈ α2 and x<lexy<lexz, let
f({x, y, z}) = 0 if β(y, z) < β(x, y).
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In the first case, suppose that X = {xν | ν < κ + 2} ∈ [α2]2+κ
∗

and that xγ < xβ when-
ever β < γ < κ + 2. In the first subcase, suppose that S stabilises at s ∈ <α2 from γ < κ
onwards. Then Lemma 3.2 implies that |{lt(∆(xν+1, xν)) | ν ∈ κ \ γ}| = κ. Since h is one-to-one,
|{β(xν+1, xν) | ν ∈ κ \ γ}| = κ, so we may choose a ξ ∈ κ \ γ with β(xξ+1, xξ) > h(lt(s)). Then
f({xκ+1, xξ+1, xξ}) = 1. Now suppose that S does not stabilise. The sequence 〈∆(xν , x0) | ν < κ〉
stabilises at some s. Since S does not stabilise, Lemma 3.2 implies that |{lt(∆(xκ+1, xν)) | ν <
κ}| = κ. Since h is one-to-one we have |{β(xκ+1, xν) | ν < κ}| = κ, so we may choose a ξ < κ
with β(xκ+1, xξ) > h(lt(s)). Then f({xκ+1, xξ, x0}) = 1.

In the second case, consider a set Y = {xi | i < ω} ∈ [α2]ω with xm < xn for m < n < ω.
Assume towards a contradiction that Y were homogeneous in colour 0. Then for any i < ω, we have
β(xi+1, xi+2) < β(xi, xi+1), by considering the triple {xi, xi+1, xi+2}. Then 〈β(xi, xi+1) | i < ω〉
is an infinite decreasing sequence of ordinals, a contradiction.

The remaining cases in the proof for m = 3 are analogous.
The proof for m > 4 works similarly by considering the following colouring f : [α2]m → 2. If

~x ∈ [α2]m and x0 <lex ... < xm−1, let f(~x) = 0 if β(x0, x1) < β(xm−2, xm−1). �

Unlike in other cases, assuming the Axiom of Choice, there is a linear ordering, even a well-
ordering, satisfying the partition relation in Theorem 3.3. In fact, by the Erdős-Rado-Theorem

[956ER, Theorem 39] the cardinal (2c)
+

is such a well-ordering and even (22
κ

)
+ −→ (κ+)3κ. We do

not know whether in some model of ZFC, the partition property considered in Theorem 3.3 holds
for a linear order L such that neither ω2 6 L nor ω∗2 6 L.

The following result shows that the previous theorems solve the case of triple-colourings in the
Cantor space completely, given that all sets of reals have the property of Baire.

We will only consider partition relations such that in no disjunction there are linear orders K,L
with K ≤ L, since in this case L can be omitted without changing the truth value of the partition
relation.

Theorem 3.4. Suppose that the principle of dependent choices DC holds true and all sets of reals
have the property of Baire. Suppose that Kµ and Lν are suborders of 〈ω2, <lex〉〉 for all µ < κ and
ν < λ. Then the partition relation

〈ω2, <lex〉 −→ (
∨
ν<κ

Kν ,
∨
ν<λ

Mν)3

holds true if and only if one of the following cases applies.

(i) Kξ ≤ ω + 1 and Kρ 6 1 + ω∗ for some ξ, ρ < κ,
(ii) Mξ ≤ 1 + ω∗ and Mρ ≤ ω + 1 for some ξ, ρ < λ,
(iii) Kξ,Mρ ≤ ω + 1 for some ξ < κ, ρ < λ,
(iv) Kξ,Mρ ≤ 1 + ω∗ for some ξ < κ, ρ < λ.

Moreover, if none of these cases applies, then the relation is inconsistent with ZF.

Proof. Note that Kξ = Kρ is finite if ξ = ρ in (i), and similarly in (ii).
We first consider cases in which the partition relation fails. First assume that Kµ 
 ω + 1 for

all µ < κ and Mν 
 1 + ω∗ for all ν < λ. We claim that the partition relation in question fails.
Note that by DC, for any linear order K, K 6 ω + 1 is equivalent to ω∗ 
 K ∧ ω + 2 
 K, and
symmetrically, K 6 1 + ω∗ is equivalent to ω 
 K ∧ 2 + ω∗ 
 K. Hence the partition relation in
question implies 〈ω2, <lex〉 −→ (ω∗ ∨ ω + 2, 2 + ω∗ ∨ ω)3, contradicting Theorem 3.3 for κ = ω.
Second, assume that Kµ 
 1 + ω∗ for all µ < κ and Mν 
 ω + 1 for all ν < λ. This can be dealt
with symmetrically.

The remaining cases are as follows, and in each case the partition relation holds. If there are
ξ, ρ < κ such that Kξ 6 ω + 1 and Kρ 6 1 + ω∗, then the relation holds by Theorem 2.4. The
argument is analogous if there are ξ, ρ < λ such that Mξ 6 ω + 1 and Mρ 6 1 + ω∗ If there are
ξ < κ and ρ < λ with Kξ 6 ω + 1 and Mρ 6 ω + 1, then the relation holds by Theorem 2.5. An
analogous argument works if there are ξ < κ and ρ < λ with Kξ 6 1 + ω∗ and Mρ 6 1 + ω∗. �

4. Negative partition relations for quadruples

In this section, we prove several negative partition theorems for partitions of [α2]4 by providing
colourings avoiding sets of certain order types in one colour and avoiding quintuples, sextuples,
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septuples, octuples or nonuples in the other. We first give an overview over the negative partition
relations.

Theorem 4.1. If α is an ordinal, then the following statements hold.

〈α2, <lex〉 6−→(ω∗ + ω, 5)4,

〈α2, <lex〉 6−→(ω + ω∗, 5)4,

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω + ω∗, 7)4.

Theorem 4.2. If κ is an infinite initial ordinal and α < κ+, then the following statements hold.

〈α2, <lex〉 6−→(2 + κ∗ ∨ κ+ 2 ∨ η, 5)4,

〈α2, <lex〉 6−→(ω∗ + ω ∨ κ+ 2 + κ∗ ∨ (κ2)∗ ∨ κ2, 5)4,

〈α2, <lex〉 6−→(ω∗ + ω ∨ κ+ ω ∨ ω∗ + κ∗, 6)4,

〈α2, <lex〉 6−→(ω + ω∗ ∨ 2 + κ∗ ∨ κ+ 2, 6)4,{
〈α2, <lex〉 6−→(κ∗ + κ ∨ 2 + κ∗ ∨ κ2 ∨ ωω∗, 6)4,

〈α2, <lex〉 6−→(κ∗ + κ ∨ (κ2)∗ ∨ κ+ 2 ∨ ω∗ω, 6)4,

〈α2, <lex〉 6−→(κ∗ + κ ∨ κ+ 2 ∨ 2 + κ∗ ∨ η, 7)4,{
〈α2, <lex〉 6−→(ω∗ + ω ∨ 2 + κ∗ ∨ κ+ ω, 7)4,

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω∗ + κ∗ ∨ κ+ 2, 7)4,

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω + ω∗ ∨ (κ2)∗ ∨ κ2, 8)4,

〈α2, <lex〉 6−→(κ∗ + ω ∨ ω∗ + κ ∨ 2 + κ∗ ∨ κ+ 2 ∨ ωω∗ ∨ ω∗ω, 8)4,

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω + ω∗ ∨ κ+ 2 ∨ 2 + κ∗, 9)4.

4.1. Various lemmata. We first define some sets with respect to ∆ as defined above.

Definition 4.3. We consider the following sets.

E0 ={~x | ∆(x0, x1) v ∆(x1, x2) v ∆(x2, x3)},
E1 ={~x | ∆(x0, x1) v ∆(x2, x3) v ∆(x1, x2)},
E2 ={~x | ∆(x2, x3) v ∆(x0, x1) v ∆(x1, x2)},
E3 ={~x | ∆(x2, x3) v ∆(x1, x2) v ∆(x0, x1)},
E4 ={~x | ∆(x1, x2) v ∆(x0, x1),∆(x2, x3)},

Note that there is a symmetry between every pair of Ei and E3−i.

Lemma 4.4. Let α be an ordinal number. Then for every set Z ∈ [α2]ω
∗+ω, there is some

{z0, z1, z2, z3}<lex
∈ [Z]4 ∩ E4.

Proof. Let 〈xn | n < ω〉 be the order-reversing enumeration of the lower half of Z and 〈yn | n <
ω〉 the order-preserving enumeration of its upper half such that ∆(x0, y0) is minimised. Then
{x1, x0, y0, y1} provides what was demanded. �

Lemma 4.5. Let α be an ordinal number and h : α ↪→ |α| be an injection. Then for ev-
ery Z ∈ [α2]ω

∗+ω and both i < 2, there is some ~x = {x0, x1, x2, x3} ∈ [Z]4 ∩ E4 such that
βh(x1, x2) < βh(x2i, xx2i+1), or there is a ~x = {x0, x1, x2, x3} ∈ [Z]4∩E3−3i such that βh(x1, x2) <
βh(x2i, x2i+1) < βh(x2−2i, x3−2i).

Proof. Let Z ∈ [α2]ω
∗+ω and s ∈ <α2 be the lowest splitting node of elements of Z. So let

〈xn | n < ω〉 be the enumeration of {x ∈ Z | x A sa〈i〉} which is order-respecting(order-reversing
for i = 0 and order-preserving for i = 1). Let y, z ∈ Z be such that y, z A sa〈1 − i〉. If there
is an n < ω for which βh(xn+1, xn) > βh(xn, y) then {xn+1, xn, y, z} ∈ E4 provides what was
demanded. If not then by finitude of decreasing sequences of ordinals there has to be an n < ω
such that βh(xn+2, xn+1) > βh(xn+1, xn). Then {xn+2, xn+1, xn, y} ∈ E3−3i provides what was
demanded. �
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Lemma 4.6. Let α be an ordinal number and h : α ↪→ |α| an injection. Then for every Q ∈ [α2]η

there is both an i < 2 and a ~q = {q0, q1, q2, q3}<lex
∈ [Q]4 ∩ Ei+1 such that βh(q2i, q2i+1) <

βh(q2−2i, q3−2i) < βh(q1, q2).

Proof. Consider a Q ∈ [α2]η. Let s ∈ <α2 be such that there are p0, r0 ∈ Q with ∆(p0, r0) = s
and h(lt(s)) is minimised. Now inductively in step n < ω by density of Q there has to be a
t ∈]pn, rn[∩Q. If ∆(pn, t) = s then pn+1 := pn and rn+1 := t, otherwise ∆(t, rn) = s and we define
pn+1 := t and rn+1 := rn. At most one of the sequences ~p = 〈pn | n < ω〉 and ~r = 〈rn | n < ω〉
can stabilise. Suppose without loss of generality that ~p does not stabilise. Then there is an n < ω
such that βh(pn, pn+1) < βh(pn+1, pn+2). Then {pn, pn+1, pn+2, r0} ∈ E2 and provides what was
demanded. �

Lemma 4.7. Let α be an ordinal number and h : α ↪→ |α| an injection. then for every Q ∈ [α2]η

there is a ~q = {q0, q1, q2, q3}<lex
∈ [Q]4 ∩ E4 such that βh(q1, q2) < min(βh(q0, q1), βh(q2, q3)).

Proof. Let s ∈ <α2 be a splitting node of elements of Q such that h(lt(s)) is minimised. Obviously
for both i < 2 one has Qi := otyp({q ∈ Q | q A sa〈i〉}) = η. For both i < 2 take {ai, bi}<lex

∈ [Qi]
2.

Then {a0, b0, a1, b1} provides what was demanded. �

Lemma 4.8. Let α be an ordinal number and h : α ↪→ |α|. Then for every A ∈ [α2]2+κ
∗

there is
a {a0, a1, a2, a3}<lex

∈ [A]4 ∩ (E1 ∪ E3) such that βh(q0, q1) < βh(q2, q3) < βh(q1, q2). Then also,
symmetrically, there is a {a0, a1, a2, a3}<lex

∈ [A]4 ∩ (E0 ∪ E2) such that βh(q2, q3) < βh(q0, q1) <
βh(q1, q2) for every A ∈ [α2]κ+2.

Proof. Since the first half of the lemma is a symmetric statement, only the second half is going to
be proved.

First let κ := |α| and consider a B ∈ [α2]κ+2. Let 〈bν | ν < κ + 2〉 be the order-preserving
enumeration of B. We distinguish two cases. First assume that the sequence ~s := 〈∆(bν , bκ+1) |
ν < κ〉 stabilises, say at s ∈ <α2 from ζ < κ onwards. Since the domain and the range of
h share their respective cardinality and by lemma 3.2 there has to be a ρ ∈ κ \ ζ such that
βh(bρ, bρ+1) > h(lt(s)) and |{ν < κ | bν A ∆(bρ, bρ+1)}| = κ. Then choose a ξ ∈ κ \ ρ such that
βh(bξ, bξ+1) > βh(bρ, bρ+1). Now {bρ, bξ, bξ+1, bκ+1} ∈ E2 provides what was demanded.

So assume that ~s does not stabilise. Then, using lemma 3.2, pick a ζ < κ such that βh(bζ , bζ+1) >
βh(bκ, bκ+1) and bκ A ∆(bζ , bζ+1). After that again pick a ρ ∈ κ\ζ with βh(bρ, bρ+1) > βh(bζ , bζ+1)
and bκ A ∆(bρ, bρ+1). Then {bζ , bρ, bκ, bκ+1} ∈ E0 provide what was demanded. �

Lemma 4.9. Let α be an ordinal number and h : α ↪→ |α| an injection. Then for every
Z ∈ [α2]κ

∗+ω there is a {z0, z1, z2, z3}<lex
∈ [Z]4 ∩ E4 with βh(z1, z2) < βh(z0, z1). Then also,

symmetrically, there is a {z0, z1, z2, z3}<lex
∈ [Z]4 ∩ E4 with βh(z1, z2) < βh(z2, z3) for every

Z ∈ [α2]ω
∗+κ.

Proof. Since the two halves of the lemma are symmetric to one another, we are only going to prove
the second one. So let Z be as in the lemma and let s ∈ <α2 be the minimal splitting node of
elements of Z. Since Z has no least element there are z0, z1 A sa〈0〉. Let 〈zν | ν < κ〉 be the order-
preserving enumeration of {z ∈ Z | z A sa〈1〉}. Let ζ < κ be such that βh(zζ , zζ+1) > h(lt(s)).
Then {z0, z1, zζ , zζ+1} ∈ E4 provides what was demanded. �

Lemma 4.10. Let α be an ordinal number and h : α ↪→ |α| an injection. Then for every Z ∈
[α2]κ

∗+κ there is a {z0, z1, z2, z3}<lex
∈ [Z]4 ∩E4 such that βh(z1, z2) < min(βh(z0, z1), βh(z2, z3)).

Proof. Let Z be as in the lemma and let s ∈ <α2 be the minimal splitting node of elements of
Z. Let 〈xν | ν < κ〉 be an order-reversing enumeration of elements of Z extending sa〈0〉 and let
〈yν | ν < κ〉 be an order-presering enumeration of elements of Z extending sa〈1〉. Then let ζ, ρ < κ
be such that βh(xζ+1, xζ) > h(lt(s)) and βh(yρ, yρ+1) > h(lt(s)). Now {xζ+1, xζ , yρ, yρ+1} ∈ E4

provides what was demanded. �

Lemma 4.11. Let α be an ordinal number and h : α ↪→ |α| be an injection. Then for every
X ∈ [α2]ωω

∗
there is an ~x = {x0, x1, x2, x3}<lex

∈ [X]4 ∩ E4 such that βh(x1, x2) < βh(x0, x1).
Then also, symmetrically, there is an ~x = {x0, x1, x2, x3}<lex

∈ [X]4 ∩ E4 such that βh(x1, x2) <

βh(x2, x3) for every X ∈ [α2]ω
∗ω.
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Proof. Since the two halves of the lemma are symmetric to each other we only need to prove the
first one. So let X ∈ [α2]ωω

∗
. Let s0 be the first splitting node of elements of X and for every

k < ω let sk+1 be the first splitting node of elements of X extending sak 〈0〉. Note that for infinitely

many k < ω we have otyp {x ∈ X | x A sak 〈1〉} > ω, otherwise we would have 1 + ω∗ 6 X which
is false. So let 〈ki | i < ω〉 be an enumeration of these k. Since there is no decreasing sequence
of ordinals there has to be an i < ω such that h(lt(ski+1)) > h(lt(ski)). So pick an a ∈ X with

a A saki+1
〈0〉, some b ∈ X such that b A saki+1

〈1〉 and {c, d}<lex
∈ [X]2 satisfying c, d A saki〈1〉. Now

clearly {a, b, c, d} provides what was demanded. �

Lemma 4.12. Let α be an ordinal number and h : α ↪→ |α| be an injection. Then for ev-
ery X ∈ [α2]ωω

∗
there is some ~x = {x0, x1, x2, x3}<lex

∈ [X]4 ∩ E4 such that βh(x1, x2) <
min(βh(x0, x1), βh(x2, x3)) or a ~x = {x0, x1, x2, x4}<lex

∈ [X]4 ∩ E0 such that βh(x1, x2) <

βh(x2, x3) < βh(x0, x1). Then also, symmetrically, for every X ∈ [α2]ω
∗ωthere is an ~x =

{x0, x1, x2, x3}<lex
∈ [X]4 ∩ E4 such that βh(x1, x2) < min(βh(x0, x1), βh(x2, x3)) or a ~x =

{x0, x1, x2, x4}<lex
∈ [X]4 ∩ E3 such that βh(x1, x2) < βh(x0, x1) < βh(x2, x3).

Proof. Since the two halves of the lemma are symmetric, it suffices only to prove the first one.
Suppose that X ∈ [α2]ωω

∗
. Let s0 be the first splitting node of elements of X and for every k < ω

let sk+1 be the first splitting node of elements of X extending sak 〈0〉. Note that as in the proof of

Lemma 4.11 for infinitely many k < ω we have otyp {x ∈ X | x A sak 〈1〉} > ω. So let 〈ki | i < ω〉
be an enumeration of these k. Since there is no decreasing sequence of ordinals there has to be an

i < ω such that h(lt(ski+1)) > h(lt(ski)). If there are c, d A saki〈1〉 with βh(c, d) > h(lt(ski)) then

for a A saki+1
〈0〉 and b A saki+1

〈1〉 the quadruple {a, b, c, d} ∈ E4 provides what was demanded. So

suppose now that for all c, d A ski we have c = d or βh(c, d) < h(lt(ski)). Let 〈ci | i < ω〉 be an

ascending enumeration of elements of {x ∈ X | x A saki〈1〉}. The finitude of decreasing sequences

of ordinals implies that there has to be an n < ω such that βh(cn, cn+1) < βh(cn+1, cn+2). But
then for any b A ski+1

the quadruple {b, cn, cn+1, cn+2} ∈ E0 provides what was demanded. �

Lemma 4.13. Let α be an ordinal number and h : α ↪→ |α| an injection. Then for every
A ∈ [α2]ω

∗+κ∗
there is a {a0, a1, a2, a3}<lex

∈ [A]4 ∩ E3 such that βh(q1, q2) < βh(q0, q1) <
βh(q2, q3), or both a {a0, a1, a2, a3}<lex

∈ [A]4 ∩ E1 such that βh(q0, q1) < βh(q2, q3) < βh(q1, q2)
and a {a0, a1, a2, a3}<lex

∈ [A]4 ∩ E4 such that βh(q1, q2) < βh(q0, q1). Then also, symmetri-
cally, there is a {b0, b1, b2, b3}<lex

∈ [B]4 ∩ E0 such that βh(q1, q2) < βh(q2, q3) < βh(q0, q1)
or both a {b0, b1, b2, b3}<lex

∈ [B]4 ∩ E2 such that βh(q2, q3) < βh(q0, q1) < βh(q1, q2) and a
{b0, b1, b2, b3}<lex

∈ [B]4 ∩ E4 such that βh(q1, q2) < βh(q2, q3).

Proof. Since both halves of the the Lemma are symmetric to each other we are only going to prove
the second one. First suppose that there is an s ∈ <α2 such that otyp(B0) > κ and otyp(B1) > ω
where Bi := {b ∈ B | b A sa〈i〉} for i < 2. Let 〈xν | ν < κ〉 be an ascending enumeration of
elements of B0 and 〈yn | n < ω〉 an ascending enumeration of elements of B1. Then, using Lemma
3.2 one can pick a ζ < κ such that βh(xζ , xζ+1) > h(lt(s)) and {b ∈ B0 | b A ∆(xζ , xζ+1)} has
size κ. After that one can choose a ρ ∈ κ \ ζ such that βh(xρ, xρ+1) > βh(xζ , xζ+1). Then for any
y, z ∈ B1 the sets {xν , xν+1, y, z} ∈ E4 and {xζ , xρ, xρ+1, y} ∈ E2 provide what was demanded.

Now assume that there is no such s. The nonexistence of infinite decreasing sequences of ordinals
yields m,n < ω such that ∆(ym, ym+1)a〈1〉 v ∆(yn, yn+1) and βh(ym, ym+1) < βh(yn, yn+1). Now
using Lemma 3.2 one can find a ζ < κ such that ∆(xζ , xζ+1)a〈1〉 v ∆(yn, yn+1) and βh(xζ , xζ+1) >
βh(yn, yn+1). Now {xζ , ym, yn, yn+1} ∈ E0 provides what was demanded. �

Lemma 4.14. Let α be an ordinal number and h : α ↪→ |α| be an injection. Then for any
set A ∈ [α2](κ2)

∗
, there is some ~x = {x0, x1, x2, x3}<lex

∈ [A]4 ∩ E4 such that βh(x1, x2) <
min(βh(x0, x1), βh(x2, x3)) or for all of the following βh-relations there is a {x0, x1, x2, x3}<lex

∈
[A]4 ∩ E3 satisfying them:

βh(x1, x2) < βh(x0, x1) < βh(x2, x3),

βh(x1, x2) < βh(x2, x3) < βh(x0, x1),

βh(x2, x3) < βh(x0, x1) < βh(x1, x2),

βh(x0, x1) < βh(x2, x3) < βh(x1, x2).
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Figure 1. Colouring of the splitting types for the proof of theorem 4.16(1)

Symmetrically for any B ∈ [α2]κ2 there is an ~x = {x0, x1, x2, x3} ∈ [B]4∩E4 such that βh(x1, x2) <
min(βh(x0, x1) < βh(x2, x3)) or for all of the βh-relations above there is a {x0, x1, x2, x3}<lex

∈
[B]4 ∩ E0 satisfying them.

Proof. As the two halves of the lemma are symmetric to each other, it suffices to prove the second
one. So let B ∈ [α2]κ2 and suppose that for all {t0, t1, t2, t3}<lex

∈ [B]4 ∩E4 there is an i < 2 with
βh(t2i, t2i+1) < βh(t1, t2). Via Lemma 3.2 this implies that there is a {bν | ν < κ2}<lex

∈ [B]κ2 such
that ∆(bζ , bζ+1)a〈1〉 v ∆(bρ, bρ+1) for every {ζ, ρ}< ∈ [κ2]2. Now for every βh-relation mentioned
above it is easy to choose ζ, ν, ξ, ρ such that {bζ , bν , bξ, bρ} provides what was demanded. �

Lemma 4.15. Let α be an ordinal number and h : α ↪→ |α| an injection. Then for every
X ∈ [α2]ω+ω

∗
there is an i ∈ 3 \ 1 and an ~x = {x0, x1, x2, x3} ∈ Ei such that βh(x4−2i, x5−2i) <

βh(x1, x2).

Proof. Let X ∈ [α2]ω+ω
∗

and let s ∈ <α2 be the least splitting node of elements of X. Then with
Xj := {x ∈ X | x A sa〈j〉} we have otyp(X0) > ω or otyp(X1) > ω∗. Suppose the former holds
and let 〈xn | n < ω〉 be an ascending enumeration of elements in X0. There is an I ∈ [ω]ω such
that ∆(x`, x`+1) A ∆(xk, xk+1)a〈1〉 for all {k, `}< ∈ [I]2. The finitude of decreasing sequences of
ordinals implies that there is a pair {m,n}< ∈ [I]2 with βh(xm, xm+1) < βh(xn, xn+1). Now for
any y ∈ X1 the quadruple {xm, xn, xn+1, y} provides what was demanded for i = 2. �

4.2. Quintuples. In this section, we prove several negative partition relations with 5 on one side
of the relation. These results are used in the classification in Section 4.6.

Theorem 4.16. (1) 〈α2, <lex〉 6−→(ω∗ + ω, n+ 1)n,
(2) 〈α2, <lex〉 6−→(ω + ω∗, n+ 1)n.

Proof. Suppose that ~x = (x0, ..., xn−1) is a tuple in [κ2]n with x0<lexx1 . . . <lexxn−1. For the first
claim, let f(~x) = 1 if ∆x1,x2

v ∆x0,x1
and ∆x1,x2

v ∆x2,x3
, and f(x0, x1, x2, x3) = 0 otherwise.

We claim that there is no homogeneous set for f .
Suppose that there is a homogeneous set H isomorphic to ω∗ + ω in colour 0. Suppose that

s is the largest common initial segment of all elements of H and that s has length β. Let
Hi = {x ∈ H | x(β) = i} for i < 2. Then H0 has order type ω∗ and H1 has order type ω.
Suppose that x0, x1 ∈ H0 with x0<lexx1 and x2, . . . , xn−1 ∈ H1 with x2<lex . . . <lexxn−1. Then
f(~x) = 1, contradicting the choice of H.

Suppose that there is a set H of size n + 1 homogeneous in colour 1. Suppose that H = {qi |
i < n+ 1} with qi<lexqj for i < j < n+ 1. If ∆q2,q3 v ∆q1,q2 , then {qi ∈ H | i 6= n} has colour 0,
contradicting the assumption. If ∆q1,q2 v ∆q2,q3 , then {qi ∈ H | i 6= 0} has colour 0, contradicting
the assumption.

For the second claim, let g(~x) = 1 if lt(∆xn−1,xn) < lt(∆x0,x1
) < · · · < lt(∆xn−2,xn−1

) or
lt(∆x0,x1

) < . . . lt(∆xn−1,xn−2
) < · · · < lt(∆x1,x0

), and g(~x) = 0 otherwise. We claim that there is
no homogeneous set for g.

Suppose that there is a homogeneous set H isomorphic to ω + ω∗ in colour 0. Suppose that
s is the largest common initial segment of all elements of H and that s has length β. Let
Hi = {x ∈ H | x(β) = i} for i < 2. Then H0 has a subset isomorphic to ω or H1 has a
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Figure 2. Colouring of the splitting types for the proof of theorem 4.16(2)

subset isomorphic to ω∗. We can assume that H0 has a subset isomorphic to ω. Then there are
x0, . . . xn−2 ∈ H0 with x0<lex . . . <lexxn−2 and ∆xi,xi+1

v ∆xi+1,xi+2
for all i < n − 2. Suppose

that xn−1 ∈ H1. Then g(~x) = 1, contradicting the choice of H.
Suppose that there is a set H of size n + 1 homogeneous in colour 1. Suppose that H = {qi |

i < n+ 1} with qi<lexqj for i < j < n+ 1. Since {qi | i 6= n} has colour 1, lt(∆q2,q3) < lt(∆q1,q2).
Then {qi | i 6= 0} has colour 0, contradicting the assumption. �

Theorem 4.16 implies that Theorem 2.4(2) does not lift to higher exponents. In the following,
we weaken the requirement of an infinite homogeneous set in colour 0 to the requirement that the
set has one of two, three, four, five and, in the case of Theorem 4.24, six given order types.

Theorem 4.17. If κ be an infinite initial ordinal and α < κ+, then

〈α2, <lex〉 6−→(ω∗ + ω ∨ κ+ 2 + κ∗ ∨ (κ2)∗ ∨ κ2, 5)4.

Proof. Suppose that there is an infinite initial ordinal κ and an α < κ+ such that the first partition
property holds. Suppose that h : α↔ κ is bijective. Let βx,y = β(x, y) = h(lt(∆x,y)) for x, y ∈ α2.
If α = κ, we can choose βx,y = ∆x,y and obtain a simplified version of the following proof. We
write ~x for (x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3.

F0 := F2 :={~x | βh(x1, x2) < βh(x2, x3) < βh(x0, x1)},
F1 := F3 :={~x | βh(x1, x2) < βh(x0, x1) < βh(x2, x3)},

F4 :={~x | βh(x1, x2) < min(βh(x0, x1), βh(x2, x3))}.

Let f(~x) = 1 if ~x is in Ei ∩Fi for an i < 5 and f(~x) = 0 otherwise. We will prove that there is no
homogeneous set of the required type for f .

To see that there are no sets which are homogeneous for f in colour 0 of order-type ω∗ + ω, see
Lemma 4.5. In order to see that there are no such sets of order-type (κ2)∗ or κ2 use Lemma 4.14.

Now consider a C ∈ [α2]κ+2+κ∗
. We distinguish three cases. First assume that there is an

s ∈ <α2 such that κ 6 otyp({t ∈ C | t A sa〈0〉}) and κ∗ 6 otyp({t ∈ C | t A sa〈1〉}). Then one
proceed essentially as in the proof of before and find an element Q in [C]4 ∩E4 ∩F4. Then, again,
f(Q) = 1.

For the second case, assume that there is no such s. Let 〈cν | ν < κ + 1〉 be an ascending
enumeration of the left half of C and let 〈dν | ν < κ+ 1〉 be a descending enumeration of its right
half. Then, using Lemma 3.2 it is easy to choose {ν, ζ} ∈ [κ]2 such that

{cν , cκ, dκ, dζ} ∈
⋃
i∈3\1

(Ei ∩ Fi).

Finally consider a ~p = {p0, . . . , p4}<lex
∈ [α2]5. Assume towards a contradiction that f“[~p]4 =

{1}. There are fourteen cases to check half of which are mirror images of the other half, to
parameterise this let i < 2.

We assume in the first case that ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i).
Then {pj | j < 4}, {pj | j > 0} ∈ E0 and by assumption E0∩ [~p]4 ⊆ F0 so βh(p1, p2) < βh(p2, p3) <
βh(p1, p2), a contradiction.
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In the second case, we assume that ∆(p3i, p3i+1) v ∆(pi+1, p + i+ 2) v ∆(p3−3i, p4−3i) v
∆(p2−i, p3−i). Then {pj | j < 4} ∈ E2i so {pj | j < 4} ∈ F2i. Also {pj | j > 0} ∈ E2i+1 so
{pj | j > 0} ∈ F2i+1. But then βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

In the third case, assume that ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(p2−i, p3−i) v ∆(pi+1, pi+2).
Then {pj | j < 4} ∈ E1−i and {pj | j > 0} ∈ E3−i so {pj | j < 4} ∈ F1−i and {pj | j > 0} ∈ F3−i.
This implies βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

In the fourth case, assume that ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i).
Then {pj | j < 4} ∈ Ei and {pj | j > 0} ∈ Ei+2 so {pj | i < 4} ∈ Fi and {pj | j > 0} ∈ Fi+2 and
hence βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

In the fifth case, assume that ∆(pi+1, pi+2) v ∆(p3i, p3i+1),∆(p2−i, p3−i) and ∆(p2−i, p3−i) v
∆(p3−3i, p4−3i). Then {pj | j < 4} ∈ E4−i and {pj | j > 0} ∈ E4i so {pj | j < 4} ∈ F4−i and
{pj | j > 0 ∈ 5} ∈ F4i. But this means that βh(pi+1, pi+2) < min(βh(p3i, p3i+1), βh(p2−i, p3−i)) 6
βh(p2−i, p3−i) < βh(pi+1, pi+2), a contradiction.

In the sixth case, assume that ∆(pi+1, pi+2) v ∆(p0, p1),∆(p3, p4) and ∆(p3−3i, p4−3i) v
∆(p2−i, p3−i). Then {pj | j < 4} ∈ E4−2i and {pj | j > 0} ∈ E3i+1 and hence {pj | j <
4} ∈ F4−2i and {pj | j > 0} ∈ F3i+1. So βh(pi+1, pi+2) < min(βh(p3i, p3i+1), βh(p2−i, p3−i)) 6
βh(p2−i, p3−i) < βh(pi+1, pi+2), a contradiction.

In the final case, assume that ∆(p3i, p3i+1) v ∆(p2−i, p3−i) and ∆(p2−i, p3−i) v ∆(pi+1,
pi+2),∆(p3−3i, p4−3i). This means that {pj | j < 4} ∈ E3i+1 and {pj | j > 0} ∈ E4−2i. So
βh(p2−i, p3−i) < min(βh(pi+1, pi+2), βh(p3−i, p4−i)) 6 βh(pi+1, pi+2) < βh(p2−i, p3−i), a contra-
diction. �

For the following Theorem (and Theorem 4.27) recall that η denotes the order-type of the
rational numbers, the countable dense linear order without endpoints.

Theorem 4.18. If κ is an infinite initial ordinal and α < κ+, then 〈α2, <lex〉 6−→(2 +κ∗ ∨ κ+ 2 ∨
η, n+ 1)n for all n > 4.

Proof. We write ~x for (x0, . . . , xn−1) with x0<lex . . . <lexxn−1. Let

F0 := F2 :={~x | βh(xn−2, xn−1) < βh(x0, x1) < · · · < βh(xn−3, xn−2)},
F1 := F3 :={~x | βh(x0, x1) < βh(xn−2, xn−1) < · · · < βh(x1, x2)}.

Let

Ē0 ={~x | ∆(x0, x1) v . . . v ∆(xn−2, xn−1)},
Ē1 ={~x | ∆(x0, x1) v ∆(xn−2, xn−1) v . . . v ∆(x1, x2)},
Ē2 ={~x | ∆(xn−2, xn−1) v ∆(x0, x1) v . . . v ∆(xn−3, xn−2)},
Ē3 ={~x | ∆(xn−2, xn−1) v . . . v ∆(x0, x1)},

Then Ēi = Ei for n = 4. Let f(~x) = 1 if ~x ∈
⋃
i<4(Ēi ∩ Fi) and f(~x) = 0 otherwise.

Claim 4.19. There is no set homogeneous for f in colour 0 with order type 2 + κ∗ or κ∗ + 2.

Proof. It is sufficient to consider the case κ + 2 by symmetry. Let 〈bν | ν < κ + 1〉 be the
order-preserving enumeration of a subset of α2 of order type κ+ 2. We distinguish two cases.

First assume that the sequence ~s := 〈∆(bν , bκ+1) | ν < κ〉 stabilises, say at s ∈ <α2 from ζ < κ
onwards. By Lemma 3.2, there is some ρ0 ∈ κ\ ζ with βh(bρ0 , bρ0+1) > h(lt(s)) and |{ν < κ | bν w
∆(bρ0 , bρ0+1)}| = κ. Similarly, we can find ρ1, ..., ρn−2 with ∆(bρ0 , bρ1) v . . . v ∆(bρn−3

, bρn−2
)

and βh(bρ0 , bρ1) v . . . v βh(bρn−3
, bρn−2

). Now ~b := {bρ0 , . . . bρn−2
, bκ+1} ∈ Ē2 ∩ F2 and hence

f(~b) = 1, a contradiction.
Second, assume that ~s does not stabilise. By Lemma 3.2, there is some ζ0 < κ such that

βh(bζ0 , bζ0+1) > βh(bκ, bκ+1) and bκ w ∆(bζ0 , bζ0+1). Similarly, we can find ζ1, ..., ζn−3 with

∆(bζ0 , bζ1) v . . . v ∆(bζn−4 , bζn−3) and βh(bζ0 , bζ1) v . . . v βh(bζn−4 , bζn−3). Now we have ~b :=

{bζ0 , . . . bζn−3 , bκ, bκ+1} ∈ Ē0 ∩ F0 and hence f(~b) = 1, a contradiction. �

Claim 4.20. There is no set of order-type η homogeneous for f in colour 0.
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Proof. This is analogous to the proof of Lemma 4.6. �

Claim 4.21. There is no set {q0, . . . , qn−1} in [α2]n+1 with q0<lex . . . <lexqn homogeneous in
colour 1.

Proof. We first consider the case n = 4. Suppose that {p0, . . . , pn−1}<lex
∈ [α2]n+1 and assume

towards a contradiction that it were homogeneous for f in colour 1. Regarding the splitting
structure, one has to check eight cases, half of which are mirror images of the other half. We
consider them using a parameter i < 2.

In the first case, assume that ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i).
Then {pj | j < 4}, {pj | j > 0} ∈ E3i, so {pj | j < 4}, {pj | j > 0} ∈ F3i and hence βh(p1, p2) <
βh(p2, p3) < βh(p1, p2), a contradiction.

In the second case, assume that ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p3−3i, p4−3i) v ∆(p2−i, p3−i).
So {pi | j < 4} ∈ E2i but {pj | j > 0} ∈ E2i+1 and hence {pj | j < 4} ∈ F2i and
{pj | j > 0} ∈ F2i+1. But then βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

In the third case, assume that ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(p2−i, p3−i) v ∆(pi+1, pi+2).
Then {pj | j < 4} ∈ E1−i but {pj | j > 0} ∈ E3−i. So {pj | j < 4} ∈ F1−i and {pj | j > 0} ∈ F3−i
and hence βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

In the final case, assume that ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i).
So {pj | j < 4} ∈ Ei and {pj | j > 0} ∈ E2+i which implies that {pj | j < 4} ∈ Fi and
〈pj | j > 0〉 ∈ F2+i. So actually βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

Now suppose that n > 4. Again, we consider a parameter i < 2.
In the first case, assume that

∆(p(n−1)i, p(n−1)i+1) v ∆(p(n−3)i+1, p(n−3)i+2) v . . . v ∆(p−(n−1)i+(n−1), p−(n−1)i+(n−1)).

Then {pj | j < n + 1}, {pj | j > 0} ∈ Ē3i, so {pj | j < n + 1}, {pj | j > 0} ∈ F3i. If
i = 0, then βh(pn−3, pn−2) < βh(pn−2, pn−1) < βh(pn−3, pn−2), a contradiction. If i = 1, then
βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

In the second case, assume that

∆(p−(n−1)i+(n−1), p−(n−1)i+(n−1)) v ∆(p(n−1)i, p(n−1)i+1) . . .∆(p−(n−3)i+(n−2), p−(n−3)i+(n−2)).

Then {pj | j < n + 1} ∈ Ē2−i and {pj | j > 0} ∈ Ē3i, so {pj | j < n + 1} ∈ F2−i and {pj | j >
0} ∈ F3i. If i = 0, then βh(pn−3, pn−3) < βh(pn−3, pn−2) < βh(pn−4, pn−3), a contradiction. If
i = 1, then βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

These are the only possible cases, since {qi | i < n + 1} and {qi | i > 0} are elements of⋃
i<4 Ēi. �

This completes the proof of Theorem 4.18. �

4.3. Choice, after all. The following result shows that Theorem 2.7 fails in ZFC.

Theorem 4.22. Suppose that the Axiom of Choice holds. Then 〈α2, <lex〉 6−→(ω∗ + ω ∨ 2 + ω∗ ∨
ω + 2, 5)4 for all α < ω1.

Proof. Let α < ω1, let g : α2 ↪→ γ be one-to-one for a suitable ordinal number γ and let h : α ↪→ ω
be one-to-one too, defining the function β : α2 × α2 −→ ω by 〈r, s〉 7→ h(lt(∆(r, s))). For any
~q = {q0, q1, q2, q3}<lex

∈ [α2]4 let f(~q) = 1 if and only if

∀i < 2(∆(q1, q2) v ∆(q2i, q2i+1) ∧ β(q1, q2) < β(q2i, q2i+1) ∧ g(qi+1) < g(q3i)) or(1)

∃i < 2(∆(q2i, q2i+1) v ∆(q2−2i, q3−2i) v ∆(q1, q2)∧(2)

β(q2i, q2i+1) < β(q2−2i, q3−2i) < β(q1, q2) ∧ g(q3−3i) < g(q2−i) < g(qi+1)) or

∃i < 2(∆(q2i, q2i+1) v ∆(q1, q2) v ∆(q2−2i, q3−2i)∧(3)

β(q2−2i, q3−2i) < β(q2i, q2i+1) < β(q1, q2) ∧ g(q2i) < g(q2i+1)).

Note that the colouring f is defined in a symmetric way. In the first case the index i is just a
shorthand to define a situation where each of the two following cases each defines a pair of two
situations which are symmetric to each other.

So let Z ∈ [α2]ω
∗+ω. We have to find a ~q = {q0, q1, q2, q3}<lex

∈ [Z]4 for which f(~q) = 1.

To this end, let 〈z(0)n | n < ω〉 the order-reversing enumeration of the lower half of Z and let
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〈z(1)n | n < ω〉 be the order-preserving enumeration of its upper half. Suppose without loss of

generality that for both i < 2 the sequence 〈g(z
(i)
n ) | n < ω〉 is ascending. Note that there has

to be an k < ω such that for all m ∈ ω \ k and both i < 2 one has ∆(z
(0)
m , z

(1)
m ) v ∆(z

(i)
m , z

(i)
m+1).

Furthermore, observe that there is an m ∈ ω \ k such that for all n ∈ ω \m and both i < 2 one

has β(q1, q2) < β(q2i, q2i+1). Let ~q := {z(0)m+1, z
(0)
m , z

(1)
m , z

(1)
m+1}. Then, by (1), f(~q) = 1.

Now let A ∈ [α2]2+ω
∗

and let 〈aγ | γ < ω + 2〉 be its order-reversing enumeration. We
distinguisgh two cases. First assume that the sequence ~s := 〈∆(an, aω+1) | n < ω〉 is stabilising,
say at s ∈ <α2 from k < ω onwards. Because there is no infinite decreasing sequence of ordinals
there is an A0 ∈ [A \ {aω+1}]ω

∗
such that g(c) < g(b) for any {b, c}< ∈ [A0]2. Then there is an

A1 ∈ [A0]ω
∗

such that ∆(b, c) A ∆(c, d)a〈0〉 for any {b, c, d}< ∈ [A1]3. One can find an A2 ∈ [A1]ω
∗

such that β(b, c) > h(lt(s)) for all {b, c}< ∈ [A2]2. Finally there is a {b, c, d}< ∈ [A2]3 such that
β(c, d) < β(b, c). Then for ~q := {aω+1, b, c, d} we have f(~q) = 1 by (2) for i = 0. Now assume
that ~s does not stabilise. Then there is is an A0 ∈ [A \ {aω+1}]ω

∗
such that ∆(b, c) A ∆(c, d)a〈0〉

for all {b, c, d}< ∈ [A0]3. There is an A1 ∈ [A0]ω
∗

such that g(c) < g(b) for every {b, c}< ∈ [A1]2.
Since β(aω+1, aω) is finite there is an {b, c}< ∈ [A1]2 such that β(b, c) > β(aω+1, aω). Then for
~q := {aω+1, aω, b, c} we have f(~q) = 1 by (3) for i = 1.

Because f is defined in a symmetric way we do not have to deal with sets of order-type ω + 2
separately.

Let {p0, p1, p2, p3, p4}<lex
∈ [α2]5. We distinguish seven pairs of cases, let j < 2.

First assume that ∆(p3j , p3j+1) v ∆(pj+1, pj+2) v ∆(p2−j , p3−j) v ∆(p3−3j , p4−3j). Applying
(3) to both {pk | k < 4} and {pk | k ∈ 5\1} one gets β(p2−j , p3−j) < β(pj+1, pj+2) < β(p2−j , p3−j),
a contradiction.

Second suppose that ∆(p3j , p3j+1) v ∆(pj+1, pj+2) v ∆(p3−3j , p4−3j) v ∆(p2−j , p3−j). Ap-
plying (2) with i := j to {pk | k ∈ 5 \ {4i}} and (3) with i := j to {pk | k ∈ 5 \ {2}} one gets
β(p3−3i, p4−3i) < β(p1, p3) = β(pi+1, pi+2) < β(p3−3i, p4−3i), a contradiction.

Third assume that ∆(p3j , p3j+1) v ∆(p3−3j , p4−3j) v ∆(pj+1, pj+2) v ∆(p2−j , p3−j). Applying
(3) with i := j to {pk | k 6= 4 − 4j} and (2) with i := j to {pk | k 6= 2j + 1} one gets
β(p2−j , p3−j) < β(p3j , p3j+1) = β(p2j , p2j+2) < β(p2−j , p3−j), a contradiction.

Fourth suppose ∆(p3j , p3j+1) v ∆(p3−3j , p4−3j) v ∆(p2−j , p3−j) v ∆(pj+1, pj+2). Applying
(3) with i := 1− j to {pk | k 6= 4j} and (2) with i := j to {pk | k 6= 3− 2j} yields β(pj+1, pj+2) <
β(p3−3j , p4−3j) = β(p2−2j , p4−2j) < β(pj+1, pj+2), a contradiction.

Fifth assume that ∆(p3j , p3j+1) v ∆(p2−j , p3−j) v ∆(p1−j , p2−j),∆(p3−j , p4−j). Applying
(1) to {pk | k 6= 4j} and (3) with i := j to {pk | k 6= 2} yields β(p3−3i, p4−3i) < β(p1, p3) =
β(p2−j , p3−j) < β(p3−3i, p4−3i), a contradiction.

Sixth assume that ∆(pj+1, pj+2) v ∆(pj , pj+1),∆(pj+2, pj+3) and further ∆(p2−j , p3−j) v
∆(p3−3j , p4−3j). Applying (3) with i := j to {pk | k 6= 4j} and (1) to {pk | k 6= 2} yields
β(p3−3j , p4−3j) < β(pj+1, pj+2) = β(p1, p3) < β(p3−3j , p4−3j), a contradiction.

Last assume that ∆(pj+1, pj+2) v ∆(pj , pj+1),∆(p3−3j , p4−3j) and that ∆(p3−3j , p4−3j) v
∆(p2−j , p3−j). Applying (2) with i := j to {pk | k 6= 4j} and (1) to {pk | k 6= 2} yields
g(p3−3i) < g(p4−3i) < g(p3−3i), a contradiction. �

Note that since λ and 〈ω2, <lex〉 are mutually embeddable, Theorem 4.22 is a strengthening of
[956ER, Theorem 28] which states that λ 6−→(ω + 2, 5)4.

In ZFC the statement of Theorem 2.5 is also provable, but Theorems 2.6 and 2.7 are falsified
there by Theorem 4.22. For Theorem 2.7 this can also be shown using Theorem 1.9.

4.4. Sextuples. In this section, we prove several negative partition relations with 6 on one side
of the relation. Most of these results are used in the classification in Section 4.6.

Theorem 4.23. If κ is an infinite initial ordinal and α < κ+, then

〈α2, <lex〉 6−→(κ∗ + κ ∨ 2 + κ∗ ∨ κ2 ∨ ωω∗, 6)4,

〈α2, <lex〉 6−→(κ∗ + κ ∨ (κ2)∗ ∨ κ+ 2 ∨ ω∗ω, 6)4.

Proof. Suppose that κ is as in the theorem and there is an ordinal α such that the first partition
property holds. Suppose that h : α↔ κ is bijective. Let βx,y = β(x, y) = h(lt(∆x,y)) for x, y ∈ α2.
If α = κ, we can choose βx,y = ∆x,y and obtain a simplified version of the following proof. We
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write ~x for (x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3. Let

F0 :={~x | βh(x1, x2) < βh(x2, x3) < βh(x0, x1)},
F1 := F3 :={~x | βh(x0, x1) < βh(x2, x3) < βh(x1, x2)},

F4 :={~x | βh(x1, x2) < min(βh(x0, x1), βh(x2, x3))}.

Let f(~x) = 1 if ~x is in Ei ∩ Fi for an i ∈ 5 \ {2} and f(~x) = 0 otherwise. We will prove that there
is no homogeneous set of the required type for f .

To see that there is no set of order-type κ∗ + κ which is homogeneous for f in colour 0 consult
Lemma 4.10. To show the nonexistence of such sets of order-type 2 + κ∗ consider the first half of
Lemma 4.8 and for the proof that f does not admit homogeneous sets in colour 0 of order-type
κ2 use the second half of Lemma 4.14 Finally, to see that there is no X ∈ [α2]ωω

∗
homogeneous

for f in colour 0 consider Lemma 4.12.

We consider sets homogeneous for f in colour 1. Assume towards a contradiction that ~h ∈ [α2]6

is homogeneous for f in colour 1. Since [~h]4 ⊆ [α2]4 \E2, there is a quintuple {p0 . . . , p4}<lex
∈ [~h]5

for which one of the following six cases applies.
First assume that ∆(p0, p1) v ∆(p1, p2) v ∆(p2, p3) v ∆(p3, p4). Then {pj | j < 4}, {pj | j >

0} ∈ E0 So βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.
Second assume that ∆(p3, p4) v ∆(p2, p3) v ∆(p1, p2) v ∆(p0, p1). Then {pj | j < 4}, {pj |

j > 0} ∈ E3 are elements of E3 hence βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.
Third assume that ∆(p0, p1) v ∆(p1, p2) v ∆(p3, p4) v ∆(p2, p3). Then {pj | j < 4} ∈ E0

and {pj | i 6= 1} ∈ E1 from which we get βh(p2, p3) < βh(p0, p1) = βh(p0, p2) < βh(p2, p3), a
contradiction.

Fourth assume that ∆(p0, p1) v ∆(p3, p4) v ∆(p2, p3) v ∆(p1, p2), then {pj | j > 0} ∈ E3 and
{pj | j < 4} ∈ E1. It follows that βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

Fifth assume that ∆(p1, p2) v ∆(p0, p1),∆(p2, p3) and ∆(p2, p3) v ∆(p3, p4). Then {pj | j >
0} ∈ E0 and {pj | j < 4} ∈ E4 hence βh(p2, p3) < βh(p1, p2) < min(βh(p0, p1), βh(p2, p3)) 6
βh(p2, p3), a contradiction.

Finally assume that ∆(p2, p3) v ∆(p1, p2),∆(p3, p4) and ∆(p1, p2) v ∆(p0, p1). This means
that {pj | j < 4} ∈ E3 and {pj | j 6= 2} ∈ E4 yielding βh(p0, p1) < βh(p2, p3) = βh(p1, p3) <
min(β(p0, p1), βh(p3, p4)) 6 βh(p0, p1), a contradiction.

Once more the second part of the theorem follows immediately by consideration of symmetry.
�

Theorem 4.24. If κ is an infinite initial ordinal and α < κ+, then

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω∗ + κ∗ ∨ κ+ ω, 6)4.

Proof. Suppose that κ is as in the theorem and there is an ordinal α < κ+ such that the theorem
holds. Suppose that h : α ↔ κ is bijective. Let βx,y = β(x, y) = h(∆x,y) for x, y ∈ α2. If α = κ,
we can choose βx,y = ∆x,y and obtain a simplified version of the following proof. We write ~x for
(x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3. Let

F0 ={~x | βh(x1, x2) < βh(x2, x3) < βh(x0, x1)},
F3 ={~x | βh(x1, x2) < βh(x0, x1) < βh(x2, x3)},
F4 ={~x | βh(x1, x2) < max(βh(x0, x1), βh(x2, x3))}.

Let f(~x) = 1 if ~x ∈
⋃
i∈{0,3,4}(Ei ∩ Fi) and f(~x) = 0 otherwise. We will prove that there is no

homogeneous set of the required type for f .
To see that there are no homogeneous sets of order-type ω∗ + ω in colour 0, consider Lemma

4.5. For sets of order-type ω∗ + κ∗ or κ+ ω, apply Lemma 4.13.

Finally consider a sextuple ~h = {h0, . . . , h5}<lex
∈ [α2]6. Since we have [~h]4 ⊆ [α2]4 \ (E1 ∪ E2)

by the definition of f and f is symmetric it suffices to consider the following cases for i < 2:
First suppose that ∆(h2, h3) v ∆(h1, h2),∆(h3, h4) and ∆(h2j+1, h2j+2) v ∆(h4j , h4j+1) for

j < 2. Then {hj | j /∈ {4j, 4j + 1}} ∈ E3j for j < 2 and {h0, h1, h4, h5} ∈ E4. Then
βh(h4j , h4j+1) < βh(h2, h3) for j < 2 hence max(βh(h0, h1), βh(h4, h5)) < βh(h2, h3) = βh(h1, h4).
But {h0, h1, h4, h5} ∈ E4, a contradiction.
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Figure 3. Colouring of the splitting types for the proof of theorem 4.26.

Now suppose that there is a quintuple {p0, . . . , p4}<lex
∈ ~s and suppose that ∆(p3i, p3i+1) v

∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i). Then {pj | j < 4}, {pj | j > 0} ∈ E3i so
βh(p2, p3) < βh(p1, p2) < βh(p2, p3), a contradiction. �

Theorem 4.25. If κ is an infinite initial ordinal and α < κ+, then

〈α2, <lex〉 6−→(ω + ω∗ ∨ 2 + κ∗ ∨ κ+ 2, 6)4.

Proof. Suppose that κ is as in the theorem and there is an ordinal α < κ+ such that the theorem
holds. Suppose that h : α ↔ κ is bijective. Let βx,y = β(x, y) = h(∆x,y) for x, y ∈ α2. If α = κ,
we can choose βx,y = ∆x,y and obtain a simplified version of the following proof.

We write ~x for (x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3. Let

F0 ={~x | βh(x2, x3) < βh(x0, x1) < βh(x1, x2)},
F1 ={~x | βh(x2, x3) < βh(x1, x2)},
F2 ={~x | βh(x0, x1) < βh(x1, x2)},
F3 ={~x | βh(x0, x1) < βh(x2, x3) < βh(x1, x2))}.

Let f(~x) = 1 if ~x ∈
⋃
i<4(Ei ∩ Fi) and f(~x) = 0 otherwise.

To see that there are no sets of order-type ω + ω∗ which are homogeneous for f in colour 0
consider Lemma 4.15. In order to show that there are no such sets of order-type 2 + κ∗ or κ+ 2,
see Lemma 4.8.

So consider a sextuple ~h ∈ [α2]6 and suppose towards a contradiction that it were homoge-

neous for f in colour 1. Then clearly [~h]4 ⊆ [α2]4 \ E4. Let i < 2. Then for some quintuple

{p0, . . . , p4}<lex
∈ [~h]5 one of the following three cases holds.

First assume that ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i). Then
{pj | j < 4}, {pj | j > 0} ∈ E3i and hence βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

Second assume that ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(p2−i, p3−i) v ∆(pi+1, pi+2). Then
{pj | j < 4} ∈ E1−i while {pj | j > 0} ∈ E3−i. This implies βh(p1, p2) < βh(p2, p3) = βh(p1, p2),
a contradiction.

Last assume that ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i). Then {pj |
j < 4} ∈ Ei while {pj | j > 0} ∈ E2+i. This implies βh(p1, p2) < βh(p2, p3) = βh(p1, p2), a
contradiction. �

4.5. Septuples. In this section, we prove several negative partition relations with 7 on one side
of the relation. Most of these results are used in the classification in Section 4.6.

Theorem 4.26. If α is an ordinal, then 〈α2, <lex〉 6−→(ω∗ + ω ∨ ω + ω∗, 7)4.

Proof. Suppose that (x0, x1, x2, x3) is a tuple in [α2]4 with x0<lexx1<lexx3<lexx4. We define
h(x0, x1, x2, x3) = 1 if f(x0, x1, x2, x3) = 1 or g(x0, x1, x2, x3) = 1, where f and g are the colourings
in the proof of Theorem 4.16, and h(x0, x1, x2, x3) = 0 otherwise. It was shown in the proof of
Theorem 4.16 that there are no sets with order type ω+ω∗ or ω∗ + ω homogeneous for h in colour
0.
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Suppose that H ∈ [α2]7 is homogeneous for h in colour 1. Suppose that H = {xi | i < 7} and
xi<lexxj for i < j < 7. Choose i 6 5 such that ∆xi,xi+1 is least in {∆xj ,xj+1 | j 6 5}. We can
assume that n 6 2. If ∆x6,x5

< ∆x5,x4
< ∆x4,x3

, then h({xj | 3 6 j 6 6}) = 0, contradicting
the choice of H. Otherwise, there is some j with 3 6 j 6 5 and ∆xj ,xj+1

< ∆xj+1
,∆xj+2

. Then
h({xi, xj , xj+1, xj+2}) = 0, contradicting the choice of H. �

A variation of this theorem is the following.

Theorem 4.27. If κ is an initial ordinal number and α < κ+, then

〈α2, <lex〉 6−→(κ∗ + κ ∨ κ+ 2 ∨ 2 + κ∗ ∨ η, 7)4.

Proof. Suppose that there is an ordinal α such that the first partition property holds. Suppose
that h : α ↔ κ is bijective. Let βx,y = β(x, y) = h(∆x,y) for x, y ∈ α2. If α = κ, we can choose
βx,y = ∆x,y and obtain a simplified version of the following proof.

We write ~x for (x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3. Let

F0 := F2 :={~x | βh(x2, x3) < βh(x0, x1) < βh(x1, x2)},
F1 := F3 :={~x | βh(x0, x1) < βh(x2, x3) < βh(x1, x2)},

F4 ={~x | βh(x1, x2) < min(βh(x0, x1), βh(x2, x3))}.

Let f(~x) = 1 if ~x ∈
⋃
i<4(Ei ∩ Fi) and f(~x) = 0 otherwise. We will prove that there is no

homogeneous set of the required type for f .
We can use Lemma 4.10 to show that there are no sets of order-type κ∗+κ which are homoge-

neous for f in colour 0, Lemma 4.8 to see that there are no such sets of order-type 2 +κ∗ or κ+ 2
and Lemma 4.6 or Lemma 4.7 to see that there are no such sets of order-type η.

Finally consider some S ∈ [α2]7. Let 〈si | i < 7〉 be the order-preserving enumeration of S. Note
that [S]4∩(E0∪E1) ) ∅. Without loss of generality suppose that [S]4∩E0 ) ∅. Assume towards a
contradiction that f“[S]4 = 1. Now notice that this implies that for no [S]5 with order-preserving
enumeration 〈qi | i < 6〉 we have ∆(qi, qi+1) v ∆(qi+1, qi+2) for all i < 3 or ∆(qi+1, qi+2) v
∆(qi, qi+1) for all i < 3 since this would imply β(q1, q2) < β(q2, q3) < β(q0, q1) < β(q1, q2) in
the first case and β(q1, q2) < β(q0, q1) < β(q2, q3) < β(q1, q2) in the second. But then there is a
Q ∈ [S]5 with order-preserving enumeration 〈qi | i < 5〉 such that one of the two cases applies.

In the first case, ∆(q0, q1) v ∆(q2, q3) v ∆(q1, q2),∆(q3, q4), in this case consider the fact that
T0 := {qi | i ∈ 5 \ {1}} ∈ E0 and T1 := {qi | i ∈ 5 \ 1} ∈ E4. So T0 ∈ F0 and T1 ∈ F4) so
β(q3, q4) < β(q0, q2) < β(q2, q3) < min(β(q1, q2), β(q3, q4)) 6 β(q3, q4), a contradiction.

In the second case, ∆(q1, q2) v ∆(q0, q1),∆(q2, q3) and ∆(q2, q3) v ∆(q3, q4). Let T0 := {qi |
i ∈ 5 \ 1} ∈ E0 and T1 := {qi | 5 \ {1}} ∈ E4. Then T0 ∈ F0 and T1 ∈ F4, hence β(q3, q4) <
β(q1, q2) < β(q2, q3) < min(β(q0, q2), β(q3, q4)) 6 β(q3, q4). �

Theorem 4.28. If κ is an initial ordinal and α < κ+, then

〈α2, <lex〉 6−→(ω∗ + ω ∨ 2 + κ∗ ∨ κ+ ω, 7)4,

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω∗ + κ∗ ∨ κ+ 2, 7)4.

Proof. Suppose that there is an ordinal α such that the first partition property holds. Suppose
that h : α ↔ κ is bijective. Let βx,y = β(x, y) = h(∆x,y) for x, y ∈ α2. If α = κ, we can choose
βx,y = ∆x,y and obtain a simplified version of the following proof.

We write ~x for (x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3. Let

F0 :={~x | βh(x1, x2) < βh(x2, x3) < βh(x0, x1)},
F1 := F3 :={~x | βh(x0, x1) < βh(x2, x3) < βh(x1, x2)},

F4 ={~x | βh(x1, x2) < max(βh(x0, x1), βh(x2, x3))}.

Let f(~x) = 1 if ~x ∈
⋃
i∈5\{2}(Ei ∩ Fi) and f(~x) = 0 otherwise. We will prove that there is no

homogeneous set of the required type for f .
One can use Lemma 4.5 with i = 1 to show that there are no sets of order-type ω∗ + ω which

are homogeneous for f in colour 0, the first half of Lemma 4.8 to see that there are no such sets
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of order-type 2 + κ∗ and the second half of Lemma 4.13 to see that there are no such sets of
order-type κ+ ω.

Finally consider some ~s ∈ [α2]7 and assume towards a contradiction that it were homogeneous
for f in colour 1. Note that ~s ∈ [α2]4 \ E2. We distinguish some cases:

First suppose that there is a {h0, . . . , h5}<lex
∈ [~s]6 such that ∆(h2, h3) v ∆(h1, h2),∆(h3, h4)

and ∆(h2i+1, h2i+2) v ∆(h4i, h4i+1) for i < 2. Then {h0, h1, h2, h3} ∈ E3, {h2, h3, h4, h5} ∈
E0 and {h0, h1, h4, h5} ∈ E4. Together this implies βh(h1, h4) < max(βh(h0, h1), βh(h4, h5)) 6
βh(h2, h3) = βh(h1, h4), a contradiction.

Now consider some {p0, . . . , p4}<lex
∈ [~s]5.

Second suppose that ∆(p0, p1) v ∆(p1, p2) v ∆(p3, p4) v ∆(p2, p3). Then {p0, p1, p2, p3} ∈ E0

while {p0, p2, p3, p4} ∈ E1 so βh(p0, p1) < βh(p2, p3) < βh(p0, p1), a contradiction.
Third suppose that ∆(p0, p1) v ∆(p3, p4) v ∆(p2, p3) v ∆(p1, p2). Then {p0, p1, p2, p3} ∈ E1

while {p1, p2, p3, p4} ∈ E3 so βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.
The two remaining cases are very similar to each other so we can shorten the discussion by

using a parameter i < 2.
So suppose that ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i). Then

{p0, p1, p2, p3}, {p1, p2, p3, p4} ∈ E3i so βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.
The second half of the theorem can be proved in an analogous way. �

4.6. The classification. We will determine which partition relations of the forms

〈ω2, <lex〉 −→ (K,L)n

〈ω2, <lex〉 −→ (
∨
ν<λ

Kν ,
∨
ν<µ

Lν)4

for linear orders K,L,Kν , Lν are consistent with ZF + DC. We have the following positive
relations by Theorems 2.5, 2.6 and 2.7.

〈ω2, <lex〉 −→ (ω + 1)42,

〈ω2, <lex〉 −→ (1 + ω∗ + ω + 1 ∨ ω + 1 + ω∗, 5)4,

〈ω2, <lex〉 −→ (1 + ω∗ + ω + 1 ∨ m+ ω∗ ∨ ω + n, 6)4.

We have the following negative relations by Theorem 4.2.

〈ω2, <lex〉 6−→(ω∗ + ω ∨ κ+ 2 + κ∗ ∨ (κ2)∗ ∨ κ2, 5)4,

〈ω2, <lex〉 6−→(2 + κ∗ ∨ κ+ 2 ∨ η, 5)4,{
〈ω2, <lex〉 6−→(κ∗ + κ ∨ 2 + κ∗ ∨ κ2 ∨ ωω∗, 6)4,

〈ω2, <lex〉 6−→(κ∗ + κ ∨ (κ2)∗ ∨ κ+ 2 ∨ ω∗ω, 6)4,

〈ω2, <lex〉 6−→(κ∗ + κ ∨ κ+ 2 ∨ 2 + κ∗ ∨ η, 7)4.

Theorem 4.29. Suppose that the principle of dependent choices DC holds true and all sets of
reals have the property of Baire. Suppose that K and L are suborders of 〈ω2, <lex〉 and n > 4.
Then the partition relation

〈ω2, <lex〉 −→ (K,M)n

holds true if and only if K,M ≤ ω + 1 or K,M ≤ 1 + ω∗. Otherwise the relation is inconsistent
with ZF.

Proof. Suppose that K 6≤ ω + 1 and L 6≤ 1 + ω∗. Then ω + 2 ≤ K or ω∗ ≤ K and 1 + ω∗ ≤M or
ω ≤M , using DC. Then the partition relation fails by Theorem 3.3. If K 6≤ 1+ω∗ and L 6≤ ω+1,
again the partition relation fails by Theorem 3.3.

If K ≤ ω + 1 and L ≤ ω + 1, then the relation holds by Theorem 2.5. Similarly, if K ≤ 1 + ω∗

and L ≤ 1 + ω∗, then the relation holds by Theorem 2.5.
In the other cases K ≤ ω+1 and K ≤ 1+ω∗, so that K is finite, or in the remaining symmetric

case that M is finite, which we omit. Suppose that |K| = n+ 1. We can assume that none of the
previous cases applies, so ω + 2 ≤ M , 2 + ω∗ ≤ M , or ω∗ + ω ≤ M . If ω∗ + ω ≤ M , then the
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relation fails by Theorem 4.16. If ω + 2 ≤ M or 2 + ω∗ ≤ M , then the relation fails by Theorem
4.18. �

The following result shows that the previous theorems solve the case of quadruple-colourings in
the Cantor space completely, given that all sets of reals have the property of Baire. We will only
consider partition relations such that in no disjunction there are linear orders K,L with K ≤ L,
since in this case L can be omitted without changing the truth value of the partition relation.

Theorem 4.30. Suppose that the principle of dependent choices DC holds true and all sets of
reals have the property of Baire. Suppose that Kµ and Lν are suborders of 〈ω2, <lex〉 for all µ < κ
and ν < λ. Then the partition relation

〈ω2, <lex〉 −→ (
∨
µ<κ

Kµ,
∨
ν<λ

Mν)4

holds true if and only if one of the following cases applies.

(i) Kξ,Mρ ≤ ω + 1 for some ξ < κ, ρ < λ,
(ii) Kξ,Mρ ≤ 1 + ω∗ for some ξ < κ, ρ < λ.
(iii) κ = 1, K0 ≤ 6, λ = 3, and for some i, j, k < 3 and some m,n

Mi ≤ 1 + ω∗ + ω + 1, Mj ≤ ω +m, Mk ≤ n+ ω∗.

(iv) λ = 1, M0 ≤ 6, κ = 3, and for some i, j, k < 3 and some m,n

Ki ≤ 1 + ω∗ + ω + 1, Kj ≤ ω +m, Kk ≤ n+ ω∗.

(v) κ = 1, K0 ≤ 5, λ = 2, and for some i, j < 2

Mi ≤ 1 + ω∗ + ω + 1, Mj ≤ ω + 1 + ω∗.

(vi) λ = 1, M0 ≤ 5, κ = 2, and for some i, j < 2

Ki ≤ 1 + ω∗ + ω + 1, Kj ≤ ω + 1 + ω∗.

Moreover, if none of these cases applies, then the relation is inconsistent with ZF.

Proof. Suppose that Kµ 6≤ ω + 1 and Mν 6≤ 1 + ω∗ for all µ < κ and ν < λ. Then ω + 2 ≤ Kµ or
ω∗ ≤ Kµ for all µ < κ, and 2 + ω∗ ≤ Mν or ω ≤ Mν for all ν < λ, using DC. Then the partition
relation fails by Theorem 3.3.

If Kµ 6≤ 1 + ω∗ and Mν 6≤ ω + 1 for all µ < κ and ν < λ, again the partition relation fails by
Theorem 3.3.

If Kµ ≤ ω + 1 for some µ < κ and Mν ≤ ω + 1 for some ν < λ, then the relation holds by
Theorem 2.5. Similarly, if Kµ ≤ 1 + ω∗ for some µ < κ and Mν ≤ 1 + ω∗ for some ν < λ, then
the relation holds by Theorem 2.5. These are the first two cases in the classification.

It follows that Kµ ≤ ω + 1 and Kν ≤ 1 + ω∗ for some µ, ν < κ, or the symmetric case for Mµ,
Mν and µ, ν < λ, which we omit. We can assume that none of the previous cases applies.

We first suppose that µ 6= ν, or that µ = ν and Kµ > 7. Let us consider the linear orders
on the right side of the relation. Since none of the previous cases applies, the linear orders are
neither embeddable into 1 + ω∗ nor into ω + 1. Hence for each ν < λ, ω + 2 ≤Mν , 2 + ω∗ ≤Mν ,
or ω∗ + ω ≤Mν . Then the relation fails by Theorem 4.2.

Second, we suppose that κ = 1 and K0 = 6. Again, we consider the linear orders on the right.
If every linear order contains ω + 2 or 2 + ω∗, then the relation fails by Theorem 4.2. If every
linear order contains ω∗+ω or ω+ 2, then the relation fails by Theorem 4.2. If every linear order
contains ω∗+ω or 2 +ω∗, then the relation fails by Theorem 4.2. Any linear order which contains
ω∗ + ω, but neither 2 + ω∗ nor ω + 2, is contained in 1 + ω∗ + ω + 1. Hence the linear orders on
the right side of the relation are contained in 1 + ω∗ + ω + 1, ω + m, and n + ω∗ for some m,n.
Then the partition relation holds by Theorem 2.6. This is the third case in the classification. The
fourth case is symmetric and occurs when we exchange the left and right sides of the relation.

Finally, we consider the case κ = 0 and K0 = 5. If every linear order contains ω + 2 or 2 + ω∗,
then the relation fails by Theorem 4.2. If every linear order contains ω∗ + ω, ω + 2 + ω∗, ω2, or
(ω2)∗, then the relation fails by Theorem 4.2.

Otherwise, there are µ, ν < λ such that Mµ contains neither ω∗+ω, ω+ 2 +ω∗, ω2, nor (ω2)∗,
and Mν contains neither 2 + ω∗ nor ω + 2. Then Mµ is embeddable into ω + 1 + ω∗.
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First, suppose that Mν contains ω∗+ω. Then Mν is contained in 1 +ω∗ + ω+ 1. If µ 6= ν, the
relation holds by Theorem 2.7. This is the fifth case in the classification. The sixth case occurs
symmetrically when the left and right sides in the relation are exchanged. If µ = ν, then Mµ

embeds into ω + 1 or 1 + ω∗, so the relation holds by Theorem 2.4. This is one of the first two
cases of the classification.

Second, suppose that Mν does not contain ω∗ + ω. Then Mν is contained in ω + n + ω∗ for
some n, and therefore Mν embeds into ω+1 or 1+ω∗, so the relation holds by Theorem 2.4. This
is one of the first two cases of the classification. �

4.7. Octuples. In the remaining sections, we prove three negative partition relations for octuples
and nonuples. These relations follow from Theorem 4.27 for κ = ω, but are new for κ > ω.

Theorem 4.31. if κ is an initial ordinal and α < κ+, then

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω + ω∗ ∨ (κ2)∗ ∨ κ2, 8)4.

Proof. Suppose that there is an ordinal α such that the first partition property holds. Suppose
that h : α ↔ κ is bijective. Let βx,y = β(x, y) = h(∆x,y) for x, y ∈ α2. If α = κ, we can choose
βx,y = ∆x,y and obtain a simplified version of the following proof.

We write ~x for (x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3. Let

F0 :={~x | βh(x1, x2) < βh(x2, x3) < βh(x0, x1)},
F1 :={~x | βh(x2, x3) < βh(x1, x2)},
F2 :={~x | βh(x0, x1) < βh(x1, x2)},
F3 :={~x | βh(x1, x2) < βh(x0, x1) < βh(x2, x3)},
F4 :={~x | βh(x1, x2) < min(βh(x0, x1), βh(x2, x3))}.

Let f(~x) = 1 if ~x ∈
⋃
i∈5\{2}(Ei ∩ Fi) and f(~x) = 0 otherwise.

We will prove that there is no homogeneous set of the required type for f . One can use Lemma
4.5 to show that there are no sets of order-type ω∗ + ω which are homogeneous for f in colour 0,
Lemma 4.14 to see that there are no such sets of order-type (κ2)∗ or κ2 and Lemma 4.15 to see
that there are no such sets of order-type ω + ω∗.

Finally consider some ~o ∈ [α2]8 and assume towards a contradiction that it were homogeneous
for f in colour 1. There is an i < 2 and a quintuple {p0, . . . , p4}<lex

∈ [~o]5 for which one of the
following three cases obtains:

First suppose that ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i). Then
{pj | j < 4}, {pj | j > 0} ∈ E3i so βh(p1, p2) < βh(p2, p3) < βh(p1, p2), a contradiction.

Second suppose that ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(p2−i, p3−i) v ∆(pi+1, pi+2). Then
{pj | j 6= i + 1} ∈ Ei+1 while {pj | j 6= 4i} ∈ E3−3i so βh(p2−i, p3−i) < βh(p3−3i, p4−3i) <
βh(p2−i, p3−i), a contradiction.

Last suppose that ∆(pi+1, pi+2) v ∆(p3i, p3i+1),∆(p2−i, p3−i) and further ∆(p2−i, p3−i) v
∆(p3−3i, p4−3i). Then {pj | j < 4} ∈ E4−i and {pj | j > 0} ∈ E4i so βh(pi+1, pi+2) <
min(βh(p3i, p3i+1), βh(p2−i, p3−i)) 6 βh(p2−i, p3−i) < βh(pi+1, pi+2), a contradiction. �

Theorem 4.32. If κ is an infinite initial ordinal and α < κ+, then

〈κ2, <lex〉 6−→(κ∗ + ω ∨ ω∗ + κ ∨ 2 + κ∗ ∨ κ+ 2 ∨ ωω∗ ∨ ω∗ω, 8)4.

Proof. Let α be any ordinal.

F0 := F2 :={~x | βh(x2, x3) < βh(x0, x1) < βh(x1, x2)},
F1 := F3 :={~x | βh(x0, x1) < βh(x2, x3) < βh(x1, x2)},

F4 :={~x | βh(x1, x2) < max(βh(x0, x1), βh(x2, x3))}.

For ~x ∈ [α2]4 let f(~x) = 1 if ~x is in Ei ∩ Fi for an i < 5 and f(~x) = 0 otherwise. We will prove
that there is no homogeneous set of the required type for f .

In order to see that there is no homogeneous set of the required type in colour 1, consider the
Lemmata 4.9,4.8 and 4.11.
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Now consider an octuple O ∈ [α2]8 with order-preserving enumeration 〈oi | i < 8〉. Note
that O has has to contain one of the following splitting types of quintuples or sextuples. So let
{p0, . . . , p4}<lex

∈ [O]5 and {h0, . . . , h5}<lex
∈ [O]6.

First suppose that ∆(h2, h3) v ∆(h1, h2),∆(h3, h4) and ∆(h2i+1, h2i+2) v ∆(h4i, h4i+1) for
i < 2. Then {hi | i < 4} ∈ E3 and {si | i ∈ 6 \ 2} ∈ E0. This implies βh(h0, h1) < βh(h2, h3)
and βh(s4, h5) < βh(h2, h3) so min(βh(h0, h1), βh(h4, h5)) < βh(h2, h3) = βh(h1, h4). But {hi |
i ∈ 6 \ {1, 4}} ∈ E4, a contradiction.

The remaining cases come in two flavours, one for each i < 2.
Second suppose that ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i). Then

{pi | i < 4}, {pi | i > 0} ∈ E3i so βh(p2−i, p3−i) < βh(pi+1, pi+2) < βh(p2−i, p3−i), a contradiction.
Third assume ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p3−3i, p4−3i) v ∆(p2−i, p3−i). Then {pi |

i < 4} ∈ E3i and {pi | i > 0} ∈ Ei+1 so βh(p2−i, p3−i) < βh(pi+1, pi+2) < βh(p2−i, p3−i), a
contradiction.

Fourth suppose that ∆(p3i, p3i+1) v ∆(p3i, p3i+1) v ∆(p2−i, p3−i) v ∆(pi+1, pi+2). Then
{pi | i < 4} ∈ Ei+1 and {pi | i > 0} ∈ E3−3i so βh(pi+1, pi+2) < βh(p2−i, p3−i) < βh(pi+1, pi+2), a
contradiction.

Finally assume ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(pi+1, pi+2) v ∆(p2−i, p3−i). Then {pi |
i < 4} ∈ E3i and {pi | i > 0} ∈ E2−i so βh(p2−i, p3−i) < βh(pi+1, pi+2) < βh(p2−i, p3−i), a
contradiction. �

4.8. Nonuples. In the final section of this chapter, we prove negative partition relations for
nonuples. These relations follow from Theorem 4.27 for κ = ω, but are new for κ > ω.

Theorem 4.33. If κ is an infinite initial ordinal and α < κ+, then

〈α2, <lex〉 6−→(ω∗ + ω ∨ ω + ω∗ ∨ κ+ 2 ∨ 2 + κ∗, 9)4.

Proof. Suppose that κ is as in the theorem and there is an ordinal α < κ+ such that the Theorem
holds. Suppose that h : α ↔ κ is bijective. Let βx,y = β(x, y) = h(∆x,y) for x, y ∈ α2. If α = κ,
we can choose βx,y = ∆x,y and obtain a simplified version of the following proof.

We write ~x for (x0, x1, x2, x3) with x0<lexx1<lexx2<lexx3. Let

F0 := F2 :={~x | βh(x2, x3) < βh(x0, x1) < βh(x1, x2)},
F1 := F3 :={~x | βh(x0, x1) < βh(x2, x3) < βh(x1, x2)}.

Let f(~x) = 1 if ~x ∈ E4 ∪
⋃
i<4(Ei ∩ Fi) and f(~x) = 0 otherwise. We will prove that there is no

homogeneous set of the required type for f .
By Lemmata 4.4 and 4.8, there are no homogeneous sets of the order types ω∗ + ω, 2 +κ∗, and

κ+ 2 in colour 0.
Now suppose that there is a Y ∈ [α2]ω+ω

∗
and assume towards a contradiction that it were

homogeneous for f in colour 0. We distinguish three cases. First assume that there is an s ∈ <α2
such that min(|{y ∈ Y | y A sa〈0〉}|, |{y ∈ Y | y A sa〈1〉}|) > 1. Choose y2i, y2i+1 A sa〈i〉
for i < 2. Then {y0, y1, y2, y3} ∈ E4. Now assume that there is no such s. This implies that

all splitting nodes lie on a single branch. Let 〈y(0)n | n < ω〉 be the ascending enumeration of

the lower half of Y and 〈y(1)n | n < ω〉 the descending one of the upper half. Consider the

parameters γi := supn<ω δ(y
(i)
n , y

(i)
n+1) and ζi := lim supn<ω β(y

(i)
n , y

(i)
n+1) for i < 2. Now the

second case applies if γ0 6 γ1 ↔ ζ1 6 ζ0, otherwise the third case applies. Let i < 2 be such that

γi 6 γ1−i. Now choose m < ω such that ∆(y
(1−i)
m , y

(1−i)
m+1 ) > ∆(y

(i)
0 , y

(i)
1 ) and β(y

(1−i)
m , y

(1−i)
m+1 ) ∈

ζ1−i \ β(y
(i)
0 , y

(i)
1 ). Now choose an n ∈ ω \m such that β(y

(1−i)
n , y

(1−i)
n+1 ) > β(y

(1−i)
m , y

(1−i)
m+1 ). Then

{y(i)0 , y
(1−i)
m , y

(1−i)
n , y

(1−i)
n+1 } ∈ E3−i ∩ F3−i. In the third and final case let k < ω be such that

δ(y
(1−i)
k , y

(1−i)
k+1 ) > γi. Then choose m < ω such that β(y

(i)
m , y

(i)
m+1) ∈ ζi \ β(y

(i)
k , y

(i)
k+1) and finally

n ∈ ω \m such that β(y
(i)
n , y

(i)
n+1) > β(y

(i)
m , y

(i)
m+1). Then {y(i)m , y

(i)
n , y

(1−i)
k , y

(1−i)
k+1 } ∈ Ei ∩ Fi.

Finally assume towards a contradiction hat there were a nonuple N ∈ [α2]9 homogeneous for f
in colour 1. We consider the following four cases, specified by a parameter i < 2:
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First suppose that there is some quintuple ~p = {p0, . . . , p4}<lex
∈ [N ]5 such that ∆(p3i, p3i+1) v

∆(pi+1, pi+2) v ∆(p2−i, p3−i) v ∆(p3−3i, p4−3i). Now {pj | j < 4}, {pj | j > 0} ∈ E3i so
βh(p1, q2) < βh(q2, q3) < βh(q1, q2), a contradiction.

Second suppose that there is such a ~p with ∆(p3i, p3i+1) v ∆(pi+1, pi+2) v ∆(p3−3i, p4−3i) v
∆(p2−i, p3−i). Then {pj | j < 4} ∈ E2i while {pj | j > 0} ∈ Ei+2 so βh(p1, p2) < βh(p2, p3) <
βh(p1, p2), a contradiction.

Third suppose that there is such a ~p with ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(pi+1, pi+2) v
∆(p2−i, p3−i). Then {pj | j < 4} ∈ Ei while {pj | j > 0} ∈ Ei+2 hence βh(p1, p2) < βh(p2, p3) <
βh(q1, q2), a contradiction.

Finally suppose that there is such a ~p with ∆(p3i, p3i+1) v ∆(p3−3i, p4−3i) v ∆(p2−i, p3−i) v
∆(pi+1, pi+2). Then {pj | j < 4} ∈ E1−i while {pj | j > 0} ∈ E3−i so βh(p1, p2) < β(p2, p3) <
βh(p1, p2), a contradiction.

These four pairs of cases exhaust all possibilities, since at least one of them occurs in every
nonuple. �

5. Questions

We conclude this paper with the main open questions. The strong partition property for ω1

implies 〈ω12, <lex〉 −→ (〈ω12, <lex〉)12. This motivates the following question.

Question 5.1. Does the axiom of determinacy imply 〈ω12, <lex〉 −→ (〈ω12, <lex〉)22?

The following question asks about an uncountable analogue of Blass’ theorem. This seems
necessary to generalise the positive partition results from 〈ω2, <lex〉 to 〈κ2, <lex〉.

Question 5.2. Is it consistent that κ = κ<κ > ω and 〈κ2, <lex〉 −→t (〈κ2, <lex〉)mn for all m,n?

We ask whether the classifications in Theorems 3.4 and 4.30 generalise to exponent 5.

Question 5.3. Which partition relations of the form

〈ω2, <lex〉 −→ (
∨
ν<λ

Kν ,
∨
ν<µ

Lν)5

hold if all subsets of 〈ω2, <lex〉 have the property of Baire?

It seems harder to generalise the classification to uncountable κ.

Question 5.4. Which partition relations of the form

〈κ2, <lex〉 −→ (
∨
ν<λ

Kν ,
∨
ν<µ

Lν)n

for n > 3 are (jointly) consistent with ZF (+DCκ), and which of the relations for κ = ω1 are
provable in the theories ZF+AD+[V = L(R)] and ZF+DC+ADR?

Theorems 1.20, 2.3, 2.4 and 2.7 suggest that models of determinacy are good candidates for
obtaining positive partition relations. In particular L(R) is a canonical model of ZF+DC+AD,
provided that there are infinitely many Woodin cardinals and a measurable cardinal above them
all, cf.[988MS].

The partition relations in Question 5.4 for which all Kν for ν < λ are well-ordered hold for
large ordinals on the left side of the relation by the Erdős-Rado Theorem. On the other hand it
is unclear whether the existence of linear orderings K such that K −→ (2 + ω∗ + ω ∨ ω + ω∗, 5)4,
K −→ (ω∗ + ω ∨ ω + 2 + ω∗, 5)4 or K −→ (ω∗ + ω ∨ ω + ω∗, 6)4 is consistent with ZF. The
relations fail in ZFC by Theorem 1.9. Moreover, if one of the relations holds for a linear order K
of the form K = 〈γ2, <lex〉, then γ > ω1 by Theorem 4.2.

Finally, we ask about partition relations in the context of strong failures of the Axiom of Choice.
The assumption in the following question is consistent from a proper class of strongly compact
cardinals by [980Gi].

Question 5.5. Which partition relations for linear orders hold if all uncountable cardinals are
singular?
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[014L] Philipp Lücke, Luca Motto Ros and Philipp Schlicht. The Hurewicz dichotomy for generalized Baire

spaces. Preprint, 2014.
[014Sc] Philipp Schlicht. Perfect sets generalized Baire spaces and Banach-Mazur games. Preprint, 2014.

[014We] Thilo Volker Weinert. Idiosynchromatic poetry. Combinatorica, 34(6):707–742, 2014, doi:10.1007/s00493-
011-2980-1. 36 pages.

[014We2] Thilo Volker Weinert. A Potpourri of Partition Properties. PhD thesis, 2014, http://hss.ulb.uni-bonn.

de/2014/3702/3702.pdf.
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