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1

Introduction
A synopsis of the main new results presented in this dissertation can be found in both English
and German in Appendices A.1 and A.2.

Although the name would imply that set theorists mostly study specific sets, in practice it is
more accurate to say that set theorists study the independence of mathematical statements
relative to a broad family of logical theories that have a primitive notion of “being an element of
something”. The most commonly known and studied such theory is ZFC, or Zermelo-Fraenkel
Set Theory with the Axiom of Choice. This theory is of such generality that it can serve as an
axiomatic basis for the vast majority of mathematical literature.

By Gödel’s Incompleteness Theorems, it is nevertheless impossible for a sufficiently strong theory
to be an axiomatic basis that decides the truth of all mathematical statements, and ZFC is indeed
no exception. Such unprovable statements are called independent of ZFC, and not infrequently
examples of independent statements appear in fields of research outside of set theory.

One particularly rich source of independent statements, is the study of the real line (also known
as the continuum) with the most famous example being the Continuum Hypothesis (CH), or,
the statement that every infinite subset of the real numbers is either countable or has the same
cardinality as the set of all real numbers. Paul Cohen introduced the method of forcing in 1963
[Coh63], which is effectively a method using a partial ordered set (called a forcing notion) to
convert a model of ZFC (called the ground model) into a new model of ZFC (called a forcing
extension). A (nontrivial) forcing extension contains many new sets that are not found in the
ground model, and may, for instance, contain many new real numbers. By careful control of the
properties of the forcing notion, Cohen was able to show that any ground model has a forcing
extension in which CH holds1, and a forcing extension in which CH fails.

Under the assumption that CH fails, we see that there are sets of real numbers that are un-
countable, but of strictly smaller cardinality than the real numbers. An interesting question is
therefore if there exist such sets with interesting mathematical properties, and if so, what possi-
ble cardinality these sets can have. Cardinalities like this are known as cardinal characteristics
of the continuum, and examples include the least cardinality of a set of positive Lebesgue outer
measure, the least number of (closed) nowhere dense sets necessary to cover the real line, or the
least cardinality of a base for a nonprincipal ultrafilter on the natural numbers2. For each of

1The consistency of CH had already been proved 25 years earlier, when Gödel announced his constructible
universe in the two-page paper [Gö38].

2On first inspection, the latter two examples do not appear to be related to sets of real numbers. However, on
second inspection, one could note that both closed nowhere dense sets and subsets of the natural numbers can
be coded by real numbers.
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these examples, the method of forcing can be used to show they can consistently (relative to
ZFC) attain a wide variety of cardinalities different from the continuum.

Set theorists usually work with the Cantor space ω2 (of binary sequences indexed by the natural
numbers ω) and the Baire space ωω (of functions from ω to ω) instead of the real numbers, as
this change of space generally does not affect the size of cardinal characteristics. In the most
recent three decades, an increasing number of people have been studying what happens if we
replace the natural numbers ω with a set of uncountable cardinality. A higher Baire space κκ,
also known as generalised Baire space3, where κ is an uncountable cardinal number, allows us to
define cardinal characteristics of higher Baire spaces. For example, one could define a (natural)
topology on κκ and consider the least number of nowhere dense sets necessary to cover κκ.

The overarching theme of this thesis is cardinal characteristics of higher Baire spaces,
with a special focus on cardinal characteristics that are classically (i.e. in the context of ωω)
associated with the Cichoń diagram4. The Cichoń diagram shows the relationship between
ten cardinal characteristics, defined in terms of the ideal of Lebesgue null sets, the ideal of
meagre sets (that is, sets that are countable unions of nowhere dense sets) and dominating and
unbounded subsets of ωω (where D ⊆ ωω is dominating if every function f ∈ ωω is eventually
bound by some function g ∈ D in the sense that f(n) ≤ g(n) for all n that are large enough;
and B ⊆ ωω is unbounded if no function f ∈ ωω eventually bounds all elements of B).

Some concepts readily generalise from ωω to κκ (such as meagre, dominating and unbounded
subsets of ωω), whereas others prove to be quite difficult to generalise (such as Lebesgue measure
and the associated null ideal). On the other hand, higher Baire spaces allow for certain structures
that have no classical analogue as well (such as the existence of limit ordinals below κ and
stationary sets).

Mathematical results regarding cardinal characteristics can be broadly categorised into ZFC-
results on the one hand and proofs of independence on the other hand. A ZFC-result shows a
relation between cardinal characteristics that is provable in ZFC. Consequently, such statements
have the same truth value in any model of ZFC and thus their truth is preserved under the
method of forcing. Contrastingly, proofs of independence show that two (or more) cardinal
characteristics are consistently different from each other, and usually involve the method of
forcing to produce a model that exhibits this difference. In order to show independence, careful,
and frequently quite technical, analysis of forcing notions is necessary to show that the forcing
extension has the right properties.

In some cases, independence of ZFC can only be shown relative to an axiomatic system that
is strictly stronger than ZFC. Many such stronger systems are the product of assuming that

3We chose to prefer the term “higher” over “generalised”, for reasons explained in the introduction of [BGS20],
namely that “higher” follows analogy with other terms, e.g. higher Suslin trees, higher recursion theory, etc.

4Named by Fremlin [Fre84] after Jacek Cichoń. Although the ideas for the proof behind the relations in the
Cichoń diagram were discovered by other people (Rothberger, Miller, Raisonnier, Stern, Bartoszyński), the paper
[CKP85] written by Cichoń, Kamburelis and Pawlikowski is one of the earlier papers considering previously known
statements about null and meagre sets and dominating and unbounded families in terms of cardinal numbers.
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there exist uncountable cardinals with certain combinatorial properties, called large cardinals.
Although large cardinal assumptions are not frequently needed in the study of classical cardinal
characteristics, they play a vital role in the study of higher cardinal characteristics.

In this dissertation, we will give an overview of cardinal characteristics that generalise the Cichoń
diagram to higher Baire spaces κκ, with a special focus on cases where κ has the (large cardinal)
property of being inaccessible. A significant part of the dissertation is concerned with variants
of the cardinal characteristics of the higher Cichoń diagram that are obtained by limiting the
set of functions in κκ to only those that are bound below some fixed function b ∈ κκ. These
bounded variants have been studied in the context of ωω before, but are first studied on κκ in
this dissertation, and we will also introduce a couple of bounded variants that do not have any
analogue in ωω, as far as we are aware.

We will both show ZFC-results regarding the relative order of cardinal characteristics and the
influence on the choice of bound b on the variants that are defined on bounded higher Baire
spaces. We will also study the effect that several forcing notions have on the size of the cardinal
characteristics, which will lead us to new independence results.

Although this introduction has been written for a broader audience, the rest of this dissertation
assumes the reader is familiar with set theory. In particular, we assume familiarity with the
theory of forcing as treated in e.g. [Jec86, Kun11, Hal11], and will not define the method of
forcing in this dissertation. We also assume the reader is familiar with some well-known large
cardinals (inaccessible, weakly compact, measurable).

1.1. Structure of the Dissertation

We will first establish the general mathematical notation and conventions used in this disserta-
tion in Section 1.2.

Chapter 2 will form the background to the rest of the dissertation and contains no new results
by the author. We will formally define higher Baire spaces and discuss their properties. We will
furthermore define our main cardinal characteristics using the framework of relational systems.
Relational systems will help us in giving concise ZFC-results regarding our cardinal characteris-
tics. We will define both the cardinal characteristics of the classical and higher Cichoń diagrams
and give some (sketches of) proofs of the relations between these cardinal characteristics, and
an overview of unknown relations.

In Chapter 3 we introduce bounded higher Baire spaces, as well as bounded versions of the
cardinal characteristics of the higher Cichoń diagram. We will prove ZFC-results regarding
the relation between the bounded and unbounded cardinal characteristics of the higher Cichoń
diagram. Finally, we discuss the influence of the choice of bound (and of other parameters)
on these cardinals, in particular for which choices the cardinals do not consistently lie strictly
between κ and κ+. This leads to several interesting open questions as well.

In Chapter 4 we will discuss forcing notions associated with higher Baire spaces. We give prop-
erties of such forcing notions and how these properties will influence our cardinal characteristics.
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We do this by investigating new elements of κκ with certain generic combinatorial properties
over the ground model. We will also give some simple independence results, most of them old,
some of them new.

The last two chapters deal with more complex independence results. In Chapter 5 we show the
consistency of a large family (of size κ+) of localisation cardinals with distinct cardinalities. In
Chapter 6 we show the existence of a family (of size κ) of cardinals, any finite subset of which
yields a forcing extension where all of the cardinals in the finite subset are distinct.

1.2. Notation

Our notation will be mostly standard, following references such as [Jec03, Kun11]. We will use
the Greek letters α, β, γ, δ, ϵ, ζ, η, ξ for ordinals, while κ, λ, µ, ν will be used for (usually infinite)
cardinals. The class of all ordinals is written as Ord. Blackboard boldface uppercase letters
A,B,C, · · · are reserved for forcing notions, fraktur lowercase letters a, b, c, · · · are reserved
for cardinal characteristics and script uppercase letters A ,B,C , · · · are reserved for relational
systems.

We say that a property P holds for almost all α ∈ κ if there is a β ∈ κ such that P (α)
holds for all α ≥ β, and we abbreviate this as ∀∞α ∈ κP (α). Dually, a property is said to
hold for cofinally many α ∈ κ if for every β ∈ κ there is some α ≥ β for which P (α) holds,
abbreviated as ∃∞α ∈ κP (α). Given two functions f, f ′ with domain κ and ◁ a relation defined
on ran(f)× ran(f ′), we write

• f ◁ f ′ as a shorthand for ∀α ∈ κ(f(α) ◁ f ′(α)),
• f ◁∗ f ′ as a shorthand for ∀∞α ∈ κ(f(α) ◁ f ′(α)),
• f ◁∞ f ′ as a shorthand for ∃∞α ∈ κ(f(α) ◁ f ′(α)).

The intended meaning of ��◁∗ and ��◁∞ are the negations of ◁∗ and ◁∞ respectively, as should
be clear on sight, in contrast to the ambiguously notated ◁̸∗ and ◁̸∞. For this reason we will
henceforth use the former notation.

Subsets and Functions

Unsurprisingly, we write cardinal exponentiation as λµ and we let λ<µ =
⋃

α∈µ λ
|α|. If instead

we want to discuss the set of functions from X to Y , we write this as XY . If α is an ordinal,
then <αY denotes the set

⋃
ξ∈α

ξY . We define

[Y ]µ = {X ∈ P(Y ) | |X| = µ} ,

[Y ]<µ = {X ∈ P(Y ) | |X| < µ} .

Naturally, ≤αY and [Y ]≤α have the obvious meaning that is implicit from the above.

We will consider functions with domain α to be the same concept as a sequence of length α.
Given sequences s ∈ αX and t ∈ βX, we write s⌢t ∈ α+βX for the concatenation of s and t.
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We write ⟨x⟩ for the sequence of length 1 containing only x. If s ∈ αX is a sequence, we write
dom(s) = α for the length, order-type or domain of s. If A ⊆ Ord is a set of ordinals, we
write ot(A) for the order-type of ⟨A,∈⟩. If f is a function and A ⊆ X, we write f ↾ A for the
restriction of f to A. The range of a function f is denoted as ran(f), and if A ⊆ dom(f), we
write f [A] for ran(f ↾ A).

If f, g are functions on ordinals, we interpret arithmetical operators on the functions elementwise,
such as f + g : α 7→ f(α) + g(α) and 2f : α 7→ 2f(α) and if ξ is an ordinal f + ξ : α 7→ f(α) + ξ.
We will often work with functions b where b(α) is a cardinal for each α. In such cases, we also
establish that cf(b) : α 7→ cf(b(α)) and b+ : α 7→ (b(α))+. Finally if α is an ordinal, we write α
for the constant function κ→ {α}.

An increasing function f : κ → Ord is called continuous5 at γ ∈ κ if f(γ) =
⋃

α<γ f(α) and
otherwise it is called discontinuous at γ ∈ κ. If A ⊆ κ, then f is (dis)continuous on A if f is
(dis)continuous at γ for every limit ordinal γ ∈ A.

Trees

Let κ be an infinite cardinal and F be a set of functions such that dom(f) = κ for each f ∈ F ,
then we define the set of initial segments F<κ = {f ↾ α | f ∈ F ∧ α ∈ κ} of functions in F .

A subset T ⊆ F<κ is called a tree on F if for every u ∈ T and β ∈ dom(u) we have u ↾ β ∈ T .
A subset C ⊆ T is a chain if for any u, v ∈ C we have u ⊆ v or v ⊆ u, and C is called maximal
if there exists no chain C ′ ⊆ T with C ⊊ C ′. A function b : α → κ where α ≤ κ is called a
branch of T if there exists a maximal chain C ⊆ T such that b =

⋃
C. The set of branches of

T is denoted by [T ]. We define the subtree of T generated by u ∈ T as:

(T )u = {v ∈ T | u ⊆ v ∨ v ⊆ u} .

If u ∈ T , let v ∈ T be a successor of u if there exists x such that v = u⌢⟨x⟩. We denote the set
of successors of u in T by suc(u, T ).

We call u a λ-splitting node (of T ), if |suc(u, T )| ≥ λ. We say u is a splitting node if it is
a 2-splitting node, and a non-splitting node otherwise. If u is a λ-splitting node, but not a
µ-splitting node for any cardinal µ with λ < µ, then we say that u is a sharp λ-splitting node.
We let Splitα(T ) be the set of all u ∈ T such that u is splitting and

ot({β ∈ dom(u) | u ↾ β is splitting}) = α.

We let Levξ(T ) = {u ∈ T | dom(u) = ξ} denote the ξ-th level of the tree T . We also introduce
the following shorthands.

Split<α(T ) =
⋃

ξ<α Splitξ(T ) Lev<α(T ) =
⋃

ξ<α Levξ(T )

Split≤α(T ) = Split<α+1(T ) Lev≤α(T ) = Lev<α+1(T )

Split(T ) = Split<κ(T )

5This agrees with the topological notion of continuity under the order topology.
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Forcing Conventions and Notation

We force downwards, that is, if P is a forcing notion and p, q ∈ P are conditions, then q ≤P p

means that q is a stronger condition than p, and thus tells us more about the generic object.
The largest or trivial condition of P is denoted as 1P. If two conditions p, q are incompatible,
i.e. have no common lower bound, we write p ⊥P q, and otherwise we write p ||P q. We leave
out the subscript P whenever the choice of forcing notion is clear from context, including in the
“forces” symbol ⊩P.

We will denote the ground model with V and write VP for an arbitrary forcing extension by the
forcing P. If G is P-generic over V, we write V[G] for the forcing extension that is specifically
given by G. We will write names with a dot, e.g. Ȧ, ḟ , φ̇, · · · . Canonical names for objects from
the ground model will usually be unmarked, but may be occasionally denoted with a check, e.g.
α̌, ǧ, X̌, · · · , for the sake of clarity or emphasis.
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2

Cardinal Characteristics on
Higher Baire Spaces

In this section we give the general background to this dissertation. This section will not contain
any new results and can be seen as a concise survey of the (higher) Cichoń diagram.

We will discuss first the classical continuum, including Polish spaces and σ-ideals on the reals
in Section 2.1, before we move on to higher Baire spaces in Section 2.2. In order to efficiently
talk about cardinal characteristics, we then introduce the machinery of relational systems in
Section 2.3 and subsequently in Section 2.4 give definitions for the (classical) cardinal charac-
teristics of the Cichoń diagram and generalisations thereof to higher Baire spaces. We will give
an overview of results regarding the higher Cichoń diagram that were known before the writing
of this dissertation in Section 2.5. Finally we will conclude the section with an overview of open
problems.

2.1. The Continuum

When defining the real numbers, one usually does so by establishing a set of axioms that the reals
satisfy (a complete linear ordering that has a countable dense subset isomorphic to the rationals),
or construct the reals from the natural numbers, via rational numbers, as the collection of
Dedekind cuts or as the collection of limits of Cauchy sequences. Cantor has proved that it does
not matter which of these definitions is used, as any linear order satisfying the same axioms as
the reals is isomorphic to the reals. We will therefore write R to denote the reals as described
above.

In the set theoretic study of the reals, it is often inconvenient to work with R directly. Instead,
we frequently work with other perfect Polish spaces (i.e. topological spaces that are separable,
completely metrisable, and have no isolated points). Of special importance are the Cantor space
ω2, which can be found as (the isomorphic image of) a closed subset of any other perfect Polish
space, or the Baire space ωω, which continuously maps onto any other perfect Polish space.

A topology on both ω2 and ωω is defined by giving 2 = {0, 1} and ω the discrete topology, and
equipping ω2 and ωω with the product topology. Equivalently, a basis of open sets is given by
sets of the form [s] = {f ∈ ωω | s ⊆ f} for initial segments s ∈ <ωω (and similarly for ω2).1

Note that R is almost homeomorphic to ω2 and ωω, in the sense that the sets are homeomorphic
after a countable set of exceptions is removed.2 Removing a countable set is in a certain sense

1In fact, such sets [s] are clopen, that is, both closed and open.
2Precisely, ωω is homeomorphic to the irrational numbers, and the half-open interval [0, 1) ⊆ R is homeomor-

phic to the subset of ω2 consisting of those f ∈ ω2 that are not eventually constant with value 1.
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negligible in comparison to the (uncountable) size of the continuum, and thus the choice of
perfect Polish space usually has no influence on the cardinality of naturally defined uncountable
sets of reals. For this reason, it is custom in the set theoretic study of the reals to brand the
elements of any perfect Polish space as reals, a custom we will follow as well.

Let us mention some other perfect Polish spaces. For any countable sequence ⟨An | n ∈ ω⟩ of
countable sets of size at least 2, we can give each An the discrete topology and consider the
space

∏
n∈ω An with the product topology, then this is a perfect Polish space. By considering

characteristic functions, one can identify the power set P(ω) with the Cantor space ω2. Finally,
the intervals [0, 1], (0, 1), [0,∞), etc. as subsets of R are also perfect Polish spaces.3

Let P be your favourite perfect Polish space. A (proper) σ-ideal on P is a nonempty family of
sets I ⊆ P(P ) that is closed under subsets, closed under countable unions and such that P /∈ I.
We say a subset X ⊆ P is I-negligible if X ∈ I, and otherwise call X an I-positive set. If
P \X ∈ I, we say that X is I-full. The set of I-full subsets of P is a σ-filter (i.e. closed under
countable intersections and supersets) called the dual filter. We are particularly interested in
the following three σ-ideals on the reals:

Definition 2.1.1

The meagre ideal M ⊆ P(ωω) is the ideal of meagre subsets of ωω. A set X ⊆ ωω is called
nowhere dense, if any open neighbourhood contains an open neighbourhood disjoint from X. A
set X ⊆ ωω is called meagre if it is the countable union of nowhere dense sets. Sets that are
M-full are also called comeagre.

The null ideal N ⊆ P(ω2) is the ideal of (Lebesgue) null sets. We define a measure on the
basic open subsets [s] of ω2 by setting µ([s]) = 2−n where n is such that s ∈ n2. This induces
a Lebesgue measure on the Borel subsets of ω2, and we say X ⊆ ω2 is null if there exists a
Borel set B ⊆ ω2 with X ⊆ B such that µ(B) = 0. Measurable sets that are N -positive have a
positive Lebesgue measure, and sets that are N -full have Lebesgue measure 1.

The strong measure zero ideal SN ⊆ P(ω2) is the ideal of strong measure zero sets. A setX ⊆ ω2

is called strong measure zero if for every f ∈ ωω there exists a sequence
〈
sn ∈ f(n)2 | n ∈ ω

〉
such

that X ⊆
⋃

n∈ω[sn]. ◁

Under the assumption that the Continuum Hypothesis (CH) fails, there may be many uncount-
able cardinalities that are strictly smaller than the cardinality of the continuum c = 2ℵ0 . We
may ask the question whether there exist subsets of the reals with interesting properties that
are uncountable, yet consistently strictly below c. Cardinal characteristics of the continuum
are cardinalities between ℵ1 and c associated with sets of real numbers, that are consistently
different from either bound.4

3We refer to [Kec95, Chapter 3] for a detailed exposition on Polish spaces and the facts mentioned in this
paragraph.

4We will take some liberty with the bounds on size in this definition. For instance, a cardinal characteristic
known as the cofinality of the strong measure zero ideal is consistently strictly larger than c, but we will still
consider it a cardinal characteristic of the continuum due to its intimate connection with the reals.
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We will introduce a variety of cardinal characteristics of the continuum and their properties after
we have introduced higher Baire spaces and relational systems.

2.2. Higher Baire spaces

Let κ be an uncountable cardinal. A higher Baire space κκ is the result of replacing ω in the
definition of the classical Baire space ωω by an uncountable cardinal κ, that is, κκ is the set of
functions f : κ → κ. By replacing “finite” by “<κ” and “countable” by “≤κ”, we may generalise
many aspects of ωω to κκ. A topology on κκ is given by the <κ-box topology, that is, basic opens
of κκ are sets are of the form

∏
α∈κOα, where each Oα ⊆ κ and the set of α such that Oα ̸= κ is

smaller than κ. Equivalently, a basis of clopens is given by sets of the form [s] = {f ∈ κκ | s ⊆ f}
for initial segments s ∈ <κκ. In a very similar manner, we can define higher Cantor spaces as
sets κ2, with a topology defined as above. In analogy with elements of ωω being called reals, the
elements of κκ or κ2 will be called κ-reals.

Starting with a paper by Cummings & Shelah [CS95], there have been significant developments
in generalising the theory of cardinal characteristics from ωω to κκ, where κ is an uncountable
cardinal. A cardinal characteristic of the higher Baire space κκ, is a cardinality between κ+ and
2κ that is consistently different from either bound.

The above topology on κκ lets us define (proper) ≤κ-complete ideals on κκ that are analogous to
M and SN . A (proper) ≤κ-complete ideal on a space P is a nonempty family of sets I ⊆ P(P )

that is closed under subsets, closed under unions of size κ and such that P /∈ I. We present the
following two ≤κ-complete ideals:

Definition 2.2.1

The κ-meagre ideal Mκ ⊆ P(κκ) is the ideal of κ-meagre subsets of κκ. A set X ⊆ κκ is called
κ-meagre if it is the union of κ many nowhere dense sets.

The κ-strong measure zero ideal SN κ ⊆ P(κ2) is the ideal of κ-strong measure zero sets.
A set X ⊆ κ2 is called κ-strong measure zero if for every f ∈ κκ there exists a sequence〈
sα ∈ f(α)2 | α ∈ κ

〉
such that X ⊆

⋃
α∈κ[sα]. ◁

In comparison to the three σ-ideals mentioned in Definition 2.1.1, the ideal of Lebesgue null sets
is noteworthy for its absence. This is because measurability is not easy to generalise to higher
cardinals. The existence of a <κ-complete measure on κ is well-known to be equivalent to the
existence of a measurable cardinal.5 The situation for Lebesgue measure on κκ is worse, as it
is unclear how to generalise (infinite) summation of real numbers in a manner that allows us to
define Lebesgue measure.6

There have been several solutions proposed to be able to talk about the null ideal or its related
cardinal characteristics. One method of obtaining a higher null ideal, is by defining a forcing

5This was shown by Solovay [Sol71].
6See for example Chapter 5 in the PhD dissertation of Wontner [Won23] for a detailed overview of summation

of generalisations of the real numbers. There, a list of desiderata for infinite summation is presented and it is
proved that there does not exist a generalisation of summation that satisfies all of them.
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notion closely resembling random forcing, and using this forcing notion to define an ideal. Shelah
[She17] defined an ideal id(Qκ) for inaccessible κ from a forcing notion Qκ with similar properties
to random forcing, making id(Qκ) resemble the classical null ideal.

A different forcing notion F resembling random forcing has been proposed by Friedman & Laguzzi
[FL17]. Unfortunately, the construction of F requires the assumption of a diamond principle7

that implies 2κ = κ+. Under the latter, cardinal characteristics of the higher continuum are
rather boring, as they can only have the value κ+.

In this dissertation we take a different approach, and do not generalise the null ideal directly.
Instead, we generalise two combinatorial cardinal characteristics of the continuum that can be
defined without mention of the null ideal. In the classical case, these two cardinals can be shown
to be equivalent to two of the cardinal characteristics related to the null ideal (see Fact 2.4.3).

2.3. Relational Systems

In order to define our cardinal characteristics and study the relations between them, we will
make use of relational systems and Tukey connections. Such systems were first defined and
studied by Tukey [Tuk40] in the context of coverings and uniformity of topological spaces, and
later applied to (other) cardinal characteristics by Fremlin [Fre84] and Vojtáš [Voj93]. All of the
cardinal characteristics we are interested in, can be expressed as the norm of a relational system.
We will only give a brief overview of relational systems below, and refer to [Bla10, Section 4] for
a detailed description.

A relational system R = ⟨X,Y,R⟩ is a triple of sets X and Y and a relation R ⊆ X × Y . We
define the norm of R (if it is not undefined) as

∥R∥ = min {|W | |W ⊆ Y and ∀x ∈ X∃y ∈W (x R y)} .

We refer to a set W ⊆ Y such that ∀x ∈ X∃y ∈ W (x R y) as a witness for ∥R∥. We define a
dual relation to R by

R⊥ = {(y, x) ∈ Y ×X | (x, y) /∈ R} .

Correspondingly we can define the dual relational system R⊥ =
〈
Y,X,R⊥〉.

Intuitively, we can see Y as a set of possible responses to a set of potential challenges X. We
want to find a set of responses Y ′ ⊆ Y such that every challenge can be met with a response
from Y ′, and the norm expresses the least number of responses necessary to do so. The dual
relational system answers the question how many challenges we should gather such that no single
response can meet them all.

Given two relational systems R = ⟨X,Y,R⟩ and R′ = ⟨X ′, Y ′, R′⟩, a Tukey connection from R

to R′ is a pair of functions ρ− : X → X ′ and ρ+ : Y ′ → Y such that for any x ∈ X and y′ ∈ Y ′

7To be precise, of ♢κ+(Sκ
κ+).
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with (ρ−(x), y
′) ∈ R′ we also have (x, ρ+(y

′)) ∈ R. We let R ⪯ R′ denote the claim that there
exists a Tukey connection from R to R′, and we let R ≡ R′ abbreviate R ⪯ R′ ⪯ R. Note
that if ⟨ρ−, ρ+⟩ witnesses R ⪯ R′, then ⟨ρ+, ρ−⟩ witnesses R′⊥ ⪯ R⊥.

We will use Tukey connections to give an ordering between the norms of relational systems,
through the following lemma.

Lemma 2.3.1 — [Bla10, Theorem 4.9]

If R ⪯ R′, then ∥R∥ ≤ ∥R′∥ and
∥∥R′⊥∥∥ ≤

∥∥R⊥∥∥. □

We will on one occasion require a composition of several relational systems. Specifically we need
a general form of the (categorical) product. We will state the definition and give two lemmas
that generalise Theorem 4.11 of [Bla10] and give us the means to compute norms.

Let Rα = ⟨Xα, Yα, Rα⟩ be relational systems for each α ∈ A, where A is a set of ordinals (but we
will omit mention of A from now on for the sake of brevity). We define the categorical product
as the system

⊗
α Rα = ⟨

⋃
α(Xα × {α}),

∏
α Yα, Z⟩, where (x, α) Z y iff x Rα y(α). Dually

we have the categorical coproduct
⊕

α Rα = (
⊗

α R⊥
α )

⊥ = ⟨
∏

αXα,
⋃

α(Yα × {α}), N⟩, where
x N (y, α) iff x(α) Rα y.

Lemma 2.3.2

∥
⊗

α Rα∥ = supα ∥Rα∥. ◁

Proof. (≤) Let Y ′
α ⊆ Yα be a witness for |Y ′

α| = ∥Rα∥. Let λ = supα ∥Rα∥ and let σα : λ→→ Y ′
α

be surjections. Define yξ : α 7→ σα(ξ) and let Y =
{
yξ | ξ ∈ λ

}
⊆

∏
α Yα. If x ∈ Xα, let y ∈ Y ′

α

such that x Rα y and find ξ ∈ λ such that y = σα(ξ), then (x, α) Z yξ. Hence Y witnesses that
∥
⊗

α Rα∥ ≤ λ.

(≥) Let Y ⊆
∏

α Yα be a witness for |Y | = ∥
⊗

α Rα∥, and let Y ′
α = {y(α) | y ∈ Y } ⊆ Yα. Then

for every x ∈ Xα there exists y ∈ Y such that (x, α) Z y, hence y(α) ∈ Y ′
α has the property that

x Rα y(α), thus ∥Rα∥ ≤ |Y ′
α| ≤ |Y | = ∥

⊗
α Rα∥.

Lemma 2.3.3

∥
⊕

α Rα∥ = infα ∥Rα∥. ◁

Proof. (≤) Let Y ⊆ Yα be a witness for |Y | = ∥Rα∥. Let Y ′ = {(y, α) | y ∈ Y }. If x ∈
∏

αXα,
then there exists y ∈ Y such that x(α) Rα y and thus x N (y, α). Therefore ∥

⊕
α Rα∥ ≤ |Y ′| =

|Y | = ∥Rα∥.

(≥) Let Y ⊆
⋃

α(Yα × {α}) with |Y | < infα ∥Rα∥. Let Y ′
α = {y ∈ Yα | (y, α) ∈ Y }. Since

|Y ′
α| < ∥Rα∥ there is xα ∈ Xα such that xα ��Rα y for all y ∈ Y ′

α. Let x : α 7→ xα, then x��N (y, α)

for every (y, α) ∈ Y . Thus |Y | < ∥
⊕

α Rα∥.

2.4. The Cichoń Diagram

In this section we will first define the ten cardinal characteristics of the Cichoń diagram. After
that, we will look at how (most of) these cardinal characteristics can be generalised to higher
Baire spaces.

17



The Classical Cichoń Diagram

Each of the cardinal characteristics in the Cichoń diagram can be defined as the norm of a
relational system, hence we will first consider some of the relevant relations. Eight of the
cardinal characteristics of the Cichoń diagram are defined in terms of σ-ideals.

Definition 2.4.1

Let I be a σ-ideal on a space X . Then we define the following two relational systems:

CI = ⟨X , I,∈⟩ ∥CI∥ = cov(I)
∥∥∥C⊥

I

∥∥∥ = non(I)

FI = ⟨I, I,⊆⟩ ∥FI∥ = cof(I)
∥∥∥F⊥

I

∥∥∥ = add(I) ◁

We can give a more intuitive description of these four cardinal characteristics and clarify their
names as follows:

• The covering number cov(I) is the least cardinality of an I-cover of X , that is, a set C ⊆ I
with

⋃
C = X . To see that this is equivalent to the definition by norm, note that C ⊆ I is

an I-cover iff for every x ∈ X there is I ∈ C with x ∈ I.
• The uniformity number8 non(I) is the least cardinality of an I-positive set, that is, a set
X ⊆ X with X /∈ I.

• The cofinality number cof(I) is the least cardinality of an ideal basis for I, that is, of a set
B ⊆ I such that every I ∈ I has some X ∈ B with I ⊆ X. Equivalently, B is a ⊆-cofinal
subset of I, explaining the name.

• The additivity number add(I) is the least cardinality of a set J ⊆ I with
⋃
J /∈ I, and

intuitively answers the question how many I-negligible sets should be added together to
obtain an I-positive set. To see that this is equivalent to the definition by norm, note that
if J ⊆ I, then

⋃
J /∈ I iff for every I ∈ I we have

⋃
J ̸⊆ I, or equivalently, iff there is

some J ∈ J such that J ̸⊆ I.

Given a relational system R = ⟨X,Y,R⟩ where the domain and range of R are reasonably clear,
we will generally write d(R) = ∥R∥ and b(R) =

∥∥R⊥∥∥. We consider this to be the case with
the domination relation ≤∗ and the cofinal equality relation =∞, which we will only use on the
space ωω (and in higher context on κκ). Using the notation from Section 1.2, we have that
f ≤∗ g for f, g ∈ ωω if the set of n ∈ ω such that f(n) > g(n) is bounded. On the other hand,
f =∞ g for f, g ∈ ωω holds if the set of n ∈ ω such that f(n) = g(n) is cofinal (in ω). Our final
two relations deal with the concept of localisation, which requires us to define slaloms first.

If h ∈ ωω is an unbounded increasing function that is nonzero everywhere, we define an h-slalom
to be a function φ with domain ω such that |φ(n)| < h(n) for each n ∈ ω.9 If f ∈ ωω and

8As for the confusing nomenclature, remember that an ultrafilter U on X is called uniform if |X| = |X | for all
X ∈ U , which is equivalent to saying that non(U∗) = |X | for U∗ the (prime) ideal dual to U . Generalising this
notion to non-maximal filters and cardinalities < |X | gives us a uniformity number.

9Note that this definition differs from the usual definition: we define φ such that |φ(α)| < h(α), instead of
the traditional |φ(α)| ≤ h(α). Our definition is more versatile in the higher context. For example, if h(α) is a
limit cardinal for each α, the resulting set of all slaloms φ with |φ(α)| < h(α) cannot be expressed using the
traditional definition. On the other hand, the set of all traditionally defined h-slaloms is the set of h+-slaloms
under our definition.
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φ is an h-slalom, we say that f is localised by φ if the set of n ∈ ω such that f(n) /∈ φ(n) is
bounded, that is, f ∈∗ φ. The set of all h-slaloms is denoted by Loch, and is another example
of a perfect Polish space under the appropriate topology. We may also define antilocalisation,
where we say that f is antilocalised by φ if the set of n ∈ ω such that f(n) ∈ φ(n) is bounded,
that is, f ��∈∞ φ.

Definition 2.4.2

We define the following relational systems:

D = ⟨ωω, ωω,≤∗⟩ ∥D∥ = d(≤∗)
∥∥∥D⊥

∥∥∥ = b(≤∗)

ED =
〈
ωω, ωω,��=∞〉

∥ED∥ = d(��=∞)
∥∥∥ED⊥

∥∥∥ = b(��=∞)

L h =
〈
ωω,Loch,∈∗

〉 ∥∥∥L h
∥∥∥ = dh(∈∗)

∥∥∥L h⊥
∥∥∥ = bh(∈∗)

AL h =
〈
Loch, ωω,��∋∞

〉 ∥∥∥AL h
∥∥∥ = dh(��∋∞)

∥∥∥AL h⊥
∥∥∥ = bh(��∋∞) ◁

We call d(≤∗) the dominating number, b(≤∗) the unbounding number, d(��=∞) the eventual differ-
ence number and b(��=∞) the cofinal equality number10. Both dh(∈∗) and bh(∈∗) are sometimes
called localisation numbers, but we believe it will be useful to distinguish between these classes
of cardinals with separate terms. We therefore opt to call dh(∈∗) the h-localisation number, and
bh(∈∗) the h-avoidance number, for the reason that a witness to bh(∈∗) is a set of functions
F ⊆ ωω that cannot be localised by a single h-slalom; for any specific h-slalom φ there is at
least one member f of F that avoids φ by having f(n) /∈ φ(n) for cofinally many n ∈ ω. Finally
this leaves the cardinals dh(��∋∞), which we will call the h-antiavoidance number and bh(��∋∞),
which we will call the h-antilocalisation number.

Note that we opted to use the relations��=∞ and��∋∞ instead of =∞ and ∈∞ in the above relational
systems. Due to duality of relational systems, this is only relevant for the names of our cardinals
(in deciding which of the two norms is the d-cardinal, and which the b-cardinal). The reason
for defining the cardinal characteristics with the negated relations, is that we will later see that
d(��=∞) and dh(��∋∞) bear more similarities to d(≤∗) and dh(∈∗) than to b(≤∗) and bh(∈∗).

We should mention that our notation is not entirely standard. Usually b(≤∗) and d(≤∗) are
simply written as b and d. Although classically the other cardinals defined using relations do
not give us new cardinal characteristics (see Fact 2.4.3), we will consider many variants of them
that do produce new cardinal characteristics. We therefore opted to write the relation in each
of our cardinal characteristics for easy comparison.

We also note that (anti)localisation and (anti)avoidance cardinals have been described using
a variety of names and notations, especially in the bounded context that we will introduce
in the next chapter, where not only a parameter h for the size of the sets in the slalom, but
also a parameter b is used to describe the bounded Baire space

∏
b. In previous literature, the

10In the classical setting, the relation of being cofinally equal is often referred to as being infinitely equal, but
this will not be precise enough in the higher context.
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notations c∀b,h and v∀b,h have also frequently been used for db,h(∈∗) and bb,h(∈∗) respectively, while
c∃b,h and v∃b,h have been used for bb,h(��∋∞) and db,h(��∋∞) respectively. For example, this notation
was used in [Kel08, KO14, KM22, CKM21]. Here c stands for a cover of

∏
b with slaloms by the

relations ∈∗ or ∈∞, and v stands for avoidance by or evasion by a single slalom. We believe that
avoidance forms the better antonym to localisation, as it prevents confusion with other cardinal
characteristics known as evasion cardinals (such as described in [Bla10, Section 10]). Our choice
to use the notation db,h(∈∗) over c∀b,h has the main benefit that the relevant relational system
can be deduced from our notation.

The Cichoń diagram consists of the ten cardinal characteristics that are drawn below. Next to
the bounds ℵ1 and c = 2ℵ0 , the four outermost cardinals are defined in terms of the Lebesgue
null ideal N , the two innermost cardinals are the dominating and unbounding numbers, and the
remaining four cardinals are defined in terms of the meagre ideal M. The diagram shows which
relations between these cardinal characteristics are provable, where an arrow x → y implies that
x ≤ y is provable in ZFC.

ℵ1 add(N ) add(M)

cov(N ) non(M)

b(≤∗) d(≤∗)

cov(M) non(N )

cof(M) cof(N ) 2ℵ0

We will not give proofs of the relations drawn in the Cichoń diagram, and refer to [BJ95] as
a detailed reference for the Cichoń diagram. Our focus lies on the higher context, but we
will complete this section by mentioning some additional results regarding the classical Cichoń
diagram, to have a basis to compare to.

The following equivalences are due to Miller and Bartoszyński, and give us combinatorial defi-
nitions for some of the cardinals that have been expressed in terms of an ideal.

Fact 2.4.3 — [Bar87] 11

We have the following combinatorial descriptions (for any cofinally increasing h ∈ ωω):

non(M) = b(��=∞) = bh(��∋∞),

cov(M) = d(��=∞) = dh(��∋∞),

add(N ) = bh(∈∗),

cof(N ) = dh(∈∗). □

It follows from this theorem that the choice of parameter h ∈ ωω is hardly relevant for any of
the cardinal characteristics bh(∈∗), dh(∈∗), bh(��∋∞) or dh(��∋∞): any cofinally increasing h will

11Miller showed in [Mil81, Theorems 1.3 & 1.4] relations between cov(M), non(M) and =∞, and Bartoszyński
introduced (anti)localisation and proved the equalities mentioned in the lemma, albeit with very different notation.
See also [BJ95, Theorems 2.3.9, 2.4.1 & 2.4.7] for proofs with modern notation.
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result in the same cardinal characteristic. This contrasts with the higher Baire space κκ with κ
inaccessible, where many cardinals of the forms dhκ(∈∗) can be different from each other (which
is the subject of Chapter 5).

We should also mention that two cardinal characteristics of the Cichoń diagram are dependent
on the others by the following lemma, originally due to Truss, Miller and Fremlin:

Fact 2.4.4 — [Tru77, Mil81, Fre84] 12

We have:

add(M) = min {b(≤∗), cov(M)} and

cof(M) = max {d(≤∗), non(M)} . □

As for the other eight cardinal characteristics of the Cichoń diagram, they appear to be as
independent as is possible in the following sense: any assignment of the cardinalities ℵ1 and
ℵ2 to the cardinals of the Cichoń Diagram that does not contradict the relations given by the
arrows or Fact 2.4.4, is consistent.13 This implies that the Cichoń diagram is complete, in the
sense that no other arrows are missing from the diagram.

Furthermore, a problem known as Cichoń’s Maximum asks whether it is consistent that all eight
(independent) cardinal characteristics of the Cichoń diagram are mutually different from each
other. Cichoń’s Maximum has been shown to be consistent, first under the assumption of four
strongly compact cardinals by Goldstern, Kellner & Shelah [GKS19], and later without any large
cardinal assumptions by Goldstern, Kellner, Mejía & Shelah [GKMS22]. Other recent efforts
have led to the consistency of Cichoń’s Maximum with several additional cardinal characteristics
that are not included in the Cichoń diagram, and towards reaching Cichoń’s Maximum with
different orderings of the eight cardinal characteristics than were given in the above-mentioned
papers.14

The Higher Cichoń Diagram

Let us assume for this section (as we do in general) that κ is an uncountable cardinal, then
κκ is a higher Baire space. We have previously witnessed that we can define the ≤κ-complete
ideal Mκ of κ-meagre subsets of κκ. We may suitably generalise relations such as ≤∗ as well,
where f ≤∗ g with f, g ∈ ωω and the definition ∀∞n ∈ ω(f(n) ≤ g(n)) is generalised to f ≤∗ g

with f, g ∈ κκ and the definition ∀∞α ∈ κ(f(α) ≤ g(α)). Finally, we may generalise slaloms as
well, where an h-slalom for some cofinally increasing h ∈ κκ is a function φ with domain κ such
that |φ(α)| < h(α) for each α ∈ κ. The set of all such h-slaloms will be denoted by Lochκ, to
emphasise that we are working in the higher context.

We may generalise the cardinal characteristics defined so far to κκ, as per the definition below.
12Truss [Tru77, Theorem 6.5] constructed an embedding between Boolean algebras, from which add(M) ≥

min {b(≤∗), cov(M)} follows, Miller [Mil81, Theorem 1.2] proved the converse, and Fremlin remarked that one
could also show the dual result about cof(M). See also [BJ95, Corollary 2.2.9 & Theorem 2.2.11] for proofs with
modern notation.

13See [BJ95, Sections 7.5 and 7.6] for each of these cases.
14In fact, for many specific orderings Cichoń’s Maximum is still an open problem.
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Definition 2.4.5

We define the following relational systems:

CMκ = ⟨κκ,Mκ,∈⟩ ∥CMκ∥ = cov(Mκ)
∥∥∥C⊥

Mκ

∥∥∥ = non(Mκ)

FMκ = ⟨Mκ,Mκ,⊆⟩ ∥FMκ∥ = cof(Mκ)
∥∥∥F⊥

Mκ

∥∥∥ = add(Mκ)

Dκ = ⟨κκ, κκ,≤∗⟩ ∥Dκ∥ = dκ(≤∗)
∥∥∥D⊥

κ

∥∥∥ = bκ(≤∗)

EDκ =
〈
κκ, κκ,��=∞〉

∥EDκ∥ = dκ(�
�=∞)

∥∥∥ED⊥
κ

∥∥∥ = bκ(�
�=∞)

L h
κ =

〈
κκ,Lochκ,∈∗

〉 ∥∥∥L h
κ

∥∥∥ = dhκ(∈∗)
∥∥∥L h

κ
⊥
∥∥∥ = bhκ(∈∗)

AL h
κ =

〈
Lochκ,

κκ,��∋∞
〉 ∥∥∥AL h

κ

∥∥∥ = dhκ(�
�∋∞)

∥∥∥AL h
κ
⊥
∥∥∥ = bhκ(�

�∋∞) ◁

We name these cardinals as follows: for the cardinals defined in terms of the κ-meagre ideal,
we call cov(Mκ) the covering number of the κ-meagre ideal (and similar for the other three).
We will name dκ(≤∗), bκ(≤∗), dκ(��=∞) and bκ(��=∞) similar to their ωω counterpart, but with a
prefix κ. For example, dκ(≤∗) is called the κ-dominating number. Finally, since the fact that we
are working in the higher Baire space κκ is already clear from the domain of h ∈ κκ, and since
we want to avoid too many prefixes, we will simply keep referring to dhκ(∈∗) as the h-localisation
cardinal, and similar bhκ(∈∗), dhκ(��∋∞) and bhκ(�

�∋∞).

As mentioned in Section 2.2, there is no clear way to generalise the Lebesgue null ideal. How-
ever, in the case of add(N ) and cof(N ), we can replace these cardinal characteristics in the
higher context by their combinatorially defined counterparts, the h-localisation and h-avoidance
numbers from Fact 2.4.3. This yields the higher Cichoń diagram given below, where the dashed
arrows require κ to be (strongly) inaccessible15:

κ+ bhκ(∈∗) add(Mκ)

non(Mκ)

bκ(≤∗) dκ(≤∗)

cov(Mκ)

cof(Mκ) dhκ(∈∗) 2κ

2.5. Relations

We will briefly go through the ZFC-results known about the cardinals in the higher Cichoń
diagram for the sake of completeness. We will not go into detail, and only give a cursory sketch
of the way these results could be proved. We will then conclude this section with a succinct

15We will frequently assume κ is strongly inaccessible, and will generally simply say “inaccessible”, omitting
“strongly”.
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overview of some independence results to show that most of the cardinals of the higher Cichoń
diagram are distinct from each other. Later, in Chapter 4, we will look at these independence
results in more detail. For a thorough overview of the higher Cichoń diagram, a good starting
point is [BBTFM18].

Our focus will largely be on the case where we assume that κ is inaccessible. We use this
section to explain why we make this assumption, instead of letting κ be any regular uncountable
cardinal.

ZFC-results

The centre six cardinal characteristics of the higher Cichoń diagram behave very similarly to
their classical counterparts, and the proofs of the given relations are very much analogous.

For instance, an (almost trivial) Tukey connection F⊥
I ⪯ CI , which works for any ideal I and

thus does not depend on any properties specific to Mκ, gives us:

Fact 2.5.1 — Folklore

add(Mκ) ≤ cov(Mκ) and non(Mκ) ≤ cof(Mκ). □

A Tukey connection D⊥
κ ⪯ Dκ follows easily from the observation that g ≤∗ f implies f+1��≤∗ g

and provides:

Fact 2.5.2 — Folklore

bκ(≤∗) ≤ dκ(≤∗). □

The cardinals bκ(≤∗) and dκ(≤∗) are related to non(Mκ) and cov(Mκ) via the intermediate
cardinal characteristics bκ(��=∞) and dκ(�

�=∞), provable through a sequence of Tukey connections
CMκ ⪯ EDκ ⪯ Dκ, using a similar method as in Fact 2.4.3:

Fact 2.5.3 — Folklore, based on [Mil81, Bar87] for ωω

cov(Mκ) ≤ dκ(�
�=∞) ≤ dκ(≤∗) and bκ(≤∗) ≤ bκ(�

�=∞) ≤ non(Mκ). □

Remember that classically we have cov(M) = d(��=∞) and b(��=∞) = non(M), by Fact 2.4.3. In
the higher case, we can prove equality of the norms only for inaccessible κ, which was done by
Landver for cov(Mκ) and by Blass, Hyttinen and Zhang for non(Mκ):

Fact 2.5.4 — [Lan92, Section 1],[BHZ07, Section 4]

If κ is inaccessible, cov(Mκ) = dκ(�
�=∞) and non(Mκ) = bκ(�

�=∞). □

In the accessible case16 the situation is quite different, since we have the following results:

Fact 2.5.5 — [Hyt06, Definition 13 and following text], [MS04, Theorem 4.6]

If κ is successor, then bκ(�
�=∞) = bκ(≤∗), and if furthermore 2<κ = κ, then dκ(�

�=∞) = dκ(≤∗). □

Fact 2.5.6 — [Lan92, Lemma 1.3]

If 2<κ > κ for regular κ, then add(Mκ) = cov(Mκ) = κ+. □

16We will call a cardinal accessible if it is uncountable but not inaccessible.

23



Fact 2.5.7 — [BHZ07, Proposition 4.15]

2<κ ≤ non(Mκ). □

Fact 2.5.8 — [Bre17, Proposition 2]

2<κ < cof(Mκ). □

These results allow for the consistency of cov(Mκ) < dκ(�
�=∞) and bκ(�

�=∞) < non(Mκ) as well.
In some accessible cases the value of some cardinal characteristics have absolute values (under
cardinal preserving forcing notions) and others can be influenced by the value of 2λ for some
λ < κ. This is one reason why we will generally assume that κ is inaccessible.

The classical results from Fact 2.5.9 generalise to the higher case as follows:

Fact 2.5.9 — [Bre22, Corollary 4]

For κ regular uncountable we have:

add(Mκ) = min {bκ(≤∗), cov(Mκ} and

cof(Mκ) ≥ max {dκ(≤∗), non(Mκ)} .

In the latter, equality holds if 2<κ = κ. □

In particular, the above characterisations of add(Mκ) and cof(Mκ) hold for inaccessible κ.

For inaccessible κ, if we consider bhκ(∈∗) and dhκ(∈∗), there exist Tukey connections EDκ ⪯ L h
κ

and Dκ ⪯ L h
κ . Together with Fact 2.5.9, this implies:

Fact 2.5.10 — [BBTFM18, Corollary 41 & Observation 36]

If κ is inaccessible, bhκ(∈∗) ≤ add(Mκ) and cof(Mκ) ≤ dhκ(∈∗). □

As mentioned above, these two inequalities require that the norms of EDκ and CMκ are equal.
Consequently, for accessible cardinals, we can only prove that bhκ(∈∗) ≤ bκ(≤∗) and dκ(≤∗) ≤
dhκ(∈∗), giving another reason why we prefer κ to be inaccessible.

Independence Results

This subsection serves as a very brief overview of independence proofs concerning the previously
defined cardinal characteristics, without giving details to how these results were proved. We
will mention the forcing notions and techniques used without definition. Later, in Chapter 4
we will discuss most of these forcing constructions in detail. This subsection therefore mostly
serves as a summary of results on the higher Cichoń diagram for those readers already familiar
with independence results of the classical Cichoń diagram and can safely be ignored by all other
readers.

Splitting the higher Cichoń diagram with a “vertical” separation (see Figure 2.1 below) is rela-
tively easy, and can be achieved with higher variants of Cohen, Hechler and localisation forcing.
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The κ-Cohen model

Adding λ-many κ-Cohen reals (i.e. generics for κ-Cohen forcing) via a <κ-support iteration,
where λ > κ+, over a model V ⊨ “ 2κ = κ+ ” will result in a model where κ+ = non(Mκ) <

λ ≤ cov(Mκ). If λ = κ++, we will call the resulting model the κ-Cohen model. This result can
probably be attributed to folklore, as the argument is exactly as its ωω-counterpart.

κ+ bhκ(∈∗) add(Mκ)

non(Mκ)

bκ(≤∗) dκ(≤∗)

cov(Mκ)

cof(Mκ) dhκ(∈∗) κ++

κ-localisation model
κ-Hechler model

κ-Cohen model
dual κ-Hechler model

dual κ-localisation model

Figure 2.1: The higher Cichoń diagram in several forcing extensions for inaccessible κ.

Models from κ-Hechler forcing

The consistency of λ = bκ(≤∗) < dκ(≤∗) = µ for κ+ ≤ λ is subject of the first paper on cardinal
characteristics on higher Baire spaces, by Cummings & Shelah [CS95], where it is shown that
the only requirements are that κ and λ are regular and λ ≤ cf(µ). The forcing notion used is a
special iteration (along a second poset) of κ-Hechler forcing, which is a forcing notion that adds
dominating κ-reals.

Like Hechler forcing satisfying σ-centredness, κ-Hechler forcing satisfies a property that we will
call (κ,<κ)-centredness (see Definition 4.1.9). Brendle, Brooke-Taylor, Friedman & Montoya
[BBTFM18, Lemma 55] showed that the property of being (κ,<κ)-centred can be preserved
under <κ-support iteration of length <(2κ)+ if the forcing notions are additionally “closed with
canonical bounds”17. (κ,<κ)-centred forcing notions do not affect bhκ(∈∗) and dhκ(∈∗).

It happens to be the case that κ-Hechler forcing indeed is (κ,<κ)-centred with canonical bounds,
allowing us to produce a model of bhκ(∈∗) = κ+ < λ = add(Mκ) by starting with a model
V ⊨ “ 2κ = κ+ ” and doing a <κ-support iteration of κ-Hechler forcing of length λ. If λ = κ++

we will call this the κ-Hechler model.

Dually, if we start with a model V ⊨ “ dκ(∈∗) = λ = 2κ ” and we do a <κ-support iteration of
κ-Hechler forcing of length κ+, we end up with cof(Mκ) = κ+ < λ = dhκ(∈∗). If λ = κ++, we
call the resulting model the dual κ-Hechler model.

17This is called “finely closed” in [BGS20, Section 2.3]
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Models from κ-Localisation forcing

Let id : α 7→ |α|. The consistency of κ+ < λ = bidκ (∈∗) or of κ+ = didκ (∈∗) < λ = 2κ can be
shown using κ-localisation forcing, as is done in [BBTFM18, Proposition 52]. In the same way as
with κ-Hechler forcing, if we force with a <κ-support iteration of κ-localisation forcing of length
λ, we get κ+ < λ = bidκ (∈∗) in the resulting model. If λ = κ++, we call this the κ-localisation
model.

If we instead start with V ⊨ “ λ = 2κ ” and do a <κ-support iteration of κ-localisation forcing
of length κ+, we obtain a model for κ+ = didκ (∈∗) < λ = 2κ. If λ = κ++, this is called the dual
κ-localisation model.

The same kinds of models can be used to show this result for bhκ(∈∗) and dhκ(∈∗) with h ∈ κκ

any cofinally increasing κ-real.

The κ-Sacks model

Whereas in the context of ωω the parameter h has no influence over the localisation and avoidance
cardinals, it is shown in [BBTFM18, Theorem 70] that dpowκ (∈∗) < didκ (∈∗) is consistent, where18

id : α 7→ |α|+ and pow : α 7→ (2|α|)+, since it holds in the κ-Sacks model. Similar forcing notions
can be used to separate more cardinals of the form dhκ(∈∗), as we will discuss in Chapter 5.

Bounded κ-Hechler forcing

Finally, we will mention that not only “vertical” consistency results are known. Shelah [She20]
has given a construction of a model using a bounded version of κ-Hechler forcing to prove the
consistency of cov(Mκ) < dκ(≤∗). In order for the forcing notion to have the right properties,
one needs to assume that κ is weakly compact, and in order to preserve weakly compact cardinals
under iteration, a type of Laver indestructible supercompact cardinals are needed.

The accessible case

If we let go of the requirement that 2<κ = κ, the κ-meagre ideal behaves less nicely, as witnessed
by previously mentioned ZFC-results. There are several more consistency results known in this
context.

In [BHZ07] it is shown that bκ(��=∞) < non(Mκ) is consistent with 2<κ > κ. The consistency
of dκ(≤∗) < non(Mκ) and of cov(Mκ) < bκ(≤∗) with 2<κ > κ is also relatively simple, and
is described in [BBTFM18, page 12], whereas [BBTFM18, Theorem 49, Proposition 53] prove
the consistency of cov(Mκ) < dκ(��=∞) with 2<κ > κ, as well as the consistency of the following
statements:

κ+ = cov(Mκ) < bκ(�
�=∞) = dκ(�

�=∞) < non(Mκ) = 2<κ = 2κ < cof(Mκ),

κ+ = cov(Mκ) < bhκ(∈∗) = dhκ(∈∗) < non(Mκ) = 2<κ = 2κ < cof(Mκ).

Finally, Brendle [Bre22, Theorem 7] has shown that κ < 2<κ ≤ non(Mκ) ≤ 2κ is consistent.
18Taking the successor cardinal |α|+ is necessary since we define our h-slaloms with a strict bound.
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2.6. Open Questions

The main open question regarding the higher Cichoń diagram, is how we can separate in
a “horizontal” manner. Not much is known apart from Shelah’s proof of the consistency of
cov(Mκ) < dκ(≤∗), leading to the following series of closely related questions.

Question 2.6.1

Are any of the following consistent with κ inaccessible?
1. cov(Mκ) < non(Mκ)

2. bκ(≤∗) < non(Mκ)

3. dκ(≤∗) < cof(Mκ) (or equivalently dκ(≤∗) < non(Mκ))
4. add(Mκ) < bκ(≤∗) (or equivalently cov(Mκ) < bκ(≤∗)) ◁

As far as the consistency of cov(Mκ) < dκ(≤∗) is concerned, the proof uses a form of Laver
indestructibility to preserve the property that κ is weakly compact. In order to get rid of
the supercompactness assumption, one would need to find a proof that does not require the
preservation of a weakly compact cardinal, and thus a different forcing in the single step.

Question 2.6.2

Is cov(Mκ) < dκ(≤∗) provable without the use of a supercompact cardinal? ◁

For inaccessible κ, we saw that dκ(�
�=∞) = cov(Mκ) and bκ(�

�=∞) = non(Mκ), whereas for
successor κ we saw that bκ(�

�=∞) = bκ(≤∗) is provable. For dκ(�
�=∞) = dκ(≤∗), one needed the

additional assumption that 2<κ = κ, thus it is natural to ask whether this additional assumption
is necessary.

Question 2.6.3 — [MS04]

If κ is successor and 2<κ > κ, is dκ(�
�=∞) < dκ(≤∗) consistent? ◁

Finally, we mention a question related to cof(Mκ). In [Bre22, Corollary 4], a connection between
cof(Mκ), non(Mκ) and bounded variants of the dominating number is proved, making the
following question potentially relevant to the subject matter of the next chapter.

Question 2.6.4 — [Bre22, Question 11]

Is κ < 2<κ < cof(Mκ) < 22
<κ consistent? ◁
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3

Bounded Cardinal Characteristics on
Higher Baire Spaces

The focus of this chapter will be variants of the cardinal characteristics that we have defined in
the previous chapter in the context of bounded subspaces of higher Baire spaces. Some results
in this chapter can be basically described as the result of substituting ω by κ in some known
results on ωω. However, for many other results, the difference is significant due to additional
structure on κκ (in particular the structure of stationary sets). We will also introduce bounded
forms of the dominating and unbounded numbers that have no analogue on ωω. Finally we will
decide which parameters (in the form of bounds for the space, and for the size of slaloms) will
result in trivial cardinals, and state several unexpected and interesting questions resulting from
this inquiry.

Nota Bene! In this chapter we will assume that κ is a (strongly) inaccessible cardinal
without further mention. This assumption will not be stated in the theorems and lemmas, but
is often required. Additionally, we will assume that the functions in κκ denoted by the letters
b, h are cofinal increasing nonfinite cardinal functions, that is, b is increasing, ran(b) is cofinal
in κ, and b(α) is an infinite cardinal for each α ∈ κ (and similar for h). This also extends to
indexed or accented functions using the symbols b, h, such as bξ, h′, and so on.

3.1. Bounded Higher Baire Spaces

Given a function b ∈ κκ, we consider the product space
∏
b =

∏
α∈κ b(α) where each b(α) has

the discrete topology and
∏
b once again has the <κ-box topology, hence the topology on

∏
b

is generated by sets [s] = {f ∈
∏
b | s ⊆ f} with s ∈

∏
<κ b, where

∏
<κ b denotes the set of

initial segments of functions in
∏
b, as per Section 1.2. One can easily see that

∏
b is a closed

subspace of κκ. We will refer to spaces of the form
∏
b as bounded higher Baire spaces.

Remember that a set X ⊆
∏
b is nowhere dense if for every basic open [s] ⊆

∏
b there exists a

basic open [t] ⊆ [s] such that [t]∩X = ∅. It is easy to show that the closure of a nowhere dense
set is nowhere dense. The complement of a closed nowhere dense set is an open dense set. We
will write N b

κ for the family of nowhere dense subsets of
∏
b.

Also remember that a set X is κ-meagre if there exists a family {Nα | α ∈ κ} of nowhere dense
sets such that X =

⋃
α∈κNα. Let Mb

κ be the set of κ-meagre subsets of
∏
b.

It is easy to show that families Mb
κ (like Mκ) are ≤κ-complete proper ideals. Moreover, by the

following lemma, the choice of b ∈ κκ does not matter for the value of the cardinal characteristics
add(Mb

κ), cof(Mb
κ), cov(Mb

κ) and non(Mb
κ), and indeed, we could work with these cardinal

characteristics as evaluated over Mκ without loss of generality.
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Lemma 3.1.1 — Folklore1

There exists M ∈ Mb
κ such that the subspace

∏
b \M of

∏
b is homeomorphic to κκ. ◁

Proof. First, we recursively define a function φ : <κκ →
∏

<κ b. Let φ(∅) = ∅. Given t ∈ <κκ

such that φ(t) has been defined, let A = {sα | α ∈ κ} ⊆
∏

<κ b be an antichain of size κ with
φ(t) ⊆ sα, such that A is maximal with this property, and send φ : t⌢⟨α⟩ 7→ sα. If γ = dom(t)

is limit and φ(t ↾ α) is defined for each α < γ, we have by construction that⋃
α∈γ φ(t ↾ α) ∈

∏
<κ b.

Therefore we set φ(t) =
⋃

α∈γ φ(t ↾ α).

Note that φ[ακ] forms a maximal antichain in
∏

<κ b: if α is the least ordinal such that φ[ακ] is
not maximal, let s /∈ φ[ακ] be such that φ[ακ] ∪ {s} is an antichain, then for any ξ < α there is
sξ ⊆ s such that sξ ∈ φ[ξκ], but then

⋃
ξ∈α sξ = s′ ⊆ s and s′ ∈ φ[ακ].

We define Φ : κκ→
∏
b induced by φ as sending f 7→

⋃
α∈κ φ(f ↾ α). Note that the range Φ[κκ]

is κ-comeagre in
∏
b, because for each α ∈ κ we can define

Fα =
{
f ∈

∏
b | f /∈

⋃
t∈ακ[φ(t)]

}
.

Then Fα is nowhere dense, since φ[ακ] is a maximal antichain, and Φ[κκ] =
∏
b\

⋃
α∈κ Fα, hence

M =
⋃

α∈κ Fα is a κ-meagre set and we will see that Φ : κκ ›→→
∏
b \M is a homeomorphism.

It is clear that Φ is bijective. Note that Φ is open, since for any t ∈ <κκ we have φ(t) ∈
∏

<κ b,
thus Φ[[t]] = [φ(t)] \M is open in

∏
b \M . To see that Φ is continuous, let s ∈

∏
<κ b with

dom(s) = α. If t ∈ ακ, then it follows by construction that α ⊆ dom(φ(t)). Let

T = {t ∈ ακ | s ⊆ φ(t)} .

Note that f ∈
⋃

t∈T [t] if and only if s ⊆ φ(f ↾ α) if and only if Φ(f) ∈ [s] if and only if
f ∈ Φ−1[[s]].

Corollary 3.1.2

cov(Mκ) = cov(Mb
κ), non(Mκ) = non(Mb

κ), add(Mκ) = add(Mb
κ), cof(Mκ) = cof(Mb

κ). ◁

Apart from the κ-meagre ideal, we will also consider the ideal SNκ of κ-strong measure zero sets
in this chapter. We will conclude this section by giving a definition of SNκ that is equivalent to
the one given in Section 2.2, and some terminology that will be helpful to us later.

Lemma 3.1.3 — for ωω, cf. [Mil81, Theorem 2.3], attributed to [Rot41]

The following are equivalent for a set X ⊆ κ2.

(1) X ∈ SNκ,
(2) For every f ∈ κκ there exists a sequence s = ⟨sα | α ∈ κ⟩ with sα ∈ f(α)2 for each α such

that X ⊆
⋂

α0∈κ
⋃

β∈[α0,κ)
[sβ]. ◁

1Compare with Cantor schemes, e.g. as described in [Kec95, Section 6A] for ωω.
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Proof. Remember that (1) holds iff for every f ∈ κκ there exists a sequence s = ⟨sα | α ∈ κ⟩
with sα ∈ f(α)2 for each α such that X ⊆

⋃
α∈κ[sα].

That (2) implies (1) is obvious.

To see that (1) implies (2), let π : κ× κ ›→→ κ be a bijection and f ∈ κκ. We define fξ ∈ κκ by
fξ(α) = f(π(ξ, α)) and use (1) to find a sequence sξ = ⟨sξα | α ∈ κ⟩ with sξα ∈ fξ(α)2 such that
X ⊆

⋃
α∈κ[s

ξ
α]. Given ξ, α ∈ κ, we define sπ(ξ,α) = sξα then sβ ∈ f(β)2 for all β ∈ κ. It follows

that X ⊆
⋂

α0∈κ
⋃

β∈[α0,κ)
[sβ].

Definition 3.1.4

If s = ⟨sα | α ∈ κ⟩ is a sequence such that X ⊆
⋃

α∈κ[sα], we say X is covered by s. If also
X ⊆

⋂
α0∈κ

⋃
β∈[α0,κ)

[sβ], then we say X is cofinally covered by s. ◁

3.2. Bounded Cardinal Characteristics

Each of the relations ≤∗, =∞, ∈∗ and ∈∞ can be restricted to
∏
b. For the former two this is

clear, but for the latter two we need to also restrict the set of h-slaloms to the space
∏
b, thereby

defining a (b, h)-slalom as a function φ with domain κ such that φ(α) ⊆ b(α) and |φ(α)| < h(α)

for each α ∈ κ. The set of all (b, h)-slaloms will be denoted by Locb,hκ .

Definition 3.2.1

We define the following four relational systems and associated cardinals:

Db
κ = ⟨

∏
b,
∏
b,≤∗⟩

∥∥∥Db
κ

∥∥∥ = dbκ(≤∗)
∥∥∥Db

κ
⊥
∥∥∥ = bbκ(≤∗)

EDb
κ = ⟨

∏
b,
∏
b,��=∞⟩

∥∥∥EDb
κ

∥∥∥ = dbκ(�
�=∞)

∥∥∥EDb
κ
⊥
∥∥∥ = bbκ(�

�=∞)

L b,h
κ =

〈∏
b,Locb,hκ ,∈∗〉 ∥∥∥L b,h

κ

∥∥∥ = db,hκ (∈∗)
∥∥∥L b,h

κ
⊥
∥∥∥ = bb,hκ (∈∗)

AL b,h
κ =

〈
Locb,hκ ,

∏
b,��∋∞

〉 ∥∥∥AL b,h
κ

∥∥∥ = db,hκ (��∋∞)
∥∥∥AL b,h

κ
⊥
∥∥∥ = bb,hκ (��∋∞) ◁

As for names for these cardinal characteristics, we will use the prefix b or (b, h) to distin-
guish these cardinals from the same cardinals as defined on the entire higher Baire space κκ

in Definition 2.4.5. That is, dbκ(≤∗) is called the b-dominating number, bb,hκ (∈∗) is called the
(b, h)-avoidance number, etc.

Classical Analogues of D b
κ

The b-dominating and b-unbounding numbers are examples of cardinal characteristics that are
of independent interest only on higher Baire spaces. We will briefly discuss how these cardinals
would be defined on ωω, and why this results in uninteresting cardinal characteristics.

If b ∈ ωω is any cofinally increasing function, and we define Db = ⟨
∏
b,
∏
b,≤∗⟩, it is easy to see

that
∥∥Db

∥∥ = 1, since the function f = b− 1 will dominate all functions in
∏
b: if g ∈

∏
b, then

g(n) < b(n) for all n ∈ ω, hence g ≤∗ f . Similarly, this function f is a bound for all functions in∏
b, so there does not exist an unbounded family of functions, which makes

∥∥∥Db⊥
∥∥∥ undefined.
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Through a different lense2, we may see Db
κ as a generalisation of a different concept. Given

b ∈ κκ a cofinal increasing infinite cardinal function and g ∈
∏
b, we consider the difference

δ = b− g, in the sense that g(α) + δ(α) = b(α) for the function δ ∈ κκ. Then δ is itself a cofinal
function in κκ. In fact, one easily sees that δ = b, since b(α) is always an infinite cardinal. We
will use the fact that δ is a cofinal function to define a relational system in the context of ωω.

Given a cofinal function b ∈ ωω, define
∞∏
b = {g ∈

∏
b | b− g is an increasing cofinal function}.

Consider Db
∞ = ⟨

∞∏
b,

∞∏
b,≤∗⟩ and let

∥∥Db
∞
∥∥ = db(≤∗) and

∥∥∥Db
∞

⊥
∥∥∥ = bb(≤∗), then we may see

dbκ(≤∗) and bbκ(≤∗) as generalisations of db(≤∗) and bb(≤∗).

Lemma 3.2.2

For any cofinal function b ∈ ωω, we have Db
∞ ≡ D . ◁

Proof. Let f ∈ ωω, where we will assume without loss of generality that f(0) = 0 and that
f is an increasing cofinal function. We will define a function gf as gf (k) = b(k) − n for each

k ∈ [f(n), f(n+ 1)) and n ∈ ω. We can see that gf ∈
∞∏
b, since f is increasing and cofinal: for

any n ∈ ω and k ≥ f(n) we have b(k)− gf (k) ≥ n.

Suppose that f1 ≤∗ f2 for some f1, f2 ∈ ωω, and assume again without loss of generality that
f1 and f2 are increasing and cofinal. Then we will show that gf1 ≤∗ gf2 . Let n0 ∈ ω be such
that f1(n) ≤ f2(n) for all n ≥ n0. For any k ≥ f1(n0), we have k ∈ [f1(n1), f1(n1 +1)) for some
n1 ≥ n0. By choice of n0, we have f1(n1) ≤ f2(n1) and f1(n1 + 1) ≤ f2(n1 + 1), so there is
n2 ≤ n1 such that k ∈ [f2(n2), f2(n2 + 1)). But then gf1(k) = b(k) − n1 ≤ b(k) − n2 = gf2(k),
hence gf1 ≤∗ gf2 .

Reversely, given g ∈
∞∏
b, we define a function fg by fg(n) = min {k ∈ ω | b(k)− g(k) ≥ n}. If

k ≥ fg(n), then b(k)− g(k) ≥ n as well, because g ∈
∞∏
b assumes that b− g is increasing.

Let g1 ≤∗ g2 for some g1, g2 ∈
∞∏
b and k0 ∈ ω such that g1(k) ≤ g2(k) for all k ≥ k0. If k ≥ k0,

then b(k)−g2(k) ≥ n implies that b(k)−g1(k) ≥ n, hence fg2(n) ≥ fg1(n). Therefore fg1 ≤∗ fg2 .

In conclusion, Db
∞ ⪯ D is witnessed by the Tukey connection ρ− : g 7→ fg and ρ+ : f 7→ gf

defined as above, while D ⪯ Db
∞ has the Tukey connection ρ− : f 7→ gf and ρ+ : g 7→ fg.

It follows that db(≤∗) = d(≤∗) and bb(≤∗) = b(≤∗), hence the bounded variants do not give us
new cardinal characteristics, or at least not when we consider the ωω-analogues given above.

3.3. Relations

In this section we will prove ZFC-results concerning the bounded cardinal characteristics defined
in the previous section. We do this by defining Tukey connections.

We will start with a few monotonicity results, then we look at the relation between the different
flavours of cardinal characteristics and we conclude this section with infima and suprema of sets
of cardinal characteristics indexed by the choice of b, which is related to the κ-strong measure
zero ideal.

2This idea was proposed to me by Jörg Brendle in private communication.
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Monotonicity of Parameters and Subsequences

To start, let us look at the b-dominating and b-unbounding numbers. We can easily see that
only the cofinality of the values b(α) is important for these cardinals by the following lemma.
Remember that cf(b) : α 7→ cf(b(α)), as defined in Section 1.2.

Lemma 3.3.1

Db
κ ≡ D

cf(b)
κ . ◁

Proof. For each α ∈ κ let ⟨βαξ | ξ < cf(b(α))⟩ be a strictly increasing sequence of ordinals that
is cofinal in b(α) and for any η ∈ b(α) let ξαη = min{ξ ∈ cf(b(α)) | η ≤ βαξ }

For Db
κ ⪯ D

cf(b)
κ let ρ−(f) : α 7→ ξαf(α) and ρ+(g′) : α 7→ βαg′(α).

For D
cf(b)
κ ⪯ Db

κ let ρ−(f ′) : α 7→ βαf ′(α) and ρ+(g) : α 7→ ξαg(α).

The following lemma shows how taking a subsequence of b influences the cardinal characteristics
under consideration.

Lemma 3.3.2

If ⟨αξ | ξ ∈ κ⟩ ∈ κκ is a strictly increasing sequence and b′ : ξ 7→ b(αξ) and h′ : ξ 7→ h(αξ), then
Db′

κ ⪯ Db
κ and L b′,h′

κ ⪯ L b,h
κ and AL b′,h′

κ ⪯ AL b,h
κ . ◁

Proof. Each Tukey connection is similar, thus we will only give one.

Let ρ− :
∏
b′ →

∏
b send f ′ 7→ f where f(αξ) = f ′(ξ) for each ξ ∈ κ and arbitrary otherwise.

Let ρ+ :
∏
b →

∏
b′ send g 7→ g′ where g′(ξ) = g(αξ) for each ξ ∈ κ. It is easy to see that this

is a Tukey connection for Db′
κ ⪯ Db

κ.

Another essential property relating two relational systems with different parameters to each
other, is monotonicity with regards to the bounds b and h and the relation ≤∗. The proofs are
elementary, and usually involve the identity functions as part of the Tukey connections, hence
we omit them.

Lemma 3.3.3

Let h ≤∗ h′ and b ≥∗ b′, then L b′,h′
κ ⪯ L b,h

κ and AL b,h
κ ⪯ AL b′,h′

κ . □

Lastly, we mention that eventual difference is a special case of antilocalisation, where the function
h that determines the size of the sets in the slaloms is as small as possible. Remember that
2 : α 7→ 2, as defined in Section 1.2.

Lemma 3.3.4

EDb
κ ≡ AL b,2

κ . ◁

Proof. Any slalom φ ∈ Locb,2κ is a sequence of singletons, and thus we can define fφ ∈
∏
b such

that {fφ(α)} = φ(α) for all α ∈ κ. It follows that g ∈∞ φ if and only if g =∞ fφ.
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Relations for Fixed Parameters

The following theorem gives an overview of relations between the cardinals we have discussed
so far, for a fixed pair of parameters b, h.

Theorem 3.3.5

The following Tukey connections exist, where the relations marked by † require the additional
assumption that h ≤∗ cf(b).

AL b,h
κ Db

κ L b,h
κ

EDb
κ Db

κ
⊥

AL b,h
κ

⊥

⪯† ⪯†

(⪯†)

⪯ ⪯ ⪯ ⪯

◁

Proof. The relation between eventual difference and antilocalisation was already established with
Lemma 3.3.4, and combined with Lemma 3.3.3 we get EDb

κ ⪯ AL b,h
κ .

It is also easy to see for f, g ∈
∏
b, that if g ≤∗ f , then f +1��≤∗ g and g��=∞ f +1. This implies

that there are Tukey connections Db
κ
⊥ ⪯ Db

κ and EDb
κ ⪯ Db

κ.

Next, for f ∈
∏
b and φ ∈ Locb,hκ , we have that f ∈∗ φ implies f ∈∞ φ, and thus we get a Tukey

connection AL b,h
κ

⊥
⪯ L b,h

κ .

Finally we will show that AL b,h
κ ⪯ Db

κ ⪯ L b,h
κ as long as we assume that h ≤∗ cf(b). Note that

this also implies AL b,h
κ

⊥
⪰ Db

κ
⊥ by duality.

We define ρAL
− : Locb,hκ →

∏
b and ρAL

+ :
∏
b→

∏
b as a Tukey connection for AL b,h

κ ⪯ Db
κ, and

ρL− :
∏
b→

∏
b and ρL+ : Locb,hκ →

∏
b as a Tukey connection for Db

κ ⪯ L b,h
κ .

We will have ρAL
− = ρL+ sending φ ∈ Locb,hκ to g ∈

∏
b where g(α) = sup(φ(α)) if sup(φ(α)) <

b(α) and arbitrary otherwise. Since h ≤∗ cf(b), we see that φ(α) is not cofinal in b(α) for
almost all α, so g(α) = sup(φ(α)) for almost all α ∈ κ. We let ρL− be the identity function, and
ρAL
+ : f 7→ f + 1.

If f ∈
∏
b and φ ∈ Locb,hκ , let g = ρAL

− (φ) = ρL+(φ) and f + 1 = ρAL
+ (f). Then f ∈∗ φ implies

f(α) ≤ sup(φ(α)) = g(α) for almost all α ∈ κ, hence f ≤∗ g. On the other hand, if g ≤∗ f ,
then g <∗ f + 1, hence sup(φ(α)) < f(α) + 1 for almost all α ∈ κ, implying f + 1��∈∞ φ.

In summary, we can draw the cardinal characteristics related to these relational systems in the
diagram below, where the dashed lines require that h ≤∗ cf(b). Note that bbκ(�

�=∞) ≤ non(Mκ)

and cov(Mκ) ≤ dbκ(�
�=∞) follow from Lemmas 3.3.3 and 3.3.4 and Fact 2.5.4.

We saw that AL b,h
κ ⪯ Db

κ ⪯ L b,h
κ if h ≤∗ cf(b), and in Theorem 3.3.6 we showed that reversely

L b,h
κ ⪯ Db

κ if h =∗ b. Under the same assumption, we can also prove that Db
κ ⪯ AL b,h

κ .
Therefore, the dashed arrows in the above diagram collapse to become equalities in the case
where b =∗ cf(b) =∗ h.
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κ+

bbκ(≤∗)

bbκ(�
�=∞)

bb,hκ (��∋∞)

bb,hκ (∈∗)

dbκ(≤∗)

dbκ(�
�=∞)

db,hκ (��∋∞)

db,hκ (∈∗)

cov(Mκ)

non(Mκ) 2κ

Figure 3.1: Diagram of the relations between cardinals on bounded spaces

Theorem 3.3.6

If b =∗ h, then L b,h
κ ⪯ Db

κ ⪯ AL b,h
κ . ◁

Proof. We define ρL−, ρAL
+ :

∏
b →

∏
b and ρL+, ρ

AL
− :

∏
b → Locb,hκ , so that (ρL−, ρ

L
+) forms a

Tukey connection for L b,h
κ ⪯ Db

κ and (ρAL
− , ρAL

+ ) forms a Tukey connection for Db
κ ⪯ AL b,h

κ .

Let ρAL
+ be the identity function and let ρL− : f 7→ f +1. We will have ρL+ = ρAL

− be the function
sending g ∈

∏
b to φ ∈ Locb,hκ where φ(α) = g(α) whenever h(α) = b(α) and arbitrary otherwise.

This is well-defined, since |g(α)| < b(α) = h(α) for all α ∈ κ on which φ is not arbitrary.

It is easy to check that these are Tukey connections.

The relation EDb
κ ⪯ AL b,h

κ can also be reversed for certain choices of h and b, by the following
theorem.

Theorem 3.3.7

Let b be increasing (not strictly) and ⟨Iα | α < κ⟩ be an interval partition of κ with |Iα| = h(α)

for each α ∈ κ such that b(α) = b(ξ) = b(α)h(α) for all ξ ∈ Iα and α ∈ κ, then EDb
κ ≡ AL b,h

κ . ◁

Proof. We already know EDb
κ ⪯ AL b,h

κ from Theorem 3.3.5, thus we show that AL b,h
κ ⪯ EDb

κ.
We do this by giving a Tukey connection ρ− : Locb,hκ →

∏
b and ρ+ :

∏
b→

∏
b. For each α ∈ κ

let πα : b(α) → Iαb(α) be a bijection, which exist by b(α)h(α) = b(α).

Given φ ∈ Locb,hκ , let λα = |φ(α)| and enumerate each φ(α) = {xαξ ∈ b(α) | ξ ∈ λα}. We
define gαξ = πα(x

α
ξ ) ∈ Iαb(α) for all α ∈ κ and ξ ∈ λα. Fix ια = min(Iα), then for every

ξ ∈ λα we see that ια + ξ ∈ Iα, since λα < h(α) = |Iα|. Let g ∈
∏
b be a function such that

g(ια + ξ) = gαξ (ια + ξ) for each α ∈ κ and ξ ∈ λα. This is well defined, because b(α) = b(ξ) for
all ξ ∈ Iα. We let ρ−(φ) = g.

We define ρ+(f) ∈
∏
b sending α 7→ π−1

α (f ↾ Iα).

Now suppose that φ ∈ Locb,hκ and f ∈
∏
b and let g = ρ−(φ) and f ′ = ρ+(f). Suppose that

f ′ ∈∞ φ and α0 ∈ κ, then there is α > α0 such that f ′(α) ∈ φ(α), so pick ξ ∈ λα such that
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xαξ = f ′(α). Then we see

gαξ = πα(x
α
ξ ) = πα(f

′(α)) = πα(π
−1
α (f ↾ Iα)) = f ↾ Iα.

In particular f(ια + ξ) = gαξ (ια + ξ) = g(ια + ξ), and since ια + ξ > α0 and α0 was arbitrary, it
follows that f =∞ g.

Note that the proof does not require the assumption that b(α) < κ for α ∈ κ. Indeed, the above
theorem holds even if we let b : κ → {κ}, since κ is inaccessible. It follows that the cardinal
characteristics dhκ(��∋∞) and bhκ(�

�∋∞) (from the unbounded space) do not depend on the choice of
h ∈ κκ, and can be related to the κ-meagre ideal as a consequence of Fact 2.5.4.

Corollary 3.3.8

dhκ(�
�∋∞) = cov(Mκ) and bhκ(�

�∋∞) = non(Mκ) for any choice of h ∈ κκ. ◁

We will conclude this subsection with a relationship between antilocalisation and localisation
for different parameters.

Theorem 3.3.9 — cf. [KM22, Lemma 2.6] for ωω

Let h·h′ <∗ b and bg ≤∗ b′ for all g < h, then there exists a Tukey connection AL b,h
κ ⪯ L b′,h′

κ . ◁

Proof. Let α0 ∈ κ be large enough such that h(α) · h′(α) < b(α) and b(α)<h(α) ≤ b′(α) for all
α ≥ α0. For each α ≥ α0, we fix an injection ια : [b(α)]<h(α) ›→ b′(α).

Given φ ∈ Locb,hκ , let ρ−(φ) = f ′ ∈
∏
b′ map α 7→ ια(φ(α)) for any α ≥ α0, and arbitrary

otherwise. Given φ′ ∈ Locb
′,h′
κ , let ρ+(φ′) = f ∈

∏
b have f(α) ∈ b(α) \

⋃
ξ∈φ′(α)∩ran(ια) ι

−1
α (ξ)

for any α ≥ α0, and arbitrary otherwise. Note that this is well-defined, since |φ′(α)| < h′(α)

and |ι−1
α (ξ)| < h(α), therefore |

⋃
ξ∈φ′(α)∩ran(ια) ι

−1
α (ξ)| ≤ h(α) · h′(α) < b(α).

If α ≥ α0 and f ′(α) ∈ φ′(α), then φ(α) = ι−1
α (f ′(α)) ⊆

⋃
ξ∈φ′(α)∩ran(ια) ι

−1
α (ξ), so f(α) /∈ φ(α).

Therefore f ′ ∈∗ φ′ implies f ��∈∞ φ.

Infima and Suprema

Remember that we have the following monotonicity results from Lemma 3.3.3. Let b ≤ b′. Then:

bb
′,h
κ (∈∗) ≤ bb,hκ (∈∗) db,hκ (∈∗) ≤ db

′,h
κ (∈∗)

bb,hκ (��∋∞) ≤ bb
′,h
κ (��∋∞) db

′,h
κ (��∋∞) ≤ db,hκ (��∋∞)

This motivates the definition of the following cardinal characteristics.

Definition 3.3.10

Given h ∈ κκ, let:

infhκ(∈∗) = inf{bb,hκ (∈∗) | b ∈ κκ} suphκ(∈∗) = sup{db,hκ (∈∗) | b ∈ κκ}

infhκ(�
�∋∞) = inf{db,hκ (��∋∞) | b ∈ κκ} suphκ(�

�∋∞) = sup{bb,hκ (��∋∞) | b ∈ κκ}

infκ(�
�=∞) = inf{dbκ(��=∞) | b ∈ κκ} supκ(�

�=∞) = sup{bbκ(��=∞) | b ∈ κκ} ◁
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Note that for ∈∗ we take infima over the b-side cardinals, while for ��∋∞ and ��=∞ we take infima
over the d-side cardinals, and vice versa for the suprema. Note also that infκ(�

�=∞) = inf2κ(�
�∋∞)

and supκ(�
�=∞) = sup2κ(�

�∋∞) by Lemma 3.3.4.

In [CM19] it is proved that the parameter h does not matter if we work in ωω. This is based on
two claims which we repeat below.

Fact 3.3.11 — [CM19, Claim 3.10]

For any b, h, h′ ∈ ωω such that h ≤ h′ there exists b′ ∈ ωω such that db,hω (∈∗) ≤ db
′,h′
ω (∈∗) and

bb
′,h′
ω (∈∗) ≤ bb,hω (∈∗). □

Fact 3.3.12 — [CM19, Claim 3.11]

For any b′, h ∈ ωω such that 2 ≤ h there exists b ∈ ωω such that db,hω (��∋∞) ≤ db
′
ω (�

�=∞) and
bb

′
ω (�

�=∞) ≤ bb,hω (��∋∞). □

In the higher context, Fact 3.3.11 can only be partially generalised, and indeed we will see that
differences in the parameter h can lead to consistently different cardinals. Meanwhile Fact 3.3.12
is completely generalisable and we will look at this first. One could compare the next lemma to
Theorem 3.3.7.

Lemma 3.3.13

For any b′, h ∈ κκ such that 2 ≤ h there exists b ∈ κκ such that AL b,h
κ ⪯ EDb′

κ . ◁

Proof. Let ⟨Iα | α ∈ κ⟩ be the (unique) interval partition of κ such that Iα ⊆ min(Iβ) for α < β

and |Iα| = h(α) for all α ∈ κ. We define b(α) =
∣∣∣∏ξ∈Iα b

′(ξ)
∣∣∣ and let πα : b(α) ›→→

∏
ξ∈Iα b

′(ξ)

be a bijection for each α ∈ κ.

For each φ ∈ Locb,hκ , let ρ−(φ) = gφ ∈
∏
b′ be defined as follows. For each α ∈ κ we take some

surjection ιφα : Iα →→ φ(α). Given ξ ∈ Iα, let β = ιφα(ξ) ∈ φ(α), then we define gφ(ξ) = πα(β)(ξ).

For f ′ ∈
∏
b′, we let ρ+(f ′) = f ∈

∏
b be given by f(α) = π−1

α (f ′ ↾ Iα).

Now (ρ−, ρ+) forms a Tukey connection. If ρ+(f ′) = f ∈∞ φ, let α ∈ κ be arbitrarily large such
that f(α) ∈ φ(α). Take ξ ∈ Iα such that f(α) = ιφα(ξ), then gφ(ξ) = πα(f(α))(ξ) = f ′(ξ), thus
since α is arbitrarily large, we see that f ′ =∞ gφ.

Corollary 3.3.14

infhκ(�
�∋∞) = infκ(�

�=∞) and suphκ(�
�∋∞) = supκ(�

�=∞) for each h ∈ κκ. ◁

Proof. By Lemma 3.3.3 we see that infκ(�
�=∞) ≤ infhκ(�

�∋∞) and supκ(�
�=∞) ≥ suphκ(�

�∋∞).

By Lemma 3.3.13, for any b′ ∈ κκ we can find some b ∈ κκ such that db,hκ (��∋∞) ≤ db
′,2
κ (��∋∞), thus

infκ(�
�=∞) ≥ infhκ(�

�∋∞). Similar for supκ(�
�=∞) ≤ suphκ(�

�∋∞).

The equality between infω(�
�=∞) and non(SN ) was first proved by Rothberger [Rot41]. Miller

[Mil81, p.98 Remark (4)] used this result to remark that add(M) = min {bω(≤∗), infω(�
�=∞)}.

One could also show the dual result cof(M) = max {dω(≤∗), supω(�
�=∞)}. We show that each of

these three claims generalises to higher context.
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Instead of proving non(SNκ) = infκ(�
�=∞) directly, we show one direction by use of a Tukey

connection. Let X0 = {(g, b) ∈ κκ× κκ | g < b} and X1 = {τ : κκ→ κκ | ∀b ∈ κκ(τ(b) < b)},
and define a relation J∞ ⊆ X0 × X1 by (f, b) J∞ τ iff f =∞ τ(b). We use this to define the
relational system J∞, which is equivalent to the categorical product

⊗
b∈κκ EDb

κ
⊥. We also

define a relational system whose norms are the covering and uniformity numbers of the κ-strong
measure zero ideal.

J∞ = ⟨X0,X1, J∞⟩ ∥J∞∥ = supκ(�
�=∞)

∥∥∥J ⊥
∞

∥∥∥ = infκ(�
�=∞)

CSNκ = ⟨κ2,SNκ,∈⟩ ∥CSNκ∥ = cov(SNκ)
∥∥∥C⊥

SNκ

∥∥∥ = non(SNκ)

The following Tukey connection proves infκ(�
�=∞) ≥ non(SNκ) and supκ(�

�=∞) ≤ cov(SNκ).

Theorem 3.3.15

CSNκ ⪰ J∞. ◁

Proof. We describe ρ− : X0 → κ2 and ρ+ : SNκ → X1.

For each b ∈ κκ let βbα ∈ κ be minimal such that there exists an injection ιbα : b(α) ›→ βb
α2 and

let γbα be the ordinal sum
∑

ξ<α β
b
ξ .

For any (f, b) ∈ X0, we define ρ−(f, b) = f ′ ∈ κ2 piecewise by:

f ′ ↾ [γbα, γ
b
α+1) : γ

b
α + ξ 7→ ιbα(f(α))(ξ).

GivenX ∈ SNκ and b ∈ κκ, we can find sb = ⟨sbα ∈ γb
α+12 | α ∈ κ⟩ such thatX is cofinally covered

by sb. Define tbα ∈ βb
α2 by tbα : ξ 7→ sbα(γ

b
α + ξ). Let ρ+(X) = τ , where τ(b) : α 7→ (ιbα)

−1(tbα) if
this is defined and arbitrary otherwise.

Given (f, b) ∈ X0 with ρ−(f, b) = f ′ and X ∈ SNκ with ρ+(X) = τ , suppose that f ′ ∈ X, then
since X is cofinally covered by sb, there are cofinally many α such that f ′ ∈ [sbα], hence for such
α we have f ′ ↾ [γbα, γbα+1) = sbα ↾ [γbα, γ

b
α+1). But then tbα = ιbα(f(α)), and thus τ(b)(α) = f(α).

Thus f =∞ τ(b), or equivalently (f, b) J∞ τ .

As said, non(SNκ) is actually equal to infκ(�
�=∞). We prove the remaining direction below.

Theorem 3.3.16 — cf. [Mil81, Theorem 2.3] for ωω

non(SNκ) = infκ(�
�=∞). ◁

Proof. Let π : <κ2 ›→→ κ be some fixed bijection and X /∈ SNκ, then there exists f ∈ κκ such
that X is not cofinally covered for any s = ⟨sα | α ∈ κ⟩ with sα ∈ f(α)2. For each x ∈ X let
gx : α 7→ π(x ↾ f(α)) and define b : α 7→ sup

{
π(s) + 1 | s ∈ f(α)2

}
, then gx ∈

∏
b. We set

D = {gx | x ∈ X}.

Given h ∈
∏
b, for each α define sα = π−1(h(α)) if dom(π−1(h(α)) = f(α) and sα ∈ f(α)2

arbitrary otherwise. If h(α) = gx(α), then sα = x ↾ f(α), hence x ∈ [sα]. Since X is not
cofinally covered by s = ⟨sα | α ∈ κ⟩, there exists x ∈ X such that h��=∞ gx. Hence D forms a
witness for dbκ(�

�=∞).
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We cannot prove the dual cov(SNκ) ≤ supκ(�
�=∞), since supκ(�

�=∞) ≤ non(Mκ) ≤ cof(Mκ) and
it is consistent that cof(Mκ) < cov(SNκ). The model for this is a generalisation of the Sacks
model, which we will discuss in Section 4.4. We prove the consistency of this specific inequality
in Theorem 4.4.9.

We will prove the connection between add(Mκ) and infκ(�
�=∞), and between cof(Mκ) and

supκ(�
�=∞) directly, as it will be more similar to the proof of Theorem 3.3.19.

Theorem 3.3.17 — cf. [Mil81, p.98 Remark (4)] for ωω

add(Mκ) = min {bκ(≤∗), infκ(�
�=∞)} and cof(Mκ) = max {dκ(≤∗), supκ(�

�=∞)}. ◁

Proof. Remember that by Fact 2.5.4 we have dκ(�
�=∞) = cov(Mκ) and bκ(�

�=∞) = non(Mκ),
hence by Fact 2.5.9 add(Mκ) = min {bκ(≤∗), dκ(�

�=∞)} and cof(Mκ) = max {dκ(≤∗), bκ(�
�=∞)}.

Moreover, it is clear from Lemma 3.3.3 that dκ(�
�=∞) ≤ infκ(�

�=∞) and supκ(�
�=∞) ≤ bκ(�

�=∞).

Secondly, we prove that dκ(��=∞) < bκ(≤∗) implies dκ(��=∞) = infκ(�
�=∞). Let F ⊆ κκ be a witness

for |F | = dκ(�
�=∞) and assume dκ(�

�=∞) < bκ(≤∗). Since |F | < bκ(≤∗), there exists b ∈ κκ such
that f <∗ b for all f ∈ F . Let f ′ : α 7→ f(α) if f(α) ∈ b(α) and f ′ : α 7→ 0 otherwise. Clearly
f ′ ∈

∏
b and for any g ∈ κκ we have f =∞ g iff f ′ =∞ g. Therefore F ′ = {f ′ | f ∈ F} ⊆

∏
b is

a witness for dbκ(�
�=∞), thus we see:

dκ(�
�=∞) = |F | ≥ dbκ(�

�=∞) ≥ infκ(�
�=∞) ≥ dκ(�

�=∞).

For the dual result, assume dκ(≤∗) < bκ(�
�=∞) and towards contradiction let supκ(��=∞) < bκ(�

�=∞)

as well. Let D ⊆ κκ witness |D| = dκ(≤∗) and for each b ∈ D choose a witness Fb ⊆
∏
b for

|Fb| = bbκ(�
�=∞) ≤ supκ(�

�=∞). Define F =
⋃

b∈D Fb, then |F | = dκ(≤∗) · supκ(��=∞) < bκ(�
�=∞),

thus there exists g ∈ κκ such that g��=∞ f for all f ∈ F . Let b ∈ D be such that g <∗ b and let
g′ : α 7→ g(α) if g(α) < b(α) and g′ : α 7→ 0 otherwise, then g′ ∈

∏
b and g′ ��=∞ f for all f ∈ Fb.

But this contradicts that Fb witnesses |Fb| = bbκ(�
�=∞).

Putting everything together, we have showed that:

add(Mκ) = min
{
bκ(≤∗), dκ(�

�=∞)
}
= min

{
bκ(≤∗), infκ(�

�=∞)
}
,

cof(Mκ) = max
{
dκ(≤∗), bκ(�

�=∞)
}
= max

{
dκ(≤∗), supκ(�

�=∞)
}
.

We will now show a generalisation of Fact 3.3.11. It is not possible to prove the generalisation
for every b, h, h′ ∈ κκ with h ≤ h′, since we will see in the next section that it is consistent that
db,2

h

κ (∈∗) = db
′,2h
κ (∈∗) < db,hκ (∈∗) = db

′,h
κ (∈∗) for all b′ ≥ b.

Lemma 3.3.18

For any b, h, h′ ∈ κκ such that there exists a continuous strictly increasing sequence ⟨βα | α ∈ κ⟩
with h′(α) ≤ h(ξ) for all ξ ≥ βα, there exists b′ ∈ κκ such that Lb,h ⪯ Lb′,h′ . ◁

Proof. Let Iα = [βα, βα+1) for each α ∈ κ, where we assume without loss of generality that
β0 = 0. Since ⟨βξ | ξ ∈ κ⟩ is continuous, we see that ⟨Iα | α ∈ κ⟩ is an interval partition of κ.
We define b′(α) =

∣∣∣∏ξ∈Iα b(ξ)
∣∣∣ and a bijection πα : b′(α) ›→→

∏
ξ∈Iα b(ξ) for each α ∈ κ.
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ρ− :
∏
b →

∏
b′ is defined by ρ−(f) = f ′ : α 7→ π−1

α (f ↾ Iα). We define ρ+ : Locb
′,h′
κ → Locb,hκ

by ρ+(φ
′) = φ : ξ 7→ {πα(x)(ξ) | x ∈ φ′(α)}, where α is such that ξ ∈ Iα. Note that this is

well-defined, since ξ ∈ Iα implies ξ ≥ βα, and thus |φ′(α)| < h′(α) ≤ h(ξ).

Suppose that f ∈
∏
b, φ′ ∈ Locb

′,h′
κ and ρ−(f) = f ′, ρ+(φ′) = φ. Let α ∈ κ be such that

f ′(α) ∈ φ′(α). For any ξ ∈ Iα, we then see that πα(f ′(α))(ξ) = f(ξ), thus f(ξ) ∈ φ(ξ) for all
ξ ∈ Iα. Hence, if f ′ ∈∗ φ′, it follows that f ∈∗ φ.

Classically analogous to Theorem 3.3.17, it can be shown that add(N ) = min {bω(≤∗), infω(∈∗)}
and cof(N ) = max {dω(≤∗), supω(∈∗)}. There is a generalisation of this result for κκ as well,
although we have to replace add(N ) and cof(N ) by their combinatorial counterparts bhκ(∈∗)

and dhκ(∈∗) (nota bene: these are the cardinals from the (unbounded) higher Baire space κκ,
or equivalently we could regard the bound to be b = κ). Moreover, since the parameter h
is important, in the sense that differing h leads to different cardinals, we can only prove a
parametrised version of this result.

Theorem 3.3.19 — cf. [CM19, Lemma 3.12] for ωω

bhκ(∈∗) = min
{
bκ(≤∗), infhκ(∈∗)

}
and dhκ(∈∗) = max

{
dκ(≤∗), suphκ(∈∗)

}
for any h ∈ κκ. ◁

Proof. That bhκ(∈∗) ≤ min
{
bκ(≤∗), infhκ(∈∗)

}
and dhκ(∈∗) ≥ max

{
dκ(≤∗), suphκ(∈∗)

}
are clear.

Let F ⊆ κκ with |F | < min
{
bκ(≤∗), infhκ(∈∗)

}
, then there exists b ∈ κκ such that f <∗ b for all

f ∈ F . Let F ′ = {f ′ | f ∈ F} where f ′ : α 7→ f(α) if f(α) < b(α) and f ′ : α 7→ 0 otherwise,
then f =∗ f ′ ∈

∏
b. Finally, there exists φ ∈ Locb,hκ such that f ′ ∈∗ φ for all f ′ ∈ F ′ by

|F ′| < infhκ(∈∗) ≤ bb,hκ (∈∗). Then also f ∈∗ φ for all f ∈ F , thus |F | < bhκ(∈∗).

Let D ⊆ κκ be a witness for dκ(≤∗) with |D| = dκ(≤∗). For each b ∈ D choose a witness Φb ⊆
Locb,hκ for db,hκ (∈∗) with |Φb| = db,hκ (∈∗). Let Φ =

⋃
b∈D Φb, then |Φ| ≤ max

{
dκ(≤∗), suphκ(∈∗)

}
.

If f ∈ κκ, then there is b ∈ D such that f <∗ b. Again, let f ′ : α 7→ f(α) if f(α) < b(α) and
f ′ : α 7→ 0 otherwise, then f ′ ∈

∏
b. Therefore, there exists φ ∈ Φb such that f ′ ∈∗ φ, and thus

such that f ∈∗ φ. This shows that Φ is a witness for dhκ(∈∗).

3.4. Trivial Parameters

It is perhaps not very surprising that some choices of parameters b and h will result in the cardinal
characteristics having trivial values. What we mean precisely with a cardinal characteristic x

having a “trivial” value, is that x is undefined, or that it is provable in “ ZFC+κ is inaccessible ”
that x ≤ κ+ or x = 2κ.

It is perhaps not evident that the determination of b and h such that our cardinals are nontrivial,
is itself not a trivial task. Indeed, this section contains several nontrivial open questions regarding
the triviality of cardinal characteristics.

We will establish a general pattern that it is possible to give a complete characterisation of the
cases in which the cardinals bbκ(≤∗), bb,hκ (∈∗), bb,hκ (��∋∞) and bbκ(�

�=∞) are trivial. For each of these
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families of cardinals we are able to formulate a trichotomy of the case where the cardinal is < κ,
the case where it is exactly κ and the case where the cardinal is > κ. In the last case we can
show that the cardinal is nontrivial, and we will give an independence proof in Chapter 4.

For the cardinals dbκ(≤∗), db,hκ (∈∗), db,hκ (��∋∞) and dbκ(�
�=∞), the natural conjecture is that these

are trivial exactly when their b-duals are trivial, but this turns out to be hard to prove in each
case. We will give partial results and some related problems. On the other hand, we can show
that these d-side cardinals are nontrivial whenever the b-side cardinals are nontrivial by dual
independence proofs, also given in Chapter 4.

Domination & Unboundedness

Let us start with dbκ(≤∗) and bbκ(≤∗). We saw in Lemma 3.3.1 that the value of these cardinals
only depends on the cofinality of b(α). It is also quite immediate that we require b ∈ κκ to be
such that b(α) is an infinite cardinal for (almost) all α ∈ κ for the same reason that a direct
ωω-analogue, as given at the end of Section 3.2, gives us trivial values:

Lemma 3.4.1

If b(α) is a successor ordinal for almost all α, then dbκ(≤∗) = 1 and bbκ(≤∗) is undefined. ◁

Proof. Let b(α) = f(α) + 1 for almost all α ∈ κ, then clearly f dominates all functions in
∏
b,

hence dbκ(≤∗) = 1 and bbκ(≤∗) is undefined.

The following lemma gives a complete characterisation of the functions b for which bbκ(≤∗) is
trivial. Note that the cases (i), (ii) and (iii) form a trichotomy.

Theorem 3.4.2

For each regular cardinal λ < κ let Dλ = {α ∈ κ | cf(b(α)) = λ}.

(i) If there exists a least regular cardinal λ < κ such that Dλ is cofinal in κ, then bbκ(≤∗) = λ.
(ii) If Dλ is bounded for all regular λ < κ and there exists a stationary set S such that for

each ξ ∈ S there exists αξ ≥ ξ with cf(b(αξ)) ≤ ξ, then bbκ(≤∗) = κ.
(iii) If Dλ is bounded for all regular λ < κ and there exists a club set C such that for each

ξ ∈ C we have cf(b(α)) > ξ for all α ≥ ξ, then bbκ(≤∗) ≥ κ+. ◁

Proof. (i) For each γ ∈ Dλ let
〈
δαγ | α ∈ λ

〉
be an increasing cofinal sequence in γ. Let fα ∈

∏
b

be any function such that fα(γ) = δαγ for each γ ∈ Dλ, then we claim that B = {fα | α ∈ λ} is
unbounded. Let g ∈

∏
b. By the pigeonhole principle there exists α ∈ λ such that g(γ) < δαγ

for cofinally many γ ∈ Dλ, hence we see that fα ��≤∗ g.

On the other hand, if |B| < λ, then let α0 be large enough such that cf(b(α)) ≥ λ for all
α ≥ α0, then | {f(α) | f ∈ B} | < cf(b(α)) for all α ≥ α0, thus we can pick g ∈

∏
b such that

g(α) = sup {f(α) | f ∈ B} < b(α) for each α ≥ α0 to see that f ≤∗ g for all f ∈ B.

(ii) Since each Dλ is bounded, we may assume that αξ ̸= αξ′ for all distinct ξ, ξ′ ∈ S. For each
ξ ∈ S, let {βηξ | η ∈ ξ} be a cofinal subset of b(αξ) (not necessarily increasing). Given α ∈ κ we
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define fα such that fα(αξ) = βαξ for all ξ ∈ S with α < ξ and arbitrary otherwise. We claim
that B = {fα | α ∈ κ} is unbounded.

Let g ∈
∏
b, then for each ξ ∈ S there is a minimal ηξ < ξ such that g(αξ) < β

ηξ
ξ = fηξ(αξ),

hence g′ : ξ 7→ ηξ is a regressive function on S. Therefore there is stationary S′ ⊆ S such that
g′ is constant on S′, say with value η, then we see that fη ��≤∗ g.

On the other hand, if B ∈ [
∏
b]µ with µ < κ and we take regular λ > µ such that Dλ is bounded,

then we can argue as in case (i) to construct g ∈
∏
b with f ≤∗ g for all f ∈ B.

(iii) Let B ⊆
∏
b with |B| = κ and enumerate B as {fη | η ∈ κ}. Let ⟨αξ | ξ ∈ κ⟩ be an

increasing enumeration of C. We define g(α) =
⋃

η∈ξ fη(α) for all α ∈ [αξ, αξ+1) and ξ ∈ κ,
then g(α) is the supremum of a sequence of length ξ ≤ αξ < cf(b(α)), hence g ∈

∏
b. Clearly

fξ ≤∗ g for each ξ ∈ κ, so B is bounded.

Hence, we see that bbκ(≤∗) is trivial in cases (i) and (ii). We will later prove that κ+ < bbκ(≤∗)

is consistent in case (iii), but let us take a look at the dual dbκ(≤∗) first.

If dbκ(≤∗) behaves dually to bbκ(≤∗), then we expect dbκ(≤∗) < 2κ to be inconsistent in cases (i)
and (ii). Remember that we assume that b is increasing, hence by Lemma 3.3.1, we can reduce
case (i) to the situation where b is a constant function with a regular cardinal as value. In other
words, we have to study the dominating number as defined in the space κλ where λ < κ is a
regular cardinal.

Note that even if we drop the assumption that b is increasing, Lemma 3.3.2 shows that the
behaviour on the space κλ is essentially the relevant part of the (in)consistency of dbκ(≤∗) < 2κ.

Dominating numbers in the space κλ have been studied by many in the past. Brendle showed
in the last section of [Bre22] (using different notation where the roles of κ and λ are reversed)
that if λ < κ and λ is regular uncountable, then dλκ(≤∗) < 2κ is actually consistent. An example
for a model where this holds, is the model resulting from adding κ++ many µ-Cohen reals over
GCH, where µ < λ. Because this also destroys the inaccessibility of κ, we cannot use this in our
context.

The question whether dλκ(≤∗) < 2κ is consistent with κ ≥ 2<λ is mentioned as Question 16 in
[Bre22]. Moreover, the special case where κ = ω1 and λ = ω is a famous open problem of Jech
& Prikry [JP79] that is still unsolved almost half a century later. We will give a partial answer
and prove that dλκ(≤∗) = 2κ when κ is inaccessible.

Theorem 3.4.3

If λ < κ is regular and cf(b(α)) = λ for cofinally many α ∈ κ, then dbκ(≤∗) = 2κ. ◁

We will delay the essential part of the proof of this theorem to the next subsection, since it will
be a corollary of Theorem 3.4.6, which states that db,hκ (∈∗) = 2κ if h(α) = λ for cofinally many
α ∈ κ. This is related to dbκ(≤∗) through Theorem 3.3.6.
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Proof of Theorem 3.4.3. Let λ < κ be regular and cf(b(α)) = λ for cofinally many α ∈ κ. By
Lemma 3.3.1 and Lemma 3.3.2 we may assume that b(α) = λ for all α ∈ κ. Let h = b, then the
conditions of Theorems 3.3.6 and 3.4.6 are satisfied, thus 2κ = db,hκ (∈∗) ≤ dbκ(≤∗) ≤ 2κ.

We currently do not know whether dbκ(≤∗) also is trivial in case (ii) of Theorem 3.4.2, see
also Question 3.5.1. We can however show that both bbκ(≤∗) and dbκ(≤∗) are nontrivial in case
(iii), and we will give an independence proof separating each from their respective bound in
Theorem 4.3.19.

Localisation & Avoidance

With localisation and avoidance cardinals, we have not only the parameter b, but also the
parameter h giving the width of our slaloms. As with the dominating and unbounding numbers,
there are certain choices of these parameters for which we have trivial cardinal characteristics.

We will motivate our assumption that h ≤ b with the following two lemmas:

Lemma 3.4.4

b <∗ h if and only if db,hκ (∈∗) = 1.
If b <∗ h, then bb,hκ (∈∗) is undefined. ◁

Proof. If b <∗ h, let B = {α ∈ κ | b(α) < h(α)}, and choose some φ ∈ Locb,hκ such that φ(α) =
b(α) for all α ∈ B. Since almost all α ∈ κ are in B, we see that f ∈

∏
b implies f ∈∗ φ. Hence

φ localises the entirety of
∏
b, making db,hκ (∈∗) = 1 and bb,hκ (∈∗) undefined.

Reversely, if there is a strictly increasing sequence ⟨αξ | ξ ∈ κ⟩ with h(αξ) ≤ b(αξ) for all ξ, and
φ ∈ Locb,hκ , then there is γξ ∈ b(αξ) \φ(αξ) for each ξ since |φ(αξ)| < h(αξ) ≤ b(αξ). Therefore,
if f ∈

∏
b is such that f(αξ) = γξ for all ξ ∈ κ, then f ��∈∗ φ.

Mirroring the situation of Theorem 3.4.2, we will give a complete characterisation of the cases
in which bb,hκ (∈∗) is trivial.

Theorem 3.4.5

For each λ < κ define Dλ = {α ∈ κ | h(α) = λ}.

(i) If there exists a least cardinal λ < κ such that Dλ is cofinal in κ, then bb,hκ (∈∗) = λ.
(ii) If Dλ is bounded for all λ < κ and h is continuous on a stationary set, then bb,hκ (∈∗) = κ,
(iii) If Dλ is bounded for all λ < κ and h is discontinuous on a club set, then κ+ ≤ bb,hκ (∈∗). ◁

Proof. (i) Assume that λ is minimal such that Dλ is cofinal. For each η < λ, define fη ∈
∏
b

elementwise by fη : α 7→ η for all α ∈ Dλ and fη : α 7→ 0 otherwise. If φ ∈ Locb,hκ and
α ∈ Dλ, then |φ(α)| < h(α) = λ, so there exists η < λ for which η /∈ φ(α) for cofinally many
α ∈ Dλ by the pigeonhole principle, hence fη ��∈∗ φ. Therefore F = {fη | η < λ} witnesses that
bb,hκ (∈∗) ≤ |F| = λ.

On the other hand, if F ⊆
∏
b and |F| < λ, then by minimality of λ we see that |F| < h(α)

for almost all α ∈ κ, thus we can choose φ ∈ Locb,hκ such that φ : α 7→ {f(α) | f ∈ F} whenever
|F| < h(α), then we see that f ∈∗ φ for all f ∈ F , proving that |F| < bb,hκ (∈∗).
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(ii) Since each Dλ is bounded, it follows that {α ∈ κ | h(α) ≤ λ} is bounded for every λ < κ.
Let F ⊆

∏
b with |F| < κ, and let β ∈ κ be such that h(α) ≤ |F| implies α < β. If φ ∈ Locb,hκ

and ξ ≥ β, then |F| < h(ξ), hence we can define φ(ξ) = {f(ξ) | f ∈ F} for all ξ ≥ β. It is clear
that f ∈∗ φ for all f ∈ F , thus |F| < bb,hκ (∈∗). Since F was arbitrary such that |F| < κ, we see
that κ ≤ bb,hκ (∈∗).

To see κ = bb,hκ (∈∗), consider F = {fη | η ∈ κ} where fη : α 7→ η when η ∈ b(α), and fη : α 7→ 0

otherwise. Since we assume h ≤∗ b and h is cofinal, for every η ∈ κ there is α0 such that b(α) > η

for all α ≥ α0, thus fη(α) = η for almost all α ∈ κ. Since h is continuous on a stationary set
S0, the set of fixed-points S1 = {α ∈ S0 | h(α) = α} is stationary, implying that α 7→ |φ(α)|
is regressive on the stationary S1. Consequently Fodor’s lemma tells us that there exists a
stationary set S2 ⊆ S1 and λ ∈ κ such that |φ(α)| < λ for all α ∈ S2. If fη ∈∗ φ for all η ∈ λ,
then Nη = {α ∈ κ | η /∈ φ(α)} is nonstationary for each η ∈ λ, so

⋃
η∈λNη is nonstationary, and

thus S2 \
⋃

η∈λNη is stationary. However, for any α ∈ S2 \
⋃

η∈λNη we have λ ⊆ φ(α), which
contradicts that |φ(α)| < λ for α ∈ S2. Therefore F forms a witness for bb,hκ (∈∗) ≤ κ.

(iii) Let F ⊆
∏
b with |F| = κ and enumerate F as ⟨fη | η ∈ κ⟩. Let C be a club set containing

no successor ordinals such that h is discontinuous on C, and let ⟨αξ | ξ ∈ κ⟩ be the increasing
enumeration of C ∪ {0}. For each ξ ∈ κ let λξ =

⋃
α∈αξ

h(α), where we have the convention
that

⋃
∅ = 0, then λξ < h(αξ) for all ξ ∈ κ by discontinuity. Given α ∈ κ, let ξ be such

that α ∈ [αξ, αξ+1), which exists by C being club, and let φ(α) = {fη(α) | η ∈ λξ}. Since h is
increasing, |φ(α)| ≤ λξ < h(αξ) ≤ h(α), thus φ ∈ Locb,hκ . Finally h is cofinal, thus ⟨λξ | ξ ∈ κ⟩
is cofinal, hence for every η ∈ κ we have fη ∈∗ φ, showing that κ < bb,hκ (∈∗).

We will once again see that bb,hκ (∈∗) is nontrivial in case (iii), but first let us consider db,hκ (∈∗).

In case (i) we have db,hκ (∈∗) = 2κ. The proof is a generalisation based on Lemmas 1.8, 1.10 and
1.11 from [GS93], where the analogous theorem is proved for ωω.

Theorem 3.4.6 — cf. [GS93, Lemmas 1.8, 1.10 and 1.11] for ωω

If Dλ = {α ∈ κ | h(α) = λ} is cofinal in κ for some λ < κ, then db,hκ (∈∗) = 2κ. ◁

Proof. We are only interested in finding a lower bound of db,hκ (∈∗), thus by Lemma 3.3.2 we could
restrict our attention to a cofinal subset of κ. We therefore assume without loss of generality
that Dλ = κ, that is, h(α) = λ for all α ∈ κ. To prove this lemma we assume furthermore
without loss of generality that b = h. This suffices to prove the lemma, by Lemma 3.3.3.

Let b′ be defined by b′(α) = 2|α| for all α ∈ κ. We start with proving that db
′,h
κ (∈∗) = 2κ.

Let πα : α2 ›→ b′(α) be an injection for every α ∈ κ. For some arbitrary g ∈ κ2, define fg ∈
∏
b′

to be such that fg(α) = πα(g ↾ α) for all α ∈ κ. If g, g′ ∈ κ2 are distinct, then g ↾ α ̸= g′ ↾ α

for almost all α ∈ κ, hence fg(α) ̸= fg′(α) for almost all α ∈ κ. Therefore, if φ ∈ Locb
′,h
κ , then

there are at most λ many functions g ∈ κ2 such that fg ∈∗ φ. Since κ2 cannot be the union of
less than 2κ sets of size λ, we see that db

′,h
κ (∈∗) = 2κ.
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We will construct a Tukey connection Lb′,h ⪯ Lb,h. Let ⟨Wα | α ∈ κ⟩ be a partition of κ such
that |Wα| = λ2

|α| and let
〈
Φα
ξ | ξ ∈Wα

〉
be an enumeration of all functions 2|α| → λ. We let

ρ− :
∏
b′ →

∏
b send a function f ′ to the function f defined as follows: for ξ ∈ κ, let α be such

that ξ ∈ Wα, then we let f(ξ) = Φα
ξ (f

′(α)). We let ρ+ : Locb,hκ → Locb
′,h
κ send a slalom φ to

the slalom φ′, where φ′(α) =
{
η ∈ b′(α) | ∀ξ ∈Wα(Φ

α
ξ (η) ∈ φ(ξ))

}
. We show that φ′ is indeed

a (b′, h)-slalom by proving that |φ′(α)| < h(α) = λ.

Assume towards contradiction that there exists a sequence ⟨ηβ | β ∈ λ⟩ of distinct elements of
φ′(α). We define a function Φ : b′(α) → λ by sending ηβ 7→ β and η 7→ 0 if η ̸= ηβ for all
β ∈ λ. Note that dom(Φ) = b′(α) = 2|α|, hence there is ξ ∈ Wα such that Φ = Φα

ξ . Since
|φ(ξ)| < h(ξ) = λ there is some β ∈ λ \ φ(ξ), but then Φ(ηβ) = Φα

ξ (ηβ) /∈ φ(ξ), which implies
the contradictory ηβ /∈ φ′(α).

Finally we have to prove that ρ−, ρ+ form a Tukey connection. If we assume that f ∈∗ φ, then
Φα
ξ (f

′(α)) ∈ φ(ξ) for almost all ξ ∈ κ, where α is such that ξ ∈Wα. This means that for almost
all α ∈ κ we have Φα

ξ (f
′(α)) ∈ φ(ξ) for all ξ ∈ Wα. Therefore, for almost all α ∈ κ we have

f ′(α) ∈ φ′(α), showing that f ′ ∈∗ φ′.

In case (iii) we will prove that each of κ+ < bb,hκ (∈∗) and db,hκ (∈∗) < 2κ are consistent using
a generalisation of localisation forcing in Theorem 4.3.31. This mirrors what happens for the
dominating and unbounded numbers in Theorem 4.3.19.

Finally we will conclude this section with case (ii), which appears to be more complicated.
Currently our best lower bound is given by the maximal size of almost disjoint families of
functions.

On Almost Disjoint Families in Bounded Spaces

A family A ⊆
∏
b is called almost disjoint if f =∞ g implies that f = g for all f, g ∈ A.

Theorem 3.4.7

If Dλ = {α ∈ κ | h(α) = λ} is bounded for all λ ∈ κ and h is increasing and continuous on a
stationary set and A ⊆

∏
b is an almost disjoint family, then |A| ≤ db,hκ (∈∗). ◁

Proof. Since we assume h ≤ b and h is cofinal, b is also cofinal. Note that there exists an almost
disjoint family A ⊆

∏
b with |A| = κ: let fη ∈

∏
b send α 7→ η if η ∈ b(α) and α 7→ 0 otherwise,

then A = {fη | η ∈ κ} suffices. We will therefore assume without loss of generality that A is an
almost disjoint family with |A| ≥ κ.

Given φ ∈ Locb,hκ , let λφ be minimal such that there is stationary Sφ with |φ(α)| = λφ for all
α ∈ Sφ. Fix some arbitrary A ⊆ A with |A| = λ+φ , enumerate A as

〈
fα | α ∈ λ+φ

〉
and define

ξα,β = min {ξ ∈ κ | ∀η ∈ [ξ, κ)(fα(η) ̸= fβ(η))}. Since ξα,β < κ for all distinct α, β ∈ λ+φ , and
λ+φ < κ and κ is inaccessible, we see that ξ =

⋃
α∈λ+

φ

⋃
β∈α ξα,β ∈ κ. If η ≥ ξ, then fα(η) is

distinct for each α ∈ λ+φ , thus
∣∣{fα(η) | α ∈ λ+φ

}∣∣ = λ+φ . For every η ∈ Sφ \ ξ there is α ∈ λ+φ
such that fα(η) /∈ φ(η), hence by the pigeonhole principle there exists α ∈ λ+φ such that fα ��∈∗ φ.
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Thus, we see that Aφ = {f ∈ A | f ∈∗ φ} has |Aφ| ≤ λφ. If Φ ⊆ Locb,hκ is of minimal cardinality
to witnesses db,hκ (∈∗), then

⋃
φ∈ΦAφ = A, and thus κ ≤ |A| ≤ |Φ| · supφ∈Φ λφ = |Φ|. For the

last equality, note that supφ∈Φ λφ ≤ κ and that this inequality would be strict if |Φ| < κ.

Note that an almost disjoint family A ⊆
∏
b with |A| = 2κ exists when there exists a continuous

strictly increasing sequence ⟨αξ | ξ ∈ κ⟩ such that 2|ξ| ≤ |b(αξ)| for all ξ ∈ κ. The construction
for such a family is done by fixing injections πξ : ξ2 ›→ b(αξ) and for any f ∈ κ2 considering the
function f ′ ∈

∏
b given by f ′ : α 7→ πξ(f ↾ ξ) for each α ∈ [αξ, αξ+1), then {f ′ | f ∈ κ2} forms

an almost disjoint family.

Even if b does not grow fast enough such that the above construction can be done, it is still
possible to add an almost disjoint family of size 2κ with forcing. Let us focus on the case where
b = id : α 7→ α is the identity function, and look at a forcing notion ADλ

κ that adds a λ-sized
almost disjoint family of regressive functions, that is, elements of

∏
id.

Definition 3.4.8

The forcing notion ADλ
κ has the conditions p : Xp×βp → κ such that Xp ∈ [λ]<κ, |Xp| ≤ βp ∈ κ,

and p(ξ, α) < α for all ξ ∈ Xp and 0 < α ∈ βp. Given ξ ∈ Xp, we write pξ : βp → κ for the
(regressive) function pξ : α 7→ p(ξ, α). The ordering on ADλ

κ is given by q ≤ p iff p ⊆ q (implicitly
Xp ⊆ Xq and βp ≤ βq), and qξ(α) ̸= qξ′(α) for any α ∈ βq \ βp and distinct ξ, ξ′ ∈ Xp. ◁

Lemma 3.4.9

The set of all p ∈ ADλ
κ such that (ξ, α) ∈ dom(p), is dense for any ξ ∈ λ and α ∈ κ. ◁

Proof. Let p ∈ ADλ
κ and βp ≤ α ∈ κ, then we will first find q ≤ p with Xq = Xp and βq = α+1.

Fix an enumeration ⟨ξη | η < |Xp|⟩ of Xp, then for any γ ∈ [βp, α] note that |Xp| ≤ βp ≤ γ,
hence we can define qξη(γ) = η < γ, then q ≤ p.

Next we show how to increase Xp. Let p ∈ ADλ
κ and µ < κ, then by the above there exists q ≤ p

with Xq = Xp and |Xp| + µ ≤ βq. If X ∈ [λ \Xp]
µ, we can find r ≤ q with Xr = Xp ∪X and

βr = βq simply by letting rξ(α) = 0 for all α ∈ βq and ξ ∈ X.

Lemma 3.4.10

If G is an ADλ
κ-generic filter over V, and we define fξ =

⋃
{pξ | p ∈ G ∧ ξ ∈ Xp)}, then fξ ∈ κκ

is a regressive function and
{
fξ | ξ ∈ (λ)V

}
is almost disjoint. ◁

Proof. It is clear from the definition of ADλ
κ and the above lemma that fξ ∈ κκ and that fξ is

regressive. If ξ, ξ′ ∈ (λ)V are distinct, then let p ∈ G be such that ξ, ξ′ ∈ Xp and let α ≥ βp.
For any q ≤ p with q ∈ G and α ∈ βq we have qξ(α) ̸= qξ′(α). By the above lemma there exist
such q ≤ p with q ∈ G, hence fξ(α) ̸= fξ′(α) for any α > βp. Therefore fξ and fξ′ are almost
disjoint.

Lemma 3.4.11

ADλ
κ is <κ-closed and has the <κ+-c.c.3 ◁

3See Definitions 4.1.1 and 4.1.6 for the definitions of <κ-closure and <κ+-c.c.
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Proof. First, let us prove <κ-closure. Let γ ∈ κ and let
〈
pη ∈ ADλ

κ | η < γ
〉

be a descending
chain of conditions. It is clear that X =

⋃
η∈γ Xpη ∈ [λ]<κ and |X| ≤ β =

⋃
η∈γ βpη ∈ κ,

and that p =
⋃

η∈γ p
η : X × β → κ and p(ξ, η) < η for all (ξ, η) ∈ X × β. If ξ, ξ′ ∈ Xpη are

distinct and α ∈ β \ βpη , then there is ζ > η such that α ∈ βpζ . Since the chain of conditions is
descending we have pζ ≤ pη, which implies that pξ(α) = pζξ(α) ̸= pζξ′(α) = pξ′(α), so p ≤ pη.

As for <κ+-c.c., suppose B ⊆ ADλ
κ is a subset with |B| = κ+. We let A = {dom(p) | p ∈ B},

then by |Xp| < κ and βp < κ for each p ∈ B we see that A is a family of sets of cardinality <κ.
Applying the ∆-system lemma (see Lemma 4.1.16) on A, we know that there exists B0 ⊆ B such
that |B0| = κ+ and some sets X ∈ [λ]<κ and β ∈ κ such that dom(p) ∩ dom(p′) = X × β for all
distinct p, p′ ∈ B0.

If X = ∅, then any p, p′ ∈ B0 have some q ≤ p and q′ ≤ p′ such that |Xp| + |Xp′ | ≤ βq = βq′

using Lemma 3.4.9. Then q ∪ q′ ≤ p and q ∪ q′ ≤ p′, thus B is not an antichain.

On the other hand, if X ̸= ∅, then β = βp = βp′ for all p, p′ ∈ B0. Since |X × β| < κ and
κ<κ = κ, there exists B1 ⊆ B0 with |B1| = κ+ such that p ↾ (X × β) = p′ ↾ (X × β) for all
p, p′ ∈ B1. Once again, using Lemma 3.4.9 we can see that p, p′ are compatible, and thus B is
not an antichain.

Corollary 3.4.12

ADλ
κ preserves cardinals and cofinality and does not add any elements to <κκ. ◁

Theorem 3.4.13

It is consistent that there exists an almost disjoint family A ⊆
∏

id of cardinality 2κ = λ for
any λ with cf(λ) > κ. ◁

Proof. Starting with a model where V ⊨ “ 2κ ≤ λ ”, let G be ADλ
κ-generic over V, and let

F =
{
fξ | ξ ∈ (2κ)V

}
be the almost disjoint family described in Lemma 3.4.10. An argument

by counting names shows that (2κ)V ≤ (2κ)V[G] = λ.

Although the <κ-closure implies that ADλ
κ preserves the inaccessibility of κ, the same cannot

be said for stronger large cardinal assumptions on κ. Indeed, it is inconsistent that an almost
disjoint family A ⊆

∏
id of size larger than κ exists for measurable cardinals, as was pointed

out to me by Jing Zhang.

Theorem 3.4.14

If κ is measurable, b ∈ κκ is continuous and A ⊆
∏
b is almost disjoint, then |A| ≤ κ. ◁

Proof. Let U ⊆ P(κ) be a <κ-complete nonprincipal normal ultrafilter on κ. Assume towards
contradiction that A ⊆

∏
b is an almost disjoint family with |A| = κ+. Since b is continuous,

the set of fixed points of b contains a club set, thus every f ∈ A is regressive on a club set.
Therefore there exists Xf ∈ U such that f is regressive on Xf , and since U is normal there
exists Yf ∈ U ↾ Xf and γf ∈ κ such that ran(f ↾ Yf ) = {γf}. By the pigeonhole principle there
exists A′ ⊆ A and γ ∈ κ with |A′| = |A| such that γf = γ for all f ∈ A′. Then for any distinct
f, f ′ ∈ A′ we have Yf ∩ Yf ′ ∈ U , contradicting that f and f ′ are almost disjoint.
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In the end, we do not know whether the conditions of (ii) of Theorem 3.4.5 imply that db,hκ (∈∗)

is trivial.

Antilocalisation & Antiavoidance

We can give similar results for db,hκ (��∋∞) and bb,hκ (��∋∞) to what we discussed in the previous
sections. Firstly, due to Lemmas 3.3.2, 3.3.3 and 3.4.15 below, we will once again assume that
h ≤ b is always the case.

Lemma 3.4.15

b <∞ h if and only if db,hκ (��∋∞) = 1.
If b <∞ h, then bb,hκ (��∋∞) is undefined. □

A comprehensive overview of the trivial values for these cardinals in the classical context has been
given by Cardona & Mejía in [CM19, Section 3]. However, the classical characterisation uses a
substantial amount of finite arithmetic and thus appears quite different from the characterisation
of the trivial values of bb,hκ (��∋∞), given below. We once again have three cases, making this similar
to Theorems 3.4.2 and 3.4.5.

Theorem 3.4.16

For each λ < κ define Dλ = {α ∈ κ | b(α) ≤ λ} ∪ {α ∈ κ | h(α) = b(α) and cf(b(α)) ≤ λ}.

(i) If there exists a least cardinal λ < κ such that Dλ is cofinal in κ, then bb,hκ (��∋∞) = λ.
(ii) If Dλ is bounded for all λ < κ and there is a stationary set S such that

(a) b is continuous on S, or
(b) for each ξ ∈ S there exists αξ ≥ ξ with h(αξ) = b(αξ) and cf(b(αξ)) ≤ ξ,

then bb,hκ (��∋∞) = κ.
(iii) If Dλ is bounded for all λ < κ and there is a club set C such that

(a) b is discontinuous on C, and
(b) for each ξ ∈ C and α ≥ ξ, if h(α) = b(α), then cf(b(α)) > ξ,

then κ+ ≤ bb,hκ (��∋∞). ◁

Proof. (i) Assume that λ is minimal such that Dλ is cofinal. Let D′
λ = {α ∈ κ | b(α) = λ} and

D′′
λ = {α ∈ κ | h(α) = b(α) and cf(b(α)) = λ}. Note that at least one of D′

λ or D′′
λ is cofinal.

We will assume without loss of generality that Dλ = D′
λ ∪D′′

λ.

First, we will show that bb,hκ (��∋∞) ≤ λ.

If α ∈ D′′
λ, then cf(b(α)) = λ, thus we can find a continuous sequence ⟨βαξ | ξ < λ⟩ that is cofinal

in b(α). In the other case where α ∈ D′
λ, let βαξ = ξ for all ξ < λ = b(α).

Since |[βαξ , βαξ+1)| < h(α) ≤ b(α) for all α ∈ Dλ, we can pick some φξ ∈ Locb,hκ for each ξ < λ

such that φξ(α) = [βαξ , β
α
ξ+1) for all α ∈ Dλ. For f ∈

∏
b, let Ff : Dλ → λ map α ∈ Dλ to the

ξ ∈ λ such that f(α) ∈ φξ(α), then by the pigeonhole principle F−1
f (ξ) is cofinal for some ξ ∈ λ,

and thus for this ξ we have f ∈∞ φξ. Therefore {φξ | ξ < λ} witnesses that bb,hκ (��∋∞) ≤ λ.
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Next we show that λ ≤ bb,hκ (��∋∞). Let {φξ | ξ ∈ µ} ⊆ Locb,hκ for some µ < λ.

If D′
λ is cofinal, then we must have b(α) ≥ λ for almost all α ∈ κ by minimality of λ. Suppose

that λ ≤ b(α) and
⋃

ξ<µ φξ(α) = b(α), then cf(b(α)) ≤ µ, and furthermore for every ν < b(α)

there is some ξ ∈ µ such that ν ≤ |φξ(α)|, implying that h(α) = b(α). But then α ∈ D′′
µ, which

is bounded by minimality of λ. Therefore
⋃

ξ<µ φ(α) ̸= b(α) for almost all α ∈ κ.

If D′
λ is bounded and D′′

λ is cofinal, then for almost all α /∈ D′′
λ we must have h(α) ̸= b(α) or

cf(b(α)) > λ. Hence we have max {h(α), λ} < b(α) or cf(b(α)) ≥ λ for almost all α ∈ κ. If
max {h(α), λ} < b(α), then also µ · h(α) < b(α), thus

⋃
ξ<µ φξ(α) ̸= b(α). On the other hand if

cf(b(α)) ≥ λ, then clearly
⋃

ξ<µ φξ(α) ̸= b(α) as well.

In either case we find f ∈
∏
b such that f ��∈∞ φξ for all ξ < µ, and consequently µ < bb,hκ (��∋∞).

(ii) We first prove that bb,hκ (��∋∞) ≤ κ in case (a), then in case (b), and then we show the reverse
direction, that κ ≤ bb,hκ (��∋∞).

(a) Assume b is increasing and continuous on stationary S ⊆ κ. Then the set of fixed points
S′ = {α ∈ S | b(α) = α} is also stationary.

For each η ∈ κ let φη ∈ Locb,hκ be defined as φη(ξ) = {η} if η < b(ξ) and arbitrary otherwise.
If f ∈

∏
b, then f(ξ) < b(ξ) for every ξ ∈ κ, therefore f is regressive on S′. By Fodor’s lemma

then there exists stationary S′′ ⊆ S′ such that f ↾ S′′ is constant. Let η be such that f(ξ) = η

for all η ∈ S′′, then clearly f ∈∞ φη. Hence {φη | η < κ} witnesses bb,hκ (��∋∞) ≤ κ.

(b) Assume S is stationary and for each ξ ∈ S let αξ ≥ ξ be such that h(αξ) = b(αξ) and
cf(b(αξ)) ≤ ξ. We define for each η ∈ κ a slalom φη ∈ Locb,hκ in such a way that for each ξ ∈ S

we have
⋃

η<ξ φη(αξ) = b(αξ), which is possible since cf(b(αξ)) ≤ ξ and h(αξ) = b(αξ).

If f ∈
∏
b, then for each ξ ∈ S we define f ′(ξ) to be the least η < ξ such that f(αξ) ∈ φη(αξ).

Now f ′ is regressive on S, so by Fodor’s lemma there exists stationary S′ ⊆ S such that f ′ ↾ S′

is constant, say with value η. Then f(αξ) ∈ φη(αξ) for each ξ ∈ S′, thus f ∈∞ φη. Hence
{φη | η < κ} witnesses bb,hκ (��∋∞) ≤ κ.

Finally for the reverse direction, let λ < κ and {φξ | ξ < λ} ⊆ Locb,hκ . Since Dλ is bounded,
we can find α0 ∈ κ such that for every α > α0 we have λ < b(α) and either h(α) < b(α) or
λ < cf(b(α)). If h(α) < b(α), then λ · h(α) < b(α), meaning

⋃
ξ<λ φξ(α) ̸= b(α). On the other

hand, if λ < cf(b(α)), then by |φξ(α)| < h(α) ≤ b(α) we see that once again
⋃

ξ<λ φξ(α) ̸= b(α).
Hence we can construct f ∈

∏
b such that f ��∈∞ φξ for all ξ < λ, which proves that κ ≤ bb,hκ (��∋∞).

(iii) Let C be a club set with the properties mentioned in (iii) and let {φη | η ∈ κ} ⊆ Locb,hκ .
We can enumerate C increasingly as ⟨αξ | ξ ∈ κ⟩, then every α ∈ κ has some ξ ∈ κ such
that α ∈ [αξ, αξ+1). Note that |

⋃
η∈ξ φη(α)| ≤ |ξ| · supη∈ξ |φη(α)|. Since b is increasing and

discontinuous on C and ξ ≤ αξ ≤ α, we see that ξ < b(αξ) ≤ b(α). If h(α) < b(α), then it is
clear that supη∈ξ |φη(α)| < b(α) as well. Else, if h(α) = b(α), then by the properties of C we
see that cf(b(α)) > αξ ≥ ξ, thus it also follows that supη∈ξ |φη(α)| < b(α). We can therefore
conclude that |

⋃
η∈ξ φη(α)| < b(α) for all α ∈ κ, and thus we can define f(α) to be some value

in b(α) that lies outside of φη(α) for each η < ξ. Then clearly f ��∈∞ φη for all η ∈ κ.
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It is not known whether cases (i) and (ii) of Theorem 3.4.16 imply that db,hκ (��∋∞) = 2κ. If
we consider the constant function 2, then we see that db,2κ (��∋∞) ≤ db,hκ (��∋∞) by Lemma 3.3.3.
Since db,2κ (��∋∞) = dbκ(�

�=∞) (by Lemma 3.3.4), we will discuss the cases (i) and (ii) in the next
section. Let us mention here, that if, by exception, we allow that b(α) is finite for cofinally many
α, then we may use a connection with localisation cardinals to prove that db,hκ (��∋∞) = 2κ (see
Lemma 3.4.19). We will also give a partial answer to case (i) with the following lemma:

Lemma 3.4.17

If λ is regular and D = {α ∈ κ | b(α) = h(α) = λ} is cofinal, then Dλ
κ ⪯ AL b,h

κ . ◁

Proof. Enumerate D as {αξ | ξ ∈ κ}. We need ρ− : κλ→ Locb,hκ and ρ+ :
∏
b→ κλ.

Given g ∈ κλ, let ρ−(g) ∈ Locb,hκ be such that ρ−(g) : αξ 7→ g(ξ) for all ξ ∈ κ. Given f ∈
∏
b,

let ρ+(f) : ξ 7→ f(αξ) for each ξ ∈ κ. Since αξ ∈ D for each ξ ∈ κ, we have h(αξ) = b(αξ) = λ,
thus ρ− and ρ+ are well-defined. If φ = ρ−(g) and f ′ = ρ+(f), and f ��∈∞ φ, then it is easy to
see that g ≤∗ f ′, so this is a Tukey connection.

Since we already know that dλκ(≤∗) = 2κ from Theorem 3.4.3, the assumptions of the above
lemma imply that db,hκ (��∋∞) = 2κ.

Eventual Difference & Cofinal Equality

Since antilocalisation is a special case of eventual difference, it follows that Theorem 3.4.16
immediately gives us the following characterisation of the trivial values of bbκ(��=∞), since we can
ignore the case where h(α) = b(α) if we let h = 2.

Corollary 3.4.18 — cf. Theorem 3.4.16

For each λ < κ define Dλ = {α ∈ κ | b(α) ≤ λ}.

(i) If there exists a least cardinal λ < κ such that Dλ is cofinal in κ, then bbκ(�
�=∞) = λ.

(ii) If Dλ is bounded for all λ < κ and b is continuous on a stationary set, then bbκ(�
�=∞) = κ.

(iii) If Dλ is bounded for all λ < κ and b is discontinuous on a club set, then κ+ ≤ bbκ(�
�=∞).□

We can use Theorem 3.4.6 and a special connection between localisation and antilocalisation for
functions with finite values to prove the following lemma, giving a condition for which dbκ(�

�=∞)

and db,hκ (��∋∞) are trivial. Note that this is significantly weaker than the assumption in case (i),
since b is not only bounded on a cofinal set, but even finite cofinally often.

Lemma 3.4.19

If D = {α ∈ κ | b(α) < ω} is cofinal, then dbκ(�
�=∞) = db,hκ (��∋∞) = 2κ. ◁

Proof. We want to give a lower bound to db,hκ (��∋∞), thus by Lemma 3.3.3 we may assume that
h = 2, and moreover by Lemma 3.3.2 and D being cofinal, we may assume that b = n for some
n ∈ ω.

Note that Ln,n ≡ ALn,2. Namely, if f ∈
∏
b, let φf : α 7→ n \ {f(α)}, then φf ∈ Locn,nκ , and

on the other hand, if φ ∈ Locn,2κ , then let fφ be the unique function such that φ(α) = {fφ(α)}
for all α ∈ κ. It is clear that f ��∈∞ φ if and only if fφ ∈∗ φf .
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It follows that 2κ = dn,nκ (∈∗) ≤ dnκ(�
�=∞) ≤ dbκ(�

�=∞) = db,2κ (��∋∞) ≤ db,hκ (��∋∞) if D is cofinal. Here
the first equality is given by Theorem 3.4.6.

The above argument is able to relate eventual difference to localisation by removing a single
element from a finite set, which changes its cardinality. Naturally, removing a single element
from an infinite set does not change the cardinality of the infinite set, thus the technique from
this proof does not give us insight on how to prove dbκ(�

�=∞) = 2κ if b is only bounded on a cofinal
set by an infinite value.

It is also unclear whether dbκ(�
�=∞) = 2κ in case (ii) of Corollary 3.4.18.

3.5. Open Questions

Although Theorems 3.4.2, 3.4.5 and 3.4.16 give us a trichotomy on the b-side of the bounded
cardinal characteristics, the d-side has only been partially solved.

For dbκ(≤∗) the remaining case was case (ii) of Theorem 3.4.2.

Question 3.5.1

Let Dλ = {α ∈ κ | cf(b(α)) = λ} be bounded for all regular λ < κ and S be stationary such that
for each ξ ∈ S there exists αξ ≥ ξ with cf(b(αξ)) ≤ ξ. Is dbκ(≤∗) < 2κ consistent? ◁

For db,hκ (∈∗) we have a lower bound in terms of the cardinality of an almost disjoint family
A ⊆

∏
b. However, we also saw that if κ is measurable, then |A| = κ for any almost disjoint

family A ⊆
∏
b for continuous b. Therefore, we cannot use the size of almost disjoint families

to show that db,hκ (∈∗) = 2κ holds. This motivates the following question:

Question 3.5.2

Is db,hκ (∈∗) < 2κ consistent with b continuous on a club set? ◁

Finally, for db,hκ (��∋∞) and dbκ(�
�=∞) we do not know the answer in neither case (i) nor case (ii) of

Theorem 3.4.16 and Corollary 3.4.18.

Question 3.5.3

Is dbκ(�
�=∞) < 2κ consistent in case (i) or (ii) of Corollary 3.4.18? ◁
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4

Forcing Notions and κ-Reals
In this section we will discuss forcing notions and how they affect our cardinal characteristics.
Our forcing notions are generalisations of well-known classical forcing notions, such as Cohen,
Hechler or Sacks forcing, which could each be considered as arboreal forcing notions. Particularly,
conditions could be represented by trees on <ωω ordered by inclusion.

Obtaining a useful forcing notion in the context of κκ is sometimes not as simple as replacing
<ωω with <κκ and we may need to stipulate additional requirements to ensure the forcing notion
behaves as intended. Essentially, the reason for this is that in trees on <κκ there are nodes of
limit height. We will see that concepts like ultrafilters, stationary sets and large cardinals play
a role in defining forcing notions with desirable properties.

In order to prove independence results for the bounded cardinal characteristics from Chapter 3,
we will introduce bounded variants of our higher forcing notions as well. The specific bound
that is chosen for the forcing notion may have the effect that it increases cardinal characteristics
only for a select number of parameters, allowing us to separate multiple cardinal characteristics
of the same type. These kinds of results will be the topic in the last two Chapters 5 and 6.

The forcing notions and properties described in this chapter are generalisations of very well-
known forcing notions and properties, and even most of the higher forcing notions have been
considered by others before. Most results of this chapter could therefore be attributed to the
literature or to folklore, or are very similar to analogous results on ωω.

Nota Bene! We will assume for the remainder of the chapter without mention that b, h are
increasing cofinal cardinal functions. This also extends to indexed or accented functions using
the symbols b, h, such as bξ, h′, and so on.

4.1. Properties of Forcing Notions

Before we introduce the forcing notions, we will discuss some properties that forcing notions
could possess. We will generally want our forcing notions to preserve cardinals and not to effect
the sets in Vκ, but also to add new κ-reals in such a way that we can prove independence results.

For the preservation of cardinals, it will be enough to show that a forcing notion is<κ-distributive
and <κ+-c.c. We introduce these two concepts in the following two subsections. In some cases
we cannot show that a forcing notion is <κ+-c.c., and we will show preservation of cardinals
using certain boundedness properties, introduced in the third subsection.
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Closure and Distributivity

We consider three types of closure properties of a forcing notion P, namely <κ-closure, strategic
<κ-closure and <κ-distributivity.

Definition 4.1.1

A forcing notion P is <κ-closed if for every sequence of conditions ⟨pα | α ∈ γ⟩ such that γ < κ

and pβ ≤ pα for each α < β < γ there exists a condition p ∈ P with p ≤ pα for all α < γ. ◁

Definition 4.1.2

We define a game G(P, p) of length κ between Black and White. We consider p ∈ P to be the
first Black move of G(P, p) (let’s say at stage −1). At stage α ∈ κ, White chooses a condition
pα stronger than all previous Black moves and Black subsequently chooses p′α ≤ pα. White wins
G(P, p) if White can make moves at every stage α ∈ κ.

When White has a winning strategy for G(P, p) for all p ∈ P, we call P strategically <κ-closed. ◁

Definition 4.1.3

A forcing notion P is <κ-distributive if for any sequence ⟨Dα | α ∈ λ⟩ of open dense sets with
λ < κ, also

⋂
α∈λDα is dense. ◁

These properties are easily seen to be progressively stronger: any <κ-closed forcing notion is
strategically <κ-closed, and any strategically <κ-closed forcing notion is <κ-distributive.

The reason we are interested in these properties, is that they suffice to prove that P does not
collapse any cardinals ≤κ, since we can prove that any function λ → V from the extension is
already present in the ground model for any λ < κ. This holds particularly for any function
λ→ µ for all λ < µ ≤ κ, and thus no such function can be surjective.

Lemma 4.1.4 — Folklore, see e.g. [Jec86, Theorem 2.10]

A forcing notion P is <κ-distributive if and only if for all λ < κ and f ∈ VP with f : λ → V,
we have f ∈ V. □

Corollary 4.1.5

If P is <κ-distributive, it preserves cardinals ≤ κ. ◁

Chain Conditions, Centredness and Calibre

In order to also preserve cardinals > κ, we introduce chain conditions as well as a couple of
stronger properties. By an argument of counting nice names, chain conditions imply that a
forcing notion preserves cardinals.

Definition 4.1.6

A forcing notion P is <λ-c.c. (i.e. <λ-chain condition) if all antichains in P have size <λ. ◁

Lemma 4.1.7 — Folklore, see e.g. [Jec86, Part I Theorem 2.14]

If P has the <λ-c.c. and cf(λ) > κ, then every f ∈ VP with f : κ→ λ is bounded. □
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Since bounded functions cannot be surjective, this means that the chain condition implies preser-
vation of cardinals.

Corollary 4.1.8

If P is <κ+-c.c., it preserves cardinals > κ. ◁

There exist several properties that are stronger than chain conditions. We introduce two such
properties.

Definition 4.1.9

A subset Q of a forcing notion P is called <λ-linked if for every P ∈ [Q]<λ there exists q ∈ P
such that q ≤ p for all p ∈ P .

We say that P is (κ,<λ)-centred if P =
⋃

α∈κ Pα such that Pα is <λ-linked for every α ∈ κ. ◁

Definition 4.1.10

A subset Q of a forcing notion P is called λ-calibre if for every P ∈ [Q]λ there exist P ′ ∈ [P ]λ

and q ∈ P such that q ≤ p for all p ∈ P ′.

We say that P is (κ, λ)-calibre if P =
⋃

α∈κ Pα such that Pα is λ-calibre for every α ∈ κ. ◁

An antichain can contain at most one condition per <λ-linked set, and has < λ many elements
per λ-calibre set, thus it follows that (κ,<λ)-centred or (κ, λ)-calibre forcing notions are<κ+-c.c.
for 3 ≤ λ ≤ κ+.

Boundedness

Finally we will mention three related properties that tell us that new κ-reals that are added by
a forcing notion are in a certain sense bound by κ-reals from the ground model. Especially the
Sacks property will have a crucial role in Chapter 5.

Definition 4.1.11

A forcing notion P is κκ-bounding if for every name ḟ and condition p ∈ P such that p ⊩ “ ḟ ∈ κκ ”
there exists some g ∈ κκ in the ground model and q ≤ p such that q ⊩ “ ḟ <∗ g ”. ◁

Definition 4.1.12

Let b, h ∈ κκ. A forcing notion P has the (b, h)-Laver property if for every name ḟ and condition
p ∈ P such that p ⊩ “ ḟ ∈

∏
b ” there exists some φ ∈ Locb,hκ in the ground model and q ≤ p

such that q ⊩ “ ḟ ∈∗ φ ”.

We say that P has the h-Laver property if P has the (b, h)-Laver property for all b ∈ κκ. ◁

Definition 4.1.13

Let h ∈ κκ. A forcing notion P has the h-Sacks property if for every name ḟ and condition p ∈ P
such that p ⊩ “ ḟ ∈ κκ ” there exists some φ ∈ Lochκ in the ground model and q ≤ p such that
q ⊩ “ ḟ ∈∗ φ ”. ◁
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The h-Sacks property could be seen as the combination of h-Laver properties and the κκ-
bounding property, and indeed, these two things are equivalent.

Lemma 4.1.14 — Folklore, cf. [BJ95, Lemma 6.3.38] for ωω

A forcing notion has the h-Sacks property iff it is κκ-bounding and has the h-Laver property. □

Iterations and Products

In this subsection we discuss how some of the previously defined properties behave under prod-
ucts or iterations with <κ- and ≤κ-support. We will first establish our notation for products
and iterations.

Notation

Let A be a set of ordinals and Pξ be a forcing notion for each ξ ∈ A. We will denote ≤Pξ
as

≤ξ, or more commonly as ≤ when there is no possibility for confusion, and we denote 1Pξ
as 1ξ.

Consider an element of the full product p ∈
∏

ξ∈A Pξ, that is, p is a function with dom(p) = A
such that p(ξ) ∈ Pξ for each ξ ∈ A. We define the support of p as supp(p) = {ξ ∈ A | p(ξ) ̸= 1ξ}.
We define the ≤κ-support product as follows:1

P =
∏≤κ

ξ∈A Pξ =
{
p ∈

∏
ξ∈A Pξ

∣∣∣ |supp(p)| ≤ κ
}
.

If p, q ∈ P, then q ≤P p iff q(ξ) ≤ξ p(ξ) for all ξ ∈ A. We will again write q ≤ p instead of q ≤P p

if the context is clear, and we will write 1 for 1P.

Suppose X ⊆ P and B ⊆ A, then we write X ↾ B = {p ↾ B | p ∈ X}. We will write Bc = A \ B.
Note that if G ⊆ P is P-generic over V, then clearly P and (P ↾ B) × (P ↾ Bc) are forcing
equivalent, (G ↾ B)× (G ↾ Bc) is (P ↾ B)× (P ↾ Bc)-generic and

V[G] = V[(G ↾ B)× (G ↾ Bc)] = V[G ↾ B][G ↾ Bc].

Two-step iteration of a forcing notion P and a P-name for a forcing notion Q̇ is written as P ∗ Q̇.
An iteration of length γ is written as Pγ = ⟨Pα, Q̇α | α ∈ γ⟩, where P0 is the trivial forcing
notion and each Q̇α is a Pα-name such that ⊩Pα “ Q̇α is a forcing notion ”. If α < γ, then the
initial part of a condition p ∈ Pγ is written as p ↾ α, and (the Pα-name for) the Q̇α-condition at
index α is written as p(α). Similarly we define G ↾ α and G(α) for any G ⊆ Pγ .

Preservation Theorems

Preserving (strategic) κ-closure under iterations and products is fairly straightforward, and
follows from considering the forcing notion elementwise.

Theorem 4.1.15 — Folklore, see e.g. [Cum10, Proposition 7.9]

If κ is regular, then iterations or products with <κ- or ≤κ-support of (strategically) <κ-closed
forcing notions are (strategically) <κ-closed. □

1We will not use products with other supports in this dissertation.
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Let P =
∏≤κ

ξ∈A Pξ be a ≤κ-support product of forcing notions that are <κ-closed and let
⟨pα | α ∈ γ⟩ be a descending sequence of conditions in P with γ < κ. If we write

∧
α∈γpα(ξ) for

a canonical condition p′ ∈ Pξ such that p′ ≤ pα(ξ) for each α ∈ γ (for example p′ could be the
greatest lower bound of {pα(ξ) | α ∈ γ}, assuming it exists), then we can define:∧

α∈γpα : ξ 7→
∧

α∈γpα(ξ) for ξ ∈ A.

By the above Theorem 4.1.15, it follows that
∧

α∈γpα is a condition in P.

Preservation of chain conditions by iterations or products does not happen as nicely with un-
countable support and needs to be treated with some care.

For products in the classical case, the preservation of <ω1-c.c. (or c.c.c.) is shown using a
∆-system lemma, originally discovered by Shanin [Sha46] in the context of topology. A family
X is called a ∆-system if there exists a set r such that x ∩ y = r for all distinct x, y ∈ X .

Lemma 4.1.16 — See e.g. [Kun11, Lemma III.6.15]

Assume 2<κ = κ < λ with λ regular. Let X be a family of sets with |x| < κ for all x ∈ X and
|X | ≥ λ, then there exists Y ∈ [X ]λ such that Y is a ∆-system. □

The ∆-system lemma can be used to prove the following theorem, which we will require later in
Chapters 5 and 6:

Theorem 4.1.17 — Folklore, see e.g. [Jec86, Part I Theorem 4.12]

If 2κ = κ+, |Pξ| ≤ κ+ for each ξ ∈ A, then the ≤κ-support product
∏≤κ

ξ∈A Pξ is <κ++-c.c. □

For iteration, the preservation of <κ+-c.c. is guaranteed by finite support iteration, but is
quite complex for higher supports. On the other hand, stronger properties, such as the above-
mentioned (κ,<κ)-centredness, can be preserved if we make some additional assumptions to deal
with limit cases, which do not exist in the classical preservation of σ-centred forcing notions.2

Definition 4.1.18

Let P be a <κ-closed and (κ,<κ)-centred forcing notion and let P =
⋃

γ∈κ Pγ be the decompo-
sition into <κ-linked sets. We say that P is (κ,<κ)-centred with canonical lower bounds if there
exists some f : <κκ→ κ such that for any λ < κ and decreasing sequence ⟨pα | α ∈ λ⟩, with γα
such that pα ∈ Pγα , there exists p ∈ Pf(⟨γα|α∈λ⟩) with p ≤ pα for all α ∈ λ. ◁

Theorem 4.1.19 — [BBTFM18, Lemma 55]

Let κ be regular uncountable and 2<κ = κ and let P be an iteration of length <(2κ)+ with <κ-
support of <κ-closed, (κ,<κ)-centred forcing notions with canonical lower bounds, such that all
canonical lower bounds lie in the ground model. Then P is <κ-closed and (κ,<κ)-centred. □

In many occasions, we wish to iterate with <κ+-c.c. forcing notions that are not (κ,<κ)-centred,
but for which we still wish to show that <κ+-c.c. is preserved by iteration. We will use the
following application of the ∆-system lemma in these cases.

2In our notation σ-centred means (ω,<ω)-centred.
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Lemma 4.1.20 — Folklore, see e.g. [BBTFM18, Lemma 56] for a comparable result

Let P = ⟨Pα, Q̇α | α ∈ λ⟩ be a <κ-support iteration such that each Pα forces that Q̇α is a
(strategically) <κ-closed <κ+-c.c. forcing notion with conditions of the form (s, x) such that
s ∈ <κV, and such that (s, x) || (s, x′) for every (s, x), (s, x′) ∈ Q̇α. Then P is <κ+-c.c. ◁

Proof. Note that each Pα is (strategically) <κ-closed, hence <κ-distributive by Theorem 4.1.15,
so for each condition (s, x) ∈ (Qα)

VPα we have s ∈ V. For p ∈ P, since p(α) is a Pα-name
with p ↾ α ⊩ “ p(α) = (ṡ, ẋ) ∈ Q̇α ”, there exists p′ ≤ p such that p′ ↾ α ⊩ “ ṡ = ť ” for
some t ∈ V. If we let p0 = p and pn+1 ≤ pn be such that for every α ∈ supp(pn) we have
pn+1 ↾ α ⊩ “ pn(α) = (šα, ẋα) ” for some sα ∈ V, then we may find p′ with p′ ≤ pn for
each n ∈ ω and supp(p′) =

⋃
n∈ω supp(pn) such that p′ ↾ α ⊩ “ p′(α) = (šα, ẋα) ” for each

α ∈ supp(p′).3 We will call such p′ decisive, and it is clear by the above that the set of decisive
conditions is dense in P.

Let B ∈ [P]κ+ be a set of decisive conditions and let A = {{(α, spα) | α ∈ supp(p)} | p ∈ B},
where each spα is the element of <κV forming the first coordinate of p(α), as decided by p. Since
P is a <κ-support iteration, A is a family of sets of size <κ, so we can apply the ∆-system
lemma on A. It follows that there exists B0 ⊆ B such that |B0| = κ+ and for any p, p′ ∈ B0 and
α ∈ supp(p) ∩ supp(p′) we have spα = sp

′
α . But then p || p′ follows from our assumptions on P,

thus B is not an antichain. Therefore P has the <κ+-c.c.

We will conclude this subsection with a general theorem on adding κ-reals by iteration.

Theorem 4.1.21 — Folklore, see e.g. [Gol92, Lemma 1.20] for ωω

Let P =
〈
Pα, Q̇α | α ∈ γ

〉
be a <κ- or ≤κ-support iteration and ⊩P “ cf(γ) > κ ”, then (κκ)V

P
=⋃

α∈γ(
κκ)V

Pα , that is, for each P-name ḟ such that ⊩P “ ḟ ∈ κκ ” there exists α ∈ γ such that ḟ
is equivalent to a Pα-name. □

Fusion

For some of our forcing notions, particularly those forcing notions of Section 4.4 and Chapters 5
and 6, we wish to use a construction method known as fusion to have better control over
the forcing conditions. We will present the notation for fusion in this section, as well as a
generalisation of fusion that works for products of forcing notions.

Let P be a forcing notion, then a fusion ordering is a sequence ⟨≤α | α ∈ κ⟩ of relations on P
such that:

• q ≤0 p iff q ≤ p, and
• q ≤β p implies q ≤α p for all α < β.

A fusion sequence is a sequence of conditions ⟨pα | α ∈ κ⟩ such that pβ ≤α pα for all α ≤ β ∈ κ.
We say that P is closed under fusion if every fusion sequence ⟨pα | α ∈ κ⟩ has some p with
p ≤α pα for all α ∈ κ.

3If Qα is only strategically <κ-closed, we may need to use White’s winning strategy to obtain suitable pn such
that a lower bound exists.
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If P =
∏≤κ

ξ∈A Pξ is such that each Pξ has a fusion ordering ≤ξ
α, then we define for each p, q ∈ P,

α ∈ κ, and Z ⊆ A the generalised fusion relation q ≤Z,α p iff q ≤P p and for each ξ ∈ Z we have
q(ξ) ≤ξ

α p(ξ).

A generalised fusion sequence is a sequence ⟨(pα, Zα) | α ∈ κ⟩ such that:

(i) pα ∈ P and Zα ∈ [A]<κ for each α ∈ κ,
(ii) pβ ≤Zα,α pα and Zα ⊆ Zβ for all α ≤ β ∈ κ,
(iii) for limit δ we have Zδ =

⋃
α∈δ Zα,

(iv)
⋃

α∈κ Zα =
⋃

α∈κ supp(pα).

We call P closed under generalised fusion if every generalised fusion sequence ⟨(pα, Zα) | α ∈ κ⟩
has some p ∈ P with supp(p) =

⋃
α∈κ supp(pα) and p ≤α,Zα pα for all α ∈ κ. Note that point

(iv) implies that for each ξ ∈ A we have p(ξ) ≤α pα(ξ) for almost all α ∈ κ.

4.2. Generic κ-Reals

Certain κ-reals from the extension may interact with the κ-reals from the ground model in
peculiar combinatorial ways. Such generic κ-reals are closely connected with the cardinal char-
acteristics we presented in Sections 2.4 and 3.2, and showing that certain forcing notions either
add or do not add such κ-reals frequently forms the key to proving that two cardinal character-
istics are consistently different.

We will describe various κ-reals in the following definition. Some κ-reals are elements of the
bounded higher Baire space

∏
b and some are defined using slaloms, and require a parameter

h ∈ κκ as well.

Definition 4.2.1

Let V ⊆ W be models of ZFC, for instance W could be a forcing extension of V. Then we call
a κ-real f ∈ (κκ)W:

• a dominating κ-real over V if g ≤∗ f for all g ∈ (κκ)V,
• an unbounded κ-real over V if g ≤∞ f for all g ∈ (κκ)V,
• an eventually different κ-real over V if g��=∞ f for all g ∈ (κκ)V,
• a cofinally equal κ-real over V if g =∞ f for all g ∈ (κκ)V,
• an h-avoiding κ-real over V if f ��∈∗ ψ for all ψ ∈ (Lochκ)

V,
• an h-antiavoiding κ-real over V if f ��∈∞ ψ for all ψ ∈ (Lochκ)

V.

If φ ∈ (Lochκ)
W, then we call φ:

• an h-localising κ-real over V if g ∈∗ φ for all g ∈ (κκ)V,
• an h-antilocalising κ-real over V if g ∈∞ φ for all g ∈ (κκ)V.

Let b ∈ (κκ)V. If f ∈ (
∏
b)W, then we call f :

• a b-dominating κ-real over V if g ≤∗ f for all g ∈ (
∏
b)V,

57



• a b-unbounded κ-real over V if g ≤∞ f for all g ∈ (
∏
b)V,

• a b-eventually different κ-real over V if g��=∞ f for all g ∈ (
∏
b)V,

• a b-cofinally equal κ-real over V if g =∞ f for all g ∈ (
∏
b)V,

• a (b, h)-avoiding κ-real over V if f ��∈∗ ψ for all ψ ∈ (Locb,hκ )V,
• a (b, h)-antiavoiding κ-real over V if f ��∈∞ ψ for all ψ ∈ (Locb,hκ )V.

Let b, h ∈ (κκ)V. If φ ∈ (Locb,hκ )W, then we call φ:

• a (b, h)-localising κ-real over V if g ∈∗ φ for all g ∈ (
∏
b)V,

• a (b, h)-antilocalising κ-real over V if g ∈∞ φ for all g ∈ (
∏
b)V. ◁

Note that not all of these κ-reals have classical analogues in ωω. For instance, if b ∈ ωω, then the
ground model ω-real b−1 will dominate all functions in

∏
b, making the notion of a b-dominating

ω-real trivial.

As with cardinal characteristics, these generic κ-reals are related to each other. Figure 4.1 gives
an overview of those cases where the existence of a κ-real with property P implies the existence
of a (possibly different) κ-real with property Q, expressed by an arrow P → Q. This diagram
could be compared to the higher Cichoń diagram and the diagram in Figure 3.1. We believe
most arrows are clear on inspection, but let us give a brief explanation.

dominating

unbounded

eventually different

h-antilocalising

cofinally equal

h-antiavoiding

h-avoiding

h-localising

b-dominating

b-unbounded

b-eventually different

(b, h)-antilocalising

b-cofinally equal

(b, h)-antiavoiding

(b, h)-avoiding

(b, h)-localising

Figure 4.1: Implications between different types of κ-reals for a given fixed b and h with h < cf(b).

It is immediate that h-localising κ-reals are h-antilocalising, dominating κ-reals are unbounded,
and h-antiavoiding κ-reals are h-avoiding.

If φ is h-localising, then sup(φ), that is, α 7→ sup(φ(α)) is dominating. If f is dominating,
then sup(ψ) ≤∗ f for all ground model h-slaloms ψ, hence f is h-antiavoiding, which is clearly
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eventually different by considering the singleton slalom φg : α 7→ {g(α)}. The same reasoning
applies for the bounded variants as long as we assume that cf(h) < b, and for the dual im-
plications, namely: “ cofinally equal ” implies “ h-antilocalising ” implies “ unbounded ” implies
“ h-avoiding ”.

A cofinally equal f gives a b-cofinally equal f ′ by letting f ′ : α 7→ 0 when α /∈ b(α) and
f ′(α) = f(α) otherwise. If φ is h-localising, then φ ↾ b : α 7→ φ(α) ∩ b(α) is (b, h)-localising.
Similarly φ ↾ b is (b, h)-antilocalising whenever φ is h-antilocalising.

Dually, if f is b-eventually different, it automatically is eventually different from any g ∈ κκ since
for g(α) /∈ b(α) we automatically have g(α) ̸= f(α) (since f ∈

∏
b). If f is (b, h)-antiavoiding,

then f ��∈∞ (ψ ↾ b) for every (unbounded) h-slalom ψ from the ground model, but since f ∈
∏
b

it is h-antiavoiding as well. Similarly a (b, h)-avoiding f is h-avoiding.

In the remainder of this chapter and in the open questions, we will try to answer the question
whether Figure 4.1 is complete, that is, if there are other arrows that should be drawn, or if
some of the arrows are reversible. Such observations largely coincide with proving independence
results concerning our cardinal characteristics. We describe the general process with the following
remark.

Remark 4.2.2

Let P be one of the properties of a κ-real, then P refers to a relation and we can consider d(P )

and b(P ) to be the norms of the corresponding relational system and its dual. Likewise, P has
a dual property P⊥. The following table gives an overview of the kinds of κ-reals and their
corresponding cardinal characteristics.

P P⊥ relation d(P ) b(P )

dominating unbounded ≤∗ dκ(≤∗) bκ(≤∗)

eventually different cofinally equal ��=∞ dκ(�
�=∞) bκ(�

�=∞)

h-localising h-avoiding ∈∗ dhκ(∈∗) bhκ(∈∗)

h-antiavoiding h-antilocalising ��∋∞ dhκ(�
�∋∞) bhκ(�

�∋∞)

Naturally, the same concepts apply to the bounded κ-reals, and their relations restricted to
∏
b

and Locb,hκ . Let us consider two scenarios.

Scenario 1. Let P be a cardinal preserving <κ- or ≤κ-support iteration of length γ such that
⊩P “ cf(γ) > κ ” and a P κ-real is added cofinally often. Then VP ⊨ “ d(P ) ≤ cf(γ) ≤ b(P ) ”.
Namely, if D ⊆ VP is a set of size cf(γ) consisting of P κ-reals that are added in cofinally
many stages of the iteration, and g ∈ VP, then g is added by an initial part of the iteration
(Theorem 4.1.21), and thus one of the f ∈ D is related to g by P . On the other hand, if A ⊆ VP

is a set of κ-reals of size < cf(γ), then A is added by an initial part of the iteration, but then a
later step adds a P κ-real that relates to all elements of A, so A is no witness for b(P ).
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Scenario 2. Let P be a cardinal preserving forcing notion that does not add P κ-reals, then
VP ⊨ “ b(P ) ≤ (2κ)V ”. Namely, the set of all ground model κ-reals is a witness for b(P ), since
no new κ-real is related to all ground model κ-reals by P , or dually speaking, for every new
κ-real there is a ground model real that is related to it by P⊥. ◁

By answering the question whether Figure 4.1 is complete, we also show whether certain inde-
pendence proofs are possible with the strategy described above. In the next subsection we will
show how some of the properties from Section 4.1 may prevent certain kinds of κ-reals from
being added. Some of the results we prove also extend Scenario 2, and give us a method to show
that d(P ) is not decreased by certain forcing notions that do not add P κ-reals.

Forcing Properties and κ-Reals

On ωω one can show that σ-centred forcing do not add random reals, see e.g. [BJ95, Lemma
6.5.30]. Since there is no consensus over what a higher random forcing on κκ would be, it
is unclear what the general version of this lemma should be. The technique that is used is
nevertheless quite versatile and can be used to prove several similar results. We will give two such
results based on this method, linking (κ,<κ)-centred forcing notions to b-eventually different
κ-reals, and (κ, κ)-calibre forcing notions to dominating κ-reals.

Lemma 4.2.3

If P is (κ,<κ)-centred and ⊩P “ ḟ ∈
∏
b ”, then there exists a family {fγ | γ ∈ κ} ⊆

∏
b in the

ground model such that if g =∞ fγ for all γ ∈ κ then ⊩P “ g =∞ ḟ ”. ◁

Proof. We let P =
⋃

γ∈κ Pγ such that each Pγ is <κ-linked. Given α, γ ∈ κ, we define fγ(α) =
min{β ∈ b(α) | ∀p ∈ Pγ(p�⊩ “ ḟ(α) ̸= β ”)}, then fγ ∈

∏
b: if not, there exists α ∈ κ such that

for each β ∈ b(α) there is some pβ ∈ Pγ such that pβ ⊩ “ ḟ(α) ̸= β ”. But then {pβ | β ∈ b(α)}
has no common extension, contradicting that Pγ is <κ-linked.

Suppose that g ∈
∏
b and g =∞ fγ for all γ ∈ κ and let α0 ∈ κ and p ∈ P be arbitrary. There

exists γ ∈ κ such that p ∈ Pγ , and since g =∞ fγ we can find α ≥ α0 such that g(α) = fγ(α).
But, by construction of fγ we know that p�⊩ “ ḟ(α) ̸= fγ(α) ”, thus there exists p′ ≤ p such that
p′ ⊩ “ ḟ(α) = g(α) ”. Since α0 and p were arbitrary, we see that ⊩P “ ḟ =∞ g ”.

Corollary 4.2.4

If P is (κ,<κ)-centred then P does not add a b-eventually different κ-real. □

Corollary 4.2.5

If P is (κ,<κ)-centred and preserves cardinals, then VP ⊨ “ dbκ(��=∞) ≥ (dbκ(�
�=∞))V ”. □

Lemma 4.2.6

If P is (κ, κ)-calibre and ⊩P “ ḟ ∈ κκ ”, then there exists a family {fγ | γ ∈ κ} ⊆ κκ in the ground
model such that if fγ ≤∞ g for all γ ∈ κ, then ⊩P “ ḟ ≤∞ g ”. ◁

Proof. We let P =
⋃

γ∈κ Pγ such that each Pγ has calibre κ. For each γ ∈ κ we define fγ(α) =
min{β | ∀p ∈ Pγ(p�⊩ “ ḟ(α) ≥ β ”)}, then fγ ∈ κκ: if not, there exists α ∈ κ such that for each
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β ∈ κ there is some pβ ∈ Pγ with pβ ⊩ “ ḟ(α) ≥ β ”, where necessarily | {pβ | β ∈ κ} | = κ, since
there exists no p such that p ⊩ “ ḟ(α) ≥ β ” for all β ∈ κ. Now Pγ has calibre κ, therefore there
exists some q ∈ P with q ≤ pβ for all β ∈ X ⊆ κ with |X| = κ, which means that q ⊩ “ ḟ(α) ≥ β ”
for all β ∈ κ, a contradiction.

Suppose that fγ ≤∞ g for all γ ∈ κ and let α0 ∈ κ and p ∈ P be arbitrary. There exists
γ ∈ κ such that p ∈ Pγ and since fγ ≤∞ g there exists α ≥ α0 such that g(α) ≥ fγ(α). Then
p�⊩ “ ḟ(α) ≥ fγ(α) ”, thus there exists p′ ≤ p such that p′ ⊩ “ ḟ(α) < fγ(α) ≤ g(α) ”. Since α0

and p were arbitrary we see that ⊩P “ ḟ ≤∞ g ”.

Corollary 4.2.7

If P is (κ, κ)-calibre, then P does not add a dominating κ-real. □

Corollary 4.2.8

If P is (κ, κ)-calibre and preserves cardinals, then VP ⊨ “ dκ(≤∗) ≥ (dκ(≤∗))V ”. □

There is a clear connection between κκ-bounding forcing notions and unbounded κ-reals.

Lemma 4.2.9

A forcing notion P is κκ-bounding if and only if P does not add an unbounded κ-real. ◁

Proof. If P is κκ-bounding, every name ḟ such that p ⊩ “ ḟ ∈ κκ ” has some q ≤ p and b ∈ κκ

such that q ⊩ “ ḟ ∈
∏
b ”, hence ḟ does not name an unbounded κ-real.

If P is not κκ-bounding, let ḟ be a counterexample, that is, there exists p such that p ⊩ “ ḟ ∈ κκ ”
and for all q ≤ p and g ∈ κκ, we have q�⊩ “ ḟ <∗ g ”. Since this holds for all q ≤ p we have in
fact p ⊩ “ ḟ ��<

∗ g ”, equivalently, p ⊩ “ g ≤∞ ḟ ”.

The h-Sacks and (b, h)-Laver properties provide a similar connection for h-avoiding and (b, h)-
avoiding κ-reals respectively. These facts are proved exactly as in the above lemma.

Lemma 4.2.10

A forcing notion P has the h-Sacks property iff P does not add an h-avoiding κ-real. □

Lemma 4.2.11

A forcing notion P has the (b, h)-Laver property iff P does not add a (b, h)-avoiding κ-real. □

Finally, the h-Sacks property implies κκ-bounding by Lemma 4.1.14 and thus prevents un-
bounded κ-reals from being added. We can similarly show that the (b, h)-Laver property prevents
b-unbounded κ-reals from being added.

Lemma 4.2.12

If a forcing notion P has the (b, h)-Laver property for some h ∈ κκ with cf(h) < b, then P does
not add a b-unbounded κ-real. ◁

Proof. Suppose ḟ and p ∈ P are such that p ⊩ “ ḟ ∈
∏
b ”, then let φ ∈ Locb,hκ be such that

q ⊩ “ ḟ ∈∗ φ ” for some q ≤ p. Clearly q ⊩ “ ḟ(α) ≤ sup(φ(α)) ” for almost all α ∈ κ, and since
cf(h) < b we see that sup(φ(α)) ∈ b(α) for all α ∈ κ. Hence ḟ is not b-unbounded.
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4.3. Forcing Notions with <κ+-c.c.

In this section and the next we will define a range of forcing notions and their properties,
and we investigate what kinds of κ-reals are added by each forcing notion. We also give some
easy independence results concerning the cardinal characteristics of the previous chapters. The
forcing notions that are treated in this section contain a part of the condition giving a κ-Cohen
generic κ-real. This part also allows us to show that the condition is <κ+-c.c.

In the next section we will consider forcing notions that are not <κ+-c.c. Those forcing notions
will be defined using perfect trees, some of which do not add a κ-Cohen generic.4

For many subsections we fix certain assumptions on κ and any parameters at the start of the
subsection, to avoid having to mention them when stating results.

κ-Cohen Forcing

Assumptions. We assume that κ is regular uncountable.

Perhaps the most basic forcing notion that adds ω-reals is Cohen forcing, and with it, the most
basic <κ-distributive forcing notion that adds κ-reals could be considered to be κ-Cohen forcing.

Definition 4.3.1

We define κ-Cohen forcing Cκ as the set of conditions <κκ, where t ≤ s if s ⊆ t. ◁

If V ⊆ W are models of ZFC and there is a function f ∈ (κκ)W such that
{
s ∈ (Cκ)

V | s ⊆ f
}

is a generic filter, then we call f a κ-Cohen generic (κ-real).5 In other words, if G ⊆ Cκ is a
generic filter over V, then

⋃
G is a κ-Cohen generic over V.

Lemma 4.3.2 — Folklore

Cκ is <κ-closed. If 2<κ = κ, then Cκ is (κ,<κ)-centred. ◁

Proof. If κ is regular, and ⟨sα | α ∈ λ⟩ is a descending sequence with sα ∈ <κκ for each α ∈ λ

and λ < κ, then
⋃

α∈λ dom(sα) ∈ κ, and thus
⋃

α∈λ sα ∈ <κκ. Trivially, if |Cκ| = 2<κ = κ, then
Cκ is (κ,<κ)-centred.

Mirroring the situation on ωω, we see that κ-Cohen forcing has a special role in adding κ-reals
for two reasons. If κ = 2<κ, then it is the only nontrivial <κ-closed forcing notion of size κ
that adds κ-reals, and due to this κ-Cohen generic reals are automatically added in limit stages
of cofinality κ in <κ-support iterations of forcing notions. The latter means that if one wishes
to avoid adding κ-Cohen generics, one has to resort to either products of forcing notions or to
iterations of higher support.

4In fact, there is significant overlap between these two descriptions, namely, some of the perfect tree forcing
notions do add a κ-Cohen generic, and all of the forcing notions in this section could be represented as forcing
with perfect trees.

5One could call any set that codes the generic filter a κ-Cohen generic, but we reserve this terminology
specifically for those κ-reals of the form

⋃
G for some generic filter G ⊆ Cκ = <κκ.

62



Definition 4.3.3

A forcing notion P is called separable if for each p ∈ P there are q, r ∈ P such that q ⊥ r and
q ≤ p and r ≤ p. ◁

Theorem 4.3.4 — Folklore

If P is a <κ-closed separative forcing notion and |P| = κ, then P is forcing equivalent to Cκ. ◁

Proof. We can construct for each p0 ∈ P a strictly descending sequence ⟨pα | α ∈ κ⟩ of conditions
(using <κ-closure) and a sequence ⟨qα | α ∈ κ⟩ such that qα ⊥ pα+1 for each α ∈ κ (using that
P is separative). It then follows that {qα | α ∈ κ} is an antichain. Since |P| = κ, we see that
below any condition p ∈ P there exists a maximal antichain of size κ.

Let C∗
κ ⊆ Cκ consist of all conditions s ∈ Cκ with dom(s) not a limit ordinal, then C∗

κ clearly
densely embeds into Cκ. We now embed C∗

κ in P recursively.

We set π(∅) = 1P. Given we have constructed π(s) for some s ∈ C∗
κ, we can enumerate a

maximal antichain ⟨qsα | α ∈ κ⟩ below π(s) in P. Then we define π(s⌢⟨α⟩) = qsα. Let s ∈ Cκ \C∗
κ

be such that π(s ↾ ξ) has been defined for all ξ ∈ dom(s), then there exists a condition p ∈ P such
that p ≤ π(s ↾ ξ) for all ξ ∈ dom(s) by <κ-closure. Therefore, we can find a maximal antichain
⟨qsα | α⟩ of conditions that are below π(s ↾ ξ) for all ξ ∈ dom(s) and we define π(s⌢⟨α⟩) = qsα.

It is clear that π is an embedding, but to prove that π can be constructed to be dense, enumerate
P = {pβ | β ∈ κ} and note that for each β ∈ κ we may find ξ ∈ κ and s⌢⟨ξ⟩ ∈ β+1κ ⊆ C∗

κ with
π(s⌢⟨ξ⟩) ≤ pβ : simply let the maximal antichain ⟨qsα | α ∈ κ⟩ be chosen such that pβ ≥ qsα for
some α ∈ κ.

Corollary 4.3.5 — Folklore

The following forcing notions are forcing equivalent to Cκ:

(i) C2
κ, which has the set of conditions <κ2 ordered by t ≤ s iff s ⊆ t.

(ii) Cb
κ, which has the set of conditions

∏
<κ b ordered by t ≤ s iff s ⊆ t.

(iii) Any product or iteration with <κ-support of Cκ of length < κ+, assuming 2<κ = κ. ◁

Proof. (i) and (ii) are clear.6 For (iii), we argue firstly that iterations and products of κ-Cohen
forcing with <κ-support are the same thing, as follows. The set of conditions <κκ is absolute
under κ-Cohen forcing extensions (which follows from <κ-distributivity), thus for any condition
p0 of the <κ-support iteration, we can construct a descending sequence ⟨pn | n ∈ ω⟩ such that
for each n ∈ ω and α ∈ supp(pn) there is sα ∈ <κκ for which pn+1 ↾ α ⊩ “ pn(α) = šα ”. Then
let p′ ≤ pn for each n ∈ ω and supp(p′) =

⋃
n∈ω supp(pn) (which is still of cardinality < κ), then

p′ ↾ α decides the value of p′(α) for each α ∈ supp(p′). Hence p′ is equivalent to a condition q

in the product forcing, to be precise, q : α 7→ sα if α ∈ supp(p′) and q : α 7→ ∅ otherwise.

Secondly, if α < κ+, then the <κ-support product of α copies of Cκ = <κκ is isomorphic to a
subset of the set of partial functions from α×κ to κ with a domain of size <κ. There only exist
2<|α·κ| = 2<κ = κ many such partial functions.

6This could be compared to Lemma 3.1.1.
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Theorem 4.3.6 — Folklore, see e.g. [Gol92, Example 0.2] for ωω

If P = ⟨Pα, Q̇α | α < κ⟩ is a <κ-support iteration such that Pα ⊩ “ Q̇α ∋ q̇α, q̇
′
α and q̇α ⊥ q̇′α ” for

each α ∈ κ, then P adds a κ-Cohen generic. ◁

Proof. We consider the dense subset P∗ ⊆ P consisting of conditions p with supp(p) = ξ for
some ξ ∈ κ. Let π : p 7→ s ∈ ξ2, where for each α ∈ ξ we let s(α) = 0 if p ↾ α ⊩ “ p(α) ≤ q̇α ” and
s(α) = 1 otherwise. Then for any P-generic G it is easy to see that π[G] is generic for κ-Cohen
forcing with the set of conditions <κ2.

For κ-Cohen forcing, we know exactly which of the previously mentioned κ-reals are added,
determined by the following two lemmas.

Lemma 4.3.7

Cκ adds a cofinally equal κ-real. ◁

Proof. Fix some g ∈ κκ and s ∈ Cκ and let ḟ name the κ-Cohen generic κ-real. For any α0 ∈ κ

there exists α ≥ α0 and t ∈ Cκ such that α ∈ dom(t) and t(α) = g(α), or in other words,
t ⊩ “ ḟ(α) = g(α) ”. It follows from genericity that ⊩Cκ “ ḟ =∞ g ”. Since g was arbitrary, ḟ
names a cofinally equal κ-real.

Lemma 4.3.8

If 2<κ = κ, then Cκ does not add an eventually different κ-real. ◁

Proof. The proof is a simple version of Lemma 4.2.3. Since 2<κ = κ, we can enumerate Cκ as
{pα | α ∈ κ}. Let ḟ name a κ-real and define g(α) = min{ξ ∈ κ | pα �⊩ “ ḟ(α) ̸= ξ ”} for each
α ∈ κ. Since pα ⊩ “ ḟ(α) ∈ κ ”, we see that g ∈ κκ.

Let s ∈ Cκ and α0 ∈ κ. Then there exists α ≥ α0 such that pα ≤ s. By definition of g we have
pα �⊩ “ ḟ(α) ̸= g(α) ”, hence there exists some t ≤ pα such that t ⊩ “ ḟ(α) = g(α) ”. It follows
from genericity that ⊩Cκ “ ḟ =∞ g ”, and thus ḟ is not an eventually different κ-real.

A schematic representation of Figure 4.1, showing the
effect of κ-Cohen forcing.

Legend
added by the forcing
not added by the forcing

We define the κ-Cohen model as the result of forcing with a <κ-support iteration of κ++ copies
of Cκ over a ground model V ⊨ “ 2κ = κ+ ”. We can show that there exist no eventually different
κ-reals over V in the κ-Cohen model, the proof of which comes down to the well-known property
that any new κ-real added by the entire iteration is actually in the generic extension of a single
κ-Cohen forcing over the ground model.
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Theorem 4.3.9

Let 2<κ = κ and let V ⊨ “ 2κ = κ+ ”. If W is the κ-Cohen model over V, then W does not
contain eventually different κ-reals over V. ◁

Proof. Let P = ⟨Pα, Q̇α | α ∈ κ++⟩ with ⊩Pα “ Q̇α = Cκ ” be the <κ-support iteration of the
κ-Cohen model, and let ḟ be a P-name such that ⊩P “ ḟ ∈ κκ ”. Remember by Theorem 4.1.21
<κ-support iterations do not add new κ-reals at limit steps of cofinality >κ, thus ḟ is added by
an initial segment of the iteration, say by Pα.

By Lemma 4.1.20, we see that P is <κ+-c.c.

Remember from the proof of Corollary 4.3.5 that we may consider Pα as a product forcing with
<κ-support instead. Consider a nice Pα-name for ḟ , that is, a name containing only elements
of the form (

〈
γ̌, β̌

〉
, p) where

〈
γ̌, β̌

〉
is the canonical name for the pair of ordinals (γ, β) ∈ κ× κ

and p ∈ Pα, such that for any two distinct elements of the name (
〈
γ̌, β̌

〉
, p) and (

〈
γ̌′, β̌′

〉
, p′) with

γ = γ′ we have p ⊥ p′.

For each γ ∈ κ the set Aγ = {p ∈ Pα | ∃β((
〈
γ̌, β̌

〉
, p) ∈ ḟ)} is an antichain and hence has

cardinality at most κ. Let A =
⋃

γ∈κ
⋃

p∈Aγ
supp(p), then |A| ≤ κ since Pα is a <κ-support

product. Therefore the nice name ḟ contains only conditions whose support are contained in
A, and thus ḟ is a

∏<κ
ξ∈ACκ-name. But by Corollary 4.3.5 it follows that ḟ is added by a single

κ-Cohen forcing, and thus cannot be eventually different by Lemma 4.3.8.

Corollary 4.3.10 — Folklore

If κ is inaccessible, then non(Mκ) = κ+ < κ++ = cov(Mκ) holds in the κ-Cohen model. ◁

Proof. Since the κ-Cohen model contains κ++ many cofinally equal κ-reals over V, it follows
that bκ(��=∞) = κ++ in the κ-Cohen model. On the other hand, the κ-Cohen model contains no
new eventually different κ-reals, and thus dκ(�

�=∞) = (2κ)V = κ+. The result then follows from
Fact 2.5.4.

Note that the value of all other cardinal characteristics we have discussed so far are also decided
in the κ-Cohen model by the above. We mention that an iteration of arbitrary length λ >

κ++ proves non(Mκ) < cov(Mκ) = λ and that the above corollary also holds for the weaker
assumption that 2<κ = κ, where we need to argue with the meagre ideal directly, see for example
[Bre22, Section 3].

κ-Hechler Forcing

Assumptions. We assume that κ is regular uncountable.

Classically, Hechler forcing, also known as dominating real forcing, is a forcing notion that adds
both dominating reals and Cohen reals. The same happens in κ, where we can generalise Hechler
forcing to κ-Hechler forcing, first studied by Cummings & Shelah [CS95]. We describe the κ-
Hechler model and the dual κ-Hechler model, which have both been previously discussed in
[BBTFM18, Section 4.2] to investigate the higher Cichoń diagram.
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Definition 4.3.11

We define κ-Hechler forcing Dκ to have conditions p = (s, f) where s ∈ <κκ and f ∈ κκ, where
the ordering is defined as (t, g) ≤ (s, f) iff s ⊆ t and f(α) ≤ g(α) for all α ∈ κ \ dom(s) and
f(α) ≤ t(α) for all α ∈ dom(t) \ dom(s). ◁

If V ⊆ W are models of ZFC and there exists f ∈ (κκ)W such that
{
(s, g) ∈ (Dκ)

V | s ⊆ f
}

is a (Dκ)
V-generic filter over V, then we call f a κ-Hechler generic (κ-real). Of the κ-Hechler

condition (s, g), we can consider s to be an approximation of the κ-Hechler generic f , and g as
a promise that g ≤∗ f .

Lemma 4.3.12 — See e.g. [BBTFM18, Section 4.2]

Dκ adds a dominating κ-real and a κ-Cohen generic. ◁

Proof. For any condition (s, g) and h ∈ κκ in the ground model there exists some condition
(s, h′) ≤ (s, g) with h′ ≥ h. If ḟ names the κ-Hechler generic κ-real, then (s, h′) ⊩ “ h ≤ h′ ≤∗ ḟ ”,
hence ḟ names a dominating κ-real over the ground model.

Given the κ-Hechler generic f , let f ′(α) = 0 if f(α) is even7 and f ′(α) = 1 otherwise. One can
easily see that f ′ is generic for κ-Cohen forcing C2

κ from Corollary 4.3.5.

Lemma 4.3.13 — [CS95, Lemma 7]

Dκ is <κ-closed and if 2<κ = κ, then Dκ is (κ,<κ)-centred with canonical bounds. ◁

Proof. Let λ < κ and ⟨(sα, fα) | α ∈ λ⟩ be a descending sequence of conditions, and define
s =

⋃
α∈λ sα and f : ξ 7→ sup {fα(ξ) | α ∈ λ}, then (s, f) ∈ Dκ by regularity of κ. By the

same argument Ds = {s} × κκ is a <κ-linked subset of Dκ, so with 2<κ = κ it follows that
Dκ =

⋃
s∈<κκDs is (κ,<κ)-centred and that the ground model function witnessing the canonical

bound is simply the function ⟨sα | α ∈ λ⟩ 7→
⋃

α∈λ sα.

Corollary 4.3.14

If 2<κ = κ, then Dκ does not add a b-eventually different κ-reals for any b ∈ κκ. ◁

Proof. By Lemma 4.2.3.

A schematic representation of Figure 4.1, showing the
effect of κ-Hechler forcing, with 2<κ = κ.

Legend
added by the forcing
not added by the forcing

We define the κ-Hechler model as the result of forcing with a <κ-support iteration of κ++ copies
of Dκ over a ground model V ⊨ “ 2κ = κ+ ”. We define the dual κ-Hechler model as the result

7We call an ordinal α even if α = γ + n for γ a limit ordinal and n ∈ ω even
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of forcing with a <κ-support iteration of κ++ · κ+ copies of Dκ (over V ⊨ “ 2κ = κ+ ”). This is
not the standard definition of the dual κ-Hechler model, but will yield a stronger result where
we can prove values for dbκ(�

�=∞) and dhκ(∈∗) not just for parameters b, h in the ground model,
but also for those added by the forcing.

Theorem 4.3.15

If κ is inaccessible, then bbκ(�
�=∞) = bhκ(∈∗) = κ+ < κ++ = add(Mκ) holds in the κ-Hechler

model for any b, h ∈ κκ (including new κ-reals that are added by the forcing) for which the
respective cardinal characteristics are nontrivial8. ◁

Proof. Let P = ⟨Pα, Q̇α | α ∈ κ++⟩ be a <κ-support iteration, where Q̇α is a Pα-name for
κ-Hechler forcing Dκ and let V ⊨ “ 2κ = κ+ ”, then VP is the κ-Hechler model.

Since every new κ-real is added by an initial stage of the iteration, for any b ∈ (κκ)V
P there

exists some α ∈ κ++ such that b ∈ (κκ)V
Pα . Note that 2κ = κ+ holds in VPα for any α < κ++,

and thus |(
∏
b)V

Pα | = κ+. We claim that (
∏
b)V

Pα is a witness for bbκ(�
�=∞) = κ+. Let us

assume9 for notational convenience that in fact b ∈ V.

Let ḟ be a P-name such that ⊩P “ ḟ ∈
∏
b ”, then there is some α < κ++ such that f ∈ VPα ,

and thus we can assume that ḟ is a Pα-name. Note that V ⊨ “ α < (2κ)+ = κ++ ”, therefore Pα

is (κ,<κ)-centred by Theorem 4.1.19, and thus ḟ does not name a b-eventually different κ-real
by Lemma 4.2.3. Since h-localising κ-reals imply the existence of b-eventually different κ-reals,
no h-localising κ-reals are added either for any h ∈ (κκ)V

P .

In the extension, it follows that (
∏
b)V and (κκ)V witness that bbκ(��=∞) = κ+ and bhκ(∈∗) = κ+

respectively. Note that each stage of the iteration adds a dominating κ-real, which implies
bκ(≤∗) = κ++, and a cofinally equal κ-real (a κ-Cohen generic), which implies dκ(�

�=∞) = κ++.
That add(Mκ) = κ++ then follows from Facts 2.5.4 and 2.5.9.

Theorem 4.3.16

If κ is inaccessible, then cof(Mκ) = κ+ < κ++ = dbκ(�
�=∞) = dhκ(∈∗) holds in the dual κ-Hechler

model for any b, h ∈ κκ (including new κ-reals that are added by the forcing) for which the
respective cardinal characteristics are nontrivial. ◁

Proof. Let P = ⟨Pα, Q̇α | α ∈ κ++ · κ+⟩ be a <κ-support iteration, where Q̇α is a Pα-name for
κ-Hechler forcing Dκ and let V ⊨ “ 2κ = κ+ ” and let G be a P-generic filter over V, then V[G]

is the dual κ-Hechler model.

Let b, h ∈ (κκ)V[G], then there exists some α ∈ κ++ · κ+ such that b, h ∈ (κκ)V[Gα]. Let
β = α+κ++, then β < κ++ ·κ+ and V[Gβ] ⊨ “ add(Mκ) = κ++ = 2κ ” by similar arguments as
in Theorem 4.3.15. This implies particularly that V[Gβ] ⊨ “ dbκ(��=∞) = dhκ(∈∗) = κ++ = 2κ ” as
well. We will work in V[Gβ] as our new ground model. Let P′ = P/Gβ ∈ V[Gβ] be the quotient

8In the sense of Section 3.4.
9We can do this without loss of generality, since the remainder of the forcing P/Pα is equivalent to the entire

forcing interpreted in VPα .
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forcing and H be P′-generic such that V[G] = V[Gβ][H]. Note that P′ is itself (equivalent to)
a <κ-support iteration of Dκ of length κ++ · κ+.

Since V[Gβ] ⊨ “ 2κ = κ++ ”, we see that P′ is (κ,<κ)-centred by Theorem 4.1.19. Therefore
P′ does not add b-eventually different (or h-localising) κ-reals, and consequently dbκ(�

�=∞) =

dhκ(∈∗) = κ++ holds in the extension, by Corollary 4.2.5. On the other hand, each step of
the iteration adds a dominating and cofinally equal κ-real, and the iteration has cofinality κ+.
Taking a cofinal sequence of length κ+ of such dominating and cofinally equal κ-reals will form
witnesses for dκ(≤∗) = bκ(�

�=∞) = κ+. That cof(Mκ) = κ+ then follows from Facts 2.5.4
and 2.5.9.

Bounded κ-Hechler Forcing

Assumptions. We assume that κ is inaccessible. We will also assume that b ∈ κκ is such that
case (iii) of Theorem 3.4.2 is satisfied, that is, there exists a club set C such that for each ξ ∈ C

we have cf(b(α)) > ξ for all α ≥ ξ, or equivalently, cf(b) is increasing and discontinuous on C.

In order to influence the bounded cardinal characteristics and κ-reals, we will define a bounded
version of κ-Hechler forcing. Such bounded κ-Hechler forcing notions have been considered
by others before as well, and form a key part in Shelah’s [She20] proof of the consistency of
cov(Mκ) < dκ(≤∗). We will use bounded κ-Hechler forcing to prove that κ+ < bbκ(≤∗) and
dbκ(≤∗) < 2κ are consistent under the assumptions of case (iii) of Theorem 3.4.2. Finally we will
show that bounded κ-Hechler forcing does not add dominating κ-reals if we assume κ is weakly
compact.

Definition 4.3.17

We define b-κ-Hechler forcing Db
κ to have conditions (s, f) with s ∈

∏
<κ b and f : κ\dom(s) → κ

such that f(α) ∈ b(α) for all α ∈ dom(f), where the ordering is defined as (t, g) ≤ (s, f) iff s ⊆ t

and f(α) ≤ g(α) for all α ∈ dom(g) and f(α) ≤ t(α) for all α ∈ dom(t) \ dom(s). ◁

It is clear from the definition, that Db
κ adds a b-dominating κ-real, and for similar reasons as

with κ-Hechler forcing Dκ, bounded κ-Hechler forcing Db
κ also adds a κ-Cohen generic.

Note that Db
κ is not <κ-closed in general. For instance, if we let α be the constant function with

value α, then ⟨(∅, α) | α ∈ b(0)⟩ does not have a lower bound.

Lemma 4.3.18

Db
κ is strategically <κ-closed and <κ+-c.c. ◁

Proof. For strategic <κ-closure, at stage α of the game G(Db
κ, p), let ⟨(sξ, fξ) | ξ < α⟩ and

⟨(s′ξ, f ′ξ) | ξ < α⟩ be the sequences of previous moves by White and Black respectively. The
winning strategy for White will be to choose (sα, fα) such that α ≤ dom(sα) ∈ C in successor
stages. Under this strategy, if α is a limit ordinal, then we have ξ ≤ dom(sξ) ∈ C for each ξ ∈ α.
It follows that α ≤ dom(sα) and hence cf(b(β)) > α for all β ≥ dom(sα) by the assumptions on b
and C. Therefore

〈
f ′ξ(β) | ξ ∈ α

〉
is not cofinal in b(β), thus we can define fα : β 7→

⋃
ξ∈α f

′
ξ(β)

for each β ∈ κ \ dom(sα).
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For <κ+-c.c., note that for any (s, f), (s, g) ∈ Db
κ we can choose h(α) = max {f(α), g(α)} for

all α ∈ κ \ dom(s) to see that have (s, h) ≤ (s, f) and (s, h) ≤ (s, g). Thus, if A ⊆ Db
κ is an

antichain and (s, f), (t, g) ∈ A are distinct, then we must have s ̸= t, hence |A| ≤ κ.

The above lemma does not only show that Db
κ is <κ+-c.c., but also that Lemma 4.1.20 applies,

and thus that <κ-support iteration of Db
κ is also <κ+-c.c. This implies especially that iteration

will not collapse cardinals or destroy the inaccessibility of κ.

Theorem 4.3.19

It is consistent that bbκ(≤∗) > κ+ and that dbκ(≤∗) < 2κ. ◁

Proof. Let P = ⟨Pα, Q̇α | α ∈ κ++ + κ+⟩ be a <κ-support iteration with Pα ⊩ “ Q̇α = Ḋb
κ ” for

each α and let V ⊨ “ 2κ = κ+ ”. If B ⊆ (
∏
b)V

P
κ++ is such that |B| ≤ κ+, then B ∈ VPα for

some α < κ++, since the κ++-th stage of the iteration does not add any κ-reals. The generic
b-dominating κ-real that is added in the α+1-th stage then dominates all elements of B, hence
B is not unbounded in

∏
b. This shows that VPκ++ ⊨ “ bbκ(≤∗) > κ+ ”.

Next, let D consist of the b-dominating κ-reals that are added in the final κ+ stages of the
iteration, then D clearly forms a dominating family of size κ+ in VP, and it is easy to see that
VP ⊨ “ 2κ = κ++ ”, showing that VP ⊨ “ dbκ(≤∗) < 2κ ”.

Lemma 4.3.20 — This proof is due to Jörg Brendle, private communication

If κ is weakly compact, then Db
κ has (κ, κ)-calibre. ◁

Proof. For any s ∈
∏

<κ b and {fα | α ∈ κ} ⊆
∏
b, we will describe some f ∈

∏
b and A ∈ [κ]κ

such that f(ξ) ≥ fα(ξ) for all ξ ∈ κ \ dom(s) and α ∈ A. It is then clear that (s, f) ≤ (s, fα),
and thus Ds = {s} ×

∏
b ⊆ Db

κ has κ-calibre and Db
κ =

⋃
s∈

∏
<κ bDs has (κ, κ)-calibre.

We will assume without loss of generality that fα ̸= fβ and s ⊆ fα for all distinct α, β ∈ κ.
We will define T =

{
t ∈

∏
<κ b | ∃α∃β(α ̸= β ∧ t ⊆ fα ∩ fβ)

}
. Note that T is a κ-tree, because∣∣∣∏ξ<α b(ξ)

∣∣∣ < κ by inaccessibility of κ. Since κ is weakly compact, there exists a branch g ∈ [T ].
We will need the following property of g: for any α0, γ ∈ κ there exists some α ≥ α0 such that
γ ⊆ dom(fα ∩ g).

Now let ⟨γξ | ξ ∈ κ⟩ enumerate the club C and for each ξ find some αξ with γξ ⊆ dom(fαξ
∩ g)

such that ⟨αξ | ξ ∈ κ⟩ is strictly increasing. Let A = {αξ | ξ ∈ κ} and f : β 7→
⋃

ξ∈κ fαξ
(β),

then these are as needed. Note that f(β) ∈ b(β), because if ξ is such that β ∈ [γξ, γξ+1), then
cf(b(β)) ≥ cf(b(γξ)) > γξ ≥ ξ, whereas fαη(β) = g(β) for all η > ξ.

Corollary 4.3.21

If κ is weakly compact, then Db
κ does not add a dominating κ-real. ◁
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A schematic representation of Figure 4.1, showing the
effect of b′-κ-Hechler forcing with κ weakly compact.

*
?
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Naturally we would like to iterate with Db
κ and show that the iteration does not add dominating

κ-reals either. There are several obstacles to this.

Firstly, we would need to show that not just the single step, but the whole iteration does not
add dominating κ-reals. Secondly, we would need to preserve that κ is weakly compact along the
iteration. Laver [Lav78] has given a construction of a forcing notion that makes a supercompact
cardinal κ indestructible by <κ-directed closed forcing notions, but this argument is not directly
of use to us, since Db

κ is not <κ-directed closed (not even <κ-closed). We would therefore need
to customise this argument for our purpose.

The above two issues are addressed by Shelah in the paper [She20].

κ-Localisation Forcing

Assumptions. We will assume that κ is inaccessible. We also need h to grow fast enough to
avoid problems with Fodor’s pressing down lemma. A sufficient assumption is that h ∈ κκ is
such that there exists a club set C with h(γ) >

⋃
α∈γ h(α) for all limit γ ∈ C, that is, h is

discontinuous on C. One could compare this to the assumptions on h given in Theorem 3.4.5.

In a similar manner to how κ-Hechler forcing adds a dominating κ-real and a κ-Cohen generic, we
can define κ-localisation forcing (with parameter h) as a forcing notion that adds an h-localising
κ-real and a κ-Cohen generic. This forcing generalises the classical localisation forcing, and was
used in its generalised form10 in [BBTFM18, Section 4.3] to prove that bhκ(∈∗) and dhκ(∈∗) are
consistently different from the bounds κ+ and 2κ.

As with κ-Hechler forcing, we will also consider a bounded variant of κ-localisation forcing in
the next subsection, in order to study bb,hκ (∈∗) and db,hκ (∈∗).

Definition 4.3.22

We define h-κ-localisation forcing Lochκ to have conditions (s, φ), where s ∈ Loch<κ and φ ∈ Lochκ.
The ordering is given by (t, ψ) ≤ (s, φ) iff s ⊆ t and φ(α) ⊆ ψ(α) for all α ∈ κ \ dom(t), and
φ(α) ⊆ t(α) for all α ∈ dom(t) \ dom(s). ◁

10Our definition will differ slightly from the one in [BBTFM18], mainly to simplify one of our proofs in the
next section on bounded κ-localisation forcing.
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If V ⊆ W are models of ZFC and there exists φ ∈ (Lochκ)
W such that

{
(s, ψ) ∈ (Lochκ)V | s ⊆ φ

}
is a (Lochκ)V-generic filter over V, then we call φ an h-κ-localisation generic (κ-real). For a
condition (s, ψ), we can see s as an approximation of the h-κ-localisation generic φ, and ψ as a
promise that f ∈∗ φ holds for any f with f ∈∗ ψ. By the following this may include all f from
the ground model:

Lemma 4.3.23

Lochκ adds an h-localising κ-real and a κ-Cohen generic. ◁

Proof. For any condition (s, ψ) and f ∈ κκ in the ground model, also (s, ψf ) is a condition, where
ψf : α 7→ ψ(α) ∪ {f(α)} (remember that h(α) is an infinite cardinal). Clearly (s, ψf ) ≤ (s, ψ),
and if φ̇ names the h-κ-localisation generic, then (s, ψf ) ⊩ “ f ∈∗ φ̇ ”. Hence φ̇ names an
h-localising κ-real.

The κ-Cohen generic is formed similarly to Lemma 4.3.12.

Clearly an h′-localising κ-real φ is also h-localising if h′ ≤∗ h, but apart from this it is unknown
whether Loch

′
κ adds h-localising κ-reals for certain other parameters h.

**
A schematic representation of Figure 4.1, showing the
effect of h′-κ-localisation forcing.

*

Legend
added by the forcing
added for h ≥∗ h′, unknown for other parameters

Lemma 4.3.24

Lochκ is strategically <κ-closed and <κ+-c.c. ◁

Proof. White’s winning strategy consists of choosing (sα, φα) such that α ≤ dom(sα) ∈ C and
consequently h(dom(sα)) > |

⋃
ξ<α φ

′
ξ(β)| for each β ≥ dom(sα), where (s′ξ, φ

′
ξ) denote the

previous Black moves.

As for <κ+-c.c., it suffices to note that Lochκ is (κ,<ω)-centred. To clarify, (s, φ) || (s, φ′) for all
s ∈ Loch<κ, since (s, ψ) is below both, where ψ(α) = φ(α) ∪ φ′(α) for all α ∈ κ \ dom(s).

Again, Lemma 4.1.20 applies, and thus the <κ-support iteration of Lochκ is also <κ+-c.c., and
hence does not collapse cardinals or destroy the inaccessibility of κ.

We define the h-κ-localisation model as the result of forcing with a <κ-iteration of κ++ copies
of Lochκ over a ground model V ⊨ “ 2κ = κ+ ”. We define the dual h-κ-localisation model as the
result of forcing with a <κ-support iteration of κ+ copies of Lochκ over V ⊨ “ 2κ = κ++ ”.

Theorem 4.3.25 — [BBTFM18, Proposition 52]

It is consistent that κ+ < bhκ(∈∗), since it holds in the h-κ-localisation model. ◁

71



Proof. The argument is as in Theorem 4.3.15, but now each stage adds an h-localising κ-real,
which implies bhκ(∈∗) = κ++.

Theorem 4.3.26 — [BBTFM18, Proposition 52]

It is consistent that dhκ(∈∗) = κ+ < 2κ, since it holds in the dual h-κ-localisation model. ◁

Proof. As above, but here the κ+ many h-localising κ-reals added in each stage form a witness
for dhκ(∈∗) = κ+, while 2κ > κ+ remains true, since no cardinals are collapsed.

Bounded κ-Localisation Forcing

Assumptions. We assume that κ is inaccessible. We will also assume that h ∈ κκ is such that
case (iii) of Theorem 3.4.5 is satisfied, that is, h is discontinuous on the club set C.

Our main reason for introducing bounded κ-localisation forcing, is to show that case (iii) of
Theorem 3.4.5 indeed leads to cardinal characteristics that are strictly different from κ+ and
2κ, in the same way we previously used bounded κ-Hechler forcing in Theorem 4.3.19. We also
show that it is possible to add a (b, h)-localising κ-real without adding a dominating κ-real for
weakly compact κ, strengthening what we saw for bounded κ-Hechler forcing.

Definition 4.3.27

We define (b, h)-κ-localisation forcing Locb,hκ to have conditions (s, φ) such that s ∈ Locb,h<κ

and φ ∈ Locb,hκ . The ordering is given by (t, ψ) ≤ (s, φ) iff s ⊆ t and φ(α) ⊆ ψ(α) for all
α ∈ κ \ dom(t), and φ(α) ⊆ t(α) for all α ∈ dom(t) \ dom(s). ◁

By the same logic as for (unbounded) κ-localisation forcing, Locb,hκ adds a (b, h)-localising κ-real
and a κ-Cohen generic.

We can show that Locb,hκ is (κ, κ)-calibre when κ is weakly compact. We follow the proof of
Lemma 4.3.20.

Lemma 4.3.28

Let ⟨γξ | ξ ∈ κ⟩ enumerate the club set C. If κ is weakly compact and cf(h(β)) > ξ for each
β ∈ [γξ, γξ+1), then Locb,hκ has (κ, κ)-calibre. ◁

Proof. Let s ∈ Locb,h<κ and {φα | α ∈ κ} ⊆ Locb,hκ , and assume without loss of generality that
φα ̸= φβ and s ⊆ φα for all distinct α, β ∈ κ

We define a κ-tree T = {t ∈ Locb,h<κ | ∃α∃β(α ̸= β ∧ t ⊆ φα ∩ φβ)}. Since κ is weakly compact,
there exists a branch ψ ∈ [T ] and for any α0, γ ∈ κ there exists some α ≥ α0 such that
γ ⊆ dom(φα ∩ ψ).

For each ξ find some αξ with γξ +1 ⊆ dom(φαξ
∩ψ) such that ⟨αξ | ξ ∈ κ⟩ is strictly increasing.

Let A = {αξ | ξ ∈ κ} and φ : β 7→
⋃

ξ∈κ φαξ
(β), then these are as needed. Note that φ(β) =⋃

η∈ξ φαη(β) if β ∈ [γξ, γξ+1), and thus |φ(β)| < h(β), because we assumed cf(h(β)) > ξ.

Corollary 4.3.29

Under the assumptions of the lemma, Locb,hκ does not add a dominating κ-real. ◁
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As with (unbounded) κ-localisation forcing, it is not clear whether Locb,hκ adds (b′, h′)-localising
κ-reals for certain other parameters b′, h′.

*
A schematic representation of Figure 4.1, showing
the effect of (b, h′)-κ-localisation forcing under the
assumptions of Lemma 4.3.28.

*

Legend
added by the forcing
not added by the forcing
added for h = h′, unknown for other parameters

Lemma 4.3.30

Locb,hκ is strategically <κ-closed and <κ+-c.c. ◁

Proof. See the proof of Lemma 4.3.24.

The above lemma also shows, together with Lemma 4.1.20, that <κ-iteration of Locb,hκ is <κ+-
c.c., and hence preserves cardinals.

Theorem 4.3.31

It is consistent that bb,hκ (∈∗) > κ+ and that db,hκ (∈∗) < 2κ. ◁

Proof. Analogous to Theorem 4.3.19, with Locb,hκ taking the role of Db
κ.

κ-Eventually Different Forcing

Assumptions. We assume that κ is regular uncountable.

Bounded κ-Hechler and bounded κ-localisation forcing notions showed that we can add an
eventually different κ-real without adding a dominating κ-real, although this required κ to be
weakly compact. The question is whether we can do better, and add an eventually different
κ-real without adding dominating κ-reals, but also no b-dominating κ-real, or even b-eventually
different κ-real.

The forcing notion we use for this is a generalisation of the classical eventually different forcing
of Miller [Mil81, Section 5]. This forcing notion does not add dominating reals, proved using a
compactness argument, and is furthermore σ-centred. We will show that the higher version is
(κ,<κ)-centred (with canonical bounds) and does not add a dominating κ-real. For the latter
property, we need to assume a certain amount of compactness for κ. In particular, it suffices
that κ is weakly compact.

Definition 4.3.32

We define κ-eventually different forcing Eκ to have conditions (s, F ) such that s ∈ <κκ and
F ∈ [κκ]<κ, where the ordering is defined by (t, G) ≤ (s, F ) iff s ⊆ t and F ⊆ G and for
α ∈ dom(t) \ dom(s) we have t(α) /∈ {f(α) | f ∈ F}. ◁
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If V ⊆ W are models of ZFC and there exists f ∈ (κκ)W such that
{
(s, F ) ∈ (Eκ)

V | s ⊆ f
}

is
an (Eκ)

V-generic filter over V, then we call f a κ-eventually different generic (κ-real).11

Lemma 4.3.33

Eκ is <κ-closed and (κ,<κ)-centred. ◁

Proof. For closure, let ⟨(sα, Fα) | α ∈ λ⟩ be a decreasing sequence of conditions in Eκ of length
λ < κ, then s =

⋃
α∈λ sα ∈ <κκ by compatibility of the conditions and regularity of κ. Let

F =
⋃

α∈λ Fα, then |F | < κ. Clearly (s, F ) ≤ (sα, Fα) for all α ∈ κ.

For centredness, define for each s ∈ <κκ the subset Es = {s} × [κκ]<κ ⊆ Eκ. If X ⊆ Es and
|X| < κ, then let F =

⋃
(s,F ′)∈X F ′, then F ∈ [κκ]<κ. Hence (s, F ) ≤ (s, F ′) for all (s, F ′) ∈ X,

showing that Es is <κ-linked.

Lemma 4.3.34

Eκ does not add a b-eventually different κ-real. ◁

Proof. By Lemma 4.2.3

In order to discuss the relation between Eκ and dominating κ-reals, we will need a generalised
form of compactness and of Tychonoff’s theorem where “finite” is replaced by “<κ”.

Definition 4.3.35

The weight of a topological space (X, τ) is the least cardinality of a base B for τ . We say X is
<κ-compact if for every C ⊆ τ such that

⋃
C = X there exists C ′ ∈ [C]<κ such that

⋃
C ′ = X.

A cardinal κ is called weakly square compact if for any <κ-compact topological space (X, τ) with
w(X) ≤ κ also X ×X with the product topology is <κ-compact. ◁

If we assume that κ is strongly compact12, then the generalised form of Tychonoff’s theorem
holds, in the sense that the <κ-box product (see the definition below) of <κ-compact spaces is
<κ-compact. However, in our specific case it suffices to assume that κ is weakly compact.

Definition 4.3.36

Let I be a set of indices and Xi a topological space for each i ∈ I and remember that the <κ-box
topology on the product X =

∏
i∈I Xi is defined as the topology generated by basic open sets of

the form [s] = {f ∈ X | s ⊆ f} for s ∈
∏

i∈I′ Xi with I ′ ∈ [I]<κ. We call X the <κ-box product
of {Xi | i ∈ I}. ◁

Theorem 4.3.37 — [BD21, Theorem 5.1]

The following are equivalent:

• κ is weakly compact.
11Note that an eventually different κ-real is not the same as a κ-eventually different generic. We use the former

to describe κ-reals with combinatorial properties over the ground model, as in Definition 4.2.1, and the latter to
describe the specific generic κ-real added by Eκ.

12See [BD21, Theorem 2.10]
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• κ is weakly square compact.
• if {Xi | i ∈ I} is a family of spaces where |I| ≤ κ and each Xi is a <κ-compact space with
w(Xi) ≤ κ, then the <κ-box product of {Xi | i ∈ I} is also <κ-compact. □

To show that Eκ does not add dominating κ-reals, we now follow the proof of Miller. We first
need a preliminary lemma.

Lemma 4.3.38 — cf. [Mil81, Lemma 5.1] for ωω

Let ẋ be an Eκ-name for a set in V, let s ∈ <κκ and λ ∈ κ, then there exists a set X with
|X| < κ such that for all F ∈ [κκ]λ there exists p ≤ (s, F ) such that p ⊩ “ ẋ ∈ X ”. ◁

Proof. Let κ have the cobounded topology τ given by X ∈ τ if and only if [α, κ) ⊆ X for some
α ∈ κ. It is easily seen that κ is <κ-compact and w(κ) = κ, since |τ | = κ. Therefore, if we
give κκ the <κ-box topology where κ has the cobounded topology, then κκ is <κ-compact by
Theorem 4.3.37, and more generally we see that λ(κκ) is <κ-compact for any cardinal λ < κ.
When referring to λ(κκ) or κκ within the proof of this claim, it will be with respect to this
topology.

Fix ẋ, s and λ as in the claim. Given a sequence F ∈ λ(κκ), let F̃ = ran(F ) ∈ [κκ]λ. Given
some X with |X| < κ and t with s ⊆ t, we define the following two sets:

FX =
{
F ∈ λ(κκ)

∣∣∣ ∃p ∈ Eκ(p ≤ (s, F̃ ) and p ⊩ “ ẋ ∈ X ”)
}
,

Ut =
{
F ∈ λ(κκ)

∣∣∣ ∀ξ ∈ dom(t) \ dom(s)∀η ∈ λ(t(ξ) ̸= F (η)(ξ))
}
.

Note that for any F ∈ λ(κκ) there is y ∈ V with F ∈ F{y}, since (s, F̃ ) ⊩ “ ∃y ∈ V(ẋ = y) ”,
hence there exists p ≤ (s, F̃ ) and y ∈ V such that p ⊩ “ ẋ = y ”. Also note that Ut is open in
the topology on λ(κκ).

We show that FX is open as well. For each F ∈ FX , choose some (t,H) ≤ (s, F̃ ) such that
(t,H) ⊩ “ ẋ ∈ X ”, then by definition of the order on Eκ we see that F ∈ Ut. Furthermore, let
K ∈ Ut, then we have (t,H ∪ K̃) ≤ (s, F̃ ∪ K̃) ≤ (s, K̃) and (t,H ∪ K̃) ⊩ “ ẋ ∈ X ” because
(t,H ∪ K̃) ≤ (t,H), hence K ∈ FX and thereby Ut ⊆ FX . In conclusion, FX is the union of
sets of the form Ut, and hence is open.

Combined, we see that there is a set Y of size 2κ = |λ(κκ)| with λ(κκ) =
⋃

y∈Y F{y}. We can use
<κ-compactness to find a family X ⊆ Y with |X | < κ such that

⋃
y∈X F{y} =

λ(κκ). Then note
that FX∪X′ ⊇ FX ∪ FX′ to conclude that FX = λ(κκ). Therefore X is the set we are looking
for to complete the proof of the claim.

Theorem 4.3.39 — cf. [Mil81, Section 5] for ωω

If κ is weakly compact, then Eκ does not add dominating κ-reals. ◁

Proof. Let ⟨(sη, λη) | η ∈ κ⟩ list all (s, λ) with s ∈ <κκ and λ < κ a cardinal such that each
(s, λ) = (sη, λη) for κ many η ∈ κ.
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Let ḟ be an Eκ-name and ⊩Eκ “ ḟ ∈ κκ ”. Given η ∈ κ, use the claim to find a set Xη ∈ [κ]<κ

such that for all F ∈ [κκ]λη there exists p ≤ (sη, F ) such that p ⊩ “ ḟ(η) ∈ Xη ”. Then we let
g : η 7→ sup(Xη) + 1 for each η ∈ κ.

Let (s, F ) ∈ Eκ and η0 ∈ κ, then there exists η ≥ η0 such that (s, |F |) = (sη, λη). By the claim
there exists p ≤ (s, F ) such that p ⊩ “ ḟ(η) ∈ Xη ” and thus p ⊩ “ ḟ(η) < g(η) ”. Since (s, F )

and η0 are arbitrary, we see that ⊩Eκ “ g��≤∗ f ”, thus ḟ does not name a dominating κ-real.

?

A schematic representation of Figure 4.1, showing the
effect of κ-eventually different forcing with κ weakly
compact.

?

Legend
added by the forcing
not added by the forcing
unknown

Bounded κ-Antiavoidance Forcing

Assumptions. We assume κ is inaccessible. Furthermore, we need to assume that the condi-
tions of case (iii) of Theorem 3.4.16 are satisfied, hence we let C be a club set such that b is
discontinuous on C and cf(b) is increasing and discontinuous on {α ∈ C | h(α) = b(α)}.

In order to show that bb,hκ (��∋∞) and db,hκ (��∋∞) are consistently different from κ+ and 2κ when the
assumptions of case (iii) of Theorem 3.4.16 are satisfied, we introduce another bounded forcing
notion based on antilocalisation and antiavoidance. Note that we do not need an unbounded
form of this forcing to show the same for bhκ(��∋∞) and dhκ(�

�∋∞), since these are equal to non(Mκ)

and cov(Mκ) by Corollary 3.3.8.

Definition 4.3.40

We define (b, h)-κ-antiavoidance forcing AAvb,h
κ to have conditions (s,Φ) where s ∈

∏
<κ b and

Φ ⊆ Locb,hκ with |Φ| ≤ dom(s). The ordering is given by (t,Ψ) ≤ (s,Φ) if s ⊆ t and Φ ⊆ Ψ and
for each α ∈ dom(t) \ dom(s) and φ ∈ Φ we have t(α) /∈ φ(α). ◁

It is easy to see that AAvb,h
κ adds a (b, h)-antiavoiding κ-real and a κ-Cohen generic.

?

?

?

? A schematic representation of Figure 4.1, showing the
effect of (b, h)-κ-antiavoidance forcing

?

Legend
added by the forcing
not added by the forcing
unknown
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Lemma 4.3.41

AAvb,h
κ is strategically <κ-closed and <κ+-c.c. ◁

Proof. For strategic <κ-closure, at stage α of G(AAvb,h
κ , p), let ⟨pξ = (sξ,Φξ) | ξ ∈ α⟩ and

⟨p′ξ = (s′ξ,Φ
′
ξ) | ξ ∈ α⟩ be the sequences of previous moves by White and Black respectively. We

will describe the winning strategy for White at stage α.

If α = β + 1 is successor, White will decide some γ ∈ C such that α ≤ γ. Let dom(s′β) =

γ′ ∈ C, then if ξ ∈ [γ′, γ) we have |
⋃

φ∈Φ′
β
φ(ξ)| ≤ |γ′| · supφ∈Φ′

β
|φ(ξ)| < b(ξ) through the

same reasoning as in the proof of Theorem 3.4.16 (iii). Therefore, we can find some value
sα(ξ) ∈ b(ξ) \

⋃
φ∈Φ′

β
φ(ξ) to define sα with dom(sα) = γ, and let Φα = Φ′

β .

We have to show that White can make a move at limit α as well. We claim that sα =
⋃

ξ∈α sξ

and Φα =
⋃

ξ∈αΦξ works. Clearly dom(sα) ∈ C by C being club, and

|Φα| ≤ |α| · supξ∈α |Φξ| = |α| ·
⋃

ξ∈α dom(sξ) ≤ |α| ≤ dom(sα).

Therefore, (sα, Fα) is indeed a valid move for White, so White has a winning strategy.

For <κ+-c.c., note that for any (s,Φ), (s,Ψ) ∈ AAvb,h
κ with dom(s) = γ we have |Φ| ≤ γ and

|Ψ| ≤ γ. We may assume without loss of generality that γ is infinite, then also |Φ ∪ Ψ| ≤ γ,
hence (s,Φ∪Ψ) is a condition below both (s,Φ) and (s,Ψ). Thus if A ⊆ AAvb,h

κ is an antichain
and (s,Φ), (t,Ψ) ∈ A are distinct, then we must have s ̸= t, hence |A| ≤ κ.

Corollary 4.3.42

AAvb,h
κ preserves cardinals and cofinality and does not add any elements to <κκ. ◁

Theorem 4.3.43

It is consistent that bb,hκ (��∋∞) > κ+ and that db,hκ (��∋∞) < 2κ. ◁

Proof. Analogous to Theorem 4.3.19, with AAvb,h
κ taking the role of Db

κ.

4.4. Forcing Notions and Perfect Trees

So far, we have seen several forcing notions that add κ-Cohen generics. We will now introduce
some forcing notions that do not add κ-Cohen reals. We will describe each of the forcing notions
in terms of perfect trees firstly, and then study their properties in the subsections.

For the entirety of this section we will assume that κ is inaccessible.

Definition 4.4.1

Let F be a set of functions such that dom(f) = κ for each f ∈ F , where we usually assume
F = κκ or F = κ2. Given a κ-tree T ⊆ F<κ, we define the following properties:

• T is perfect if for every u ∈ T there exists v ⊇ u such that v ∈ Split(T ).
• T is Laver if there exists u ∈ T such that for all v ∈ T we have v ⊇ u iff v ∈ Split(T ).
• T is closed (under splitting) if

⋃
C ∈ Split(T ) for every chain C ⊆ Split(T ) with |C| < κ.
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• Let U be a family of sets (e.g. a filter on κ), then T is guided by U if {x | u⌢⟨x⟩ ∈ T} ∈ U
for all u ∈ Split(T ).

• T is uniform if for every α ∈ κ there is a set X such that suc(u, T ) = {u⌢⟨x⟩ | x ∈ X} for
all u ∈ Levα(T ).

Let U be a <κ-complete nonprincipal filter on κ. We then define the following forcing notions:

• κ-Sacks forcing Sκ has closed perfect trees T ⊆ <κ2 as conditions.
• κ-Silver forcing Vκ has closed uniform perfect trees T ⊆ <κ2 as conditions.
• κ-Miller forcing Mi

U
κ has closed perfect trees T ⊆ <κκ guided by U as conditions.

• κ-Laver forcing LU
κ has closed Laver trees T ⊆ <κκ guided by U as conditions.

Each of these forcing notions is ordered by T ≤ S iff T ⊆ S.13 ◁

Note that Laver trees are perfect. Also note that if T is a closed perfect tree, then Levα(T ) ̸= ∅
for all α ∈ κ and for any u ∈ T with dom(u) ≤ α there exists v ∈ Splitα(T ) such that u ⊆ v.

When mentioning U in the remainder of this chapter, we will assume that U is a <κ-complete
nonprincipal filter.

Lemma 4.4.2

If T ⊆ F<κ is a closed perfect tree and b ∈ [T ] is a branch of T , then dom(b) = κ. ◁

Proof. Suppose that C ⊆ T is a chain such that u =
⋃
C and dom(u) ∈ κ. We will show that

u ∈ T , and hence that T contains some v ⊇ u that is splitting (because T is perfect). This
implies that C is not a branch.

Let C ′ = {v ⊆ u | v ∈ Split(T )}. Either
⋃
C ′ = u, in which case follows that u ∈ T by closure

under splitting, or
⋃
C ′ = v ⊊ u, in which case w = u ↾ (dom(v) + 1) ∈ suc(v, T ) ⊆ T , and

consequently by T being perfect and the fact that no w′ ∈ T with w ⊆ w′ ⊆ u is splitting there
exists some u′ ⊇ u such that u′ ∈ Split(T ), which implies u ∈ T as well.

The following lemma shows that the properties mentioned in Definition 4.4.1 are preserved by
certain subtrees. We will omit the proof, as it is quite evident.

Lemma 4.4.3

Let T be a κ-tree and u ∈ T . If T has property P ∈ {“ perfect ”, “ Laver ”, “ closed under
splitting ”, “ guided by U ”, “ uniform ”}, then (T )u also has property P . □

Finally each of these forcing notions has a fusion ordering and is closed under fusion. We will
prove this for each of the above forcing notions simultaneously, by going through the properties
one by one. Fusion would not be powerful if the forcing notion is not also <κ-closed, which
allows us to actually construct fusion sequences. We therefore state the following lemma in
this section as well, but omit the proof, firstly because it can be found elsewhere and secondly
because we will prove a <κ-closure for the forcing of Chapter 5 in Lemma 5.1.2, which is similar
enough to apply to the forcing notions of this section.

13Note that we can describe κ-Cohen forcing as the set of closed Laver trees guided by U = {X}, where X is
any set with 2 ≤ |X| ≤ κ.
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Lemma 4.4.4 — Folklore, cf. Lemma 5.1.2

Let P ∈
{
Sκ,Vκ,Mi

U
κ

}
, then P is <κ-closed. ◁

Remember that U is a <κ-complete filter, which is necessary for the <κ-closure of Mi
U
κ . We

will define an ordering that we may use as fusion ordering. In the case of Mi
U
κ where U is

a <κ-complete normal filter, we can describe a different, more versatile, fusion ordering that
resembles the usual fusion ordering on (classical) Laver and Miller forcing, see for example [FZ10,
Definition 2.2]. The following simpler fusion ordering will be sufficient for our needs, however.

Definition 4.4.5

Let P ∈
{
Sκ,Vκ,Mi

U
κ

}
. For T, S ∈ P, we let T ≤α S iff T ≤ S and Splitα(T ) = Splitα(S). ◁

Lemma 4.4.6 — Folklore

The orders ⟨≤α| α ∈ κ⟩ in Definition 4.4.5 are a fusion ordering (see Section 1.2) and P is closed
under fusion. ◁

Proof. Let ⟨Tα | α ∈ κ⟩ be a fusion sequence, that is, Tβ ≤α Tα for all α ≤ β ∈ κ. We claim
that T =

⋂
α∈κ Tα ∈ P. It is not hard to see that T is a κ-tree and T ≤α Tα for each α ∈ κ.

Closed under splitting. Let C ⊆ T be a chain of splitting nodes in T and |C| < κ, then
by regularity of κ there is α ∈ κ such that each u ∈ C is in Splitξ(T ) for some ξ < α. But
Splitξ(T ) = Splitξ(Tβ) for all β ≥ ξ, hence C is a chain of splitting nodes in Tα. Then

⋃
C ∈ Tα is

a splitting node, say
⋃
C ∈ Splitγ(Tα). By choice of α, we have γ ≤ α, and thus

⋃
C ∈ Splitγ(Tβ)

for all β ≥ α. Hence
⋃
C ∈ Splitγ(T ).

Perfect. Let u ∈ T and dom(u) = α, then u ∈ Tα+1 and there exists v ∈ Splitα(Tα+1)

such that u ⊆ v, since Tα is a closed perfect tree. But Splitα+1(Tα+1) = Splitα+1(Tβ) for all
β ≥ α + 1, hence suc(v, Tα+1) = suc(v, Tβ) for all β ≥ α + 1 and consequently v ∈ T and
suc(v, Tα+1) = suc(v, T ), making v ⊇ u a splitting node in T .

Guided by U . Suppose each Tα is guided by U and let u ∈ T be a splitting node, then u ∈
Splitα(Tα+1) for some α ∈ κ, and thus {x | u⌢⟨x⟩ ∈ T} = {x | u⌢⟨x⟩ ∈ Tβ} for each β ≥ α+ 1

by the same argument as in the “ perfect ” case above, hence the set of values extending u in T
form a set in U .

Uniform. Suppose each Tα is uniform, α ∈ κ and u ∈ Levα(T ). Note that suc(u, T ) =

suc(u, Tβ) for all β ≥ α+ 1 and each such Tβ is uniform, therefore T is uniform.

κ-Sacks and κ-Silver Forcing

The first forcing notions we discuss are κ-Sacks forcing Sκ and κ-Silver forcing Vκ. Kanamori
[Kan80] has studied κ-Sacks forcing first for general regular uncountable κ, although it behaves
quite differently from classical Sacks forcing if κ is accessible.

In the context of ωω, many cardinal characteristics known to be tame remain small in the Sacks
model14 and it is therefore a natural candidate to consider if one wishes to show the consistency
of x < 2ℵ0 for some cardinal characteristic x.

14See [Zap08, Chapter 6].
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In the context of κκ, κ-Sacks forcing is more subtle, and by [BBTFM18, Theorem 70] it can
be used to prove the consistency of dpowκ (∈∗) < didκ (∈∗).15 To show this, one first notes that Sκ
has the pow-Sacks property, but not the id-Sacks property, and thus adds an id-avoiding κ-real
and no pow-avoiding κ-reals by Lemma 4.2.10. Alternatively, one can prove the same things for
κ-Silver forcing, because the uniformity of the conditions does not affect the proof.

Lemma 4.4.7 — [BBTFM18, Lemma 69]

Sκ and Vκ have the pow-Sacks property, but not the id-Sacks property. ◁

We will not repeat a proof at this moment, but in Chapter 5 we will provide proof of more general
statements in order to separate many different cardinals of the form dhκ(∈∗) as Theorems 5.1.5
and 5.1.8.

The other important step is that ≤κ-support products also have the pow-Sacks property. Alter-
natively, one can also use ≤κ-support iteration, instead of ≤κ-support products, which also
preserves the pow-Sacks property. We will prove the more general preservation results in
Lemma 5.2.5.

The pow-Sacks property implies that Sκ and Vκ do not add pow-avoiding κ-reals, hence also
no unbounded κ-reals. Moreover, if pow < cf(b), that is, if pow(α) = (2|α|)+ < cf(b(α)) for
all α, then it is clear that Sκ and Vκ have the (b, pow)-Laver property, and thus do not add
(b, pow)-avoiding κ-reals either. For any such b, no b-unbounded κ-reals are added either.

On the other hand, we know that an id-avoiding κ-real is added, and in fact with the same
methods we can show that a (b, id)-avoiding κ-real is added as well. This construction is done
using fusion, and we will come back to this in the next chapter. In this chapter we will only use
fusion to show that Sκ does not add eventually different κ-reals. A similar proof can be done for
Vκ, but as the argument is complicated by the uniformity of the conditions, we will not do so.

Theorem 4.4.8

Sκ does not add eventually different κ-reals. ◁

Proof. Let ḟ be a name and T0 ∈ Sκ be such that T0 ⊩ “ ḟ ∈ κκ ”, then we will use fusion to
construct a condition T ≤ T0 and a κ-real g ∈ κκ such that T ⊩ “ ḟ =∞ ǧ ”. This implies that
ḟ is not eventually different over V.

Suppose Tα has been defined and that we have defined g up to δα, that is, g ↾ δα is defined
and g(δα) not yet. Let ⟨vξ | ξ ∈ λ⟩ be an enumeration of all v ∈ Tα such that v = u⌢⟨x⟩ for
some u ∈ Splitα(Tα), and note that λ < κ, because κ is inaccessible and there is an obvious
order-preserving bijection between

〈≤α2,⊆
〉

and ⟨Split≤α(Tα),⊆⟩.

For each ξ ∈ λ, find some T ξ
α ≤ (Tα)vξ such that there exists βξ ∈ κ with T ξ

α ⊩ “ ḟ(δα+ξ) = β̌ξ ”,
and define g(δα+ ξ) = βξ. Then we define Tα+1 =

⋃
T ξ
α. It is not difficult to see that Tα+1 ∈ Sκ

and Tα+1 ≤α Tα.
15Remember that id : α 7→ |α|+ and pow : α 7→ (2|α|)+.
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Finally, if α ∈ κ is limit, we define Tα =
⋂

ξ<α Tξ, then Tα ∈ Sκ by Lemma 4.4.4, and it is easy
to check that Tα ≤ξ Tξ for each ξ < α.

Finally we let T be the fusion limit of ⟨Tα | α ∈ κ⟩, then T ⊩ “ ḟ =∞ ǧ ”: if G is a generic filter
with T ∈ G, then we can find some u ∈ Splitα(T ) and v ∈ suc(u, T ) for any α ∈ κ such that
(T )v ∈ G, and clearly (T )v ⊩ “ ḟ(δα+ξ) = g(δα+ξ) ” for ξ such that v = vξ by construction.

**

A schematic representation of Figure 4.1, showing the
effect of κ-Sacks / κ-Silver forcing with cf(b) > pow.

*

Legend
not added by the forcing
added for h = id, but not for h ≥∗ pow

We will conclude this section with an independence result concerning SNκ, which shows that
Theorem 3.3.16 cannot be dualised. The proof is based on [GJS93], where a more complicated16

perfect tree forcing is used.

Theorem 4.4.9 — cf. [GJS93] for ωω

Let S be the ≤κ-support iteration of Sκ of length κ++. If V ⊨ “ 2κ = κ+ ”, then

VS ⊨ “ cof(Mκ) = κ+ < κ++ = cov(SNκ) ”. ◁

Proof. Sκ is κκ-bounding, since it has the pow-Sacks property. Because of this, there exists a
⊆-cofinal subset of SNκ whose elements can be coded terms of a family of sequences indexed
by some fixed dominating family. Since the dominating family remains dominating, we can
essentially characterise the elements of SNκ from the ground model. Subsequently, we show
that Sκ adds a generic κ-real that is not an element of any X ∈ (SNκ)

V. This concludes the
proof, since any κ+-sized witness of cov(SNκ) obtained in an intermediate step of the iteration
is destroyed by the subsequent step, and it is known that ≤κ-support iteration of Sκ does not
increase cof(Mκ) (see e.g. [BBTFM18]).

Since V ⊨ “ 2κ = κ+ ”, we may fix some dominating family D ⊆ κκ of size κ+. Let σ ={
sf | f ∈ D

}
be a family of sequences, where sf = ⟨sfξ | ξ ∈ κ⟩ is such that sfξ ∈ f(ξ)2. We use

σ to define an element of SNκ:

JσK =
⋂

f∈D
⋂

α0∈κ
⋃

ξ∈[α0,κ)
[sfξ ] ∈ SNκ.

16A more complicated forcing notion is necessary, since the goal of the mentioned paper is not only to increase
cov(SNκ), but also to increase add(SNκ). Sacks forcing could be seen as a special case of the forcing used in the
paper, and is still sufficient for our purpose. The relevant idea is [GJS93, Lemma 2.25]. Generalising the more
complicated proof of [GJS93] to the higher context has been done as well, by Schürz [CS].
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Reversely it’s easy to see that for every X ∈ SNκ there exists some choice of σ such that
X ⊆ JσK. We show that the set of conditions S ∈ Sκ with [S] ∩ JσK = ∅ is dense. It suffices to
show that for each S ∈ Sκ there exists f ∈ D and T ≤ S such that [T ] ∩

⋃
ξ∈κ[s

f
ξ ] = ∅.

Let S ∈ Sκ be arbitrary. We may assume without loss of generality (by pruning) that for each α
there is βα such that Splitα(S) ⊆ βα2, and thus that ⟨βα | α ∈ κ⟩ enumerates the club set of the
heights of splitting levels of S. Now let γξ denote the ξ-th limit ordinal below κ and consider
the nonstationary set

{
βγξ+1 | ξ ∈ κ

}
. Let f0 : ξ 7→ βγξ+1+1 and pick f ∈ D such that f0 ≤∗ f .

For each ξ ∈ κ such that f0(ξ) ≤ f(ξ) and sfξ ↾ βγξ+1 ∈ S, we prune S by removing the part of
the tree generated by the successor sfξ ↾ (βγξ+1+1) to get a tree T ≤ S. Since f0 ≤∗ f , it follows
that [T ] ∩ JσK = ∅. Finally, we only prune S at successor splitting levels, thus T ∈ Sκ.

κ-Miller Forcing

Generalisations of Miller forcing to κκ have been studied in [FZ10, FHZ13, BBTFM18]. All of
the results in this subsection could be found in the above references. We will introduce κ-Miller
forcing as a forcing to compare the forcing notions of Chapter 5 to, and to show that unbounded
κ-reals and b-unbounded κ-reals are distinct kinds of κ-reals.

We first mention that there exist choices for U ⊆ P(κ) such that Mi
U
κ adds a κ-Cohen generic,

for instance if U is the club filter:

Theorem 4.4.10 — [BBTFM18, Proposition 77]

Let U be the club filter on κ, that is, the set of all subsets of κ containing a club set. Then Mi
U
κ

adds a κ-Cohen generic. □

On the other hand, if U is a <κ-complete normal ultrafilter (and hence κ is measurable), then
we can show that Mi

U
κ does not add κ-Cohen generics.

Theorem 4.4.11 — [BBTFM18, Proposition 81]

Let U be a <κ-complete normal ultrafilter on κ, then Mi
U
κ has the pow-Laver property. ◁

Since the pow-Laver property also implies the (b, pow)-Laver property for any b ∈ κκ with
pow < cf(b), we see by Lemma 4.2.12 that Mi

U
κ does not add a b-unbounded κ-real when U is a

<κ-complete ultrafilter. Therefore, Mi
U
κ cannot add a κ-Cohen generic either.

Theorem 4.4.12 — Folklore, see e.g. [BBTFM18, after Definition 74]

Mi
U
κ adds an unbounded κ-real. ◁

Proof. If G ⊆ Mi
U
κ be a generic filter, then

⋂
G ∈ κκ. In the ground model, let ḟ be a name for⋂

G, let g ∈ κκ and let T0 ∈ Mi
U
κ .

We construct a fusion sequence ⟨Tα | α ∈ κ⟩. We obtain Tα+1 from Tα by removing all of the
nodes v ∈ suc(u, Tα) with u ∈ Splitα+1(Tα) for which v(dom(u)) < g(dom(u)). Since U is a
nonprincipal filter and we remove only |g(dom(u))| < κ many sets from suc(u, Tα), we see that
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{x | u⌢⟨x⟩ ∈ Tα+1} ∈ U remains true. Also note that Splitα(Tα) = Splitα(Tα+1), ensuring that
Tα+1 ≤α Tα. For limit α, we set Tα =

⋂
ξ<α Tξ.

If T is the fusion limit of ⟨Tα | α ∈ κ⟩ and α0 ∈ κ, then for any u ∈ Splitα0+1(T ) we see that
dom(u) ≥ α0 and (T )u ⊩ “ g(dom(u)) ≤ ḟ(dom(u)) ”. It follows that T ⊩ “ g ≤∞ ḟ ”.

This shows that Mi
U
κ is not κκ-bounding, and thus also does not have the pow-Sacks property.

Theorem 4.4.13

Let U be a <κ-complete filter on κ, then Mi
U
κ does not add an eventually different κ-real. ◁

Proof. Let T0 ∈ Mi
U
κ be such that T0 ⊩ “ ḟ ∈ κκ ”, then we will use fusion to construct a

condition T ≤ T0 and a κ-real g ∈ κκ such that T ⊩ “ ḟ =∞ g ”. We let ⟨Kα | α ∈ κ⟩ be a
partition of κ into sets of size κ, and we let ⟨kξα | ξ ∈ κ⟩ enumerate Kα.

To define Tα+1 from Tα, we let ⟨vξ | ξ ∈ κ⟩ be an enumeration of all v ∈ Tα such that v = u⌢⟨x⟩
for some u ∈ Splitα(Tα). This is possible by inaccessibility of κ and Tα ⊆ <κκ, hence |Tα| = κ.

For each ξ ∈ κ we find some T ξ
α ≤ (Tα)vξ such that there exists βξ ∈ κ with T ξ

α ⊩ “ ḟ(kξα) = β̌ξ ”
and we define g(kξα) = βξ.

The rest of the proof follows Theorem 4.4.8.

*

A schematic representation of Figure 4.1, showing the
effect of κ-Miller forcing guided by a <κ-complete
normal ultrafilter with cf(b) > pow.

*

Legend
added by the forcing
not added by the forcing
unknown for h = id, not added for h ≥∗ pow

In Chapter 5 we will introduce a forcing notion that adds a b-unbounded κ-real without adding
unbounded κ-reals.

κ-Laver Forcing

We saw in the last section that κ-Miller forcing could add unbounded κ-reals without adding
κ-Cohen generics. A natural strengthening of this would be whether it is possible to add domi-
nating κ-reals without adding κ-Cohen generics. Classically, this is what Laver forcing achieves,
that is, Laver forcing adds a dominating real without adding Cohen reals.

The situation is very different on κκ, as was shown by Khomskii, Koelbing, Laguzzi & Wohofsky
[KKLW22]. In this paper it is shown that κ-Laver forcing LU

κ will always add a κ-Cohen generic17,
as will many other <κ-distributive forcing notions similar to LU

κ .

It also follows from this that κ-Laver forcing cannot have any Laver properties, because these
prevent κ-Cohen generics from being added by Lemma 4.2.12.

17This is implied by [KKLW22, Theorem 3.5]
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4.5. Open Questions

Reading through this chapter, it may be apparent that there are many holes left to be plugged,
in the sense that we do not know if Figure 4.1 is complete, nor do we have a complete overview
of which kinds of κ-reals are added by some of the mentioned forcing notion. We will not give
a complete overview of all the open questions that could be deduced from this chapter, but we
will mention some that are of particular (general) interest.

The problem we mention in the subsection about κ-Laver forcing is perhaps the most intriguing
open problem, since it is in stark contrast with the classical analogy:

Question 4.5.1 — [KKLW22, Question 5.1]

Does there exist a <κ-distributive forcing notion that adds a dominating κ-real without adding
a κ-Cohen generic? Does every <κ-closed forcing notion adding a dominating κ-real add a
κ-Cohen generic? ◁

This question is related to Questions 2.6.1 and 2.6.2, since such a forcing might be usable to add
many dominating κ-reals, thereby increasing bκ(≤∗), without adding κ-Cohen generics, which
implies that cov(Mκ) = κ+.

Specifically for Question 2.6.2 we may also attempt to find a forcing notion that could be
iterated such that many unbounded κ-reals are added without adding κ-Cohen generics. As we
saw, κ-Miller forcing has this property, but it is known that products of κ-Miller forcing add a
κ-Cohen generic (see [BBTFM18, Theorem 85]), and for iterations it is unknown whether the
Laver property is preserved.

Question 4.5.2 — [BBTFM18, Question 83]

Let Mi be a ≤κ-support iteration of κ-Miller forcing guided by <κ-complete normal ultrafilters.
Does Mi have the pow-Laver property? ◁

Finally we will mention the question of whether it is consistent that bhκ(∈∗) ̸= bh
′

κ (∈∗) for some
parameters h, h′. In the dual case we know that dpowκ (∈∗) < didκ (∈∗) is consistent, and as we
will see in the next chapter, we can even separate κ+ many localisation cardinals with different
parameters. These consistency results are shown using forcing notions resembling κ-Sacks or
κ-Miller forcing, which are not helpful in separating avoidance numbers bhκ(∈∗).

Perhaps it is possible to separate localisation and avoidance numbers by using h-κ-localisation
forcing with specific parameters h, making the following question relevant:

Question 4.5.3

Does there exist h′ such that Lochκ does not add an h′-localising κ-real? ◁
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5

Lots and Lots of Localisation Cardinals

In this chapter we discuss how to separate many cardinalities of the form dhκ(∈∗). This chapter
contains new results and could be seen as an extension of the previous results regarding dhκ(∈∗)

found in [BBTFM18].

Remember from Fact 2.4.3 that add(N ) and cof(N ) are characterised using bh(∈∗) and dh(∈∗)

for any arbitrary cofinal h ∈ ωω. Therefore, the parameter h cannot influence the size of these
cardinal characteristics in the classical context. On the other hand, it was proved in [BBTFM18]
that dhκ(∈∗) can consistently have different values for different h ∈ κκ, namely dpowκ (∈∗) < didκ (∈∗)

is consistent, since this inequality holds in the κ-Sacks model, essentially because Sκ has the
pow-Sacks property, but not the id-Sacks property.

In this chapter we will answer an open question from [BBTFM18] and prove that there exist
functions hξ ∈ κκ and distinct cardinals λξ with cf(λξ) > κ for each ξ ∈ κ+ such that it is
simultaneously consistent that d

hξ
κ (∈∗) = λξ for all ξ ∈ κ. The strategy will be the same as

the strategy used to separate didκ (∈∗) from dpowκ (∈∗), in that we consider a product of perfect
tree forcing notions that have the hξ-Sacks property, but not the hη-Sacks property for different
ξ and η. Our candidates for these forcing notions are κ-Miller Lite forcing MLh

κ, where the
parameter h will play a key role.

In the first section, we introduce κ-Miller Lite forcing MLh
κ. We will prove that it preserves

cardinals and cofinalities and use fusion to show that it satisfies certain Sacks properties. In the
second section we consider products of such forcing notions. We show that properties such as the
preservation of cardinals and cofinalities and the relevant Sacks properties are preserved under
≤κ-support products and we use this to prove the consistency of κ many different cardinals.
Finally, in the third section we will show that with a preparatory forcing, we can use our
approach to prove the consistency of κ+ many different cardinals.

Nota Bene! In this chapter we assume without mention that κ denotes an inaccessible car-
dinal. We will also fix the convention that h,H, F ∈ κκ denote increasing cofinal cardinal
functions. This also extends to indexed or accented functions using the symbols b, h, F , such as
bξ, h′, and so on.

5.1. κ-Miller Lite Forcing

In order to prove that κ-Sacks forcing Sκ has the pow-Sacks property, but not the id-Sacks
property, one uses an argument by fusion and counts the minimum number of splitting nodes
in Splitα(T ) for conditions T ∈ Sκ. Essentially, the conditions split often enough to prevent a
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generic real from being id-localised, but the number of successors of splitting nodes (which is 2)
is small enough to construct a pow-slalom that localises any name for a κ-real.

Another forcing we have considered is κ-Miller forcing, where each splitting node has κ many
successors. This is too large to prove the h-Sacks property for any h ∈ κκ, since κ-Miller forcing
adds an unbounded κ-real.

Our approach is therefore to describe a forcing notion that splits exactly often enough to fail the
h-Sacks property, but not often enough to fail the h′-Sacks property, for two functions h, h′. We
could consider a bounded version of κ-Miller forcing for this. On ωω, such a forcing has been
studied in [Ges06] as Miller Lite forcing, and we will adopt this name as well.

Definition 5.1.1

The conditions of the forcing MLh
κ are closed perfect trees T ⊆ <κκ that satisfy the h-splitting

property : if u ∈ Splitα(T ), then u is an h(α)-splitting node in T . The order is defined as T ≤ S

iff T ⊆ S and for any u ∈ T , if suc(u, T ) ̸= suc(u, S), then |suc(u, T )| < |suc(u, S)|. ◁

We naturally want MLh
κ to preserve cardinalities. If we assume that V ⊨ “ 2κ = κ+ ”, then it is

clear that MLh
κ has the <κ++-chain condition, since |MLh

κ| ≤ |P(<κκ)| = 2κ = κ+, where the
former equality is implied by κ<κ = κ, which in turn follows from κ being inaccessible. Therefore
cardinalities above κ+ are preserved under assumption of V ⊨ “ 2κ = κ+ ”.

To preserve cardinalities less than or equal to κ, we show that MLh
κ is <κ-closed.

Lemma 5.1.2

MLh
κ is <κ-closed. In fact, if ⟨Tξ | ξ ∈ λ⟩ is a descending sequence of conditions with λ < κ

limit, then T =
⋂

ξ∈λ Tξ is a condition below each Tξ. ◁

Proof. We first prove:

(∗) if u ∈ T =
⋂

ξ∈λ Tξ, then there is η ∈ λ such that suc(u, T ) = suc(u, Tη).

Suppose that u ∈ T , and let λξ = |suc(u, Tξ)|, then the ordering on MLh
κ dictates that ⟨λξ | ξ ∈ λ⟩

is a descending sequence of cardinals, hence there is η ∈ λ such that λξ = λη for all ξ ∈ [η, λ).
But then suc(u, Tξ) = suc(u, Tη) for all ξ ∈ [η, λ) by the ordering of MLh

κ.

We show that T =
⋂

ξ∈λ Tξ satisfies the lemma by verifying that T is perfect, closed under
splitting, satisfies the h-splitting property and that T ≤ Tξ for all ξ ∈ λ.

Perfect. Let u ∈ T , and let f ∈ [T ] be a branch for which u ⊆ f . If dom(f) < κ, then f ∈ Tξ

for each ξ, thus by (∗) there is some η ∈ λ for which suc(f, Tη) = suc(f, T ) = ∅. Then clearly
Tη /∈ MLh

κ, which is a contradiction, hence dom(f) = κ.

Let Cξ = {α ∈ [dom(u), κ) | f ↾ α is splitting in Tξ}, then since Tξ ∈ MLh
κ are conditions, we

see that Cξ is a club set. But then
⋂

ξ∈λCξ is club. Any v ∈
⋂

ξ∈λCξ is splitting in all Tξ, thus
by (∗) it is splitting in T . By definition of Cξ it follows that u ⊆ v holds for such v ∈

⋂
ξ∈λCξ.
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Closed under splitting. Let C ⊆ T be a chain of splitting nodes, then for every ξ ∈ λ we also
see that C is a chain of splitting nodes in Tξ, and thus

⋃
C is a splitting node in all Tξ, hence

by (∗),
⋃
C is splitting in T .

h-Splitting property. If u ∈ Splitα(T ), then by (∗) there is η ∈ λ such that suc(u, Tη) =

suc(u, T ). Therefore u ∈ Splitβ(Tη) for some β ≥ α, hence u is an h(β)-splitting in T . Remember
that we assume h is increasing, so u is also h(α)-splitting in T .

Ordering. Clearly T ⊆ Tξ for each ξ ∈ λ, and if u ∈ T and suc(u, T ) ̸= suc(u, Tξ), then by
(∗) there exists η ∈ λ such that suc(u, T ) = suc(u, Tη), and clearly ξ < η. Since Tη ≤ Tξ by
assumption, then |suc(u, T )| = |suc(u, Tη)| < |suc(u, Tξ)|. Hence T ≤ Tξ.

Corollary 5.1.3

MLh
κ preserves all cardinalities and cofinalities ≤ κ. □

What is left, is to show that κ+ is also preserved. This will be a consequence of the proof
that MLh

κ has the F -Sacks property for some suitably large F ∈ κκ, so we will prove this
first. But before that, we will need to show that MLh

κ is closed under fusion. Our fusion
ordering ⟨≤α| α ∈ κ⟩ will be the one from Definition 4.4.5, that is, T ≤α S iff T ≤ S and
Splitα(T ) = Splitα(S).

Lemma 5.1.4

If ⟨Tα | α ∈ κ⟩ is a fusion sequence, then T =
⋂

α∈κ Tα ∈ MLh
κ and T ≤α Tα for all α ∈ κ. ◁

Proof. That T is a closed perfect tree follows as in Lemma 4.4.6. We will show that T has the
h-splitting property and that T ≤α Tα for all α ∈ κ.

h-Splitting property. Let u ∈ Splitα(T ), then u is an h(α)-splitting node in Tα+1. Let λu =

|suc(u, Tα+1)| ≥ h(α) and let ⟨vξ | ξ ∈ λu⟩ enumerate those v ⊇ u such that v ∈ Splitα+1(Tα+1).
For all β ≥ α+ 1 we have Splitα+1(Tβ) = Splitα+1(Tα+1), therefore for each ξ ∈ λu we see that
vξ ∈ Tβ for all β > α, thus vξ ∈ T . Therefore u is h(α)-splitting in T .

Ordering. Clearly T ⊆ Tα for all α ∈ κ. Given u ∈ T and α ∈ κ such that suc(u, T ) ̸=
suc(u, Tα), we will show that |suc(u, T )| < |suc(u, Tα)|. We may assume without loss of generality
that u is splitting in T , so let β ∈ κ be such that u ∈ Splitβ(T ). Since Splitγ(T ) = Splitγ(Tα) for
all γ ≤ α, we see that β ≥ α. We have Splitβ+1(Tβ+1) = Splitβ+1(T ), and thus suc(u, Tβ+1) =

suc(u, T ). Finally Tβ+1 ≤ Tα gives us |suc(u, T )| = |suc(u, Tβ+1)| < |suc(u, Tα)|.

We are now ready to prove the two main ingredients necessary for separating the localisation
cardinals. We will show that for any h there is some faster growing F such that MLh

κ has the
F -Sacks property, and reversely that for any F there exists some faster growing h such that
MLh

κ does not have the F -Sacks property. In other words, for any F0 we may find h and F1 such
that MLh

κ does not have the F0-Sacks property, but does have the F1-Sacks property. It will be
helpful to establish the notion of sharp trees.

Let a κ-tree T ∈ MLh
κ be called sharp if every u ∈ Splitα(T ) is a sharp h(α)-splitting node.

It is clear that by pruning we may find a sharp T ∗ below any condition T ∈ MLh
κ such that
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Splitα(T
∗) ⊆ Splitα(T ) for every α ∈ κ. We may assume that we can canonically do so, thus we

will hereby fix the notation T ∗ to denote a canonical sharp κ-tree below condition T . We will
write (MLh

κ)
∗ =

{
T ∈ MLh

κ | T is sharp
}
, which embeds densely into MLh

κ.

Remember that (T )u is the subtree generated by u ∈ T .

Theorem 5.1.5

For any h there exists F such that h <∗ F and MLh
κ has the F -Sacks property. ◁

Proof. We will let F : α 7→ (h(α)|α|)+ and show that MLh
κ has the F -Sacks property.

Let T0 ∈ MLh
κ and let ḟ be a name such that T0 ⊩ “ ḟ ∈ κκ ”. If T0 ⊩ “ ḟ ∈ V ”, then

the existence of an appropriate F -slalom is obvious, so we assume that T0 ⊩ “ ḟ /∈ V ”. We
will construct a fusion sequence ⟨Tξ | ξ ∈ κ⟩ and sets {Dξ ⊆ κ | ξ ∈ κ} with |Dξ| < F (ξ) such
that

⋂
ξ∈κ Tξ = T ⊩ “ ḟ(ξ) ∈ Ďξ ” for each ξ ∈ κ. Consequently, we can define the F -slalom

φ : ξ 7→ Dξ in the ground model, then it follows that T ⊩ “ ḟ(ξ) ∈ φ̌(ξ) ” for all ξ ∈ κ.

In general, we will assume each Tξ has the following property:

(∗) for every u ∈ Splitα(Tξ) with α < ξ we have |suc(u, Tξ)| = h(α).

This is vacuously true for T0, and by using sharp κ-trees at successor stages of our construction,
(∗) will follow by induction. If γ is limit, we will let Tγ =

⋂
ξ∈γ Tξ, which is a condition by

Lemma 5.1.2. Tγ need not necessarily be a sharp κ-tree, but it is at least sharp for all splitting
levels less than γ, which is enough for (∗).

Suppose Tξ has been defined, then we will define Tξ+1 such that it limits the possible values of
ḟ(ξ) and such that Tξ+1 ≤ξ Tξ. First note that if Tξ has property (∗), then T ∗

ξ ≤ξ Tξ: If u is
splitting in Tξ and u /∈ T ∗

ξ , then u was removed because there is some v ⊆ u such that suc(v, Tξ)
is too large for sharpness. But then by (∗) it follows that v ∈ Splitα(Tξ) for some α ≥ ξ, hence
u ∈ Splitβ(Tξ) for some β > ξ.

We define a set Vξ of successor nodes of the ξ-th splitting level, that is:

Vξ =
⋃

{suc(u, T ∗
ξ ) | u ∈ Splitξ(T

∗
ξ )}.

Our goal is to find a stronger condition below each subtree (T ∗
ξ )v with v ∈ Vξ that decides ḟ(ξ),

and glue these conditions back together to get a condition stronger than T ∗
ξ . Since the size of

Vξ is limited, this limits the possible values of ḟ(ξ) to a small set.

For each v ∈ Vξ find a condition T v ≤ (T ∗
ξ )v such that T v ⊩ “ ḟ(ξ) = β̌vξ ” for some βvξ ∈ κ.

Choose some arbitrary u ∈ Splitξ(T
v) and w ∈ suc(u, T v), and consider the subtree (T v)w of

T v generated by the initial segment w. We let Gξ : Vξ → P(Tξ) send v 7→ (T v)w. Note that the
α-th splitting level of Gξ(v) = (T v)w corresponds to the (ξ + 1 + α)-th splitting level of T v.

Now we define:

Tξ+1 =
⋃
Gξ[Vξ] =

⋃
{Gξ(v) | v ∈ Vξ} ,

Dξ =
{
βvξ | v ∈ Vξ

}
.
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For each v ∈ Vξ we have v ∈ Gξ(v), thus each successor of a splitting node in Splitξ(Tξ) is
in Tξ+1. Therefore we see that Splitξ(Tξ+1) = Splitξ(Tξ). If u ∈ Splitξ+1+α(Tξ+1) for some
α ∈ κ, then u ∈ Splitα(Gξ(v)), thus u ∈ Splitξ+1+α(T

v), and since T v ∈ MLh
κ, we see that u is

h(ξ + 1 + α)-splitting. Therefore Tξ+1 satisfies the h-splitting property of Definition 5.1.1. It is
easy to check that Tξ+1 is a closed perfect tree, thus we can conclude that Tξ+1 ∈ MLh

κ and that
Tξ+1 ≤ξ Tξ.

Note that the set Dξ is indeed small enough:

|Dξ| ≤ |Vξ| = |Splitξ(T ∗
ξ )| · h(ξ) ≤ h(ξ)|ξ| < F (ξ).

For each v ∈ Vξ we have T v ⊩ “ ḟ(ξ) ∈ Ďξ ”, and {T v | v ∈ Vξ} is a maximal antichain below
Tξ+1, thus:

Tξ+1 ⊩ “ ḟ(ξ) ∈ Ďξ ”.

Let T =
⋂

ξ∈κ Tξ, then by Lemma 5.1.4 we see T ∈ MLh
κ, and T ⊩ “ ḟ(ξ) ∈ Ďξ ” for all ξ ∈ κ.

As a corollary of MLh
κ having the F -Sacks property, we immediately get that κ+ is preserved.

Corollary 5.1.6

MLh
κ preserves κ+. ◁

Proof. Given an MLh
κ-name ḟ and T ∈ MLh

κ such that T ⊩ “ ḟ : κ→ κ+ ”, then using (the proof
of) the F -Sacks property we may produce sets Dξ with |Dξ| < F (ξ) < κ for each ξ ∈ κ such
that T ′ ⊩ “ ḟ(ξ) ∈ Ďξ ” for some stronger T ′ ≤ T , and thus ḟ is forced to have a range contained
in

⋃
ξ∈κDξ and cannot be cofinal in κ+.

The second ingredient is to find a suitably fast growing h for a given function F such that MLh
κ

does not have the F -Sacks property. We will need the following lemma.

Lemma 5.1.7

Let T ∈ MLh
κ and let CT = {α ∈ κ | Splitα(T ) = T ∩ ακ}, then CT is a club set. ◁

Proof. For α0 ∈ κ we can recursively define αn+1 large enough such that Splitαn
(T ) ⊆ ≤αn+1κ

for each n ∈ ω. Let α =
⋃

n∈ω αn, then α ∈ CT , hence CT is unbounded. It is easy to see that
CT is continuous.

Theorem 5.1.8

Let F ∈ κκ, then there exists h such that MLh
κ adds an F -avoiding κ-real, and hence does not

have the F -Sacks property. ◁

Proof. Let h be such that F (α) ≤ h(α) for all α ∈ S, where S is a stationary subset of κ. We
will show that the MLh

κ-generic κ-real is F -avoiding.

Let ḟ be a name for the generic MLh
κ-real in κκ, let φ be an F -slalom, let T ∈ MLh

κ and let
α0 ∈ κ. We want to find some α ≥ α0 and S ≤ T such that S ⊩ “ ḟ(α) /∈ φ̌(α) ”. If we can find
u ∈ T ∩ α+1κ such that u(α) /∈ φ(α), then (T )u will be sufficient.
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Let CT be as defined in Lemma 5.1.7 and α ∈ CT ∩S such that α0 ≤ α, then Splitα(T ) = T ∩ακ,
thus each t ∈ T ∩ ακ is an h(α)-splitting node. Hence, there is a set X ⊆ κ with |X| = h(α)

such that t⌢⟨γ⟩ ∈ T for all γ ∈ X. Since |φ(α)| < F (α) ≤ h(α), there is some γ ∈ X such that
γ /∈ φ(α), and thus u = t⌢⟨γ⟩ is as desired.

Theorem 5.1.9

MLh
κ does not add eventually different κ-reals. ◁

Proof. The proof is as in Theorems 4.4.8 and 4.4.13.

It follows that the situation is very comparable to that of κ-Sacks forcing, with h taking the role
of id and F : α 7→ (h(α)|α|)+ taking the role of pow.

For later use, we need to consider the relation of forcing notions with parameters that are almost
equal. For functions f, g ∈ κκ, we say that f and g are almost equal if f =∗ g, that is, if there
exists ξ ∈ κ such that f(α) = g(α) for all α ∈ [ξ, κ).

Lemma 5.1.10

If h =∗ h′, then MLh
κ and MLh′

κ are forcing equivalent. ◁

Proof. Since MLh
κ ∩MLh′

κ is dense in both MLh
κ and MLh′

κ .

Finally we will briefly consider a variant on the forcing notion MLh
κ defined in Definition 5.1.1,

namely the bounded forcing MLb,h
κ consisting of closed perfect trees on

∏
<κ b that are h-splitting.

It is easy to see that MLb,h
κ will affect db,Fκ (∈∗) in the same way that MLh

κ affects dFκ (∈∗) for
any F with F < cf(b). The other thing that one should note is that MLh

κ and MLb,h
κ are in

fact forcing equivalent if h(α)|α| ≤ b(α) for all α ∈ κ: essentially one could relabel the nodes
in T ∈ (MLh

κ)
∗ to obtain a condition in MLb,h

κ , from which it is not hard to construct a dense
embedding. Consequently, the results proved in this chapter also imply similar results for the
bounded localisation numbers db,hκ (∈∗).

5.2. Products of κ-Miller Lite Forcing

We see that for any F0, we can find a faster growing F1 and some suitable h such that the forcing
MLh

κ has the F1-Sacks property and not the F0-Sacks property, thus forcing with MLh
κ will not

increase dF1
κ (∈∗), but has the potential to increase dF0

κ (∈∗).

In order to increase dF0
κ (∈∗) we will need to add many MLh

κ-generic κ-reals to the ground model,
since these are F0-avoiding κ-reals. This can be either done with an iteration, or with a product.
Iteration has the drawback that once we have forced 2κ to be of size κ++, the forcing MLh

κ no
longer has the <κ++-c.c., and thus we cannot sufficiently control the iteration past this point.
While this does not form a problem to prove the consistency of κ+ = dF1

κ (∈∗) < dF0
κ (∈∗) = κ++,

iteration proves to be an obstacle when we wish to force localisation cardinals to be larger than
κ++. In particular, our goal to simultaneously assign multiple localisation cardinals to different
cardinalities requires a product.
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Let us fix a set of ordinals A and parameters ⟨hξ | ξ ∈ A⟩ for the forcing notions MLhξ
κ . For the

remainder of this section we fix the ≤κ-support product ML =
∏≤κ

ξ∈AMLhξ
κ . If p, q ∈ ML, we

will often write q ≤ p instead of q ≤ML p.

Lemma 5.2.1

ML is <κ-closed. □

Proof. By Theorem 4.1.15.

We will also need a generalisation of the fusion lemma to work on product forcing. The gener-
alisation of fusion described here is analogous to what is described in [Kan80] or [BBTFM18]
and that we defined in Section 1.2. We define fusion orderings ⟨≤α| α ∈ κ⟩ on each MLhξ

κ as in
Lemma 5.1.4, which yields a generalised fusion ordering ⟨≤Z,α| α ∈ κ, Z ∈ [A]<κ⟩ on ML.

Lemma 5.2.2

If ⟨(pα, Zα) | α ∈ κ⟩ is a generalised fusion sequence, then
∧

α∈κpα ∈ ML. ◁

Proof. Suppose that ⟨(pα, Zα) | α ∈ κ⟩ is a generalised fusion sequence, and let p =
∧

α∈κpα.
By definition of generalised fusion, every ξ ∈ supp(p) =

⋃
α∈κ pα is an element of Zηξ for some

ηξ ∈ κ. This means that if β ≥ α ≥ ηξ, then pβ(ξ) ≤α pα(ξ), and thus ⟨pα(ξ) | α > ηξ⟩ is a
fusion sequence in MLhξ

κ . Since MLhξ
κ is closed under fusion sequences (Lemma 5.1.4), we can

conclude that

p(ξ) =
⋂
α∈κ

pα(ξ) ∈ MLhξ
κ .

Since supp(p) =
⋃

α∈κ Zα, we see that |supp(p)| ≤ κ, thus we can conclude that p ∈ ML.

By Lemma 5.2.1, ML preserves all cardinalities up to and including κ. Suppose that each MLhξ
κ

has the F -Sacks property for some suitably large F . We will show in the next lemma that this
implies that ML has the F -Sacks property and therefore preserves κ+. Finally, if we assume
that V ⊨ “ 2κ = κ+ ”, then Theorem 4.1.17 shows that ML is <κ++-c.c. as well. Thus, ML
preserves all cardinals and cofinalities assuming that there exists some fixed F ∈ κκ such that
each MLhξ

κ has the F -Sacks property.

Lemma 5.2.3

Let B ⊆ A be sets of ordinals and Bc = A\B, and consider a sequence of functions ⟨hξ | ξ ∈ A⟩.
We define the ≤κ-support product ML =

∏≤κ
ξ∈AMLhξ

κ and assume G is an ML-generic filter.
If there exists F ∈ κκ such that (supξ∈Bc hξ(α))

|α| < F (α) for almost all α ∈ κ, then for each
f ∈ (κκ)V[G] there is φ ∈ (LocFκ )

V[G↾B] such that f ∈∗ φ. ◁

Proof. Note that Lemma 5.1.10 implies that we can assume without loss of generality that
F (α) > (supξ∈Bc hξ(α))

|α| for all α ∈ κ. Let p ∈ ML and ḟ be a name such that p ⊩ML “ ḟ ∈ κκ ”,
then we will construct a name φ̇ and a condition p′ ≤ p such that p′ ⊩ “ φ̇ ∈ (LocFκ )

V[Ġ↾B] ”.

The proof is essentially the same as the proof of Theorem 5.1.5, except that we work with
generalised fusion sequences and have to construct a name φ̇ for the appropriate F -slalom in
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V[G ↾ B], since such a slalom is not generally present in the ground model. That is, we
will construct a sequence ⟨(pξ, Zξ) | ξ ∈ κ⟩ with each pξ ∈ ML that is a generalised fusion
sequence in ML and names Ḋξ for sets of ordinals Dξ ∈ V[G ↾ B] with |Dξ| < F (ξ), such that
pξ+1 ⊩ “ ḟ(ξ) ∈ Ḋξ ”.

For each ξ ∈ κ and β ∈ Zξ we will make sure that pξ(β) ∈ (MLhβ
κ )∗ is sharp. To start, we let

p0 = p and we let Z0 = ∅. At limit stages δ we can define p′δ =
∧

ξ∈δpξ and let pδ ≤ p′δ be
defined elementwise such that pδ(β) = (p′δ(β))

∗ is sharp for each β ∈ Zδ.

Suppose we have defined pξ ∈ ML and Zξ and that |Zξ| ≤ |ξ|. As in the proof of Theorem 5.1.5,
we will consider the successor nodes of the ξ-th splitting level, find subtrees that decide the
value of ḟ(ξ), and glue the subtrees together. However, in this situation we have to deal with
multiple trees at once, namely with each pξ(β) such that β ∈ Zξ. For each β ∈ Zξ we define the
set of successor nodes of the ξ-th splitting level of pξ(β):

V β
ξ =

⋃{
suc(u, pξ(β))

∣∣ u ∈ Splitξ(pξ(β))
}
.

To deal with pξ(β) for all β ∈ Zξ simultaneously, we have to consider combinations of elements
of V β

ξ for β ∈ Zξ, and for each combination we will define a condition that decides ḟ(ξ). These
combinations are given by functions g : Zξ →

⋃
β∈Zξ

V β
ξ with the property that g(β) ∈ V β

ξ . We

will refer to such g as choice functions, since g chooses an element of V β
ξ for each β ∈ Zξ.

Let Vξ be the set of choice functions on {V β
ξ | β ∈ Zξ} and V ′

ξ the set of choice functions on
{V β

ξ | β ∈ Zξ \ B}, that is, V ′
ξ is the set of g ↾ (Zξ \ B) with g ∈ Vξ.

By induction hypothesis pξ(β) ∈ (MLhβ
κ )∗ for each β ∈ Zξ \ B, hence |Splitξ(pξ(β))| = hβ(ξ)

|ξ|

for all β ∈ Zξ \ B and thus, using that |Zξ| ≤ |ξ|, we get

|V ′
ξ| ≤ (supβ∈Zξ\B hβ(ξ)

|ξ|)|Zξ\B| ≤ (supβ∈Bc hβ(ξ))
|ξ| < F (ξ).

Therefore, if we restrict our attention to Zξ \B, the number of choice functions is small enough.
Consequently, we can describe a name Ḋξ depending only on the support in B, i.e. Ḋξ names a
set in V[G ↾ B], such that Ḋξ is bounded in cardinality by F (ξ).

For any choice function g ∈ Vξ, let (pξ)g be the condition defined by

(pξ)g(β) =

pξ(β) if β /∈ Zξ,

(pξ(β))g(β) if β ∈ Zξ.

Here (pξ(β))g(β) is the subtree of pξ(β) generated by the initial segment g(β) ∈ V β
ξ .

Let ζ = |Vξ| then ζ < κ by inaccessibility of κ. Fix some enumeration ⟨gη | η ∈ ζ⟩ of Vξ, which
we will use to recursively define a decreasing sequence of conditions rη with rη ≤Zξ,ξ pξ for each
η ∈ ζ. Essentially, our recursive construction will result in rη+1 being like rη, except that (rη)gη
is replaced by a stronger condition that decides ḟ(ξ). At the end of the recursion, we will be left
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with a condition rζ such that (rζ)g decides ḟ(ξ) for every g ∈ Vξ. We then gather the possible
values of ḟ(ξ) to construct the name Ḋξ.

Let r0 = pξ. For limit δ ∈ ζ let rδ =
∧

η∈δrη, which is a condition by <κ-closure (Lemma 5.2.1).
Assuming that rη ≤Zξ,ξ pξ for each η ∈ δ, it is easy to see that rδ ≤Zξ,ξ pξ as well.

Suppose rη is defined and rη ≤Zξ,ξ pξ, then in particular rη(β) ≤ξ pξ(β) for all β ∈ Zξ, and thus
Splitξ(rη(β)) = Splitξ(pξ(β)) for all β ∈ Zξ. Therefore by definition of the ordering on MLhβ

κ

and the fact that pξ(β) is sharp, we see that V β
ξ is exactly the set of successors of nodes at the

ξ-th splitting level of rη(β). Take the η-th choice function gη ∈ Vξ, and let r′η ≤ (rη)gη be such
that r′η ⊩ “ ḟ(ξ) = β̌ηξ ” for some ordinal βηξ . We define rη+1 elementwise.

If β /∈ Zξ, then we simply take rη+1(β) = r′η(β).

If β ∈ Zξ, fix some w ∈ suc(u, r′η(β)) for some u ∈ Splitξ(r
′
η(β)) and consider the subtree

(r′η(β))w generated by the initial segment w. Now we are ready to define rη+1(β) as

rη+1(β) = (r′η(β))w ∪
{
u ∈ rη(β)

∣∣∣ ∃v ∈ V β
ξ \ {gη(β)} (u ⊆ v or v ⊆ u)

}
.

In words, rη+1(β) is the result of replacing the extensions of gη(β) ∈ rη(β) by (r′η(β))w that
decides ḟ(ξ), where we use the subtree (r′η(β))w instead of r′η(β) to make sure that rη+1(β)

has enough successors at each splitting level to be in MLhβ
κ (compare this to the role of (T v)w

instead of T v in the proof of Theorem 5.1.5).

To finish the construction of the next condition in the fusion sequence, we use <κ-closure to
define p′ξ+1 =

∧
η∈ζ rη and let pξ+1 = (p′ξ+1)

∗ be sharp. To see that pξ+1 ≤Zξ,ξ pξ, note that for
every β ∈ Zξ and v ∈ V β

ξ we have v ∈ rη(β) for all η ∈ ζ, hence v ∈ pξ+1(β). This implies by
definition of V β

ξ that pξ+1(β) ≤ξ pξ(β) for all β ∈ Zξ. Finally, we can let Zξ+1 = Zξ ∪ {δ} for
some ordinal δ, using bookkeeping to make sure that

⋃
ξ∈κ Zξ =

⋃
ξ∈κ supp(pξ).

Note that the set of conditions r ≤ pξ+1 with |r(β)∩V β
ξ | = 1 for all β ∈ Zξ, is dense below pξ+1.

For any such r, let g map β to the unique element of r(β) ∩ V β
ξ for each β ∈ Zξ, then g ∈ Vξ is

a choice function, so we see that there exists η ∈ ζ such that g = gη. We will show that r ≤ r′η,
which implies that r ⊩ “ ḟ(ξ) = β̌ηξ ”.

For any β we have r(β) ≤ pξ+1(β) ≤ rη+1(β). If β /∈ Zξ, then we simply have rη+1(β) = r′η(β),
thus we are done. Otherwise β ∈ Zξ, and we know that g(β) is an initial segment of the stem of
r(β), hence

r(β) = (r(β))g(β) ⊆ (rη+1(β))g(β) = (r′η(β))w,

where w is as in the definition of rη+1(β) above. Since r(β) ≤ rη+1(β), we also have

r(β) = (r(β))w ≤ (rη+1(β))w = (r′η(β))w ≤ r′η(β),

and thus r(β) ≤ r′η(β).
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We are now ready to construct the names Ḋξ such that:

pξ+1 ⊩ “ ḟ(ξ) ∈ Ḋξ and Ḋξ ∈ V[Ġ ↾ B] and |Ḋξ| < F (ξ) ”.

For any g ∈ Vξ, we define:

g′′ = g ↾ (Zξ ∩ B),

Eg =
{
η ∈ ζ | ∃g′ ∈ V ′

ξ(g
′ ∪ g′′ = gη)

}
,

Dg
ξ =

{
βηξ | η ∈ Eg

}
.

Since |V ′
ξ| < F (ξ), we see that |Eg| < F (ξ), hence |Dg

ξ | < F (ξ). Clearly, if g, g̃ ∈ Vξ and
g ↾ (Zξ ∩ B) = g̃ ↾ (Zξ ∩ B), then Dg

ξ = Dg̃
ξ .

Let Aξ be an antichain below pξ+1 such that r ∈ Aξ implies |r(β) ∩ V β
ξ | = 1 for all β ∈ Zξ, and

let gr ∈ Vξ be such that gr(β) is the single element of r(β) ∩ V β
ξ for each β ∈ Zξ. We define

Ḋξ =
{
(r, Ďgr

ξ ) | r ∈ Aξ

}
.

It is clear by the above that for each r ∈ Aξ and η such that gr = gη we have

r ⊩ “ ḟ(ξ) = β̌ηξ ∈ Ḋgr
ξ and |Ḋgr

ξ | < F (ξ) ”,

so by denseness

pξ+1 ⊩ “ ḟ(ξ) ∈ Ḋξ and |Ḋξ| < F (ξ) ”.

To see that pξ+1 ⊩ “ Ḋξ ∈ V[Ġ ↾ B] ”, we argue within V[G ↾ B]. For every r, r̃ ∈ Aξ such that
both r ↾ B and r̃ ↾ B are elements of G ↾ B we see that the corresponding gr and gr̃ have the
property that gr ↾ (Zξ ∩ B) = gr̃ ↾ (Zξ ∩ B), and therefore Dgr

ξ = Dgr̃
ξ . Thus, we can fix any

arbitrary such r ∈ Aξ for which r ↾ B ∈ G ↾ B holds, and see that

V[G ↾ B] ⊨ “ pξ+1 ↾ Bc ⊩ Ḋξ = Ďgr
ξ ”.

Let p′ =
∧

ξ∈κpξ be the limit of the generalised fusion sequence, and let φ̇ be a name such that
p′ ⊩ “ φ̇ : ξ 7→ Ḋξ ”, then φ̇ names an F -slalom in V[G ↾ B] and p′ ⊩ “ ḟ ∈∗ φ̇ ”.

If we let B = ∅ in the definition of the lemma, then we can simplify this lemma to the following
corollary, providing us with the preservation of the F -Sacks property.

Corollary 5.2.4

If ML =
∏≤κ

ξ∈AMLhξ
κ and each hξ ≤∗ h and F : α 7→ (h(α)|α|)+, then ML has the F -Sacks

property. □

Finally the following lemma is based on Theorem 5.1.8 and shows how we can use products
of forcing notions MLhξ

κ to increase the cardinality of dFκ (∈∗). Although we know that each
MLhξ

κ adds an hξ-avoiding κ-real from Theorem 5.1.8, we will force with ≤κ-support product
and hence do not add them successively, but side-by-side. We will need to argue with the chain
condition of MLhξ

κ to show that dFκ (∈∗) will indeed be increased.
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Lemma 5.2.5

Let B ⊆ A be sets of ordinals, and consider a sequence of functions ⟨hξ | ξ ∈ A⟩. We define
the ≤κ-support product ML =

∏≤κ
ξ∈AMLhξ

κ and we assume G is an ML-generic filter. Let
⟨Sξ | ξ ∈ B⟩ be a sequence of stationary sets. If F is such that F (α) ≤ hξ(α) for all α ∈ Sξ and
ξ ∈ B, then V[G] ⊨ “ |B| ≤ dFκ (∈∗) ”. ◁

Proof. The lemma is trivial if |B| ≤ κ+, so we will assume that |B| ≥ κ++.

We work in V[G]. Let µ < |B| and let {φξ | ξ ∈ µ} ⊆ LocFκ , then we want to describe some
f ∈ κκ such that f ��∈∗ φξ for each ξ ∈ µ. Since ML is <κ++-c.c., we could find Aξ ⊆ A with
|Aξ| ≤ κ+ for each ξ ∈ µ such that φξ ∈ V[G ↾ Aξ]. Since |B| > µ · κ+, we may fix some
β ∈ B \

⋃
ξ∈µAξ for the remainder of this proof. Let f =

⋂
p∈G p(β), then f ∈ κκ is the generic

κ-real added by the β-th term of the product ML.

Continuing the proof in the ground model, let ḟ be an ML-name for f , let φ̇ξ be an ML-
name for φξ, let p ∈ ML and α0 ∈ κ. We want to find some α ≥ α0 and q ≤ p such that
q ⊩ “ ḟ(α) /∈ φ̇ξ(α) ”.

Let C = {α ∈ κ | p(β) ∩ ακ = Splitα(p(β))}, which is a club set by Lemma 5.1.7. Since Sβ is
stationary, there exists some α ≥ α0 such that α ∈ C ∩ Sβ . Choose some p0 ≤ p such that
p0(β) = p(β) and such that there is a Y ∈ [κ]<F (α) for which p0 ⊩ “ φ̇ξ(α) = Y̌ ”. This is
possible, since φξ ∈ V[G ↾ Aξ] and β /∈ Aξ, therefore we could find p′0 ∈ ML ↾ Aξ with
p′0 ≤ p ↾ Aξ and Y with the aforementioned property, and then let p0(η) = p′0(η) if η ∈ Aξ and
p0(η) = p(η) otherwise.

Each t ∈ p0(β) ∩ ακ is an hβ(α)-splitting node, hence the set X = {χ ∈ κ | t⌢⟨χ⟩ ∈ p0(β)} has
cardinality |X| ≥ hβ(α). Because α ∈ Sβ and β ∈ B, we have by our assumptions on F that
|Y | < F (α) ≤ hβ(α) ≤ |X|. We can therefore find some χ ∈ X such that χ /∈ Y . Let q ≤ p0 be
defined as

q(η) =

(p0(β))t⌢⟨χ⟩ if η = β,

p0(η) otherwise.

Here (p0(β))t⌢⟨χ⟩ is the subtree of p0(β) generated by the initial segment t⌢⟨χ⟩. Then q ≤ p0 ≤ p

and q ⊩ “ ḟ(α) /∈ Y̌ = φ̇ξ(α) ”.

Lemma 5.2.6

Let A be a set of ordinals such that κ < cf(|A|), let ⟨hξ | ξ ∈ A⟩ be a sequence of functions, let
ML =

∏≤κ
ξ∈AMLhξ

κ with ML-generic G, and let F ∈ κκ. Assuming V ⊨ “ 2κ = κ+ ”, it follows
that V[G] ⊨ “ 2κ = |LocFκ | = κ+ · |A| ”. ◁

Proof. This is a standard argument of counting names.

We are now ready to use our product forcing to separate κ many cardinals of the form dhκ(∈∗).
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Theorem 5.2.7

There exists a family of functions {gη | η ∈ κ} ⊆ κκ such that for any γ ∈ κ+ and any increasing
sequence ⟨λξ | ξ ∈ γ⟩ of cardinals with κ < cf(λξ) for all ξ ∈ γ and any σ : κ → γ, there exists
a forcing extension in which d

gη
κ (∈∗) = λσ(η) for all η ∈ κ. ◁

Proof. We assume that V ⊨ “ 2κ = κ+ ”, or otherwise we first use a forcing to collapse 2κ to
become κ+. By a result of Solovay (see e.g. [Jec03, Theorem 8.10]) there exists a family of κ
many disjoint stationary subsets of κ, thus let {Sη | η ∈ κ} be such a family. Let κ ≤ γ ∈ κ+

and σ : κ → γ be given. We will assume without loss of generality that σ is bijective, and
hence that σ−1 : γ → κ is a well-defined bijection. Let ⟨λξ | ξ ∈ γ⟩ be an increasing sequence of
cardinals with cf(λξ) > κ for all ξ ∈ γ.

Fix some F ∈ κκ such that F (α)|α| = F (α) and 2F (α) ≤ F (β) for any α < β. For each η ∈ κ we
define a function gη as follows:

gη(α) =

(F (α))+ if α ∈ Sη,

(2F (α))+ otherwise.

For each ξ ∈ γ we define Hξ ∈ κκ as follows:

Hξ(α) =

F (α) if α ∈
⋃

ζ∈ξ Sσ−1(ζ),

2F (α) otherwise.

For each ξ ∈ γ let Aξ be a set of ordinals with |Aξ| = λξ, such that ⟨Aξ | ξ ∈ γ⟩ is a sequence of
mutually disjoint sets, and let A =

⋃
ξ∈γ Aξ. For each ξ ∈ γ and β ∈ Aξ, we define hβ = Hξ.

We now consider the product forcing ML =
∏≤κ

β∈AMLhβ
κ . Let G be an ML-generic filter. We

will fix some η ∈ κ, and let B =
⋃

ξ∈σ(η)+1Aξ and Bc = A \ B. By Lemma 5.2.6 we see that
(Loc

gη
κ )V[G↾B] has cardinality

κ+ · |B| = κ+ ·
∣∣∣supξ≤σ(η)Aξ

∣∣∣ = κ+ ·
∣∣Aσ(η)

∣∣ = λσ(η).

To use Lemma 5.2.3, we need that hβ <∗ gη for all β ∈ Bc, equivalently, that Hξ <
∗ gη for

all ξ ∈ (σ(η), γ). But this is true for any ξ ∈ (σ(η), γ), since gη(α) = (F (α))+ iff α ∈ Sη =

Sσ−1(σ(η)) and because σ(η) ∈ ξ we see that Hξ(α) = F (α). Meanwhile for all α /∈ Sη we have
gη(α) = (2F (α))+ > Hξ(α). Therefore Lemma 5.2.3 shows that (Locgηκ )V[G↾B] is a family in V[G]

of size λσ(η) that forms a witness for

V[G] ⊨ “ dgηκ (∈∗) ≤ λσ(η) ”.

On the other hand, if β ∈ Aσ(η), then hβ = Hσ(η) and thus for any α ∈ Sη = Sσ−1(σ(η)) we see
that gη(α) = (F (α))+ ≤ 2F (α) = Hσ(η)(α). Therefore by Lemma 5.2.5 we see that

V[G] ⊨ “ λσ(η) = |Aσ(η)| ≤ d
gη
κ (∈∗) ”.

In conclusion, we get for every η ∈ κ that

V[G] ⊨ “ λσ(η) = d
gη
κ (∈∗) ”.
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Corollary 5.2.8

There exists functions hξ for each ξ ∈ κ such that for any cardinals λξ > κ with cf(λξ) > κ it is
consistent that simultaneously d

hξ
κ (∈∗) = λξ for all ξ ∈ κ. □

5.3. κ+ Many Localisation Cardinals

We saw in the previous section that we can use a partition of κ into disjoint stationary sets
{Sη | η ∈ κ}, and associate a function gη with each stationary Sη such that the cardinals dgηκ (∈∗)

can consistently be put in any arbitrary well-order.

It is natural to ask if we can do better than this, and separate κ+ many cardinalities. Clearly we
cannot do this using a disjoint family of stationary sets, since no such family of size κ+ exists.
Fortunately we can work around this by using an almost disjoint family of stationary sets, that
is, a family S of stationary subsets of κ, such that |S ∩ S′| < κ for any distinct S, S′ ∈ S. Let
us refer to such families as stationary almost disjoint families, or sad families.

The existence of a sad family of size 2κ is a consequence of ♢κ. Let ⟨Aα | α ∈ κ⟩ be a ♢κ-sequence,
that is, a sequence such that for any X ∈ P(κ) the following set is stationary:

SX = {α ∈ κ | X ∩ α = Aα} .

If X,Y ∈ P(κ) are distinct, and ξ is the least element of the symmetric difference X△Y , then
it is easy to see that SX ∩ SY ⊆ ξ + 1, thus {SX | X ∈ P(κ)} is a sad family of size 2κ.

Let us first attempt to follow the reasoning from Theorem 5.2.7 to demonstrate the differences
between using a family of disjoint stationary sets and a sad family as generators for our forcing
parameters.

Assume V ⊨ “ 2κ = κ+ and ♢κ ” and fix a sad family {Sη | η ∈ κ+}. We assume that F ∈ κκ is
some arbitrary function such that F (α)|α| = F (α) and 2F (α) ≤ F (β) for all α < β. For every
η ∈ κ+ we can define the functions gη, forming the parameters of the cardinal characteristics
d
gη
κ (∈∗) we wish to separate:

gη(α) =

(F (α))+ if α ∈ Sη,

(2F (α))+ otherwise.

In analogy with Theorem 5.2.7, we want to define functions Hξ such that MLHξ
κ keeps d

gη
κ (∈∗)

small when η ∈ X and increases d
gη
κ (∈∗) when η ∈ Y , where {X,Y } forms a partition of κ+.

Assuming Hξ(α) = Hξ(α)
|α| for all α ∈ κ, this means that we want to define Hξ such that

when η ∈ X : Hξ <
∗ gη,

when η ∈ Y : gη(α) ≤ Hξ(α) for all α ∈ S, where S is stationary.

Note that gη(α) can only have two possible values, either (F (α))+ or (2F (α))+, regardless of
η ∈ κ+. We can therefore assume without loss of generality that Hξ(α) is either equal to F (α)
or 2F (α), as in the construction from Theorem 5.2.7. Let z be the set on which Hξ is small:

z = {α ∈ κ | Hξ(α) = F (α)} .
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If η ∈ X, then Hξ(α) < gη(α) is true for all α /∈ Sη, but since Hξ(α) < gη(α) has to hold for
almost all α ∈ κ, we also need |{α ∈ Sη | α /∈ z}| < κ. Let us fix the notation that a ⊆∗ b iff
a \ c ⊆ b for some c with |c| < κ, then our condition above states that Sη ⊆∗ z should hold.

On the other hand, if η ∈ Y , then gη(α) ≤ Hξ(α) is possible if

gη(α) = (F (α))+ ≤ 2F (α) = Hξ(α).

Thus (κ \ z)∩ Sη needs to be stationary. The assumption that |z ∩ Sη| < κ is sufficient for this.

Given our sad family S = ⟨Sη | η ∈ κ+⟩, the existence of a set z such that Sη ⊆∗ z for all η ∈ X

and |z ∩ Sη| < κ for all η ∈ Y , is not immediately clear. This forms the main obstacle in
generalising Theorem 5.2.7. We can overcome this difficulty by adding a suitable z as described
above generically through forcing.

We define the forcing WX,Y
S (where W stands for wedge). If s ∈ [κ]<κ, let σs be the least ordinal

such that s ⊆ σs.

Definition 5.3.1

Given a sequence S = ⟨Sη | η ∈ κ+⟩ of almost disjoint subsets of κ and a partition {X,Y } of κ+,
we define WX,Y

S to have tuples p = (sp, Ap, Bp) as conditions, where sp ∈ [κ]<κ and Ap ∈ [X]<κ

and Bp ∈ [Y ]<κ are such that⋃
η∈Ap

Sη ∩
⋃

η∈Bp
Sη ⊆ σsp .

The ordering on WX,Y
S is given by (sq, Aq, Bq) ≤ (sp, Ap, Bp) if all of the following hold:

(i) Ap ⊆ Aq,
(ii) Bp ⊆ Bq,
(iii) sp = sq ∩ σsp ,
(iv) sq ∩ [σsp , σsq) ⊇

⋃
η∈Ap

Sη ∩ [σsp , σsq),
(v) sq ∩

⋃
η∈Bp

Sη ⊆ σsp . ◁

If G ⊆ WX,Y
S is a generic filter, then let zG =

⋃
p∈G sp. It is not hard to see that zG indeed has

the desired properties:

Lemma 5.3.2

If η ∈ X, then Sη ⊆∗ zG. If η ∈ Y , then |Sη ∩ zG| < κ. ◁

Proof. Let p ∈ WX,Y
S . It is clear from the way we have defined the forcing that for any η ∈ Ap

we have p ⊩ “ Šη ⊆∗ żG ” and for any η ∈ Bp we have p ⊩ “ Šη ∩ żG ⊆ σ̌p ∈ κ ”. Therefore, we
are done if we prove that

1. for every η ∈ X there is q ≤ p such that η ∈ Aq, and
2. for every η ∈ Y there is q ≤ p such that η ∈ Bq.
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Proving (1) and (2) happens in the same way, so we only prove (1) below.

Fix some η ∈ X. Since Sη is almost disjoint from Sξ for all ξ ∈ Bp, we can define γξ ∈ κ

such that Sξ ∩ Sη ⊆ γξ for each ξ ∈ Bp. Since |Bp| < κ we see that
⋃

ξ∈Bp
γξ ∈ κ. Pick some

γ ∈
⋃

ξ∈Ap
Sξ such that γ ≥ σsp ∪

⋃
ξ∈Bp

γξ.

We define q ≤ p by

sq = sp ∪
(⋃

ξ∈Ap
Sξ ∩ [σsp , γ]

)
,

Aq = Ap ∪ {η} ,

Bq = Bp.

Note that γ ∈ sq, thus σsq = γ + 1. Furthermore, note that⋃
ξ∈Ap

Sξ ∩
⋃

ξ∈Bp
Sξ ⊆ σsp ≤ γ and

Sη ∩
⋃

ξ∈Bp
Sξ ⊆

⋃
ξ∈Bp

γξ ≤ γ.

Therefore, q is indeed a condition.

We need to show that our forcing has several nice properties to satisfy our needs. Firstly, it is
essential that the sad family {Sη | η ∈ κ+} will remain a sad family, in particular, the forcing
should not destroy any stationary sets. Secondly, our forcing needs to preserve cardinals. In
particular, we may not collapse κ+ to κ, since our goal of proving the consistency of κ+ many
distinct cardinal characteristics requires our sad family to have cardinality κ+. Thirdly, our
forcing should preserve 2κ = κ+, which we need for the forcing notions of type MLh

κ afterwards.

All of these properties hold for WX,Y
S under the assumption that |X| = κ, since we can show

that the forcing is <κ-closed and (κ,<κ)-centred in this case, and our forcing is small enough
that it does not increase 2κ.

Lemma 5.3.3

WX,Y
S is <κ-closed. ◁

Proof. Let γ ∈ κ be limit and let ⟨pη | η < γ⟩ be a descending sequence of conditions. We will
write pη = (sη, Aη, Bη). Let p = (sp, Ap, Bp) be given by sp =

⋃
η∈γ sη and Ap =

⋃
η∈γ Aη and

Bp =
⋃

η∈γ Bη. That p is a condition and that p ≤ pη for each η ∈ γ are easy to check.

Corollary 5.3.4

WX,Y
S preserves stationary sets. ◁

Proof. See for example [Jec03, Lemma 23.7].

Lemma 5.3.5

If |X| ≤ κ, then WX,Y
S is (κ,<κ)-centred. ◁
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Proof. For any s ∈ [κ]<κ and A ∈ [X]<κ we define

Ws,A =
{
p ∈ WX,Y

S | sp = s ∧Ap = A
}
.

Since |X| ≤ κ implies that |[κ]<κ × [X]<κ| = κ, we are done if we show that each Ws,A is
<κ-linked. Let Q ∈ [Ws,A]

<κ and B =
⋃

p∈QBp. We claim that q = ⟨s,A,B⟩ is a condition and
that q ≤ p for all p ∈ Q.

Suppose that α ∈
⋃

η∈A Sη ∩
⋃

η∈B Sη, then there is p ∈ Q such that α ∈
⋃

η∈A Sη ∩
⋃

η∈Bp
Sη,

and since p is a condition it follows that α ∈ σsp = σs. Hence q is a condition. To check that
q ≤ p for each p ∈ Q, note that (i), (ii) and (iii) of Definition 5.3.1 are immediate, while (iv)
and (v) hold vacuously by sp = sq.

Corollary 5.3.6

If |X| ≤ κ, then WX,Y
S preserves all cardinalities. ◁

Finally, we have to look at adding multiple generics of forcing notions of the type WX,Y
S . Our

goal is to define functions Hξ for each ξ ∈ κ+. Fix some bijection σ : κ+ → κ+, then we want to
add a generic set z for the forcing WXξ,Yξ

S for each ξ ∈ κ+, where Xξ = σ(ξ) and Yξ = κ+ \Xξ.
This means that we also need to guarantee that a <κ-support product of size κ+ of forcing
notions of the form WX,Y

S behaves nicely, in the sense that it preserves cardinals, stationary sets
and 2κ = κ+.

Lemma 5.3.7

Let ⟨{Xξ, Yξ} | ξ ∈ κ+⟩ be a sequence of partitions of κ+ such that |Xξ| ≤ κ for each ξ ∈ κ+

and let W =
∏≤κ

ξ∈κ+ WXξ,Yξ

S . Then W is <κ-closed, <κ+-c.c. and if G is W-generic over V and
V ⊨ “ 2κ = κ+ ”, then V[G] ⊨ “ 2κ = κ+ ”. ◁

Proof. Note that each term WXξ,Yξ

S is <κ-closed, thus W is also <κ-closed by Theorem 4.1.15.

That W is <κ+-c.c. is proved using a ∆-system argument similar to Theorem 4.1.17 and
Lemma 4.1.20.

That 2κ = κ+ will remain true, follows from an argument by counting names, using that
|WXξ,Yξ

S | = κ+ for each ξ ∈ κ+, and that the product has κ+ many terms, thus |W| = κ+.

Corollary 5.3.8

W preserves cardinals and stationary sets. ◁

Now we are finally ready to prove our last theorem, which extends Theorem 5.2.7, and shows
that there can be consistently κ+ many distinct cardinal characteristics of the form dhκ(∈∗).

Theorem 5.3.9

Assuming 2κ = κ+ and ♢κ, there exists a family of functions {gη | η ∈ κ+} ⊆ κκ such that for
any increasing sequence ⟨λξ | ξ ∈ κ+⟩ of cardinals with κ < cf(λξ) and any function σ : κ+ → κ+,
there exists a forcing extension in which d

gη
κ (∈∗) = λσ(η) for all η ∈ κ+. ◁
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Proof. We start with a model V ⊨ “ 2κ = κ+ and ♢κ ” containing a sad family S = ⟨Sη | η ∈ κ+⟩,
and we will assume without loss of generality that σ : κ+ → κ+ is a bijection. We define the
functions gη for each η ∈ κ+ as

gη(α) =

(F (α))+ if α ∈ Sη,

(2F (α))+ otherwise.

For each η ∈ κ+ we define the partition {Xη, Yη} of κ+ by

Xη = σ−1[σ(η)] =
{
ζ ∈ κ+ | σ(ζ) ∈ σ(η)

}
and

Yη = κ+ \Xη.

We then force with a <κ-support product W =
∏≤κ

η∈κ+ WXη ,Yη

S . Note in particular that |Xη| ≤ κ.
Let G be W-generic, then we will work in V[G]. We define zσ(η) =

⋃
p∈G sp(η), then zσ(η) is

WXη ,Yη

S -generic over V.

By Lemma 5.3.7, we know that V[G] ⊨ “ 2κ = κ+ + Š is a sad family ”. Moreover, given η ∈ κ+

we know by Lemma 5.3.2 that Sζ ⊆∗ zσ(η) for all ζ ∈ Xη and |Sζ ∩ zσ(η)| < κ for all ζ ∈ Yη.
Equivalently, using the definition of Xη and Yη, if ξ ∈ κ+, then we have Sζ ⊆∗ zξ for all ζ ∈ κ+

such that σ(ζ) ∈ ξ and |Sζ ∩ zξ| < κ for all ζ ∈ κ+ such that σ(ζ) ∈ [ξ, κ+).

For each ξ ∈ κ+ we define Hξ ∈ κκ as follows:

Hξ(α) =

F (α) if α ∈ zξ,

2F (α) otherwise.

The remainder of the proof mirrors the proof of Theorem 5.2.7 almost exactly.

For each ξ ∈ κ+ let Aξ be a set of ordinals with |Aξ| = λξ, such that ⟨Aξ | ξ ∈ κ+⟩ is a sequence
of mutually disjoint sets, and let A =

⋃
ξ∈κ+ Aξ. For ξ ∈ κ+ and β ∈ Aξ, we define hβ = Hξ.

We now consider the ≤κ-support product ML =
∏≤κ

β∈AMLhβ
κ . Let K be ML-generic. We will

fix some η ∈ κ+, and let B =
⋃

ξ∈σ(η)+1Aξ and Bc = A \ B. By Lemma 5.2.6 we see that
(Loc

gη
κ )V[G][K↾B] has cardinality

κ+ · |B| = κ+ ·
∣∣∣supξ≤σ(η)Aξ

∣∣∣ = κ+ ·
∣∣Aσ(η)

∣∣ = λσ(η).

To use Lemma 5.2.3, we need that hβ <∗ gη for all β ∈ Bc, equivalently, that Hξ <
∗ gη for all

ξ ∈ (σ(η), κ+). But this is true for any ξ ∈ (σ(η), κ+), since gη(α) = (F (α))+ iff α ∈ Sη, while
Hξ(α) = F (α) iff α ∈ zξ, and because σ(η) ∈ ξ we have Sη ⊆∗ zξ. Therefore Lemma 5.2.3 shows
that (Loc

gη
κ )V[G][K↾B] is a family in V[G][K] of size λσ(η) that forms a witness for

V[G][K] ⊨ “ dgηκ (∈∗) ≤ λσ(η) ”.

On the other hand, if β ∈ Aσ(η), then hβ = Hσ(η) and thus σ(η) ∈ [σ(η), κ+) implies that
|Sη∩zσ(η)| < κ. In particular, Sη\zσ(η) is stationary and if α ∈ Sη\zσ(η), then gη(α) ≤ Hσ(η)(α).
Hence by Lemma 5.2.5 we see that

V[G][K] ⊨ “ λσ(η) = |Aσ(η)| ≤ d
gη
κ (∈∗) ”.
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In conclusion, we get for every η ∈ κ that

V[G][K] ⊨ “ λσ(η) = d
gη
κ (∈∗) ”.

5.4. Open Questions

With Theorem 5.3.9 we improved the known consistency of dpowκ (∈∗) < didκ (∈∗) to a family of
κ+ many cardinal characteristics that are mutually independent in the sense that any ordering
of the cardinals with order-type κ+ is consistent. This answers Questions 72 and 73 from
[BBTFM18] positively. Moreover, we have shown that there exist functions h, h′ ∈ κκ for which
it is consistent that dhκ(∈∗) < dh

′
κ (∈∗), but also that it is consistent that dh

′
κ (∈∗) < dhκ(∈∗).

It is natural to ask if we can do better than this:

Question 5.4.1

Is it consistent that there exists a family of functions {hξ | ξ ∈ κ++} such that each d
hξ
κ (∈∗) has

a distinct value? Is it consistent that there is a model with 2κ many distinct values for cardinals
of the form dhκ(∈∗)? ◁

Our method of separating cardinals uses a forcing MLh
κ that requires 2κ = κ+ in the ground

model to have the <κ++-c.c., hence if we start with a family of functions of size κ++, our forcing
may collapse κ++. This makes it hard to answer the above question using the method presented
in this chapter.

Another limitation of our method, is that we restrict our attention to forcing notions that have
the F -Sacks properties where F (α) = F (α)|α|. Essentially, we know how to separate cardinals
with a parameter h from cardinals with a parameter 2h, and thus we make a jump on the order
of a power set operation. It is unclear whether a finer structure can be discovered between these
cardinals, motivating the following question:

Question 5.4.2

Is it consistent that there exist h0, h1, h2 ∈ κκ such that |h0(α)| < |h1(α)| < 2|h0(α)| = h2(α)

and dh2
κ (∈∗) < dh1

κ (∈∗) < dh0
κ (∈∗)? ◁

The localisation cardinals dhκ(∈∗) have their natural dual in the avoidance cardinals bhκ(∈∗)

defined in Section 2.4. In general, for many cardinal characteristics x, y with duals x′, y′ it is the
case that if x < y is consistent, then y′ < x′ is consistent as well. This motivates the following
question, which has also been asked as Question 71 from [BBTFM18]:

Question 5.4.3

Do there exist functions h, h′ such that bhκ(∈∗) < bh
′

κ (∈∗) is consistent? ◁

One candidate for a forcing notion would be κ-localisation forcing, if we can answer Ques-
tion 4.5.3 positively. Other candidates could be perfect tree forcing notions whose nodes are
splitting on almost every level (e.g. κ-Laver trees), but such forcing notions behave quite differ-
ently from the classical case. Even if such forcing notions happen to have the right properties,
the last obstacle is preservation of such properties.
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6

Quite a Few Antiavoidance Cardinals
In the previous chapter we showed the consistency of κ+ many different localisation numbers
dhκ(∈∗). With the same forcing techniques one could also separate κ+ many bounded localisation
numbers db,hκ (∈∗), as per the comment at the end of Section 5.1. The antiavoidance numbers
dhκ(�

�∋∞) cannot be separated, since these are equal to cov(Mκ) for any h ∈ κκ by Corollary 3.3.8.
In this chapter we consider whether it is possible to separate multiple bounded antiavoidance
numbers db,hκ (��∋∞). Before we do so, let us give a brief history1 of the consistency of separating
(anti)localisation and (anti)avoidance numbers defined on bounded classical Baire spaces (that
is, on

∏
b with b ∈ ωω).

Goldstern & Shelah [GS93] proved the consistency of ℵ1 many localisation numbers db,h(∈∗) of
different cardinality, which was later improved by Kellner [Kel08] to show the consistency of 2ℵ0

many different localisation numbers db,h(∈∗), and together with Shelah [KS09, KS12] this was
extended further to the consistency of continuum many antilocalisation numbers bb,h(��∋∞) of
different cardinality. Kellner & Shelah’s method uses a form of creature forcing that resembles
forcing with a countable support product of proper forcing notions. Later work by Kamo & Os-
uga [KO14] showed how antilocalisation is related to a family of parametrised ideals, known as
Yorioka ideals2, and used this to give a different forcing construction of continuum many different
antilocalisation numbers bb,h(��∋∞) under the assumption of the existence of an inaccessible, using
a finite support iteration of c.c.c. forcing notions. Combining techniques developed by Brendle
& Mejía [BM14] with those from Kamo & Osuga, it was shown by Cardona & Mejía [CM19] that
consistently there exist continuum many different antiavoidance numbers db,h(��∋∞), again assum-
ing the existence of an inaccessible. Klausner & Mejía [KM22] then showed that consistently
there are uncountably many different localisation numbers db,h(∈∗) as well as antiavoidance
numbers db,h(��∋∞) and finally Cardona, Klausner & Mejía [CKM21] showed the consistency of
continuum many different localisation, antilocalisation, avoidance and antiavoidance cardinals
without the use of an inaccessible cardinal.

Our goal is to show the consistency of 2κ many different (anti)localisation and (anti)avoidance
numbers of the higher Baire space κκ, possibly by mimicking the techniques used in the classical
proofs. Apart from the results from the previous chapter, this chapter will form a generalisation
of the forcing construction from [KM22], although our conclusion will be significantly weaker.
We will show that if κ is inaccessible, then there exist κ many functions bα, hα such that for any
finite A ⊆ κ it is consistent that dbα,hα

κ (��∋∞) are mutually distinct for all α ∈ A.

We will increase a cardinal of the form db,hκ (��∋∞) by generically adding a (b, h)-antilocalising
slalom. At the same time, we will make sure that the forcing notion we use preserves db

′,h′
κ (��∋∞)

1A more detailed version of this history could be found in [CKM21, Section 1].
2Yorioka ideals were first described by Yorioka [Yor02] to study the strong measure zero ideal.
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for some other parameters b′, h′. As with our construction from the previous section, we will
consider a forcing notion consisting of higher perfect trees. In this case we use trees on Locb,h<κ

instead of trees on <κκ, so that our generic object will be the desired (b, h)-antilocalising slalom.

Since our proof follows the construction from [KM22] in large lines, we will give reference to
the corresponding classical lemmas where appropriate. One main difference between our forcing
notion and the forcing notion described in [KM22], is that we will not work with uniform trees.
That is, the forcing notion of [KM22] is comparable to Silver forcing, and has partial functions
as conditions. Our forcing notion is comparable to Sacks or Miller forcing. We made the choice
to use a non-uniform forcing notion to make a better comparison with the forcing notion from
Chapter 5. Both forcing notions with uniform perfect trees and with nonuniform perfect trees
will have the same effect on db,hκ (��∋∞), thus this change is not significant for the results we will
prove.

Nota Bene! We will assume in this chapter without mention that κ is inaccessible and that
b, h are increasing cofinal cardinal functions. This also extends to indexed or accented functions
using the symbols b, h, such as bξ, h′, and so on.

6.1. The Forcing Notion Qb,h
κ

In this section we will define a forcing notion Qb,h
κ that consists of closed perfect trees on Locb,hκ

and will add a generic (b, h)-slalom. One should compare Qb,h
κ to κ-Miller Lite forcing from

Definition 5.1.1. We will first define a norm on subsets of [b(α)]<h(α).

Definition 6.1.1

Given M ⊆ [b(α)]<h(α) let ∥M∥b,α be the least cardinal λ ∈ κ for which there exists y ∈ [b(α)]λ

such that for all x ∈ M we have y ̸⊆ x, i.e., the least size of a subset y of b(α) such that no
superset of y is contained in M . ◁

Definition 6.1.2 — cf. [KM22, Definition 3.1] for ωω

We define a forcing notion Qb,h
κ where conditions T ∈ Qb,h

κ are trees T ⊆ Locb,h<κ such that

(i) T is perfect and closed under splitting (see Definition 4.4.1),
(ii) if u ∈ Splitα(T ), then ∥suc(u, T )∥b,dom(u) ≥ |α|,
(iii) for any u ∈ T , if ∥suc(u, T )∥b,dom(u) < 2, then u is non-splitting.

ordered by T ≤ S iff T ⊆ S and for u ∈ T we have ∥suc(u, T )∥b,dom(u) < ∥suc(u, S)∥b,dom(u)

whenever suc(u, T ) ̸= suc(u, S). ◁

Here (iii) is necessary to ensure that the intersection of all trees in a generic filter forms a
branch. If we allow ∥suc(u, T )∥b,α = 1 without suc(u, T ) being a singleton, then we have no way
of decreasing the norm of suc(u, T ) any further.

For A ⊆ Ord and T ∈ Qb,h
κ , we define a collapse of T ∈ Qb,h

κ on A as a condition T ′ ≤ T such
that u is non-splitting in T ′ for all u ∈ Levα(T

′) with α ∈ A and suc(u, T ′) = suc(u, T ) for all
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u ∈ Levα(T
′) with α ∈ κ \ A. It is clear from the definition of the forcing notion that such a

collapse exists for any set A that is the complement of a club set.

It is also clear that Qb,h
κ adds a generic element to Locb,hκ , in the sense that if G ⊆ Qb,h

κ is a
generic filter over V, then φG =

⋂
G ∈ Locb,hκ and V[G] = V[φG].

Definition 6.1.3 — cf. [KM22, Observation 3.2] for ωω

Define (Qb,h
κ )∗ ⊆ Qb,h

κ as the set of all T ∈ Qb,h
κ such that for each α ∈ κ there exists sα(T ) ∈ κ

such that Splitα(T ) = Levsα(T )(T ) and ∥suc(u, T )∥b,sα(T ) ≥ |sα(T )| for all u ∈ Splitα(T ). ◁

We will fix the notation sα(T ) to be as in the above definition for any T ∈ (Qb,h
κ

∗
) and α ∈ κ.

Lemma 6.1.4

(Qb,h
κ )∗ densely embeds into Qb,h

κ . ◁

Proof. Let T ∈ Qb,h
κ . Given α = α0 ∈ κ, let

αn+1 = sup
{
dom(u)

∣∣ u ∈ Splitαn
(T )

}
.

Note that ⟨αn | n ∈ ω⟩ is increasing. Let C = {supn∈ω αn | α ∈ κ}, then C is easily seen to be
club. Note that if ξ ∈ C and u ∈ Splitξ(T ), then dom(u) = ξ. By (ii) of Definition 6.1.2 we see
that |dom(u)| ≤ ∥suc(u, T )∥b,dom(u) for all u ∈ Splitξ(T ) with ξ ∈ C.

Finally, let T ∗ ≤ T be a collapse of T on κ \ C, then T ∗ ∈ (Qb,h
κ )∗.

Lemma 6.1.5

Qb,h
κ is <κ-closed and <(2κ)+-c.c. ◁

Proof. Let λ < κ and ⟨Tξ ∈ Qb,h
κ | ξ ∈ λ⟩ be a descending sequence of conditions, then

⋂
ξ∈λ Tξ

is a condition below all Tξ. The key observation in proving <κ-closure is the following claim: if
u ∈ T =

⋂
ξ∈λ Tξ, then there is η ∈ λ such that suc(u, T ) = suc(u, Tη). The remainder follows

as in Lemma 5.1.2.

Suppose that u ∈ T and let λξ = ∥suc(u, Tξ)∥b,dom(u), then the ordering on Qb,h
κ dictates that

⟨λξ | ξ ∈ λ⟩ is a descending sequence of cardinals, hence there is η ∈ λ such that λξ = λη for all
ξ ∈ [η, λ). But then suc(u, Tξ) = suc(u, Tη) for all ξ ∈ [η, λ) by the ordering on Qb,h

κ .

That Qb,h
κ is <(2κ)+-c.c. is immediate by |Qb,h

κ | = 2κ.

As a corollary to the above lemma, we see that Qb,h
κ preserves all cardinalities ≤κ and >2κ.

We will prove the preservation of κ+ later, after Lemma 6.1.10, thus actually we see that all
cardinalities are preserved if we assume 2κ = κ+ in the ground model.

Define a fusion ordering ⟨≤α| α ∈ κ⟩ as in Definition 4.4.5 by T ≤α S iff T ≤ S and Splitα(T ) =

Splitα(S). It is easy to see that this is a fusion ordering.

Lemma 6.1.6 — cf. [KM22, Lemma 3.5(b)] for ωω

Qb,h
κ is closed under fusion, that is, if ⟨Tα | α ∈ κ⟩ is a sequence in Qb,h

κ such that Tβ ≤α Tα for
any β > α, then T =

⋂
α∈κ Tα ∈ Qb,h

κ and T ≤α Tα for all α ∈ κ. ◁
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Proof. Similar to Lemmas 4.4.6 and 5.1.4.

In the above lemma, we will note that if Tα ∈ (Qb,h
κ )∗ for all α, then T ∈ (Qb,h

κ )∗ as well.

Lemma 6.1.7 — cf. [KM22, Lemma 3.4] for ωω

If α ∈ κ, T ∈ Qb,h
κ and D ⊆ Qb,h

κ is open dense, then there exists T ′ ≤α T such that for
any v ∈ Splitα+1(T

′) we have (T ′)v ∈ D. Furthermore, if T ∈ (Qb,h
κ )∗, then we can also find

T ′ ∈ (Qb,h
κ )∗ satisfying the above. ◁

Proof. Enumerate Splitα+1(T ) as ⟨vξ | ξ ∈ µ⟩ and pick some Tξ ≤ (T )vξ ∩D for each ξ ∈ µ with
Tξ ∈ (Qb,h

κ )∗, then T ′ =
⋃

ξ∈µ Tξ satisfies the above. Note that by construction Splitα+1(T ) ⊆ T ′.
It is easy to see that if T ∈ (Qb,h

κ )∗, then T ′ ∈ (Qb,h
κ )∗ holds as well.

The following lemma shows that Qb,h
κ satisfies a generalisation of Baumgartner’s Axiom A to the

context of κκ.

Lemma 6.1.8 — cf. [KM22, Lemma 3.5(c)] for ωω

If A ⊆ Qb,h
κ is an antichain, T ∈ Qb,h

κ and α ∈ κ, then there is a condition T ′ ≤α T in Qb,h
κ such

that T ′ is compatible with less than κ elements of A. ◁

Proof. Let D be the set of S ∈ Qb,h
κ such that S ≤ R for some R ∈ A or such that S is

incompatible with all elements of A, then D is open dense. By Lemma 6.1.7 there is T ′ ∈ Qb,h
κ

with T ′ ≤α T such that (T ′)v ∈ D for all v ∈ Splitα+1(T
′). Note that |Splitα+1(T

′)| < κ and
that R ∈ A is compatible with T ′ iff there exists v ∈ Splitα+1(T

′) such that (T ′)v ≤ R. It follows
that less than κ many elements of A are compatible with T ′.

We will also prove that Qb,h
κ has continuous reading of names. In fact, we will prove a different

property that implies continuous reading, which is referred to as early reading of names in
[KM22]. The preservation of κ+ is a straightforward consequence of this property.

Definition 6.1.9 — cf. [KM22, Definition 3.6] for ωω

Let T ∈ Qb,h
κ and τ̇ be a Qb,h

κ -name such that T ⊩ “ τ̇ : κ → V ”. Then we say that T reads τ̇
early if (T )u decides τ̇ ↾ α for every α ∈ κ and u ∈ Levα(T ). ◁

Lemma 6.1.10 — cf. [KM22, Lemmas 3.7 and 3.12] for ωω

Let T ∈ Qb,h
κ and τ̇ a Qb,h

κ -name such that T ⊩ “ τ̇ : κ → V ”. Then there exists T ′ ≤ T with
T ′ ∈ (Qb,h

κ )∗ such that T ′ reads τ̇ early. ◁

Proof. Let Dα = {T ∈ Qb,h
κ | T decides τ̇ ↾ α} and note that Dα is open dense for each α ∈ κ.

We will construct a fusion sequence.

Let T0 ≤ T be such that T0 ∈ (Qb,h
κ )∗. Given Tα, use Lemma 6.1.7 to define Tα+1 ∈ (Qb,h

κ )∗

such that Tα+1 ≤α Tα and for any v ∈ Splitα+1(Tα+1) we have (Tα+1)v ∈ Dα. For limit γ ∈ κ

we already constructed the descending chain of conditions ⟨Tξ | ξ ∈ γ⟩, so we let Tγ =
⋂

ξ<γ Tξ.

Let Tκ be the fusion limit of ⟨Tα | α ∈ κ⟩, then by construction we see that if v ∈ Splitα+1(Tκ),
then (Tκ)v decides τ̇ ↾ α.
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Finally, note that {sα(Tκ) | α ∈ κ} is club, so C = {α ∈ κ | α = sα(Tκ)} is club as well. We
define T ′ to be a collapse of Tκ on κ \C. Let u ∈ T ′ with dom(u) = α ∈ C, then for any β < α,
we see that sβ(Tκ) < sα(Tκ) = α, and therefore (Tκ)u↾(sβ(Tκ)+1) decides τ̇ ↾ β. But this implies
that (Tκ)u decides τ̇ ↾ α, and hence also (T ′)u decides τ̇ ↾ α. On the other hand, if u ∈ T ′ with
dom(u) = β /∈ C, let α ∈ C be minimal with β < α, then sβ(Tκ) < α. Let v ∈ T ′ be such that
u ⊆ v and dom(v) = sβ(Tκ) + 1, then (Tκ)v decides τ̇ ↾ β. But, since

⋃
β≤ξ<α Levξ(T

′) contains
no splitting nodes in T ′ (because T ′ is a collapse of Tκ on κ \ C), we see that (T ′)u = (T ′)v,
hence (T ′)u decides τ̇ ↾ β.

Corollary 6.1.11

Qb,h
κ preserves κ+. ◁

Proof. Let τ̇ be a name and T ∈ Qb,h
κ be such that T ⊩ “ τ̇ : κ→ κ+ ” and T reads τ̇ early. For

each α ∈ κ there is a set Bα ⊆ κ+ with |Bα| ≤ |Levα(T )| < κ such that T ⊩ “ τ̇(α) ∈ Bα ”, thus
T ⊩ “ τ̇ [κ] ⊆

⋃
α∈κBα ”. Therefore T ⊩ “ τ̇ is not surjective ”.

We will now look at the effect that Qb,h
κ has on the cardinality of antiavoidance numbers. We

first note that the generic slalom added by Qb,h
κ does not antilocalise any f ∈

∏
b from the

ground model, hence that it is a (b, h)-antilocalising κ-real. By adding many such generics we
can increase db,hκ (��∋∞).

Lemma 6.1.12 — cf. [KM22, Lemma 3.3] for ωω

Let φG ∈ Locb,hκ be Qb,h
κ -generic over V, let h′ ≤∗ b′ ∈ κκ be cofinal increasing cardinal functions

and let S ⊆ κ be stationary such that h(α) ≤ h′(α) ≤ b′(α) ≤ b(α) for all α ∈ S. If φ′
G ∈ Locb

′
h′

satisfies φ′
G(α) = φG(α) ∩ b′(α) for all α ∈ S, then φ′

G is (b′, h′)-antilocalising over V. ◁

Note that this holds specifically for b = b′ and h = h′, in which case φ′
G = φG.

Proof. Working in V, fix some f ∈
∏
b′ and T ∈ (Qb,h

κ )∗ and α0 ∈ κ. Since C = {sξ(T ) | ξ ∈ κ}
is a club set, we can choose α > α0 such that α ∈ S ∩C. We see that ∥suc(u, T )∥b,α > 1 for any
u ∈ Levα(t), since u is splitting. Definition 6.1.1 implies that there is some v ∈ suc(u, T ) such
that {f(α)} ⊆ v(α). Then clearly (T )v ⊩ “ f(α) ∈ φ̇G(α) ”, and because f(α) ∈ b′(α) it follows
that (T )v ⊩ “ f(α) ∈ φ̇′

G(α) ”. Since α0 was arbitrary, V[G] ⊨ “ f ∈∞ φ′
G ”.

On the other hand, we can give assumptions on the parameters b′, h′ such that the cardinal
db

′,h′
κ (��∋∞) is preserved by Qb,h

κ . We first give assumptions such that a forcing notion Qb,h
κ has

the (b′, h′)-Laver property.

Lemma 6.1.13 — cf. [KM22, Lemma 3.13] for ωω

Let b, h, b′, h′ ∈ κκ be increasing cofinal cardinal functions such that for almost all α ∈ κ we
have

∣∣∣∏ξ≤α[b(ξ)]
<h(ξ)

∣∣∣ < h′(α) ≤ b′(α), then Qb,h
κ has the (b′, h′)-Laver property. ◁

Proof. Let T ∈ Qb,h
κ be such that T ⊩ “ ḟ ∈

∏
b′ ”, then we want to find φ ∈ Locb

′,h′
κ and

T ′ ≤ T such that T ′ ⊩ “ ḟ ∈∗ φ̌ ”. Using Lemma 6.1.10, let T ′ ∈ (Qb,h
κ )∗ be such that T ′ ≤ T

and T ′ reads ḟ early, then we can define a unique yv ∈ b′(α) for each v ∈ Levα+1(T
′) with

(T ′)v ⊩ “ ḟ(α) = yv ”. Note that |Levα+1(T
′)| ≤

∣∣∣∏ξ≤α[b(ξ)]
<h(ξ)

∣∣∣ < h′(α). Therefore if φ : α 7→
{yv | v ∈ Levα+1(T

′)}, then φ ∈ Locb
′,h′
κ and by construction we see that T ′ ⊩ “ ḟ ∈∗ φ̌ ”.
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Corollary 6.1.14

Under the assumptions of the lemma, Qb,h
κ does not add a (b′, h′)-avoiding κ-real. ◁

The (b, h)-Laver property is related to the preservation of db,hκ (∈∗), as we saw in Lemma 4.2.11
and Scenario 2 of Remark 4.2.2, since not adding a (b, h)-avoiding κ-real will imply that
db,hκ (∈∗) ≤ (2κ)V. We are, however, interested in antiavoidance, and wish to find a property of
Qb,h

κ such that db,hκ (��∋∞) is preserved for some b, h. The following lemma gives us the property
we need, using the Tukey connection from Theorem 3.3.9.

Lemma 6.1.15 — cf. [KM22, Lemma 3.15] for ωω

Let b, h, b′, h′, b̃, h̃ ∈ κκ be increasing cofinal cardinal functions such that for almost all α ∈ κ∣∣∣∏ξ≤α[b(ξ)]
<h(ξ)

∣∣∣ < h′(α) ≤ b̃(α)<h̃(α) ≤ b′(α) and

h̃(α) · h′(α) < b̃(α).

Then Qb,h
κ does not add a (b, h)-antilocalising κ-real. That is, if ψ̇ is a Qb,h

κ -name and T ∈ Qb,h
κ

is such that T ⊩ “ ψ̇ ∈ Locb̃,h̃κ ”, then there is g ∈
∏
b̃ and T ′ ≤ T such that T ′ ⊩ “ g��∈∞ ψ̇ ”. ◁

Proof. Working in the extension, we define the functions ρ−, ρ+ witnessing that ALb̃,h̃ ⪯ Lb′,h′

and the injections ια for α ∈ κ as in the proof of Theorem 3.3.9. Note that if we assume
that ια ∈ V for each α, then due to the constructive definition of ρ− and ρ+, it follows that
ρ− ↾ (Locb̃,h̃κ )V and ρ+ ↾ (Locb

′,h′
κ )V are in the ground model.

Let ḟ be a name for ρ−(ψ̇) and by Lemma 6.1.13, let φ ∈ Locb
′,h′
κ and T ′ ≤ T be such that

T ′ ⊩ “ ḟ ∈∗ φ ”. Let g = φ+(φ) ∈
∏
b̃, then Theorem 3.3.9 shows that T ′ ⊩ “ g��∈∞ ψ̇ ”.

6.2. Products of Qb,h
κ

If we wish to increase db,hκ (��∋∞), we will have to add many new (b, h)-antilocalising κ-reals. We
will do so using a ≤κ-support product of forcing notions of the form Qb,h

κ . We could use a
≤κ-support iteration as well, but this has the drawback that we cannot increase 2κ past κ++.
We will show that the product behaves nicely, especially that Lemma 6.1.15 is preserved under
products, and that adding many Qb,h

κ -generic elements will indeed increase the size of db,hκ (��∋∞).

For the remainder of this section, we will fix some set of ordinals A and bζ , hζ ∈ κκ for each
ζ ∈ A and we fix the abbreviations Qζ = Qbζ ,hζ

κ and Q∗
ζ = (Qbζ ,hζ

κ )∗. We define the ≤κ-support
products Q =

∏≤κ
ζ∈AQζ and Q∗

=
∏≤κ

ζ∈AQ∗
ζ . Since each Q∗

ζ densely embeds in Qζ , it is easy
to see that Q∗ densely embeds in Q. We will often implicitly assume without mention that all
conditions are in Q∗.

Lemma 6.2.1

If κ+ = 2κ, then Q is <κ-closed and <κ++-c.c. ◁

Proof. By Theorems 4.1.15 and 4.1.17.
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Lemma 6.2.2

Q∗ is closed under generalised fusion, i.e. for any generalised fusion sequence ⟨(pα, Zα) | α ∈ κ⟩
there exists p ≤α,Zα pα with supp(p) =

⋃
α∈κ supp(pα). ◁

Proof. Let S =
⋃

α∈κ supp(pα), then
⋃

α∈κ Zα = S, so for each ζ ∈ S we can fix αζ ∈ κ such that
ζ ∈ Zαζ

. Then also ζ ∈ Zα for any α ≥ αζ , since Zα ⊇ Zαζ
. If αζ ≤ α ≤ β < κ, then pβ ≤α,Zα

pα, and thus by ζ ∈ Zα we see that pβ(ζ) ≤α pα(ζ). Therefore
〈
pαζ+α(ζ) | α ∈ κ

〉
is a fusion

sequence in Q∗
ζ and we can define p(ζ) =

⋂
α∈κ pαζ+α(ζ), then p(ζ) ∈ Q∗

ζ by Lemma 6.1.6.

For p ∈ Q and α ∈ κ, we define the set of possibilities poss(p,<α) to be the set of functions
η with domain supp(p) such that η(ζ) ∈ Levα(p(ζ)) for all ζ ∈ supp(p). We similarly define
poss(p,≤α) = poss(p,<α+1). Remember that (p(ζ))u is the subtree of p(ζ) generated by u. If
η ∈ poss(p,<α), we define η ∧ p to be the condition with (η ∧ p)(ζ) = (p(ζ))η(ζ) for ζ ∈ supp(p)

and (η ∧ p)(ζ) = 1ζ otherwise. We sometimes abuse this notation also to define η ∧ q for q ≤ p

with larger support, where we let (η ∧ q)(ζ) = q(ζ) for all ζ ∈ supp(q) \ supp(p).

For p ∈ Q∗, we define Split(p) =
⋃

ζ∈supp(p) {sα(p(ζ)) | α ∈ κ} and let ⟨sα(p) | α ∈ κ⟩ be the
strictly increasing enumeration of Split(p). Let Zp(α) = {ζ ∈ supp(p) | ∃ξ(sξ(p(ζ)) = α)}.

We call p ∈ Q∗ modest if for any α ∈ κ we have |poss(p,<α)| < κ and |Zp(α)| ≤ α, and
moreover |Zp(sα(p))| = 1 in case α is successor.

Lemma 6.2.3 — cf. [KM22, Lemma 5.2] for ωω

The set of modest conditions is dense in Q∗ (hence in Q as well). ◁

Proof. Let p ∈ Q∗. We will assume for convenience (and without loss of generality) that
|supp(p)| = κ. Enumerate supp(p) as ⟨ζα | α ∈ κ⟩ and let vα ∈ Levα+1(p(ζα)) be arbitrary.
We define q as

q(ζα) = (p(ζα))vα for all α ∈ κ,

q(ζ) = 1ζ if ζ /∈ supp(p).

Then q ≤ p and |poss(q,<α)| < κ and |Zq(α)| ≤ α for all α ∈ κ. Note that if r ≤ q is such that
supp(r) = supp(q), then |poss(r,<α)| < κ and |Zr(α)| ≤ α still hold for all α ∈ κ.

We will define r ≤ q such that r is modest. Note that C = {sα(q) | α ∈ κ is limit} contains a
club set. Let Aζ = {sα(q) | α ∈ κ is successor ∧ ζ ̸= min(Zq(sα(q)))}. For any ζ ∈ supp(q), we
define r(ζ) to be a collapse of q(ζ) on Aζ , and for any ζ /∈ supp(q) we let r(ζ) = 1ζ . It is clear
from this construction that Split(r) = Split(q), and that ζ ∈ Zr(sα(r)) implies that α is limit
or that ζ = min(Zq(sα(q))). In other words, r is modest.

Finally r(ζ) ∈ Q∗
ζ is implied by p(ζ) ∈ Q∗

ζ , because for each α ∈ κ there is β ≥ α such that
sα(r(ζ)) = sβ(p(ζ)), and for any α ∈ Split(r) and ζ ∈ Zr(α) we have suc(u, r(ζ)) = suc(u, p(ζ))

for all u ∈ Levα(r). Notably, for the norm we see that

∥suc(u, r(ζ))∥b,dom(u) = ∥suc(u, p(ζ))∥b,dom(u) ≥ β ≥ α.
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The reason we are interested in modest conditions, is that modest conditions behave similarly
to conditions of the single forcing notion Qb,h

κ . By using modest conditions, the number of
possibilities up to a certain height α is bound below κ, which will be crucial in preservation of
the Laver property (Lemma 6.2.8).

We will first use modest conditions to generalise Lemma 6.1.7 to products. In order to state the
lemma, we define one more ordering on Q∗ as follows: q ≤∗

α p if

• q ≤ p and
• Levsα(p)(q(ζ)) = Levsα(p)(p(ζ)) for all ζ ∈ supp(p) and
• s0(q(ζ)) > sα(p) for any ζ ∈ supp(q) \ supp(p).

Lemma 6.2.4 — cf. [KM22, Lemma 5.4] for ωω

If α ∈ κ, p ∈ Q∗ is modest and D ⊆ Q is open dense, then there exists q ∈ Q∗ with q ≤∗
α p such

that for any η ∈ poss(q,≤sα(q)) we have η ∧ q ∈ D. ◁

Proof. By assumption p is modest, thus if ⟨ηξ | ξ ∈ µ⟩ enumerates poss(p,≤sα(p)), then µ < κ.
We create a descending sequence of conditions ⟨pξ | ξ ∈ µ⟩. Let p0 = p. If γ < µ is limit,
let pγ =

∧
ξ<γpξ using Lemma 6.2.1. If pξ has been defined, let p′ξ+1 ≤ ηξ ∧ pξ be such that

p′ξ+1 ∈ D. We define pξ+1 from p′ξ+1 in a pointwise manner. If ζ ∈ supp(p), we let

pξ+1(ζ) = p′ξ+1(ζ) ∪
⋃{

(pξ(ζ))v | v ∈ Levsα(p)+1(pξ(ζ)) and v ̸= ηξ(ζ)
}
.

In plain words, we keep pξ+1(ζ) almost equal to pξ(ζ), except that we replace the part of pξ(ζ)
that extends ηξ(ζ) with the tree p′ξ+1(ζ). On the other hand, if ζ ∈ supp(p′ξ+1) \ supp(p), we
let pξ+1(ζ) = (p′ξ+1(ζ))u for some u ∈ Levsα(p)+1(p

′
ξ+1(ζ)). Finally if ζ /∈ supp(p′ξ+1) we let

pξ+1(ζ) = 1ζ .

Note that p′ξ+1(ζ) = (p′ξ+1(ζ))ηξ(ζ) = (pξ+1(ζ))ηξ(ζ) for all ζ ∈ supp(p), and thus ηξ∧pξ+1 = p′ξ+1.

Finally define q =
∧

ξ∈µpξ, then we see that q ≤∗
α p and η ∧ q ≤ η ∧ pξ+1 = p′ξ+1 ∈ D for each

η ∈ poss(q,≤sα(q)) = poss(p,≤sα(p)).

We can also generalise the notion of early reading in the most apparent sense.

Definition 6.2.5

Let p ∈ Q and τ̇ be a Q-name such that p ⊩ “ τ̇ : κ → V ”, then we say that p reads τ̇ early iff
η ∧ p decides τ̇ ↾ α for every α ∈ κ and η ∈ poss(p,<α). ◁

Lemma 6.2.6 — cf. [KM22, Lemma 5.6] for ωω

Let p ∈ Q and τ̇ a Q-name such that p ⊩ “ τ̇ : κ → V ”. Then there exists q ≤ p with q ∈ Q∗

such that q reads τ̇ early. ◁

Proof. Let Dα =
{
q ∈ Q | q decides τ̇ ↾ α

}
, and note that Dα is open dense for each α ∈ κ. We

prove the lemma by constructing q′ ≤ p such that η∧ q′ ∈ Dα for all η ∈ poss(q′,≤α). We claim
that this is sufficient: define q such that q(ζ) is a collapse of q′(ζ) on {sα(q′) | α is successor}
for each ζ ∈ supp(q′) and q(ζ) = 1ζ otherwise, then q reads τ̇ early.
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The condition q′ will be the limit of a generalised fusion sequence ⟨(pα, Zα) | α ∈ κ⟩. Each pα

will be modest and have the following property:

(⋆α) sα(pα(ζ)) < s0(pα(ζ
′) for all ζ ∈ Zα and ζ ′ ∈ supp(pα) \ Zα.

Given pα satisfying (⋆α), let βα = sup {sα(pα(ζ)) | ζ ∈ Zα} and suppose pα+1 ≤∗
βα

pα, then it
follows from (⋆α) that pα+1 ≤α,Zα pα.

Firstly, we let p0 ≤ p be modest such that p0 ∈ Ds0(p0). This can be easily achieved by letting
p00 ≤ p be modest, finding modest pn+1

0 ≤ pn0 such that pn+1
0 ∈ Ds0(pn0 )

and letting p0 =
∧

n∈ωp
n
0 .

We set Z0 = Zp0(s0(p0)), then |Z0| < κ by modesty and p0 satisfies (⋆0). We may also assume
that |Z0| is infinite and that |supp(p0)| = κ.

Next, for limit γ, we have Zγ =
⋃

α∈γ Zα and p̂γ =
∧

α<γpγ . We let pγ ≤γ,Zγ p̂γ be such that it
has (⋆γ). This is possible, since we may keep pγ(ζ) = p̂γ(ζ) for all ζ ∈ Zγ and thus trivially have
pγ ≤γ,Zγ p̂γ . The construction of the successor step will show that βγ = sγ(pγ(ζ)) = sγ(pγ(ζ

′))

for any ζ, ζ ′ ∈ Zγ . If η ∈ poss(pγ , <βγ) and δ < βγ , then there is α < γ such that η ∧ pα ∈ Dδ,
therefore η ∧ pγ ∈ Dβγ .

Finally we construct pα+1 from pα. Let λ = |Zα| and enumerate Zα as ⟨ζξ | ξ < λ⟩. We
use bookkeeping to fulfil the promise that

⋃
α∈κ Zα =

⋃
α∈κ supp(pα), thereby setting Zα+1 =

Zα ∪ {ζλ} for some appropriate ζλ ∈ supp(pα) \ Zα. We construct a descending sequence of
conditions ⟨pξα | ξ ≤ λ + α + 1⟩ by recursion over a strictly increasing sequence of ordinals
⟨δξα | ξ ≤ λ+ α+ 1⟩, to obtain the following properties (which we will clarify below):

(i) p0α ≤∗
βα
pα, where βα = sup {sα(pα(ζ)) | ζ ∈ Zα},

(ii) pξ
′

α ≤∗
δξα
pξα for all ξ < ξ′ ≤ λ+ α+ 1,

(iii) δξα = sα+1(p
ξ
α(ζξ)) for all ξ < λ,

(iv) δξα < sα+1(p
ξ
α(ζξ′)) for all ξ < ξ′ < λ,

(v) δξα < s0(p
ξ
α(ζ)) for all ξ < λ and ζ ∈ supp(pξα) \ Zα,

(vi) δλ+ϵ
α = sϵ(p

λ+ϵ
α (ζλ)) for all ϵ < α,

(vii) δλ+ϵ
α < sα+2(p

λ+ϵ
α (ζξ)) for all ϵ < α and ξ < λ,

(viii) δλ+ϵ
α < s0(p

λ+ϵ
α (ζ)) for all ϵ < α and ζ ∈ supp(pλ+ϵ

α ) \ Zα+1,
(ix) For all ξ ≤ λ+ α+ 1 and any η ∈ poss(pξα,≤δξα) we have η ∧ pξα ∈ D

δξα
.

We will set pα+1 = pλ+α+1
α . By construction pα+1 satisfies (⋆α+1) and pα+1 ≤α,Zα pα.

The result of this construction is summarised in Figure 6.1. Let us clarify this diagram and
the recursive construction. The initial splitting levels sα(pα(ζξ)) with ξ < λ occur below βα

and are left unmodified during the entire construction. The ordinals δξα give us the height of
sα+1(pα+1(ζξ)) with ξ < λ, and the ordinals δλ+ϵ

α give the height of sϵ(pα+1(ζλ)). For any
other ζ ∈ supp(pα+1) \ Zα+1 the splitting starts strictly above βα+1, that is, s0(pα+1(ζ)) >

sα+1(pα+1(ζλ)). At step ξ of the recursive construction, we decide on δξα and hence on the
splitting levels up to δξα, making sure that the splitting levels we have not considered yet occur
at a strictly higher level. We use Lemma 6.2.4 to make sure we satisfy (ix) without disturbing
the splitting levels up to δξα. This automatically gives us modesty as well.
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sα′(pα′(ζ0))

sα′(pα′(ζ1))

sα′(pα′(ζ2))

sα′(pα′(ζ3))

sα′(pα′(ζξ))

s0(pα′(ζλ))

s1(pα′(ζλ))

s2(pα′(ζλ))

s3(pα′(ζλ))

sα′(pα′(ζλ))

s0(pα′(ζ))

βα

δ0α

δ1α

δ2α

δ3α

δξα

δλα

δλ+1
α

δλ+2
α

δλ+3
α

βα′ = δλ+α′
α

ζ0 ζ1 ζ2 ζ3 ζξ
(ξ < λ)

ζλ ζ
(ζ /∈ Zα′)

Figure 6.1: The structure of Split(pα+1) in the proof of Lemma 6.2.6. The thicker lines and
dots show the occurrences of splitting nodes for each index in the support (horizontal axis) and
levels of the condition (vertical axis). We write α+ 1 as α′ for brevity.

We are now ready to give the last two lemmas necessary to prove our consistency result.
Lemma 6.2.7 is a generalisation of Lemma 6.1.12 and shows that we can increase db,hκ (��∋∞) with
Q, and Lemma 6.2.8 gives us the preservation of the Laver property, which is a generalisation
of Lemma 6.1.13. One could also compare these two lemmas to Lemmas 5.2.3 and 5.2.5.

Lemma 6.2.7

Let B ⊆ A be sets of ordinals, with Bc = A \ B, and let ⟨hζ , bζ | ζ ∈ A⟩ be a sequence of cofinal
increasing cardinal functions such that hζ ≤∗ bζ for all ζ ∈ A. Let Q =

∏≤κ
ζ∈AQζ , let G be Q-

generic over V and V ⊨ “ 2κ = κ+ ”. If h′ ≤∗ b′ ∈ κκ are cofinal increasing cardinal functions such
that for each ζ ∈ B there exists a stationary set Sζ ⊆ κ such that hζ(α) ≤ h′(α) ≤ b′(α) ≤ bζ(α)

for all α ∈ Sζ . Then V[G] ⊨ “ |B| ≤ db
′,h′
κ (��∋∞) ”. ◁

Proof. The lemma is trivial if |B| ≤ κ+, thus we assume κ++ ≤ |B|.
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We work in V[G]. Let µ < |B| and let {fξ | ξ < µ} ⊆
∏
b′, then we want to describe some

φ ∈ Locb
′,h′
κ such that fξ ∈∞ φ for each ξ < µ. Since Q is <κ++-c.c., we could find Aξ ⊆ A

with |Aξ| ≤ κ+ for each ξ < µ such that fξ ∈ V[G ↾ Aξ]. Since |B| > µ · κ+, we may fix some
β ∈ B \

⋃
ξ<µAξ for the remainder of this proof. Let φβ =

⋂
p∈G p(β) be the Qβ-generic κ-real

added by the β-th term of the product Q, and let φ′ ∈ Locb
′,h′
κ be such that φ′(α) = φβ(α)∩b′(α)

for each α ∈ Sβ .

Continuing the proof in the ground model, let φ̇′ be a Q-name for φ′ and ḟξ be a Q-name for fξ,
let p ∈ Q∗ and α0 < κ. We want to find some α ≥ α0 and q ≤ p such that q ⊩ “ ḟξ(α) ∈ φ̇′(α) ”.

We now reason as in Lemma 6.1.12. Let C = {sξ(p(β)) | ξ ∈ κ}, then C is club. Therefore,
there exists α ∈ Sβ ∩ C with α ≥ α0. Choose some p0 ≤ p such that p0(β) = p(β) and such
that there is a γ ∈ b′(α) for which p0 ⊩ “ ḟξ(α) = γ ”. This is possible, since fξ ∈ V[G ↾ Aξ] and
β /∈ Aξ, therefore we could find p′0 ∈ Q ↾ Aξ with p′0 ≤ p ↾ Aξ and γ with the aforementioned
property, and then let p0(η) = p′0(η) if η ∈ Aξ and p0(η) = p(η) otherwise.

Note that α ∈ C implies ∥suc(u, p0(β))∥bβ ,α = ∥suc(u, p(β))∥bβ ,α > 1 for all u ∈ Levα(p0(β)),
and that α ∈ Sβ implies that γ ∈ b′(α) ⊆ bβ(α). Consequently, there exists v ∈ suc(u, p0(β))

with γ ∈ v(α). Note that v(α) ∈ [bβ(α)]
<hβ(α), and hβ(α) ≤ h′(α) in virtue of α ∈ Sβ . It follows

that (p0(β))v ⊩ “ φ̇β(α) = v(α) ”, where φ̇β names the generic (bβ, hβ)-slalom. Define q ≤ p0 by
q(ζ) = p0(ζ) if ζ ∈ A \ {β} and q(β) = (p0(β))v, then we see that q ⊩ “ γ ∈ v(α) = φ̇β(α) ∧ γ ∈
b′(α) ”, and thus q ⊩ “ ḟξ(α) = γ ∈ φ̇β(α) ∩ b′(α) = φ̇′(α) ”

Since α0 was arbitrary, it follows that V[G] ⊨ “ fξ ∈∞ φ′ ” for each ξ < µ.

Lemma 6.2.8

Let B ⊆ A be sets of ordinals, with Bc = A \ B, and let ⟨hζ , bζ | ζ ∈ A⟩ be a sequence of cofinal
increasing cardinal functions such that hζ ≤∗ bζ for all ζ ∈ A. Let Q =

∏≤κ
ζ∈AQζ and let G be

Q-generic over V ⊨ “ 2κ = κ+ ”. If h′ ≤∗ b′ ∈ κκ are cofinal increasing cardinal functions such

that
(
supζ∈Bc

∣∣∣Locbζ ,hζ

≤α

∣∣∣)|α|
< h′(α) for almost all α ∈ κ , then for each f ∈ (

∏
b′)V[G] there

exists φ ∈ (Locb
′,h′
κ )V[G↾B] and such that f ∈∗ φ. ◁

Proof. The proof is essentially that of Lemma 6.1.13. Let us assume that f ∈ V[G] \V[G ↾ B],
since the lemma would be trivially true otherwise. We also assume α is large enough to satisfy
the condition on the size of h′(α).

Let ḟ be a Q-name for f and let q ∈ Q∗ read ḟ early and assume without loss of generality that
q is modest. For the sake of brevity, let us write Zq

↓α =
⋃

ξ≤αZq(ξ). Note that:

|poss(q,≤α)| =
∏

ζ∈Zq
↓α

|Levα+1(q(ζ))|

≤
(
supζ∈Zq

↓α
(|Levα+1(q(ζ))|)

)|Zq
↓α|

≤
(
supζ∈Zq

↓α
(|Levα+1(q(ζ))|)

)|α|
.
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Here the last inequality follows from q being modest, which implies that |Zq
↓α| ≤ α. Since we

wish to construct a name φ̇ for some φ ∈ V[G ↾ B], we see that φ is completely decided by the
part of the support in B, and thus we may use the part of the support in Bc freely to restrict
the range of possible values for f ∈ V[G] in order to make sure that q ⊩ “ ḟ ∈∗ φ ”, as we did in
Lemma 6.1.13. If we restrict our attention to Bc, then we see that(

supζ∈Bc∩Zq
↓α
(|Levα+1(q(ζ))|)

)|α|
≤

(
supζ∈Bc(|Levα+1(q(ζ))|)

)|α|
≤

(
supζ∈Bc

∣∣∣Locbζ ,hζ

≤α

∣∣∣)|α|
< h′(α).

This set of possibilities is small enough to define φ ∈ (Locb
′,h′
κ )V[G↾B]. To be precise, we construct

a sequence of names ⟨Ḃα | α ∈ κ⟩ for sets Bα ∈ V[G ↾ B] such that V[G ↾ B] ⊨ “ |Bα| < h′(α) ”
and such that q ⊩ “ ḟ(α) ∈ Ḃα ”.

Since q reads ḟ early, if η ∈ poss(q,≤α), then let γη ∈ κ be such that η ∧ q ⊩ “ ḟ(α) = γη ”.

Given ηB ∈ poss(q ↾ B,≤α) let Y (ηB) = {γη | η ∈ poss(q,≤α) and η ↾ B = ηB}. Now we define
the name Ḃα = {⟨Y (ηB), ηB ∧ q⟩ | ηB ∈ poss(q ↾ B,≤α)}. Since the elements of Y (ηB) are only
dependent on the domain Bc, it follows by the arithmetic from above that q ⊩ “ |Ḃα| < h′(α) ”,
and thus if φ̇ names a slalom such that q ⊩ “ φ̇(α) = Ḃα ”, then q ⊩ “ ḟ ∈∗ φ̇ ∈ Locb

′,h′
κ ”.

Corollary 6.2.9

Let B ⊆ A be sets of ordinals, with Bc = A \ B, and let ⟨hζ , bζ | ζ ∈ A⟩ be a sequence of cofinal
increasing cardinal functions such that hζ ≤∗ bζ for all ζ ∈ A. Let Q =

∏≤κ
ζ∈AQζ and let

G be Q-generic over V. If h′, b′, h̃, b̃ ∈ κκ are cofinal increasing cardinal functions such that(
supζ∈Bc

∣∣∣Locbζ ,hζ

≤α

∣∣∣)|α|
< h′(α) ≤ b̃(α)h̃(α) ≤ b′(α) and h′(α) · h̃(α) < b̃(α) for almost all α ∈ κ,

then if ψ ∈ (Locb̃,h̃κ )V[G] there exists g ∈ (
∏
b̃)V[G↾B] such that g��∈∞ ψ. ◁

Proof. This follows from Lemma 6.2.8 (as Lemma 6.1.15 follows from Lemma 6.1.13).

Theorem 6.2.10

There exists a family of parameters ⟨hγ , bγ | γ ∈ κ⟩ such that for any finite γn < · · · < γ0 < κ

and cardinals κ+ = λ0 < · · · < λn with cf(λi) > κ for each i ∈ [0, n], there exists a forcing
extension where d

bγi ,hγi
κ (��∋∞) = λi for each i ∈ [0, n]. ◁

Proof. Let h0 ∈ κκ be a cofinal increasing cardinal functions such that h0(α) ≥ |α| for all α ∈ κ.
For each γ ∈ κ define hγ , bγ recursively as follows: let hγ+1(α) = bγ(α)

hγ(α) and if γ is limit, let
hγ(α) = supξ∈γ hξ(α), and finally let bγ(α) = 2hγ(α) for all γ ∈ κ.

Now let κ+ = λ0 < λ1 < · · · < λn be a finite sequence of regular cardinals and let γ0 > · · · > γn

be a decreasing sequence of ordinals. Let A1, . . . , An be disjoint sets of ordinals such that
|Ai| = λi for each i ∈ [1, n], and let A =

⋃
i∈[1,n]Ai. Now for each ζ ∈ A let h′ζ = hγi and

b′ζ = bγi iff ζ ∈ Ai, and let Q =
∏≤κ

ζ∈AQh′
ζ ,b

′
ζ
. Let G be Q-generic over V and assume that

V ⊨ “ 2κ = κ+ ”.
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Fix 1 ≤ i ≤ n. From Lemma 6.2.8 it follows that V[G ↾ Ai] ⊨ “ λi ≤ d
bγi ,hγi
κ (��∋∞) ”. If we let

B =
⋃

i∈[1,i]Ai, then also |B| = λi and consequently V[G ↾ B] ⊨ “ 2κ = λi ”. If i < j ≤ n, then
hγj , bγj are much smaller than hγi , bγi , and thus by Corollary 6.2.9 we see that (

∏
bγi)

V[G↾B]

forms a witness to prove that V[G] ⊨ “ dbγi ,hγi
κ (��∋∞) ≤ λi ”.

6.3. Open Questions

The main open question is obvious by comparing the classical results to those in this section.

Question 6.3.1

Is it consistent that there exists a family of pairs of functions ⟨(bξ, hξ) | ξ ∈ κ⟩ such that the
associated antiavoidance numbers d

bξ,hξ
κ (��∋∞) are pairwise distinct? If yes, could we prove the

same for a family of functions ⟨(bξ, hξ) | ξ ∈ κ+⟩ or even ⟨(bξ, hξ) | ξ ∈ 2κ⟩? ◁

An essential part of the construction from [KM22] is the bigness property associated with crea-
ture forcing (see e.g. [RS06, Chapter 2]). Bigness is a Ramsey-like property that allows for
decreasing the number of successors of some node u ∈ T ∈ Qb,h

κ , for instance to decide a value
of ḟ(α) or some name ḟ , without significantly decreasing the norm ∥suc(u, T )∥. In the classical
case, one could define a norm on sets in [b(n)]<h(n) that is c-big for certain c ∈ ω, which means
that for any X ⊆ [b(n)]<h(n) and f : X → c there exists some X∗ ⊆ X such that f ↾ X∗ is
constant and ∥X∗∥ = ∥X∥ − 1

c , see for instance [KM22, Lemma 3.10].

Bigness, or at least [KM22, Lemma 3.10], seems hard to generalise to the higher context, since
we cannot decrease an infinite norm slightly. After all, decreasing in cardinality can only be
done finitely often. On the other hand, allowing a norm to stay constant brings other problems
with it. In our definition we required the norm to decrease when successors are removed in order
to prove that our forcing is <κ-closed (Lemma 6.1.5). If one is allowed to remove successors
without decreasing the norm, one can partition the set of successors into ℵ0 many parts, resulting
in the failure of ω-closure.
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Appendices

A.1. Synopsis of Original Results

We will present the main results from this dissertation, with a focus on those results found by
the author. Naturally, we refer to the results in the dissertation for more information.

Background

Using relational systems (Section 2.3) we may define the cardinal characteristics of the Cichoń
diagram (Definitions 2.4.1 and 2.4.2). By replacing ω (the classical case) by a regular uncountable
cardinal κ (the higher case), we define the cardinal characteristics of the higher Cichoń diagram
(Definition 2.4.5). We present a brief overview of what was known prior to the writing of this
dissertation about the higher Cichoń diagram in Section 2.5.

Bounded Higher Baire Spaces

By considering a cofinal cardinal function b ∈ κκ for κ inaccessible, we could define a bounded
higher Baire space

∏
b =

∏
α∈κ b(α) (Section 3.1), endowed with the <κ-box topology. We gen-

eralise the cardinals of the higher Cichoń diagram by restricting them to
∏
b (Definition 3.2.1).

We will refer to these as bounded cardinal characteristics. Some such cardinals were previously
studied classically, others have no known classical analogue (see Section 3.2). In Section 3.3
we show relations between the bounded cardinal characteristics, summarised in the following
diagram. The dashed arrows require h ≤∗ cf(b), and become equalities if also h =∗ b:

κ+

bbκ(≤∗)

bbκ(�
�=∞)

bb,hκ (��∋∞)

bb,hκ (∈∗)

dbκ(≤∗)

dbκ(�
�=∞)

db,hκ (��∋∞)

db,hκ (∈∗)

cov(Mκ)

non(Mκ) 2κ

We also show that the unbounded antilocalisation and antiavoidance numbers do not depend on
the parameter h.

Corollary 3.3.8
dhκ(�

�∋∞) = cov(Mκ) and bhκ(�
�∋∞) = non(Mκ) for any choice of h ∈ κκ. ◁

In Definition 3.3.10 we define cardinal characteristics that are the infima and suprema of sets
of cardinal characteristics for every possible bound b ∈ κκ. Classically, Rothberger [Rot41] and
Miller [Mil81] investigated such infima and suprema. The same strategies used in their work
generalise without much problems to the higher Baire space and yields the following two results.
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Theorem 3.3.17
add(Mκ) = min {bκ(≤∗), infκ(�

�=∞)} and cof(Mκ) = max {dκ(≤∗), supκ(�
�=∞)}. ◁

Theorem 3.3.19
bhκ(∈∗) = min

{
bκ(≤∗), infhκ(∈∗)

}
and dhκ(∈∗) = max

{
dκ(≤∗), suphκ(∈∗)

}
for any h ∈ κκ. ◁

We also relate bounded eventually different numbers to the κ-strong measure zero ideal.

Theorem 3.3.16
non(SNκ) ≥ infκ(�

�=∞). ◁

We later show that the dual supκ(��=∞) ≥ cov(SNκ) fails in the κ-Sacks model (Theorem 4.4.9),
generalising a classical construction by Goldstern, Judah & Shelah [GJS93]. The same consis-
tency also follows from Chapman & Schürz [CS].

In Section 3.4 we determine the parameters b, h for which bounded cardinal characteristics are
trivial, in the sense that they are not consistently strictly between κ+ and 2κ. We obtain three
trichotomies in Theorems 3.4.2, 3.4.5 and 3.4.16 for bbκ(≤∗), bb,hκ (∈∗) and bb,hκ (��∋∞) respectively,
where in one case these cardinals are <κ, in one case they are equal to κ and in the remaining
case they are consistently strictly between κ+ and 2κ.

Partial results for the dual cardinals dbκ(≤∗), db,hκ (∈∗) and db,hκ (��∋∞) are given:

Theorem 3.4.3
If λ < κ is regular and cf(b(α)) = λ for cofinally many α ∈ κ, then dbκ(≤∗) = 2κ. ◁

Theorem 3.4.6
If Dλ = {α ∈ κ | h(α) = λ} is cofinal in κ for some λ < κ, then db,hκ (∈∗) = 2κ. ◁

Theorem 3.4.7
If Dλ = {α ∈ κ | h(α) = λ} is bounded for all λ ∈ κ and h is increasing and continuous on a
stationary set and A ⊆

∏
b is an almost disjoint family, then |A| ≤ db,hκ (∈∗). ◁

Higher κ-Reals

In Definition 4.2.1 we define a selection of κ-reals (i.e. elements of κκ) with generic properties
over the ground model. The existence of certain types of κ-reals may imply the existence of
other types of κ-reals, as per Figure 4.1. We then give an overview in Sections 4.3 and 4.4 of
which kinds of κ-reals are added by several well-known <κ-distributive forcing notions. Most
such results should not be attributed to the author, but to other sources or to folklore.

We will highlight that we present forcing notions specifically tailored for the bounded cardinal
characteristics to show they are not trivial in the cases mentioned in Section 3.4. Particularly
the following three theorems:

Theorem 4.3.19
Let κ be inaccessible and cf(b) be increasing and discontinuous on a club set, then it is consistent
that bbκ(≤∗) > κ+ and that dbκ(≤∗) < 2κ. ◁
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Theorem 4.3.31
Let κ be inaccessible and h be discontinuous on a club set, then it is consistent that bb,hκ (∈∗) > κ+

and that db,hκ (∈∗) < 2κ. ◁

Theorem 4.3.43
Let κ be inaccessible, let C be a club set such that b is discontinuous on C and let cf(b) be
increasing and discontinuous on {α ∈ C | h(α) = b(α)}, then it is consistent that bb,hκ (��∋∞) > κ+

and that db,hκ (��∋∞) < 2κ. ◁

We also note that, as far as the author is aware, the following theorem regarding κ-eventually
different forcing is not found in the literature, although all the tools necessary for the proof are.

Theorem 4.3.39
If κ is weakly compact, then Eκ does not add dominating κ-reals. ◁

Independence Results

Two main results from this thesis regard the consistency of many cardinal characteristics having
mutually different values.

In Chapter 5, we introduce an intermediate forcing notion between κ-Sacks and κ-Miller forcing
and use it to separate κ many localisation cardinals of the form dhκ(∈∗). This answers Question
72 from [BBTFM18].

Corollary 5.2.8
There exists functions hξ for each ξ ∈ κ such that for any cardinals λξ > κ with cf(λξ) > κ it is
consistent that simultaneously d

hξ
κ (∈∗) = λξ for all ξ ∈ κ. ◁

The proof relies on a family of κ many disjoint stationary sets. In Section 5.3 we improve this
result further using an almost disjoint family of stationary sets to obtain:

Theorem 5.3.9
Assuming 2κ = κ+ and ♢κ, there exists a family of functions {gη | η ∈ κ+} ⊆ κκ such that for
any increasing sequence ⟨λξ | ξ ∈ κ+⟩ of cardinals with κ < cf(λξ) and any function σ : κ+ → κ+,
there exists a forcing extension in which d

gη
κ (∈∗) = λσ(η) for all η ∈ κ+. ◁

In Chapter 6 we attempt to prove a similar result for antiavoidance cardinals db,hκ (��∋∞) by
generalising a forcing construction described in [KM22]. Although we do not separate infinitely
many cardinals, we can give a set of cardinal characteristics of size κ such that any finite subset
can be forced to become pairwise distinct.

Theorem 6.2.10
There exists a family of parameters ⟨hγ , bγ | γ ∈ κ⟩ such that for any finite γn < · · · < γ0 < κ

and cardinals κ+ = λ0 < · · · < λn with cf(λi) > κ for each i ∈ [0, n], there exists a forcing
extension where d

bγi ,hγi
κ (��∋∞) = λi for each i ∈ [0, n]. ◁
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A.2. Zusammenfassung der Ergebnisse

This section is a translation of Appendix A.1. The translation was made with assistance of
translation software, manual corrections were made by the author.

Wir präsentieren die Hauptergebnisse dieser Dissertation, insbesondere die vom Autor bewiese-
nen Ergebnisse. Weitere Details finden sich in der Dissertation.

Hintergrund

Mit Hilfe von relationalen Systemen (relational system, Abschnitt 2.3) können wir die Kardi-
nalzahlinvarianten des Cichoń-Diagramms (Definitionen 2.4.1 und 2.4.2) definieren. Indem wir
ω (den klassischen Fall) durch eine überabzählbare, reguläre Kardinal κ (den höheren Fall)
ersetzen, definieren wir die Kardinalzahlinvarianten des höheren Cichoń-Diagramms (Definiti-
on 2.4.5). Wir geben einen kurzen Überblick darüber, was vor dem Verfassen dieser Dissertation
über das höhere Cichoń-Diagramm bekannt war, in Abschnitt 2.5.

Beschränkte Höhere Bairesche Räume

Indem wir eine konfinale Funktion b ∈ κκ mit Kardinalzahlen als Werten für ein unerreichbares
κ betrachten, könnten wir einen beschränkten höheren Baireschen Raum

∏
b =

∏
α∈κ b(α)

definieren (Abschnitt 3.1), den wir mit der <κ-Boxtopologie ausstatten. Wir verallgemeinern
die Kardinalzahlinvarianten des höheren Cichoń-Diagramms, indem wir sie auf

∏
b beschränken

(Definition 3.2.1). Wir werden diese als beschränkte Kardinalzahlinvarianten bezeichnen.

Einige dieser Kardinalzahlinvarianten wurden zuvor klassisch untersucht. Andere haben kein
bekanntes klassisches Analogon (siehe Abschnitt 3.2). In Abschnitt 3.3 zeigen wir Beziehungen
zwischen den beschränkten Kardinalzahlinvarianten, zusammengefasst im folgenden Diagramm.
Die gestrichelten Pfeile benötigen h ≤∗ cf(b) und werden zu Gleichungen, wenn auch h =∗ b:

κ+

bbκ(≤∗)

bbκ(�
�=∞)

bb,hκ (��∋∞)

bb,hκ (∈∗)

dbκ(≤∗)

dbκ(�
�=∞)

db,hκ (��∋∞)

db,hκ (∈∗)

cov(Mκ)

non(Mκ) 2κ

Wir zeigen auch, dass die unbeschränkte Antilokalisierungszahl und die unbeschränkte Antiver-
meidungszahl nicht vom Parameter h abhängen:

Korollar 3.3.8
dhκ(�

�∋∞) = cov(Mκ) und bhκ(�
�∋∞) = non(Mκ) für jede Wahl von h ∈ κκ. ◁

In Definition 3.3.10 definieren wir Kardinalzahlinvarianten, welche die Infima und Suprema von
Mengen von beschränkten Kardinalzahlinvarianten für jede mögliche Schranke b ∈ κκ sind.

122



Im klassischen Falle untersuchten Rothberger [Rot41] und Miller [Mil81] solche Infima und
Suprema. Die gleichen Strategien, die in ihrer Arbeit verwendet wurden, kann man ohne größere
Schwierigkeiten auf den höheren Baireschen Raum verallgemeinern und führen zu den folgenden
zwei Ergebnissen.

Satz 3.3.17
add(Mκ) = min {bκ(≤∗), infκ(��=∞)} und cof(Mκ) = max {dκ(≤∗), supκ(�

�=∞)}. ◁

Satz 3.3.19
bhκ(∈∗) = min

{
bκ(≤∗), infκh(∈∗)

}
und dhκ(∈∗) = max

{
dκ(≤∗), supκh(∈∗)

}
für jedes h ∈ κκ. ◁

Wir stellen auch eine Beziehung zwischen den beschränkten Kardinalzahlinvarianten in Bezug
auf ingerndwann-Unterschiedlichkeit (eventual difference, ��=∞) und dem Ideal der κ-starken
Nullmengen her.

Satz 3.3.16
non(SNκ) ≥ infκ(�

�=∞). ◁

Wir zeigen auch, dass die duale Aussage supκ(�
�=∞) ≥ cov(SNκ) im κ-Sacks-Modell scheitert

(Satz 4.4.9), eine Verallgemeinerung einer klassischen Konstruktion von Goldstern, Judah &
Shelah [GJS93]. Die gleiche Konsistenz folgt auch aus Chapman & Schürz [CS].

In Abschnitt 3.4 bestimmen wir die Parameter b, h, für die die beschränkten Kardinalzahlinvari-
anten trivial sind, im Sinne, dass sie nicht konsistent strikt zwischen κ+ und 2κ liegen. Wir erhal-
ten drei Trichotomien in Sätze 3.4.2, 3.4.5 und 3.4.16 für bbκ(≤∗), bb,hκ (∈∗) und bb,hκ (��∋∞), wobei
in einem Fall diese Kardinalzahlen <κ sind, in einem anderen Fall gleich κ und im verbleibenden
Fall konsistent strikt zwischen κ+ und 2κ liegen.

Wir erhalten Teilergebnisse für die dualen Kardinalzahlen dbκ(≤∗), db,hκ (∈∗) und db,hκ (��∋∞):

Satz 3.4.3
Wenn λ < κ regulär ist und cf(b(α)) = λ für konfinal viele α ∈ κ, dann ist dbκ(≤∗) = 2κ. ◁

Satz 3.4.6
Wenn Dλ = {α ∈ κ | h(α) = λ} in κ konfinal ist für ein λ < κ, dann ist db,hκ (∈∗) = 2κ. ◁

Satz 3.4.7
Wenn Dλ = {α ∈ κ | h(α) = λ} für alle λ ∈ κ beschränkt ist und h auf einer stationären
Menge monoton steigend und stetig ist und A ⊆

∏
b eine fast disjunkte Familie ist, dann ist

|A| ≤ db,hκ (∈∗). ◁

Höhere κ-Reelle Zahlen

In Definition 4.2.1 definieren wir einige κ-reellen Zahlen (d.h. Elemente von κκ) mit gener-
ischen Eigenschaften über dem Grundmodell. Die Existenz bestimmter Typen von κ-reellen
Zahlen kann die Existenz anderer Typen von κ-reellen Zahlen implizieren, wie in Abbildung 4.1
dargestellt ist. Anschließend geben wir in den Abschnitte 4.3 und 4.4 einen Überblick darüber,
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welche Arten von κ-reellen Zahlen in der generischen Erweiterung von mehreren bekannten <κ-
distributiven partiellen Ordnungen vorkommen. Die meisten solcher Ergebnisse sollten nicht dem
Autor zugeschrieben werden, sondern anderen Quellen oder sind sogenannte Folklore-Resultate.

Wir betonen, dass wir für die beschränkten Kardinalzahlinvarianten spezifische partielle Ord-
nungen konstruieren, um zu zeigen, dass sie Abschnitt 3.4 genannten Fällen nicht trivial sind;
insbesondere beweisen wir die folgenden drei Sätze:

Satz 4.3.19
Sei κ unerreichbar und cf(b) steigend und unstetig auf einer club-Menge, dann ist es konsistent,
dass bbκ(≤∗) > κ+ und dass dbκ(≤∗) < 2κ ist. ◁

Satz 4.3.31
Sei κ unerreichbar und h unstetig auf einer club-Menge, dann ist es konsistent, dass bb,hκ (∈∗) > κ+

und dass db,hκ (∈∗) < 2κ ist. ◁

Satz 4.3.43
Sei κ unerreichbar, sei C eine club-Menge, auf der b unstetig ist, und sei cf(b) steigend und
unstetig auf {α ∈ C | h(α) = b(α)}, dann ist es konsistent, dass bb,hκ (��∋∞) > κ+ und dass
db,hκ (��∋∞) < 2κ ist. ◁

Der folgende Satz über die κ-Irgendwann-Unterschiedlich-Ordnung (κ-eventually different forc-
ing) folgt aus bekannten Ergebnissen, ist aber nach Kenntnis des Autors nicht in der veröf-
fentlichen Literatur zu finden.

Satz 4.3.39
Wenn κ schwach kompakt ist, dann fügt Eκ keine dominierenden κ-reellen Zahlen hinzu. ◁

Unabhängigkeitsergebnisse

Zwei Hauptergebnisse dieser Dissertation betreffen die Konsistenz der Aussage, dass viele Kar-
dinalzahlinvarianten gegenseitig unterschiedliche Werte haben.

In Kapitel 5 führen wir eine partielle Ordnung ein, die zwischen κ-Sacks- und κ-Miller-Forcing
liegt und verwenden sie, um κ viele Lokalisationskardinalzahlinvarianten der Form dhκ(∈∗) zu
trennen. Dies beantwortet Frage 72 aus [BBTFM18].

Korollar 5.2.8
Es existieren Funktionen hξ für jedes ξ ∈ κ, so dass es für beliebige Kardinalzahlen λξ > κ mit
cf(λξ) > κ konsistent ist, dass gleichzeitig d

hξ
κ (∈∗) = λξ für alle ξ ∈ κ gilt. ◁

Der Beweis verwendet eine Familie von κ vielen disjunkten stationären Mengen. In Abschnitt 5.3
verbessern wir dieses Ergebnis unter Verwendung einer fast disjunkten Familie von stationären
Mengen und erhalten:

Satz 5.3.9
Angenommen, es gilt 2κ = κ+ und ♢κ, dann existiert eine Familie {gη | η ∈ κ+} ⊆ κκ, so dass
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für jede monoton steigende Folge ⟨λξ | ξ ∈ κ+⟩ von Kardinalzahlen mit κ < cf(λξ) und jede
Funktion σ : κ+ → κ+, es eine generische Erweiterung gibt, in der d

gη
κ (∈∗) = λσ(η) für alle

η ∈ κ+ gilt. ◁

In Kapitel 6 versuchen wir, ein ähnliches Ergebnis für die Antivermeidungskardinalzahlinvari-
anten db,hκ (��∋∞) zu beweisen, indem wir eine Forcing-Konstruktion verallgemeinern, die in [KM22]
beschrieben wird. Obwohl wir nicht unendlich viele Kardinalzahlen trennen, können wir eine
Menge der Größe κ von Kardinalzahlinvarianten angeben, so dass jede endliche Teilmenge
erzwungen werden kann, paarweise unterschiedlich zu werden.

Satz 6.2.10
Es existiert eine Familie von Parametern ⟨hγ , bγ | γ ∈ κ⟩, so dass für beliebige n ∈ ω, Ordi-
nalzahlen γn < · · · < γ0 < κ und Kardinalzahlen κ+ = λ0 < · · · < λn mit cf(λi) > κ für jedes
i ∈ [0, n], es eine Forcing-Erweiterung gibt, in der d

bγi ,hγi
κ (��∋∞) = λi für jedes i ∈ [0, n] gilt. ◁
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