Regularity Properties and Inaccessibles

Dissertation

zur Erlangung des Doktorgrades an der Fakultat fiir Mathematik, Informatik und
Naturwissenschaften der Universitat Hamburg vorgelegt am Fachbereich Mathematik
von

Raiean Banerjee

aus Chinsurah, Indien

Hamburg, May 2024

UH

L2 ¥ Universitdit Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG



Hiermit erklare ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, den 6.05.2024

Die Disputation fand am 03.07.2024 statt.

Betreuer:

Prof. Dr. Benedikt Lowe

Gutachter:

Prof. Dr. Benedikt Lowe (Erstgutachter)
Priv.-Doz. Dr. Stefan Geschke (Zweitgutachter)

Mitglieder der Priifungskommission:

Prof. Dr. Ingenuin Gasser (Vorsitz)

Prof. Dr. Nathan Bowler (stellv. Vorsitz)
Priv.-Doz. Dr. Philipp Liicke

Prof. Dr. Benedikt Lowe (Erstgutachter)
Priv.-Doz. Dr. Stefan Geschke (Zweitgutachter)

Rarean Banw:?w/
Unterschrift



Eigenanteilserklarung. The candidate acknowledges an amount of support in struc-
turing and writing the thesis given by his supervisor that considerably exceeded what
is expected and standard for doctoral dissertations. The overall structure of the thesis
and the introductory paragraphs to the chapters and many sections were provided by the
supervisor. The supervisor provided a substantial number of corrections of fact, mathe-
matical detail, and argumentative structure. Moreover, the exposition of most of Chapter
2 was written by the supervisor for the joint paper [2] and is included verbatim in this
thesis.

The original mathematical research content of this thesis can be found in Chapters 3]
[], and [5}

Chapter|3|is the result of a collaboration with Dr. Michel Gaspar to which both authors
contributed equally. The results form part of a pre-publication entitled Borel chromatic
numbers of locally countable ¥, graphs and forcing with superperfect trees jointly authored
with Gaspar which is currently in submission and being reviewed [I]. The results and
substantial parts of the text of this chapter are included in Gaspar’s doctoral dissertation
[13] submitted at the Universitdt Hamburg in August 2022.

Chapter [ is the result of a collaboration with Dr. Lucas Wansner to which both
authors contributed equally. The results will be forming part of a joint paper currently
in preparation that has the working title Amoebas and their regularities, co-authored by
Benedikt Lowe, Lucas Wansner, and the candidate [2]. The results and substantial parts
of the text of this chapter are included in Wansner’s doctoral dissertation [35] submitted
at the Universitat Hamburg in March 2023.

Chapter [5| is the sole work of the candidate; it benefitted from discussions with Pro-
fessor Jorg Brendle during a visit in Hamburg during the month of September 2023.

Acknowledgements. The author acknowledges the financial support of the Universitat
Hamburg in the form of a scholarship according to the HmbNFG from 1 October 2020 to
30 September 2022.



Contents

[Eidesstattliche Erklarungl. . . . . . . . ... ... o000
[Prufungskommission| . . . . . . . ...
[Eigenanteilserklarung| . . . . . . . ... o
[Acknowledgements| . . . . . . . ...

Contents

[I__Introduction

2 General Framework]

[2.1 Complexity of setsof reals| . . . . . ... ... ... ... ... ...
[2.2  Trees and arboreal forcing notions|. . . . . . . ... .. ... ...
[2.3  Regularity properties| . . . . . . . . . ...
2.4  Quasigenerics| . . . . . . ...
[2.5 Some topological spaces| . . . . . . ... ..o 0oL
2.6 ITkegami’s Theorem| . . . . . . . .. ... ... . ... ...
[2.7 Inaccessibility by reals] . . . . . . ... ... oo 000
[2.8  Brendle-Labedzki lemmas| . . . . ... ... ... . 0 0L
[2.9 Fusion sequences| . . . . . ... o
[2.10 Iterations ot arboreal forcings| . . . . . . . . ... ... ... ... ..
[2.11 Implications between regularity properties| . . . . . . . .. ... ... ...

Laver forcing]

3.1 Introductionl . . . . . . ... Lo

3.3 Technical lemmas| . . . . . . . . . . . ..
[3.4  Proot of the main result and applications| . . . . . . .. ... ... ... ..
[3.5 Questions| . . . . . . ...

14

Regularity properties and inaccessible cardinals|

4.1 Being an amoebal . . . . . .. ..o
4.2 Definitions of amoebasl . . . . . . ... o Lo

11
14
15
17
18
19
20
22
24

27
27
28
30
35
36



[> Matet and Willowtree forcing|
[>.1 Implication diagrams| . . . . . . . . .. ...
[5.2  Fusion techniques for Matet forcingl . . . . . . . . . . .. ... ... ...,
[5.3  Silver regularity in the Matet model|. . . . . . . .. .. .. ... ... ...
[>.4  Willowtree regularity in the Sacks Model . . . . . . ... ... ... .. ..

(Bibliography|

[English summary| . . . . . . . . ..
[Deutsche Zusammenfassungl . . . . . . . ... ... ..o L.




Chapter 1

Introduction

This thesis deals with independence phenomena in set theory of the reals. It is a well-
known phenomenon that statements about the well-behaviour of sets of reals, especially at
the second and higher levels of the projective hierarchy, are independent of the standard
Zermelo-Fraenkel axioms of set theory ZFC. Usually, very simple sets of reals can be
proved to be well-behaved, but the statement of well-behaviour of more complex sets are
usually false in the smallest transitive model of set theory, Godel’s constructible universe
L, and can be made true in larger models by adding generics.

One particular example of well-behaviour is the property of being Lebesgue measur-
able: non-Lebesgue measurable sets tend to be ill-behaved (e.g., they are used in the
famous Banach-Tarski decomposition of the sphere that leads to the Banach-Tarski para-
dox [33]), but we know that these cannot be very simple: Borel sets are by definition
Lebesgue measurable and it can be shown that sets at the first level of the projective
hierarchy are as well [23] Theorem 12.2], but in L, not all sets at the second level of the
projective hierarchy are [23, Corollary 13.10].

In general, regularity statements at the second level of the projective hierarchy are
independent of ZFC, and statements of this type form a complex implication diagram of
different logical strengths. This implication diagram has been studied in the past decades
and is reasonably well understood at the second level of the projective hierarchy. (Details
will be given in Chapter ) The theory of these statements is intricately interwoven with
that of the existence of particular combinatorial objects (e.g., generic real numbers, quasi-
generic real numbers, or real numbers with other combinatorial properties) and therefore
often involves a detailed analysis of particular models of set theory obtained by forcing
with a given forcing partial order over L. Among statements of this type, the strongest is

“for all z € R, RMT < v,

also known as “N; is inaccessible by reals”. This statement implies the existence of
an inaccessible cardinal in L and therefore is strictly stronger in the sense of consistency
strength than ZFC. It implies all regularity statements at the second level of the projective
hierarchy and can therefore be seen as the strongest such principle (cf. §)

The results in this thesis will contribute to the mentioned implication diagram and
identify a number of additional regularity properties that have the maximal logical strength,



i.e., are equivalent to “N; is inaccessible by reals”.

In particular, in Chapter[2], we shall provide the general framework with definitions and
a list of established results and techniques that will be used in the thesis. Due to a general
theorem known as Ikegami’s Theorem (Theorem , we can prove a non-implication
between regularity statements by showing that forcing with one forcing notion does not
add quasigenerics for the other.

In Chapter [3| we use this technique to separate Laver and Silver regularity, answering
two open questions from the published literature (cf. p. for a discussion of the open
questions).

In Chapter [ we prove that a number of regularity properties are all of maximal
strength at the Xj level: they imply that ®; is inaccessible by reals. The forcings discussed
are amoeba forcing, amoeba forcing for category, and localisation forcing. Definitions of
these forcing notions will be given in §[4.2]

Finally, in Chapter [f, we shall consider the less well-known forcing notions Matet and
Willowtree forcing and separate their regularities from the others.

The following theorems are considered to be the main contributions of this thesis
(all mentioned forcings, regularity properties, and the corresponding notation will be
introduced in Chapter [2)).

1. In the Laver model, 35(L) holds and A}(Eq) and Aj(V) fail (Corollary [3.4.2).

2. In the Laver model, A}(V) fails, but for every real r, there is a splitting real over

L{r] (Corollary [3.4.4]).

3. The statement X3(A) is equivalent to the statement “Y; is inaccessible by reals”

(Corollary 4.3.5)).

4. The statement X3(UM) is equivalent to the statement “N; is inaccessible by reals”

(Theorem [4.4.2)).

5. The statement X3(LOC) is equivalent to the statement “X; is inaccessible by reals”

(Theorem 4.5.2)).
6. In the Matet model, A3(V) fails (Corollary |5.3.8)).

7. In the Sacks model, Aj(W) fails (Corollary [5.4.3).

The thesis assumes that the reader is familiar with the theory of forcing as well as the
basic theory of the constructible universe. The background can be found in the standard
textbook literature such as the monograph [21].



Chapter 2

General Framework

The main object of study in set theory of the reals is the set of real numbers, but it is often
customary to work with slightly different topological spaces. Traditionally, the set of real
numbers R is defined as the Dedekind (or Cauchy) completion of the rational numbers Q.

A topological space is called Polish if it is separable and completely metrisable. Ex-
amples of Polish spaces are the classical real numbers R as well as Cantor space 2* and
Baire space w¥. The two latter examples are topologised with the product topology of
the discrete topology on 2 and w, respectively. Equivalently, the basic open sets are of
the form [s] = {x | x 2 s}, for s € Z=¥ and = € Z* where Z € {2, w}.

The three mentioned examples are not homeomorphic to each other: Cantor space is
compact whereas the other two are not; R is connected whereas Baire space has a basis
of clopen sets. However, Baire space is homeomorphic to the irrational numbers R\Q [21]
p. 42] and many of the properties we shall be investigating in this thesis hold for one of
the three spaces if and only if they hold for the others.

As a consequence, it has become customary in the field of set theory of the reals to
work mostly over Baire space and to refer to the elements of all three topological spaces
as real numbers or reals.

2.1 Complexity of sets of reals

If X is a Polish space, then the products of the form (w*)* x X with the product topology
are also Polish spaces.

A o-algebra on a Polish space X is a collection of subsets of X closed under countable
intersections and unions and complements. A o-ideal on X is a collection of subsets of
X closed under subsets and countable unions.

The elements of the smallest o-algebra containing the open subsets of such a space are
its Borel sets. Borel sets can be described by specifying how they were obtained from basic
open sets by the operations of countable union and complementation: such a description
is a well-founded tree T < w=* (cf. §[2.2) that can be encoded as a real number; this is
known as a Borel code and we denote the function that obtains the Borel set from its code
by B, i.e., if ¢ is a Borel code, then B, is the Borel set coded by c¢; the details of how to



do this precisely do not matter for this thesis; they are given, e.g., in 21 pp. 504-507].
If AcwYx X, we write

p(A) :={re X;Jy(y,z) e A}

for the projection of A. We define the projective hierarchy of sets by recursion on n: if
B e (w?)k x X, then

Be X < there is a Borel set A such that B = p(A),
Belll — ((w)*xX)\BeX!,
BeX! | «— thereis aset AeIT! such that B = p(A), and

n+1

BeAl — Bex! ~nII.

We refer to the sets AL, 31 and IT. as the nth level of the projective hierarchy. The
projective hierarchy is proper in the sense that A}L < 27117 A}L < H}L, E,ll < A}L 41, and
I} < A}, and it measures the descriptive complexity of sets of reals in second-order
arithmetic: roughly, sets on the nth level of the projective hierarchy need an alternating
quantifier sequence of length n to be defined. We call a pointclass projective if it is one
of these pointclasses. For details, cf. [23, Section 12].

2.2 'Trees and arboreal forcing notions

We use the usual notation for sequences, i.e., if s,t € w=* and k € w, we write s”t for the
concatenation of s and ¢t and sk for the unique sequence that has s as initial segment and
continues with the value k.

As usual, a tree on X is a subset of X =¥ closed under initial segments. In our case,
X is either 2 or w. If T is a tree on X, we write [T] := {x € X¥|Vn(zIn € T)} for the
set of branches through T.

If T is a tree and t € T, we say that t splits in T if there are at least k£ # ¢ such that
t"k e T and t°¢ € T'; we say that t splits infinitely in T if there are infinitely many k such
that t"k € T. Each tree T has a unique element of minimal length that splits in T'; we
call this the stem of T, in symbols, st(T'). A tree T is called a Sacks tree or perfect tree
if for each t € T there is an n s 2 t such that s € T splits in 7.

Other notions of tree that will play a prominent role in this thesis are Miller and Laver
trees: a tree T is called a Miller tree or superperfect tree if for each t € T there is a s 2t
such that s € T splits infinitely in 7T'; a tree T is called a Laver tree if it has a splitting
node and for each t € T such that st(7") < ¢, the node ¢ is infinitely splitting.

A forcing notion P is called arboreal if each condition is a perfect tree on either 2 or
w, for each T'e P and ¢t € T', we have that T; := {seT; s S tort < s} € P, and we have
that 7' < T" implies that [T'] < [T"]. We have that [T'] is a closed subset of either Cantor
or Baire space. We write T’ <, 7" if [T'] < [T"] and st(T) = st(7")[]

!This notation will coincide with the relations <,, and <2 for fusion sequences, defined in §



As mentioned in Chapter [1} we shall refer to [21, Section 14] for the basics of forcing.
In this section, we provide the basic definitions needed for the results in this thesis. If
G is a generic filter for P, then (\;.,[T] = {g} is a singleton where g is an element of
Cantor or Baire space. We identify the generic filter with that real.

Sacks forcing, denoted by S, consists of all perfect trees ordered by inclusion. Note
that if P is arboreal, then P = S.

Miller forcing M and Laver forcing L, consist of all Miller or Laver trees, respectively,
ordered by inclusion.

Hechler forcing, denoted by D, consists of pairs (s, f), where s € w<“ and f € w“, such
that s < f. We say that (¢,9) < (s, f) iff s ¢ and for all k > lh(s), g(k) = f(k).

Silver forcing, denoted by V, consists of partial functions f from w to 2, such that
lw\dom(f)| = w. For g, f € V, we say that g < f if and only if f < g.

Matet forcing, denoted by T, consists of pairs (s, A), where s € w<¥ is strictly increasing

and A € [w]|=¥ is infinite, and for all a € A, max(ran(s)) < min(ran(a)). We order it by
(t, B) < (s, A) if and only if

sctVbe BIA' < A(JA| <w A b= UA") A FA" < A(ran(t)\ran(s) < A").

One can focus only on the Matet conditions which are of the form (s, A) such that there
is an enumeration (a,)ne, of A, such that for all n € w, max(a,) < max(a,1).

Note that every Matet condition defines a Miller tree, since for a Matet condition
(s, A), we can define a tree T' on w* as follows:

st(T) = s and Vt € T, succ(t) = {a € A : max(t) < min(a)}

where succ(t) denotes the set of successors of ¢.

However, the ordering on T is not the same as the inclusion on Miller trees. Matet
forcing was introduced by Matet in [29].

Willowtree forcing, denoted by W, consists of pairs (f, A), where f is a partial function
from w to 2, such that w\dom(f) = |J A, where A € [w]=* is infinite, and max(a,) <
min(a,41) where (an)neo i an enumeration of A. We order it by (g, B) < (f, A) if and
only if

fSgand Vbe BIA' € A(b = UA’) and Va € A(a < dom(g) = g¢gla is constant ).

This forcing notion was introduced and studied in [4].

The forcing notions W and V, T, and R are uniform versions of S, M, and L, respectively
and were studied in Brendle’s [4] where the following implication diagram is given:

S M 2L
U U

W o T U
U N
\Y ) R
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We shall call this diagram the Uniform Forcings Diagram; it and its consequence for
regularity properties will be the main topic of Chapter [5]

A tree p € 2<% is an Ejy-tree if and only if it is perfect and for every splitting node
s € p, there are sg 2 s70 and s; 2 s™1, of the same length, such that

{er”|38xe[p]}:{x62w|s;x€[p]}.

The partial order consisting of Ejy-trees is called Ey-forcing, denoted by Ey. The notions of
Ey-trees and FEy-forcing were introduced by Zapletal [36, § 2.3.10] and are closely connected
to the equivalence relation Ej, the minimal non-smooth Borel equivalence relation on Baire
space. We call an Ey-tree a Silver tree if so = s70 and s; = s~1. The partial order of all
Silver trees is naturally isomorphic to Silver forcing VE]

Definition 2.2.1. An arboreal forcing notion P has the pure decision property if and
only if for every p € P and every sentence ¢ there exists q <o p such that q decides .

Fact 2.2.2. Sacks forcing S, Silver forcing V, Miller forcing M, Laver forcing L, and
Matet forcing T have the pure decision property.

Proof. The cases for Sacks, Silver, Miller, and Laver are classical; the case for Matet
forcing will be proved in Theorem [5.2.3| m

If P is any of our forcing notions, we call the generic extension obtained from L by a
length w; iteration of P with countable support the P-model, i.e., the Sacks model, Miller
model, Laver model, etc. Similarly, the generic extension obtained from L by a length wy
iteration of P with countable support is called the wo-P-model. If P is a forcing notion
that preserves Wi, even in an wo-iteration, then the wo-P-model is a model of —CH and
contains Ny many P-generic reals.

Fact 2.2.3. In the P-model, the following statement is true: “for every x € R, there is a
P-generic over L[z]”.

Cf. §[2.5) for forcing notions living on other Polish spaces.

2.3 Regularity properties

At the highest level of abstraction, a reqularity property is just any property of sets of
reals. However, we shall consider only regularity properties that are derived from forcing
notions. In this, we follow Zapletal’s framework of idealised forcing [36] [37] as discussed
in [25, Chapter 2] and [34], §§3 & 4].

2In his “historical remark”, Zapletal traces this identification to a conversation with Lowe at the Very
Informal Gathering in Los Angeles in 2003 [36] p. 30].
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Getting an ideal from a forcing notion. If P is an arboreal forcing notion, then we
say that A € w* is P-null if for each T" € P there is some S < T such that [S] n A = @.
We denote the set of all P-null sets by Np and the o-ideal generated by Np by Zp. We say
that A € Z7 if for each T € P there is some S < T such that [S] n A € Zp. Furthermore,
we say that A is P-measurable if for every T € P there is some S < T such that either
[S]\A € Ip or [S] NnAe Ip.

Getting a forcing notion from an ideal. If [ is a o-ideal over a Polish space X,
then we define P; as the partial order of Borel sets not in I, ordered by inclusion. A set
A < X is said to be I-regular if for every set B € P; there exists C' < B, such that either
CnA=gorCc A

If P is an arboreal forcing notion and [ is a o-ideal, both P-measurability and I-
regularity are examples of reqularity properties. It turns out that for well-behaved arboreal
forcing notions, these notions coincide.

Fact 2.3.1. Let P be one of the arboreal forcings listed in §2.2l Then a set A is P-
measurable if and only if it is Zj-regular.

Proof. Cf. [34, Theorem 4.3.8] where this is proved for all proper and strongly tree-like
forcing notions P [34], Definition 4.2.17]. O

In general, sets on the first level of the projective hierarchy are regular whereas sets
on the second level of the projective hierarchy are not in L.

Fact 2.3.2. Let P be one of the arboreal forcings listed in §. Then all £} and II] sets
are P-measurable. Furthermore, in L, there is a A% set that is not P-measurable.

Proof. Cf. [25, Propositions 2.2.3 & 2.2.4] where this is proved for all o-ideals I such that
P; is proper. O

If T is one of the projective classes, i.e., AL, 3 or II. and P one of our arboreal

forcing notions, we write I'(P) for “any set in I is P-measurable”. Fact implies that
those statements for n > 2 imply V#L.

It is one of the aims of the area of set theory of the reals to determine the implications
between statements of the form Aj(P) and 33 (P) for our arboreal forcing notions P. These
statements are usually characterised in terms of transcendence over L, i.e., an equivalence
between I'(P) and the existence of certain objects that cannot exist in L.

Topologies and category bases. Some regularity properties are not defined in terms
of I-regularity or P-measurability; e.g., the Baire property was originally defined in topo-
logical terms. In [35, §2.2] provides a general framework for these and links them to the
combinatorial regularity properties.

Let X be a set and C < P(X). We call (X, C) is a weak category base if and only if

(i) X =JC and

12



(ii) for every A, A" € C'; A n A’ contains an element of C or for every ¢ € C, there is
some ¢ € C, such that ¢ Ccand d n (AnA') = @.

We call (X, C) a category base if in addition for every ¢ € C' and every C' < C' consisting
of pairwise disjoint sets with |C’| < |C|, we have

(i) if ¢ n[JC" contains an element of C, then there is some element ¢ € C” such that
¢ n ¢ contains an element of C' and

(ii) if ¢ n|JC" does not contain an element of C, then there is some ¢’ < ¢ such that
deCandd nC' = 2.

We refer to the elements of C' as regions and say that A < X is C-singular if and
only if for every region ¢ there is a region ¢ < ¢ such that ¢ N A = @; a subset A € X
is C-small if it is a countable union of C-singular sets; finally, A < X is said to be C-
measurable if and only if for every region ¢, there is a region ¢’ such that ¢ < ¢ and either
\A or ¢ n A is C-smallf]| The collection of all C-small sets is denoted by Zc; this set
forms a o-ideal.

Similarly, for a region ¢, we say that A € X is C'-not small in c if cn A is not C-small
and that it is C-not small everywhere in ¢ if ¢ n A is not C-small for any region ¢’ < c.
The ideal I}, is defined to be the collection of all subsets of X such that there is no region
¢ for which A is C-not small everywhere in CE|

The set C' is a partial order with the ordering <; we say that the weak category base
(X, C) has the countable chain condition if the partial order (C, <) does. A weak category
base (X, () is called proper if (C,<) is a proper forcing notion, Zx is a proper o-ideal,
and every region is not C-small.

Proposition 2.3.3 (Wansner).
(a) For each of the forcing notions P listed in §[2.9, the set Cp := {[T]; T € P} forms a

weak category base. Furthermore, the notions of P-measurability and Cp-measurability
are equivalent.

(b) If the regions of a weak category base (X,C) with the countable chain condition form
a basis for a topology on X, then the notions of the Baire property in that topology
and being C-measurable are equivalent.

Proof. Cf. [35 Proposition 2.2.10 (a) & (d)]. O

Proposition 2.3.4. If (X, C) is a proper weak category base that has the countable chain
condition, then I = 1§

Proof. Cf. [35] Proposition 2.2.17]. ]

Definition 2.3.5. If X is a Polish space and (X, C') is a weak category base, we say that
C' is Borel compatible with X if every region is Borel and every Borel set is C-measurable.

3Wansner uses the terms “C-meagre” and “C-Baire” for “C-small” and “C-measurable”, respectively.
4Wansner uses the term “C-abundant” for “C-not small”.

13



Definition 2.3.6. Let (X,C) and (Y, D) be weak category bases. A function f: C'— D
1s called a projection if

(1) whenever ¢ < ¢, then f(c) < f(¢') and
(ii) for every ce C and d < f(c) there is a ¢ < ¢ such that f(c') < d.
The following rather technical lemma is the main tool in Chapter [4]

Lemma 2.3.7 (Wansner’s Implication Lemma). Let X and Y be uncountable Polish
spaces and (X, C) and (Y, D) be proper weak category bases such that (X,C) and (Y, D)
are Borel compatible with X and Y, respectively. Assume that I}, is Borel generated, let
a >0 be an ordinal, that (hg : f < a) is a sequence of Borel functions from X toY, and
that (hg : B < a) be a sequence of projections from C to D such that

(a) for every B < a and every c € C, there is some region ¢’ < c such that hg[c'] < hs(c)
and

(b) for every d € D, there are 3 < o and c € C such that hg(c) < D

Then for every projective pointclass T', we have that if every T'(X) set is C'-measurable,
then every T'(Y') set is D-measurable.

Proof. [35, Theorem 2.2.46] O

2.4 (Quasigenerics

As mentioned in §[2.3] one of the central aim of set theory of the reals is the characterisa-
tion of statements of the form AL(P) and X3(P) by means of transcendence over L. The
first such transcendence result was in terms of generics:

Theorem 2.4.1 (Solovay; [21, Theorem 26.20]). Every X3 set is Lebesque measurable if
and only if for every x € R, the set of random reals over L|x]| has measure one.

Results of this form are known as Solovay-type characterisations. Similarly, the char-
acterisations of A}(P) in terms of the existence of generics are called Judah-Shelah-type
characterisations. In general, the existence of generics is enough to prove regularity at
the Aj-level [25, Proposition 2.2.5] and existence of many generics is enough to prove
regularity at the X3-level [25, Proposition 2.2.6].

However, in general, the existence of generics is too strong for proving the equivalence.
In [6], Brendle, Halbeisen, and Lowe introduced the crucial notion of quasigenerics for this
purpose. If [ is a o-ideal and M any model of set theory, we call a real x I-quasigeneric
over M if for any Borel set A € I with Borel code in M, we have that =z ¢ A. For an
arboreal forcing notion P, we call z P-quasigeneric over M if it is Zj-quasigeneric over

M.

Lemma 2.4.2. For our arboreal forcing notions, a P-generic over M is a P-quasigeneric
over M.

14



Proof. Cf. [37, Proposition 2.1.2]. O

Lemma 2.4.3. IfP has the countable chain condition, then the notions of being P-generic
over M and being P-quasigeneric over M coincide.

Proof. Cf. [25] Lemma 2.3.2]. O

We say that P has the Ikegami property if Aj(P) is equivalent to “for all x € R, there is
a P-quasigeneric over L[z]” and X}(P) is equivalent to “for all # € R, there is a Z3-positive
set of P-quasigenerics over L[z]”.

Proposition 2.4.4. If P has the Ikegami property, then the P-model satisfies Aj(P).

Proof. Fact gives P-generics over each L[z]. Lemma shows that they are P-
quasigeneric; then the Ikegami property gives the desired conclusion. O]

2.5 Some topological spaces

If X is a Polish space, we say that a forcing notion P lives on X if there is a map
[[]: P —> P(X)

such that p < ¢ implies [p] < [¢] and a generic filter G yields a singleton ﬂpEG [p] = {z}
such that x € X. Our arboreal forcing notions from §[2.2) all live on w*, assigning to
the tree p the set of branches [p]. In Chapter |4l we shall consider forcing notions that
live on the spaces defined in this section. Note that the definitions of the notions of
quasigenerics and the Tkegami property transfer without any problems to the setting of
forcings living on a Polish space X, as long as the definition of the Polish space and the
ideal are sufficiently absolute.

The set of pruned trees of half measure. We denote Lebesgue measure on 2“ by
p. We define R to be the set of all pruned trees T' < 2= such that u([T]) = % Via a
bijection between w and 2<“, we can think of the elements of R as elements of Cantor
space, so R € 2%, topologised with the subspace topology.

Proposition 2.5.1. The space R is a Polish space.
Proof. Cf. [35] Proposition 2.3.3] O

The set of open sets. We consider the standard real line R with Lebesgue measure also
denoted by p (since no confusion is possible); as usual, we write R* := {x € R; x > 0}.
We write O for the set of all open subsets of R and fix a computable coding of the basic
open sets of R (the open intervals with rational endpoints), i.e., a function C': w — O
such that C(n) is the nth basic open set. We define ¢: O — 2¢ by ¢(O)(n) = 1 if and
only if C'(n) € O. We topologise the set O with the initial topology of the map ¢ (with
respect to the standard topology on Cantor space).

Proposition 2.5.2. The space O is a Polish space.
Proof. Cf. [35, Lemma 2.3.22] O
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The universally meagre topology. For our second space, we shall consider the partial
order 2<%, As usual, a subset E < 2<% is called dense if for any s € 2<“, thereisate E
such that s < t; it is called open if extensions of elements of E are elements of F.

We also define the set U as follows: a sequence x € (2<¥)* is in U if and only if for
every s € 2<% there are infinitely many n € w such that s € x(m). Via a bijection between
2<“ and w, we can consider U as a subset of Baire space. As a IT, subset of Baire space,
U with its subspace topology is a Polish space.

Let 0 = (0(0),...,0(n — 1)) be a finite sequence of elements of 2<“ and E be an open
dense subset of 2<“. We define

[0,E]:={xeU:0 <z and Vn > lh(o)(z(n) € E)}
and let U be the collection of those sets.

Proposition 2.5.3. Fvery element of U is clopen in the Polish space U. Furthermore,
the set U forms a topology basis on U.

Proof. Tt is easy to see that the sets [0, E] are closed in the Polish space U. To see that
they are clopen, one just checks that

U\[o, E]| = U{[o’, 2<¥]: (0 € ¢’ and ¢’ & o) or In € dom(c’\o)(c'(n) ¢ E)}.

In order to see that C' is a topology base, let [0, E| and [0, E'] be two elements of Cy.
We assume without loss of generality that o < ¢, then if z € [0, E] n [0, E'], we have
o' < x and for every n = 1h(o), z(n) € E. Hence for every n € dom(o’\0), 0’(n) € E and
so (¢/,EnFE') < (0,F),(¢',E"). Therefore, [0/, E n E'] = [0, E] n [0, E']. O

The topology generated by U is called the universally meagre topology. It is not a
Polish topology. We shall see in Proposition that L forms a proper weak category
base that is Borel compatible with U.

The localisation topology. Finally, we say that a function f: w — [w]=¥ is a slalom
if every n € w, [f(n)] < n+ 1. The set of slaloms is denoted by Loc. Using canonical
bijections from w to [w]S"™!, Loc is in bijection with Baire space, so we can consider it
as a homeomorphic copy of Baire space.

Let F' be a finite subset of Baire space and o = (¢(0),...,a(n — 1)) a finite sequence
of elements of w=<* such that |o(k)| = k + 1 for all k < n and |F| < n + 1. Define

[0, F]:={f € Loc; fllh(o) = 0 and Yx € F¥n > lh(o)(xz(n) € f(n))}
and let L be the collection of those sets.

Proposition 2.5.4. Every element of L is clopen in the space Loc (i.e., Baire space).
Furthermore, the set L forms a topology basis on Loc.
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Proof. Tt is easy to see that sets of the form [0, F'] are closed. Let us show that they are
clopen:

Loc\[o, F] = U{[a’, :(c £’ Ao’ & o)A Ire Finedom(o'\o)(x(n) ¢ o'(n))}.

In order to see that L is a topology basis, let [0, E| n [0/, E'] # @. Then, we let
m = |E|+|E'|. We show that [o, E]n[c’, E'] = A = J{[fIm, EVUE']: f € [0, E]n[o, E']}.
Clearly, [0, E] n [¢’, E'] € A. On the other hand if f € A and [’ € [0, E] n [0/, E'] such
that f € [f'Im, E u E’'], then for every z € E U E’, for every n = 1h(o), z(n) € f'(n) and
for every n = 1h(o’), x(n) € f'(n). Also flm = f’'m and for every x € E' U E’ and every
n =m, x(n) € f(n). Hence, f € [0, E] n [0, E']. O

The topology generated by L is called the localisation topology. It is not a Polish
topology. We shall see in Proposition that it is a proper weak category base that is
Borel compatible with Loc.

2.6 Ikegami’s Theorem

Ikegami’s theorem is the main structural theorem of the field, connecting regularity prop-
erties to quasigenerics. It was originally proved in Ikegami’s doctoral dissertation [20] and
then streamlined by Khomskii [25] and generalised by Wansner [34].

Theorem 2.6.1 (Ikegami, 2010). Let P be one of the arboreal forcings listed in §[2.9
Then P has the Ikegami property.

Proof. Cf. [25, Theorem 2.3.7] where this was proved for a class of forcings that includes
all of the mentioned ones. []

Our main use of Ikegami’s theorem is to separate regularity properties from each other.

Corollary 2.6.2. If P and Q are two forcing notions with the Ikegami property, then if
an wy-iteration of Q does nmot add P-quasigenerics, then the Q-model satisfies AL(Q) A
—-AL(P).

Proof. Since Q has the Ikegami property, the Q-model satisfies A(Q) by Proposition
[2.4.4] Since the ws-iteration that produced the Q-model added no P-quasigenerics, there
is no P-quasigeneric over L in the Q-model. Since P has the Tkegami property, this means
that Aj(P) must fail and we have separated the two regularity properties. O

Ikegami’s Theorem will be used extensively in Chapters [3] & [5} in Chapter [4] we
shall need generalisations of Tkegami’s Theorem due to Wansner in the context of weak
category bases.

Theorem 2.6.3 (Wansner). Let X be an uncountable Polish subspace of w* and (X, C)
be a proper weak category base that is Borel compatible with X and such that the set of
Borel codes of elements of T, is X5. Then:
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(a) Every Ay(X) set is C-measurable if and only if for every r € w* such that X is coded
in L{r] there is an I} -quasigeneric over L{r].

(b) Every $3(X) set is C-measurable if and only if for every r € w such that X is coded
in L{r], the set {x € X ; x is not I},-quasigeneric over L[r|} is Zf-small.

Proof. Cf. [35 Corollary 2.2.29]. O

2.7 Inaccessibility by reals

The statement “for all x € R, we have N{J[w] < Ny” is known as Ny s inaccessible by reals.
It means that each of the models L[x] is wrong about the value of X; and in particular
implies that the true N; is inaccessible in all of these models.

Theorem 2.7.1. If Ny is inaccessible by reals, then for each x € R, there is an inaccessible
cardinal in L{x].

Proof. As mentioned, we shall show that ¥ is inaccessible in L[z]. By downwards ab-
soluteness of regularity and GCH in L{x], if ¥y is not inaccessible in L[z], it must be a
successor cardinal, i.e., there is some & < Wy such that L[z] has surjections from £ to
any countable ordinal. But since £ is countable, there is some y that codes a wellorder of
length . Then L[z, y] is a model of “¢ is countable” and every countable ordinal has size

at most &, so NV = . O

This is a transcendence property over L which implies all others at the second level of
the projective hierarchy in the presence of Ikegami’s theorem.

Proposition 2.7.2. If P has the Ikegami property, then Ny being inaccessible by reals
implies X3(P).

Proof. There are N{“[x] many Borel codes in L{x], so if N; is inaccessible by reals, countably

many; thus
N, :={A; AeZ} is a Borel set with code in L[z]}

is countable. Every real that is not P-quasigeneric over L[z] must be in some set in N,,
so contained in | J IV, which is a countable union of elements of Zj, and therefore itself in
T5. By the Ikegami property, this is equivalent to 33(P). O

Most of the regularity statements are strictly weaker than inaccessibility by reals; in
fact, they have the consistency strength of ZFC. Some regularity statements have large
cardinal strength at the third level of the projective hierarchy; the most famous example
is Lebesgue measurability [31]. Very few properties already have large cardinal strength
at the second level of the projective hierarchy. This was proved for Hechler forcing and
eventually different forcing by Brendle and Léwe [0, [10]. The result about Hechler forcing
will be relevant in Chapter [4

Fact 2.7.3 (Brendle-Lowe 1999; [9, Proposition 5.13]). If every X set is Hechler mea-
surable, then Ny is inaccessible by reals.
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2.8 Brendle-Labedzki lemmas

One way to prove inaccessibility by reals from regularity properties is with the help of
Brendle-Labedzki lemmas. In this section, we shall give a very abstract definition.

Definition 2.8.1. An assignment is a pair of formulas (U, ®) such that in every transitive
model of set theory M, we have that if A€ M and M |= V(A), then, in M, ® defines an
injection a — ¢} with domain A, i.e.,

M E ®(a,c,A) <= acAA
(acAnbeAna#bnad(a,c,A) A D(b,d,A)) =c+#d
where we let ¢ be the unique ¢ such that ®(a,c, A).
We fix an ideal I on some Polish space X.

Definition 2.8.2. An assignment (¥, ®) is called I-canonical if for each transitive model
M of set theory, we have that

M = 3JA(T(A) A |A] = 2%0)

and if M |= VU(A) and a € A, then ¢ is a Borel code in M such that the Borel set BA
coded by ¢ is in I.

In the following, we shall say that an ideal I satisfies a Brendle-Labedzki lemma if
there is an [-canonical assignment (®, ¥) such that for each Z € I and any set A we have
that

{(BY:ae AnBAc 7}

is countable. A forcing notion P satisfies a Brendle-Labedzki lemma if the ideal Z7 does.
The name derives from the fact that the first lemma of this type was implicitly used
in an argument about eventually different forcing by Brendle and subsequently written
up and published by Labedzki in |26, Theorem 4.7] who also proved a similar lemma for
Hechler forcing [27, Theorem 6.2] ] These two lemmas were then used to prove that Ny is
inaccessible by reals in [9 Theorem 5.9] and [10, Theorem 2], respectively. The abstract
proof below of the following theorem follows precisely the lines of these two proofs.

Theorem 2.8.3. Let P be a forcing notion with the Ikegami property that satisfies a
Brendle-Labedzki lemma, then X5(P) implies that R, is inaccessible by reals.

Proof. Fix any x € R. By the Ikegami property, the assumption gives us that the set
N, :={z € X ; z is not Zi-quasigeneric over L[z]}

is in Z5. By definition of quasigenericity, every Borel set B with Borel code in L|[z]
satisfies B € N,. By the canonicity assumption, we find a particular A in L[z] such that
L[z] = ¥(A) and |A] = X1 and for all a € A, we have B4 = N,. But by the Brendle-
Labedzki lemma, the set {B%; a € AA B2 < N,} is countable, so N{‘[w] is countable which
is what we aimed to show. O

5In the first mentioned result on E, U was “is a family of pairwise eventually different functions f,”
and B! was the set {z; x and f, agree on infinitely many values}. In the second result on D, ¥ was “is
an almost disjoint family” and B/* was the set {x; ran(x) does not contain any elements of a}.
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2.9 Fusion sequences

The conditions of arboreal forcings consisting of perfect or superperfect trees can be
identified with 2<% or w=¥, respectively. In this section, we provide the necessary notation
for this and introduce fusion sequences.

Trees on 2. Let pe P < 2=“. We start by identifying the nodes of p with that of the
full tree 2<¥, defining an injection o — o * p between 2<% and p by () o p := st(T") and
if o # p is defined, there is a splitting node in T" above o *q p, i.e., some 7 such that both
770 and 771 are in T'; let (070) % p := 770 and (¢"1) %9 p := 770. Then, for z € 2, we
define x *o p to be |, . (x|n) ¢ p. Furthermore, we define

new (

proo:={Txp|T < 0o0rccr}

to be the =g-restriction of p to o.

If we write L, (p) for the set of nth splitting nodes of p (in particular, Ly(p) := st(p)),
then we say that p <, ¢ if p € ¢ and L,(p) = L,(q). A sequence {p,; n € w} of perfect
trees such that p,11 <, p, for all n € w is called a fusion sequence. For fusion sequences,
the set ¢ :=["),. Pn is a perfect tree with ¢ <, p, for every n € w.

Trees on w. The mechanism for trees on w is very similar but comes with a number
of additional technicalities since we need to talk about frontiers. For this, let P be an
arboreal forcing notion such that every tree p € P is a superperfect tree on w. Once more,
we identify the nodes of p with the elements of w=<“ via an injection o — o =g p defined
recursively by () #qp = st(p) and (67(n)) =¢ p is the minimal splitting node of p extending
the nth immediate successor of o #q p, in the lexicographic order (for n € w). For = € w*,

we write = #o p 1= |, (@ 1) %o p. Furthermore, we define

pro0={T*p| TS 0oo0roccT}
to be the =g-restriction of p to o and

Lu(p) :={oxop|oen”}

to be the nth =q-diagonal level of p.

A set B € w=¥ is a p-frontier iff for every a € [p], there exist z € w* and a unique
n € w such that z g p = a, and zIn € B. If 0 € w=¥ and B is a p-frontier, then
projg(o) = {re€ B | o < 7} is the projection of o to B. We write B[n] for the nth
element in a frontier in a fixed enumeration of w=<«.

A sequence of frontiers A = {A,,; n € w} is a p-chain iff for all o € A, ;; there exists a
unique 7 € A, such that 7 & 0. Given a p-chain A = {4, ; n € w}, we define a technical,
but important operation denoted by #; by recursion:

> <> *1 (p7 A) = St(p)7
» (ny=* (p,A) = Ap[n], and
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» (07(n)) #1 (p, A) is the nth immediate successor of o * (p, A), in the lexicographic
order, if |o| > 0 is odd; and (67(n)) # (p, A) is the set projA‘o‘(a 1 (p, A))[n], if
lo| > 0 is even.

As before, this operation is extended to z € w* by

T *1 (p, A) = U(l'rn) *1 (p7 A)

new

As in the case of =g, we write

(p,A)*10:={1# (p,A) | TS ooro<7}and
Li(p) == {o =1 (p,A) | 0 € n"}

for the = -restriction of p to o and the nth =;-diagonal level of (p, A), respectively. This
allows us to define

q é,ﬁ‘ p:<q < pand Lﬁ(q) = LfL‘(p).

Note that L{!(p) does not depend on A (since it just consists of the stem of p) and so <{'
does not either. We can therefore write <, for <6‘E|

A sequence {p,;n € w} € P such that p,,; <? p, for all n € w is called a fusion
sequence. For fusion sequences, the set ¢ := (1), pn is a superperfect tree with ¢ <A pn
for every n € w.

Definition 2.9.1. The following recursively defined function j : w=* — w=“ will be called
the auxiliary map. We let j(()) = {) and suppose that j(c) has been defined and j(o~(k))
has been defined for all k < n?. Let {k,; m < 2n + 1} be an increasing enumeration of
(n + 1)2\n? and set

j(@)m)y~ k), if m <n and
(@) () ~lkpy, ifn<m<2n+1.

(0" Ckm)) = {

Definition 2.9.2. A map i: w<Y — w=<“ is called height-preserving if for each o € w=*,
we have that |i(o)| = |o|. It is called j-stable if

(a) i(Q) = ); and

(b) for every n € w, there are infinitely many natural numbers k, ’s such that
Ji(o7 k) 12]i(0)] + 1 = j(i(0))"(n).
Note that if ¢ is height-preserving and j-stable, then [j(i(c))| = 2|o|.

Lemma 2.9.3. Suppose that i is j-stable and height-preserving. Let p € L and A =
(An)new be a p-chain. Then ran(j o i) = (p, A) is a stem-preserving Laver subtree of p.

Proof. Follows from the construction. O

6Cf. Footnote
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2.10 Iterations of arboreal forcings

In this section, we shall be providing the main technical tools for dealing with iterations
of arboreal forcings. As mentioned, we are interested in separation results using Corollary
2.6.2|, so we should like to prove that all reals in the P-model or wy-P-model have a certain
property.

For this, let P be any arboreal forcing notion with the pure decision property (cf.
Definition and « any ordinal. We denote by P, the countable support iteration
of P of length . Any element of Cantor space in the generic extension will have some
name = and some condition p that forces “z € 2¢”. We fix this name and condition for
the remainder of this section.

Guiding reals and continuous reading of names. The following result shows that
for forcings of our type any real added by the forcing P can be approximated by ground
model reals that we call guiding reals.

Theorem 2.10.1 (Existence of guiding reals). Let P be an arboreal forcing notion with the
pure decision property whose conditions are trees on w and o € w=* be a finite sequence.
For any name x for an element of Cantor space and any p € P there exist ¢ < p and a
ground model real g such that

g0 k- zl(|of + k) = gl(lo| + k)
for all k € w. Such a real g is called a guiding real with respect to x, o, and q.

Proof. The proof is a direct application of the pure decision property and the compactness
of Cantor space; cf., e.g., [13, Claim 3.2.2]. ]

Consequently, if we are working in a generic extension by the generic filter G and
p € G was the original condition that forces “z is a real”, we can extend p to a q € G such
that there is a guiding real for each o. Without loss of generality, we can assume that
p = ¢. In this context, we now write x, for the guiding real with respect to z, o, p, and
q, suppressing the rest of the notation. Similarly, if 7" is a tree with stem st(7"), we write
7 1= Tg(r). In this setting, we define for any r < p = ¢ the tree of r-interpretations for
x by

T () ={sew™ | I <r(rsc )}

We can use the guiding reals to define the function f : [¢] — w* by f(a % q) =
limpe, Tarn (if the conditions are trees on w; with the obvious modification if they are
trees on 2). This function is continuous and if 2, is a name for the generic real, then
q b f(Zgen) = @. This is also known as continuous reading of names [37, Definition 3.1.1][]

Fact 2.10.2. IfP = L, then the function witnessing continuous coding of names is injec-
tive.

TCf. also [13] p. 31].
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Proof. This follows from a result by Gray proved in [8, Theorem 16]f| Cf. also [I3, Fact
3.2.3 & p. 32). 0

The existence of guiding reals can be generalised to the iteration case.

Theorem 2.10.3 (Existence of guiding reals for iterations). Let P be an arboreal forcing
notion with the pure decision property, « any ordinal, and p € P,. For each f € «
and o € W=, there erists p° < p and a Ps-name for a real 17 such that for all v € f3,

P - pl(vy) = p(v) and
PIIB I pl(B) <o p(B)

and if we define q(o, 8) = (pJ(B) =0 0~k)"pl (8, @), then
q(0,8) - @1 (lo| + k) = &1 (o] + k).

Proof. Note that the pure decision property means that for any statement there exists

r < p such that for all 7 € 3, r1y I r(7) = p(y) and 718 I r(8) <o p(8) and r1[7, )
decides the statement. This way we get p? < p such that, for every k € w:

P13 1= p5(8) %0 (07 k) P 1(B, @) decides i1 (|o| + k).

The claim can now be proved with a compactness argument similar to the one used in

Theorem [2.10.1] (cf. [13, Claim 3.2.2] for a proof). O

Faithfulness. As mentioned, we try to preserve a property of reals in iterations. For
this, we shall define a notion of faithfulness. We fix some finite subset F' € « and a
function n: F' — w. For p, q € P,, we write

q <(py pif and only if ¢ < p and for all y € F and 0 € Hvan(’y)”(”),
we have that ¢y IF ¢ o o () = p = (7).

For forcings whose conditions are trees on 2 rather than w, we need to restrict o to
[lcr 270 for this definition.

We extend the definitions of #y and #; to the conditions p € P, in a specific situation as
follows. Fix F' € « finite, n: F' > w, 0 € HyanW)n(wa and A7 a chain of p(+)-frontiers
for each v € F (writing A := {A7; v € F'}). Then we define p = o such that

Vye F((pxoo)ly - (pxoo)(y) =p(y) *00o(v))
and (p, A) #; o such that
Vye F (((p,A) =1 0) 17 IF ((p, A) *1 0)(7) = (p(7), A7) #1 0(7)) -

Definition 2.10.4. Let A7 a chain of p(7y)-frontiers for each v € F and ¢(x,y) be a
formula in two free variables. We say that p € P, is o-(F,n)-faithful if for any 0,0’ €
H%F n(7)") such that o # o', we have that

pImax(F) - ©(Towyps Toruip)-

8Cf. [17].
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Again, for forcings whose conditions are trees on 2 rather than w, we need to restrict o
to ]_[%F 2100 for this definition and instead of #;, we need to consider only #o, as the
frontiers will just be the splitting levels and the technicalities involved are much simpler.

Also for Matet forcing although it’s conditions are trees on w, we shall be considering
o instead of #; since the technicalities involved in this are simpler regarding this aspect
but have other intricacies of it’s own which we shall discover in Chapter

Definition 2.10.5. A sequence {(pn, Fy,,nn); n € w} is called an augmented fusion se-
quence if

(i) F, is a finite subset of «,
(i) 1 By — w,
(iii) F, € Fop1,
(i) M1 (7) 2 Ma(y) for v € Fo, and

(U) Pn+1 <(Fn,17n) Pn-

(vi) for alln € w and 7y € supp(p,) there exists m € w such that v € F,, and n,(v) = n.

We say that q is the fusion of the augmented fusion sequence if for all v € «, qlv I+
0(7) = Npew Pr(7)-

Our objective in Chapters [3| & [5| will be to obtain a fusion sequence such that g, is
©-(F,,, nn)-faithful. This will guarantee that the fusion of this sequence will be faithful as

well.

2.11 Implications between regularity properties

As mentioned, one of the themes of the research area of set theory of the reals has been the
study of the implication diagram between the regularity properties derived from arboreal
forcings. In Figure [2.1, we give the state of knowledge as it had been established before
this thesis. This diagram is complete in the sense that for any two statements in the
diagram, there is an implication between them if and only if there is an arrow in the
transitive closure of the diagram.

The notable exception was the non-implication between Aj(L) and A}(V) which had
been open and explicitly listed as an open question by Fischer, Friedman, and Khomskii
[12, Question 6.3], Brendle and Lowe in [I0, Figure 1] and by Ikegami in [20, Figure 2.1].

This problem is solved in this thesis; cf. Corollary

In Figure [2.2] we add some of the regularities for the forcings A, Egy, C, T, and W to the
diagram and mark the various implication questions that we tackle in this thesis. Chapter
will deal with L, V, and Ey; Chapter [4 will deal with A, B, and D; and Chapter [5| will
deal with T and W. In particular, the following implications and non-implications will be
proved:
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Figure 2.1: Complete implication diagram of regularity properties for the forcings B, C, D,
E,L,M,R, S, and V from [35], Figure 1.1]. Note that the non-implication between A}(L)
and A}(V), marked with a “?” was unknown before the result in this thesis (Corollary

&
e
D

For reference, we list some of the results represented in the diagrams that will be used
in this thesis.

Theorem 2.11.1. The statements Ay(L) and X3(L) are equivalent.
Proof. Cf. [9, Theorem 4.1]. O
Theorem 2.11.2. If Aj(V), then A}(Ey).

Proof. Cf. [7, p. 1350]. O
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(5 = Aj(W) A (Eo)

///

25(8) = A5(9)

Figure 2.2: Implication diagram of regularity properties with open questions that are
solved in this thesis marked by the number in the list of results.
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Chapter 3

Laver forcing

3.1 Introduction

The main result of this chapter is the separation of Laver-measurability and Silver-
measurability by analysing the Laver model. Whether this separation is possible has
been asked several times in the published literature[T]

The analysis of the Laver model is closely related to the study of Borel chromatic
numbers of graphs. The systematic study of definable graphs started in [24] as a descrip-
tive set-theoretic approach to concepts and results from graph theory, and this field is
nowadays called descriptive graph combinatorics.

If X be a Polish space, we call G a graph on X if G € X x X is irreflexive and
symmetric. Since a graph is a subset of the Polish space X x X, it can be closed, F,,
Borel, or analytic. A graph is called locally countable if the set {y € X | (x,y) € G} is
countable, for every x € X.

If G is a graph on a Polish space X, and a > 1 is an ordinal, then an «-colouring of
G is a function ¢: X — « such that c(z) # c(y), for all (z,y) € E. The sets ¢! ({3}) for
B < « are called the maximally monochromatic sets for c. We say that an a-colouring ¢
is a Borel colouring if all maximally monochromatic sets are Borel.

The Borel chromatic number of G, denoted by xp(G), is the least cardinality of an
ordinal « for which there exists a Borel a-colouring of GG. Since we assumed X to be a
Polish space, all Borel chromatic numbers are bounded by 2%. We shall see later that
uncountable Borel chromatic numbers may assume different values in different models of
set theoryl]

If F is an equivalence relation over X, we can think of F as a graph by making it
irreflexive, i.e., considering F\Idx where Idx := {(z,z); x € X} is the identity on X.
We use the above notation for equivalence relations, i.e., we write yg(F) for the Borel

LCf. p. [12] Question 6.3], [I0, Figure 1], and [20], Figure 2.1].

2For ZFC-results about Borel chromatic numbers, we refer the reader to [24]; for consistency results,
to [15, M4]. At the heart of the field of descriptive graph combinatorics is the Go-dichotomy: it says
that there exists a closed graph Gy which is minimal for analytic graphs of uncountable Borel chromatic
numbers, i.e., if G is analytic and xp(G) is uncountable, then x5(Go) < xp(G) [24, Theorem 6.6].
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chromatic number of the equivalence relation E ]

If x,y € 2¥, we can consider them as sets of natural numbers and define their sym-
metric difference Ay := {k; (k) # y(k)}. This operation gives rise to one of the most
interesting relations for us. We define

rEyy : <= YV n (z(n) = y(n))

<= /Ay is finite.

This is an F, equivalence relation.
Zapletal connected the equivalence relation Ey to Ey-trees and the forcing notion E.
This will become relevant in our applications of the main result later (cf. §, in particular

Theorem |3.4.1)).

Theorem 3.1.1 (Zapletal). A real is Eg-quasigeneric over M if and only if it avoids all
Borel Ey-independent sets coded in M.

Proof. Zapletal uses different terminology, but the key lemma is [36, Lemma 2.3.29]; cf.
also [13] Fact 1.3.2]. O

Gaspar and Geschke asked [14, Question 5.2] whether xg(Ep) is consistently smaller
than the bounding number b; we give a positive answer to that question in Corollary
[3.2.81 The key technical ingredient in our proof is a preservation theorem for Laver
forcing, Theorem Theorem (a) was independently proved by Zapletal, but
for closed graphs instead. His methods rely on the heavy machinery of his idealized
forcing (cf. [37]), as well as iterable properties for “sufficiently definable and homogeneous
ideals”. The approach we take here is completely different and we resort only to classical
combinatorial arguments of the forcings involved.

As an additional consequence, our result proves the separation of Laver and Silver
measurability (the mentioned open question posed by Fischer, Friedman, and Khomskii):
in the Laver model, all ¥} sets are Laver measurable, but not all Aj sets are Silver
measurable (cf. Corollary [3.4.2)).

Furthermore, we apply our preservation theorem to answer a question of Brendle,
Halbeisen, and Lowe: whether the existence of splitting reals (cf. p. implies Silver
measurability [6, Question 2]. The answer is ‘No’ as we show in Corollary

3.2 Definitions and the main result

Let G be a graph on a Polish space X.
Definition 3.2.1. A set A < X is called G-independent if A2 NG = &.

Note that if ¢ be an a-colouring and A is maximally monochromatic for ¢ (i.e., of the
form ¢~ !({f3}) for some 8 < «), then A is G-independent. Therefore, we observe that we
can reformulate the definition of Borel chromatic numbers.

3The descriptive graph combinatorics of equivalence relations has been extensively studied in [19} [7]
and other papers.
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Fact 3.2.2. For every graph G, xg(G) is the least cardinality of a family F of Borel
G-independent sets such that | JF = X.

If G is a graph, we call C = (Cp)new & cover of G if G = |, Cn. Note that each

C, € X2\Idx where Idy := {(z,2z); z € X} is the identity on X; this space is a Polish
space. We call a cover closed if all its elements are closed subsets of X?\Idy.

Fact 3.2.3. A graph G on a Polish space X is F, if and only if there is a closed cover
of G.

Definition 3.2.4. If C = (C,)new 15 a cover of G, the function defined by

min{n + 1 | (z,y) € Cy,}, if (x,y)eG
ec('ray) = 07 Zfﬂf =Y.
w, if (x,y) ¢ G uldy.

is called the G-locator of C, corresponding to the fived enumeration (c,)new. We shall not
mention the enumeration because in each and every of our proofs the enumeration will be

fized.

Clearly, the G-locator of C is identically w on a set A if and only if A is G-independent.
We write
le(A, B) :== min{lc(a,b) | (a,b) € A x B}

for A,B < X.

Definition 3.2.5. Let C be a cover for G. We say that G is {c-unbounded iff for every
(z,y) € X? and n natural number such that lc(x,y) > n, there exists an open neighbour-
hood O of y such that lc(x,z) > n+ 1, for every z € O\{y}.

As mentioned, the main graph considered here is Fy\ldow. This is an F, graph with
the closed cover defined by

Cn={(z,y) € (29)* | 0 < [zly| < n+ 1}

and it is e-unbounded.
Note that the locator for this cover is an infinite version of the usual distance on the
set of vertices—i.e., the distance between two vertices is the shortest length of a path

between them—, and this will be further discussed in §[3.5]

Proposition 3.2.6. If C is a cover for G and G is {c-unbounded graph, then it is locally
countable.

Proof. Let us consider Cy, and let x € X. Then since X is compact {y € X : (z,y) € Cp}
would have a limit point if the above set is uncountable. Let this limit point be z. Then,
one can never find an open set O, with z € O, such that for all r € O\{z}, lc(x,y) > 1.
This means that Cj is countable. But one can easily notice that there is nothing special
about Cj and that this argument applies to all the C! s. Therefore x has at most countably
many G-edges. O
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Theorem 3.2.7. Let G be an F, graph on a totally disconnected compact Polish space X
and C be a closed cover of G.

(a) If G is locally countable then, in the wo-Miller model, every point in the completion
of X 1s contained in a Borel G-independent set coded in the ground model; and

(b) if G is Le-unbounded then, in the wo-Laver model, every point in the completion of X
1s contained in a Borel G-independent set coded in the ground model.

As mentioned before, (a) was proved by Zapletal independently but for closed graphs.

The bounding number b is the smallest cardinality of an unbounded set, i.e., b :=
min{|F|; F € w* and for all f € w* there is some g € F such that {n; f(n) < g(n)} is
infinite}.

Corollary 3.2.8. It is consistent with the axioms of ZFC that xg(Ep) < b.

Proof. This happens in the wy-Laver model: it is well known that in that model b = R,
[3, Model 7.6.13]. But by Theorem we have that xp(G) < |w*” N L| = N;. O

For a diagram involving common small cardinal characteristics of the continuum, and
a few Borel chromatic numbers, cf. [I4, Figure 1].

3.3 Technical lemmas

The reason why Theorem can be proved for totally disconnected compact Polish
spaces is that they are the continuous injective image of 2 when they lack isolated
points:

Claim 3.3.1. Let X be homeomorphic to 2¥, and ¢ : 2 — X be one such homeomor-
phism, and G be a graph on X with cover C. Then G is F, iff

P*[G] = {(¢7 (), 97 (y) € (2°)" | (w,9) € G}
is an F, graph on 2*. Moreover,
(a) G is locally countable iff p*[G] is locally countable; and
(b) G is {e-unbounded iff *[G] is {e-unbounded.
In any case, we have that xg(¢*[G]) = x5(G).

Proof. Follows directly from the fact that ¢ is a homeomorphism. O
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Single step. Now, in order to prove Theorem |3.2.7], we first investigate what happens
when we add only one generic real to the universe. This corresponds to the successor stage
of the forcing iteration. So, let = be a name for a real and assume that p is a condition
(either a Miller or a Laver tree) that forces “z is a real” and that is strong enough to
guarantee that all guiding reals are defined (cf. §.

This gives us the function f witnessing continuous reading of names (cf. . In the
case of Laver forcing we know by Fact that f is injective. This means for any p € L
that f“[p] is a Borel set coded in the ground model since f is injective and [p] is a closed
set (cf., e.g., [30, Exercise 2E9]).

Lemma 3.3.2. Let G be an F, graph on 2%, with a closed countable cover C.

(a) If G is locally countable and P = M, then there is a stem-preserving extension q < p
such that f“[q| is a G-independent set.

(b) If G is bc-unbounded and P = L, then there is a stem-preserving extension q < p such
that f“[q] is a G-independent set.

Proof. Let us prove (a) first. In the Miller case, we define an order-preserving injection
i:wsY —> w<¥ and a strictly increasing sequence (k,),e, of natural numbers such that,
for all o, 7 € ns",

() te ([0 Ni0)] + k] [ M) + Ba]) = lo] — |7, if 7 < o,

(2) Le ([mio) i(0)] + kn] s [z Mi(T)] + kn]) = |o]+|7|—2|o 7], if o and T are distinct
(here o n 7 denotes the longest common initial segment of ¢ and 7), and

(3) for all o’ € ((n + 1)%)<+\(n2)<" such that o < o the closure of f“[p+i(0”)] is
a subset of [z 1i(c)| + k.

Once this is done with care, we can ensure that ¢ = ran(i) =o p is our desired Miller tree.
In fact, if a,b € [¢q] are distinct, then f(a) and f(b) do not form an edge: in fact, for
every n € w, there exists o4, 0p, such that |o,,| = |0y, = n + 1, i(04n) 0o p S a and
i(opn) #op < b. Then

gC(f(a% f(b)) = ec (xi(aa,n%xi(crb,n)) = 2(” +1— ’O—am, M O—b,n‘);

and the sequence |o,,, N 0p,| is constant. Hence, le(f(a), f(b)) = w.

This construction can be carried out for Miller forcing if G is locally countable: assume
7]mS" has been defined and let < denote the lexicographic order on w=<*. By induction on
o, also assume i(7) has been defined, for all 7 < ¢. Since f“[p*gi(o||o|—1)] is uncountable
(because & is not in the ground model), there exists a € w* such that i(o||o| — 1) € a;
and ( f(a=op), xi(T)) ¢ GG. In particular, it follows from the closedness of the C,’s, and
from the continuity of f, that there exists an initial segment of a, which we choose to be
i(0), such that

le (2o 1)) > {]0[ — |71, if 7 < o; and

lo| + |7| = 2|c n 7|, if 7 and o are incompatible.
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This finishes the inductive construction.

We prove (b); in the case of Laver forcing, we assume that G is fe-unbounded: first,
let A = (A,)new a p-chain as in Claim [2.10.2] witnessing the injectivity of f. Similarly to
the case of Miller, we need to construct some order-preserving injection i : w=%
and a strictly increasing sequence (ky,)ne, of natural numbers, but we need some changes:

s w<w

(1) i is height-preserving and j-stable;

for o, 7 € W<
(2) Le ([Tatipa Mo (i, p, A + k] [2rpa T, A + ka]) = [(Jo] = I7])/2], if 7 < o
(3) Le ([Totip Mo (@0, A + kn] s [2rpa T, A + ka]) = [(Jo] + 7] = 2]o A 7[)/2]

where o (i, p, A) is the unique element of w=* such that

U<i7p7 A) 0P = J(Z<U)) *1 (pa A)

We shall proceed by induction on the set of even natural numbers, that is {2k : k € w}.

So, assume i} (n?)=" has been defined for some n > 0. Moreover, let assume i(7) has been

defined for some o and all 7 < o, where 0,7 € ((n + 1)2)¥"""\ (n2)¥".

Let 0= = ol|o| — 1 (thus |o~| = |o| — 1), a node for which ¢ is defined according to
our induction hypothesis — that is, for each 7 < o and z € [2,-(p4) o™ (1,0, A)| + ks ],
we have that

ﬁc(zx , A>> [(lo] = I7)/2] = 1, if < o; and
e - [(|o] + |7| — 2|A(0,7)|)/2] — 1, if 7 and o are incompatible.

Now using /c-unboundedness, for each such 7, we let O, be an open set around z,-(; p, a)
such that for all z € O\ {x sz)}

le (2, 24m) = [(lo] = I1)/2], it 7 < o; and
= [(lo| + |7| — 2|A(e,7)])/2], if 7 and o are incompatible.

Since (),_, O- is an open neighborhood of @,-(;; 4y, by choosing i(c) such that
|Zo@ip.a) o (i, p, A)]] = N, ~, O- we get

lc (x N T A) - [(lo] = I7[)/2], if 7 € o; and
ol Trie ) 2 1015] 4 7] = 2|A(0,7)])/2], if 7 and o are incompatible.

In any case, we use the closedness of the C,’s one more time if necessary to get a
natural number £, such that

le ([zap o (i,p, A + knsa] s [z Mo (i, p, A) + K ])
= EC (xT(’i,va)7 xT(ivva)) ’ -
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Iteration. Our goal now is to prove some version of Lemma for countable support
iterations of Laver forcing. For an ordinal o > 1, let P, denote the countable support
iteration of P (where P is either M or L). Let F' be a finite subset of a and n : F' — w.
For p,q € P, we say that ¢ <g, p iff

Vy e F (g1 Ik q(v) <o) p(7)) -

For the rest of this section, = is a name for an element of 2 not added by any proper
initial segment of the iteration and p is a condition forcing “z is a real”.

Theorem 3.3.3. Suppose that « is a limit ordinal and p € P,. Then there is ¢ < p
such that for every coordinate B € o, and 0,7 € w=¥, there are chains of frontiers A® :=
(AP n e w) such that if o and T are such that q| 3 forces that st(q(B)+oc) and st(q(B)+oT)
are immediate successors of nodes of frontierd!| and q(8) =g o # q(B) *o T then

q fﬁ = xq(ﬁ)*oa # xq(ﬁ)*or-

Proof. This is a direct consequence of Theorem [2.10.3] Lemma [3.3.2| and the fact that =
is not added by any proper initial segment of the iteration. O]

Theorem 3.3.4. If « is a successor ordinal say 0 + 1 and r € L, then there exists p < r
such that for o,7 € w=¥, there are chains of frontiers A% := (AY; n € w) such that if
o and T are such that plé + 1 forces that st(p(a) =g o) and st(p(a) =9 T) are immediate
successors of nodes of frontiers and p(a) =g o # p(@) =9 T then

Pl - Tpayxoo # Tpa)xor-

For 8 € 0 + 1 the splitting levels form a chain of frontiers but they do not necessarily
satisfy the above inequality.

Proof. 1t follows from Theorem [2.10.3] and Lemma that r[d + 1 forces that there is
p(0 +1) < r(d+ 1) such that p(d + 1) has frontiers satisfying the inequality mentioned in
the theorem’s statement. O

For any condition r € P, r decides some (proper) initial segment of the values of the
real with name . We write z, for the maximal initial segment decided by the condition
r. If F'is any finite set, n: F' - w<¥, and 0,7 € Hvan(fy)"(V), we define

Cnase = max{lo(7)] + |7(7)[ = 2lo(y) 0 7(7)[} and

Cax = max{€i 5 o, | ()"}
yeF

Let GG be a graph with cover C, ¢ < p, F a finite subset of «, with a chain of frontiers A”
for each co-ordinate v € F and n: F' — w. We say that ¢ is G-(F,n)-faithful iff

e ([Zqer (0,40 ] [Tasa(ra)]) = [€50/2]

for all distinct o, 7 € [ [ n(7)" and v € F.

4We remind the reader that for the sake of ease of reading, we defined guiding reals of trees as follows:
xrT = xst(T)~
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Lemma 3.3.5. If « is a successor ordinal say § + 1, and o, 7 € w=*, then pld + 1 forces
le([Zp@mol [Tp@ynr]) = lof + [7] = 2|0 A 7],

Proof. Follows from the proof of Lemma [3.3.2 [

Lemma 3.3.6. Let G be an ¥, graph, C be a closed cover for G, and G be {z-unbounded.
Let F be a finite subset of o (containing o — 1 if « is a successor ordinal), 5 € F,
7 = max(F), Nmax := max{n(y); vye€ F}, andn' : F — w be defined by

n(y) if v ¢ 46,7},
n'(y) = min{2k : 2k > n(B8) and k € w} if vy =8#7,
min{2k +1; 2k + 1 > fax + 0 + 1} +1 if vy =7.

Let ¢ <p, p be a G-(F,n)-faithful condition. Then there exists a G-(F,n')-faithful condi-
tion r <, q.

We remark that one can check that the proof for Miller forcing only requires that G
is locally countable (rather than {z-unbounded; cf. Proposition [3.2.6)).

Proof. Since z is not added at a proper initial stage, every stage of the iteration has a
chain of frontiers associated to it that satisfies Theorem [3.3.3] or Theorem 3.3.4] as the case
may be. Let {00, ...,0p,—1} be an enumeration of [ [ x5y n(y )1, We define " : F — w

such that 7" | F\{7} = o and n"(3) = n/(3) — L.

We define a <p,-decreasing sequence (p;)j<m by recursion. Assume we have con-
structed pj_1; using ideas from the proof of Lemma [3.3.2) “ 2| and Lemma we define
an order-preserving injection i on w<" ) a strictly increasing sequence k of natural
numbers, and a p; <p, ¢; with the following condition:

We denote by 7(7, p, A) the unique element of w<* such that 7(i,p, A) xgp = j(i(T)) =
(p, A) and let 7, 7" € w<""). Then (p; * 0;)17 forces

(i) 4 is height-preserving and j-stable,

(ii) 7 < 7', it forces Lo([Tr(ip,a) T (4,0, A)| + knl, [0 pay T (0,0, A)| + kn]) = [(|7] —
17'])/2], and

(iii) if 7 and 7’ are incompatible, it forces
le([22p,0) T (6P, A + K, 22, 1T (0, p, A+ Ba]) = (7] + 7] =27 2 7)) /2]
In particular,
e[y Vi) + Kl [ Hi7) ] + ) > [+ 1)/2]
when |7[ = |7'| = [1hnax + (Ghax + 1)/2], and [T 0 7] < Nimax

If 8 =7, simply let r = pp_1; if B # 7, let {I. | 7 € n”(B)""®)} denote a partition of
w into finitely many infinite pieces. Then r <g, pn—1 is defined such that

(1) r W = Pm—1 W’
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(2) for all coordinatewise extensions 0" € [ [ cp (5, 7" ()" of the restricted product of

nodes o € HveF\{ﬁ} n(7)"), for all & € n(3)<"1),

(r#1 0" )17 I succ(st(r(3) =1 8)\{0, ..., n(7) = 1}* = L34,

where {0, ..., k—1}* denotes the first k£ immediate successors of the stem of the restric-
tiocril of () to &, r(¥) ¢ &; for all & € n(5)"7, gy =A{r(v) 20 0(7)"K : K € L)}
an

B) rt @+ 1) Eri(7,a) = pmal (¥, @)

3.4 Proof of the main result and applications

We can now prove Theorem (b) | With Lemma and some bookkeeping, we can

construct a fusion sequence (py,, F,, My )new such that
(i) for all v € supp(py), there is m € w such that v € F,, and n,,(y) = n; and
(i) pn is (F,,n,)-faithful.

Let ¢ € L, be defined recursively such that for all v < «, we have (qlv I+ ¢(y) =
Myew Pn (7)), let (z(7); v € supp(q)) be a sequence in (w?)*"PP@  and define a function f
by

f ((x(w'yesupp(Q))) = U T g0 (2(7) 10 (1)) e
new
The function f: (w*)*"PP@ — 2¢ is a ground model continuous injection mapping the
generic sequence to @ — i.e., ¢ I= f(Zgen(7))resupp(q) = ©- Due to the above property of ¢
being a fusion of the faithful sequence (p,, F},), we have l¢(f(x), f(y)) = w, for all distinct
r,y € (w)*'PP@  Hence, f [(w“)supp(Q)] is a ground model Borel G-independent set. This
finishes the proof of Theorem [3.2.7]

We can now harvest the fruits of our labour and provide the promised solutions of the
two open questions.

Theorem 3.4.1. In the Laver model, if r is a real, then there are no Ey-quasigenerics
over L[r].

Proof. Let x be any real in the Laver model. Since Ej is {c-unbounded, Theorem [3.2.7) (b)
says that x is contained in a Borel Ey-independent set coded in the ground model. But
then it cannot be Ej-quasigeneric over the ground model (and hence not over any L[r])
by Theorem [3.1.1 O

Corollary 3.4.2. In the Laver model, 5(L) holds and A}(Ey) and Ay(V) fail.
°The proof of Theorem (a) is the same, using the remark after Lemma m
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Proof. Follows from Theorem [2.11.1] Proposition and Theorems &BA4AI O

A set s € [w]“ (interpreted as an increasing element of Baire space) is called a splitting
real over M if for every = € [w]¥ n M, both x\s and s n x are infinite.

Theorem 3.4.3. If AY(V), then for every real v, there is a splitting real over L[r].
Proof. Cf. [6l, Proposition 2.4]. O

Brendle, Halbeisen and Lowe asked whether the converse of Theorem holds [6],
Question 2|. Our result implies that the answer is negative.

Corollary 3.4.4. In the Laver model, A3(V) fails, but for every real v, there is a splitting
real over L[r].

Proof. The first part follows from Corollary |3.4.2, Laver forcing adds dominating reals
over L[r] (cf. [3, Lemma 7.3.28]) and the existence of a dominating real implies the
existence of a splitting real (cf. [I8, Fact 21.1]). O

3.5 Questions

As said earlier, the notion of C-locator is a generalisation of the graph distance (i.e., the
shortest length of a path between them). If G is a closed locally countable graph on
a Polish space X, let Eg be the equivalence relation whose classes are the connected
components of G. Then Eg\Idy is a locally countable F,-graph with closed cover C =
(Cp)new defined by

Co ={(z,y) € (2°)* [ 0 < d(w,y) <n +1},
for all n € w, where d here denotes the usual distance in G (so, G = Cj). Say that G has
unbounded distance if Eg\Idx is {c-unbounded.

Question 3.5.1. Is there a closed locally countable graph defined on a Polish space that
does not have unbounded distance? More generally, is there an F, locally countable graph
that is not c-unbounded for all its closed covers?

Even if the answer to Question is positive, it could be that Theorem (b)
still holds for all locally countable graphs. However, this could not be proved with the
method presented here.

Question 3.5.2. Does Theorem (b) still hold if G is an arbitrary locally countable
graph?

We were not able to find a counterexample for Theorem when the set of vertices
is not compact, or not extremely disconnected.

Question 3.5.3. Does Theorem [3.2.7 still hold if X is not compact (e.g., X = w*)?
What if X is not extremely disconnected (e.g., X =[0,1], or X =R)?

Finally, we do know what happens for graphs of different complexities, such as Gg,
Ggg, Fg(g, etc.

Question 3.5.4. Does Theorem still hold if G is an analytic graph?
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Chapter 4

Regularity properties and
inaccessible cardinals

As discussed in §, it is rare that the measurability of all ¥ sets gives the strongest of
the transcendence properties, “N; is inaccessible by reals”. One of the few examples of
this is Hechler regularity (cf. Fact which we are going to use in our proofs here.

It had been conjectured since the late 1990s that the same holds for amoeba regular-
ity. However, the fact that amoeba forcing does not live on the reals and that amoeba
regularity was not defined in the usual way, made it difficult to analyse it: the analysis
required the general framework due to Wansner described in §§[2.3| & [2.6) from [35].

In this chapter, we introduce various notions of amoeba forcing and prove that X
measurability for each of them implies that N; is inaccessible by reals.

4.1 Being an amoeba

If P is a forcing notion with the Ikegami property, one way to obtain X3(P) is to iteratively
add co-null sets of quasigeneric reals in an iteration of length w;. In order to do this, we
would like to have natural forcing notions adding these large sets of quasigenerics, usually
called amoebas of the original forcing.

Definition 4.1.1. Let P be an arboreal forcing notion and Q any other forcing notion.
1. We say that Q is a weak Amoeba of P if A5(Q) implies X5(P);

2. We say that Q is a quasigeneric Amoeba of P if for any T € P, any Q-generic G,
and any model M 2 V[G], we have that

M = 3T < TVx(z € [T'] — x is P-quasigeneric over V);

3. we say that Q is a quasi-Amoeba of P if for any T € P and any Q-generic G we
have that

V[G] = 3IT" < TVx(x € [T'] — x is P-generic over V'); and
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4. we say that Q is a (generic) Amoeba of P if for any T € P, any Q-generic G, and
any model M 2 V[G], we have that

M 3T < TVz(x € [T'] — z is P-generic over V).

Proposition 4.1.2. Let P be an arboreal forcing notion. Then every Amoeba for P is a
quasi-Amoeba for P and every quasi-Amoeba for P is a quasigeneric Amoeba for P.

Proof. Follows directly from the definitions. ]

Proposition 4.1.3. If P is an arboreal forcing with the Ikegami property, every quasi-
generic Amoeba (and therefore by Pmposition every Amoeba and every quasi-Amoeba)
is a weak Amoeba of P.

Proof. Follows directly from the definitions. m

In general, the various notions of Amoebas do not coincide: for Sacks, Miller, and
Laver forcing, the regularity of all A} sets is equivalent to the regularity of all ) sets
[9, Theorems 4.1, 6.1, & 7.1]. As a consequence all of these forcings are their own weak
Amoebas. Sacks forcing and Miller forcing are quasi-Amoebas, but not Amoebas for
themselves [5, Theorem 4, Corollary 5, & Proposition 7], and Laver forcing is not even a
quasi-Amoeba for itself [5, Theorem 5]. This situation changes for c.c.c. forcing notions
as the following theorem shows.

Theorem 4.1.4. For c.c.c. forcing notions P, every quasi-Amoeba for P is an Amoeba
for P. (In other words, Amoeba and quasi-Amoeba are equivalent.)

Proof. Cf. [12], p. 712]. O

In §f4.2] we shall introduce various Amoeba forcings for c.c.c. forcing notions. These
forcing notions do not live on Baire space, but on slightly different Polish spaces that we
shall define in the following section.

4.2 Definitions of amoebas

Using the spaces from the previous section, we now give the definitions of the various
amoebas that we consider in this chapter. We use the spaces O, U, and Loc defined in
§[2.5] As in §[2.5 the symbol u denotes Lebesgue measure, either on 2¢ or R; it will be
clear from the context which measure is intended.

Definition 4.2.1. Amoeba forcing, denoted by A, consists of the set of all pruned trees

T <= 27 such that p([T]) > 5, ordered by inclusion.

Amoeba forcing was introduced by Martin and Solovay in [2§]. It is an Amoeba for
random forcing B. It lives on the Polish space R in the sense of §[2.5 by means of the
following function:

I):={SeR; [S]<[T]}
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(for details, cf. [35, pp. 55-56]). The collection Ca of these sets forms a proper weak
category base on R that has the countable chain condition and is Borel compatible with
the the Polish space R (cf. [35 Proposition 2.3.6]).

We shall also be using a variant of amoeba forcing. For this, we write R}, for R* U {oo}.

Definition 4.2.2. Amoeba infinity forcing, denoted by Ay consists of the set of all pairs
(0,¢) € O x RY, such that u(O) < €} ordered by (0',¢") < (O,¢) iff O < O and &' < e.

This forcing notion lives on the Polish space O by means of the following function:
[0,e] ={Ue€0O;0cUand uU) < ¢}
for (O,¢) € Ay,. We write Cp,, for the collection of these sets.

Proposition 4.2.3. The pair (O,Ca,) is a c.c.c category base which is Borel compatible
with O and the ideal of Ca,, -small sets is Borel generated.

Proof. It X is a Polish space and (X, () is a proper weak category base which satisfies
c.c.c, then for a C-singular set A, there is a maximal antichain A that is countable and
A< X\|JA. But X\ JA is Borel. Therefore it follows that Z} is Borel generated.

Therefore we need to first prove that it is a category base satisfying c.c.c and is Borel
compatible with O. Clearly, O = | JCa,,. Let c € Ca, and C < Ca,, be a disjoint family,
with |C| < |Ca,|. Since A, satisfies c.c.c, C' is countable.

Case 1. The set ¢ n | JC contains some element of Cp

If [O,¢] € Ca,. If there isn’t any [O’,¢'] € C, such that [O,e] n [O’,€'] contains an
element of Ca,, then for every [O',¢'] € Ca,, (O U O) = min{e,e’}. Hence, for
every [0 €'] € Ca,, either [O,e] n [0',¢'] = @ or for every U € [O,e] n [0, €],
u(U) = min{e,e’}. Let U € [O,¢] such that u(U) < e and u(U) # & for every
[O0',¢'] € C. Such U exists as C' is countable. Then U ¢ [O,¢]\|JC, which is a

contradiction.

Case 2. The set A n|JC does not contain some element of Ca, .

Hence, [O,e] n [0, €'] also does not contain any element of Ca,. Then for every
[O',€'], (O U O) = min{e, €'}, Since C' is countable, we can find some U € [O, €]
such that p(U) < e and for every [O',¢'] € C, u(U u O') > min{e,&’}. Then
[U,e] € [0, €] and for every [0, € C, [U,e] n [0, €] = @.

Now we turn to prove the properness of (O,Ca, ). The partial order (Ca,,<) is
proper due to the fact that A, is c.c.c. We show that every singleton is Ca_-small. Let
U € O and [0O,¢] € Cp,,. Without loss of generality U € [O,e]. Then we can either
decrease ¢ or increase O to obtain (O',¢’) < (O, ¢) such that U ¢ [O’,¢']. Therefore {U}
is singular. We now show that every region is Ca_-not small. Suppose that there is [O, €]
such that it is Ca,-small. Then, [O,¢]| < |, ., Sn» where S, are all singular. Now, due
to singularity, we can find a decreasing sequence (O, €, )new such that (O, e0) = (O, ¢)
and S, N [Opt1,6n41] = @. Let U = |, ,(Oy). Then for every n € w, O,, < U and

TLEW(
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w(U) < e,. Hence, U € [O,,&,] for every n € w. But this is a contradiction, since
[0,e] nU,~0[On,en] = @. Therefore [O, €] is not Ca, -small.

Finally, we prove the Borel compatibility part. Let [O,¢] be a region. We wish to
show that it is closed. Let U ¢ [O, €] and s a code for U. Then, either O & U or u(U) > «.

If O ¢ U, then there is some n € w such that (a,,b,) < O but (a,,b,) € U. Hence,
[sI(n+1)] n O is open in O, contains U, and is disjoint from [O,¢].

If w(U) > e, then there is some n € w such that p(|J{(ax, bx) : & < n and s(k) = 1}).
Hence, [s|n] n O is open in O contains U and is disjoint from [O, €].

In both cases there is an open set containing U and disjoint from [O,]. Therefore,
[O, €] is closed in Re.

Finally, we need to show that every Borel set in O is Ca,-measurable. One can see
from the definition that Ca, do form a o-algebra. Therefore it is enough to show that
every open set in O is measurable. Let t € 2<% and [O, ¢] a region and let s € 2¥ be a
code for O. Then, we are going to make a case distinction:

Case 1. t < s. Let ¢ € R be such that for every n < lh(¢) with t(n) = 0, u(O) < &' <
1(O U (an,by)). Then, (O,£") < (0,¢) and [0, €'] < [t] N Ry.

Case 2. There exists n < 1h(t) such that ¢(n) = 1
w(0) <& < u(Ou(an,b,)). Then (O, < (O,
0

# s(n). Let ¢ € R be such that
e) and [O,&'] n ([t] " Ry) is empty.

Case 3. There is some n < 1h(t) such that t(n) =
empty.

# s(n). Then [O,e] N ([t] " Ry) is
[

Definition 4.2.4. Amoeba forcing for category, also known as universally meagre forcing
and denoted by UM, consists of the set of all (o, E) such that o = (¢(0),...,0(n — 1)) is
a finite sequence of elements of 2<% and E is an open dense subset of 2<“. This set is
partially ordered as follows:

(o', E") < (0,FE) iff o < o' and Yn € dom(c"\o)(c'(n)) € E.

Amoeba forcing for category is an Amoeba for C. It lives on the Polish space U via
the the collection U of sets [, E] for (0, E) € UM already considered in §[2.5]

Proposition 4.2.5. The pair (U,U) is a proper weak category base which is Borel com-
patible with U.

Proof. In Proposition [2.5.3 we proved that U forms a topology base on Uj; thus it is also
a weak category base. It is easy to verify that Baire property in this topology is the same
as U-measurability. We now move on to prove that it is a proper weak category base and
Borel compatible with the subspace topology.

We already have that every region is closed in the subspace topology. Therefore it
remains to be checked only that sets that are Borel in the subspace topology are U-
measurable. Notice that every open set in the subspace topology can easily be written
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as a countable union of regions, they are open in the universally meagre topology, too.
Therefore Borel sets in the subspace topology are Borel in the universally meagre topology,
too, and hence measurable.

Only the properness now remains to be checked. Since, UM is a c.c.c. forcing notion,
(U,<) is proper.as a forcing notion. Every singleton is clearly U-singular. So, we need
to only check that every region is not U-small. So, let there be [0, E] which is U-small.
Then, there is a sequence (N, )ne, of U-singular sets such that [0, E] < |, ., Nn- Now,
one can define a decreasing sequence [0, F,] such that N, N [0p41, Eni1] = @, Let
z = U, 0n- Then, z € [0,, E,] for every n € w. Thus z € [0, E], but then z € N,, for
some n € w. But that is a contradiction. [

Definition 4.2.6. Localisation forcing, denoted by LOC, consists of the set of all pairs
(0, F) such that o = (0(0),...,0(n—1)) is a finite sequence of elements of [w]~* and F is
a finite set of elements of w* such that for every k < n, |o(k)] =k + 1 and |F| < n + 1.
The set is partially ordered as follows:

(o', F')<(0,F) iffc € ¢’ and F < F' and Yx € F¥n € dom(c"\o)(z(i) € o'(7)).
Again, in §[2.5 we had considered the collection L of sets [0, F] for (o, F') € LOC.

Proposition 4.2.7. The pair (Loc, L) forms a proper weak category base such that it is
Borel compatible with Loc.

Proof. In Proposition 2.5.4] we showed that (Loc, L) is a topological space; thus, it is
also a weak category base. It is also easy to verify that a subset has the Baire property
in localisation topology if and only if it is L-measurable and that it is meagre in the
localisation topology if and only if it is L-small.

We now move on to the Borel compatibility. Every region is clearly closed in the
subspace topology. Also every Borel set in the subspace topology is also Borel in the
localisation topology. Therefore every Borel set in the subset topology is L-measurable.

We now show that it is proper. Since LOC is c.c.c., (L, <) is a proper forcing notion.
Clearly, every singleton set is singular. So, the only thing left to be checked is that every
region is not L-small: Let us assume that [0, E] is small. Then, there exists IV, for every
n € w such that [0, E] < |, ., Nn. So, there is a decreasing sequence (o, £,,), such that
(00, Ey) = (0, E) and N,, N [0p11, Eni1] = @. Let, o = |, 0n- Then for every n € w,
x € [on, Ey]. Thus z € [0, E] and therefore there exists n € w, such that x € N,,. But this
is impossible since N,, N [0y,41, Ent1] = . Therefore every region is not L-small. L]

The corresponding regularity properties are usually defined in terms of the mentioned
weak category bases (cf. [22]); i.e., Amoeba reqularity is Ca-measurability, Amoeba infin-
ity regularity is Ca,-measurability, universally meagre regularity is U-measurability, and
localisation regularity is L-measurability, in symbols I'(A), T'(Ay), T'(UM), and I'(LOC).
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4.3 Amoeba and inaccessibles
We shall prove the following implications:
Z(A) = Z3(A,) = X5(D),

where the last one implies that N; is inaccessible by reals (Fact [2.7.3), thus proving the
conjecture.

Theorem 4.3.1. For any projective pointclass T', T'(A,) = I'(D).

Proof. We apply Wansner’s Implication Lemma to the weak category bases (O, Ca,)
and (w¥,Cp). Note that the latter is a proper category base satisfying the countable
chain condition that is Borel compatible with w“ and the meagre ideal in the dominating
topology is Borel generated. Furthermore, for any dense D < A, we can define Cp :=
{[O,€]; (O,e) € D} and obtain that (O,Cp) is a proper category base with is Borel
compatible with O and equivalent to (O, Ca_ ).

By Lemma|2.3.7], it is therefore enough to find a dense subset D < A, a Borel function
h: O — w® and a projection h : D — D such that

(i) for every (O,e) e D, h[O,¢] < [h(O, )] and
(ii) R[D] is dense in D.

Let {I}) < R : n,k € w} be a recursive family of pairwise disjoint open intervals with
rational endpoints such that for every n, k € w pu(I') = 272", Then

0 if u(U) = oo,
min{k € w: V¢ > k(I})} otherwise.

h(U)(n) = {

The first job is to show that h is Borel. That is for a hechler condition (m, f) such
that h=([m, f]) is Borel in Ry,. Then U € A=Y ([m, f]) iff u(U) = o0 and 0 : n € w) €
[m, f] or w(U) < w0 and for n < m f(n) = min{k € w : ¥¢ > k(I}')} and for all n = m,
f(n) < min{k € w : V¢ > k(I}')}. Therefore h='([m, f]) is Borel. Next up we define the
domain of h by

D={(0,e)eA,:Inew( ) 27" < — pu(0) < 27D},

m=n

The task now is to show that D is dense in Ay. Let (O,¢) € A\D. Without loss of
generality, ¢ < 1. Let n € w be minimal such that ¢ — (0) = 272"=Y_ Hence

e — N(O) > 2—2(n—1) > 2—2(71—1)/3 — Z 2—2m.

m=n

Then (0,&') < (O,¢) and (O,€’) € D. Therefore D is dense.
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The domain of h is supposed to be a subset of D. For every (O, ¢), there is Nz €W
such that
Z 272 < ¢ — pu(0) < 272~

MZ2N(0,¢)

We define the domain of A to be
D' ={(0,¢) € D: VU € [O,¢](h(O) Ino.e) = MU)) Inoe}

Our attempt is to show that D’ is dense. Then, if (O,e) € D. Without loss of generality,
no,) > 0. Let g € w” such that n € w, g(n) = max{k € w : p([;\O) < 2'72"}. We define

=0u U{I;(n) TN = N0}

Let &/,¢” > 0 such that ¢” < &’ < ¢, there is some n € w such that

Z<5 w0 <& —p(0') < 272"

m=n

for every n < n(o.) and every k = h(O')(n), u(O" v I

F) = €. Then, (0',¢") < (0,¢) <
(O,¢) and (O',&"),(0',e) € D. We show that (0’ ,&") €

D'. Let U € [0',€'] and let

n < neren. I n < ney), then for every k > ( N(n), u(U v IF) = & > &”. Thus
h(O")(n) = h(U)(n). If n = n.), then h(O')(n ) g(n). Since n < n(oreny, € — p(0') <
21727 Hence for every k > g(n) u(O' v I}') > ¢” and so h(O')(n) = g(n) = h(U)(n). So,

(O',e") e D'. So, D' is dense.

We now define h : D' — D as h(0,g) = (n0.)10))- Flrstly let us show that A is a
projection. Let, (O,¢) and (O’ ") be such that (O,¢e) < (O',¢’). Then for every n € w,
h(O)(n) < h(O")(n). Since &' — u(0’) < p(O), noe < n(of,af). Since, (0,¢) € D',
h(O) 1, = MO')In©,). Therefore h(O’ ) < h(0,¢) and so h is order-preserving.

Let (O,¢) € D' and (n, f) € D such that (n, f) < h(O, ). We define O’ = O u | J{I}"" :
n' =npe and f(n') = k4 1}. Then (0',¢) < (0,¢) and h(O') = f. We can find ¢’ < ¢
such that (O',¢') < (O, ¢) and for every n’ < n and every k = h(O')(n) u(O' U I}) > &
Since D' is dense in A, there is some (O”,&") < (0',¢’) such that (0”,¢") € D'. Then for
every n’ € w, f(n) = h(O")(n') < h(O")(n'). Moreover n < nr.» and fln = h(O")In.
Hence, h(O",") < (m, f) and so h is a projection.

Now, let (O,¢) € D' and let x € h[O,e]|. Then thereis a U € [O, ] such that h(U) = z
Since O < U, h(O)(n) < h(U)(n) for all n € w. Since, (0,¢) € D', h(O)Inowe =
h(U) .. Hence, z € [h(O,¢)].

Let (m, f) € D. Without loss of generality, m > 0. We define O = | J{I}} : f(n) = k+1}
and € = p(0) + 272~ Then, (O,¢) € D’ and h(O,¢) = (m, f) O

Now, we show that I'(A) = T'(Ay). We fix a recursive family {A} : n,k € w} of
open independent subsets of 2¢ with j(A}) = 20"*Y. Moreover let 1™ be the set of finite
unions of intervals with rational endpoints with measure < 4~ and let {U,’ b klone w}
be a recursive family of open sets such that for £,n € w, {U,f” . k € w} enumerates 4"
and each element of I°™ occurs infinitely often in this enumeration. For every ¢ € w, we

define functions h; : R UA — O and hy : A — A, by
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he(S) = | {UR™ : u(Af o [S]) = 0} and
he(T) = (ho(T), sup{u(he(S)) : S < T})

Lemma 4.3.2 (Truss 1988). We define K,,(S) = {(n, k) e m x w : u(Ay} n[S]) = 0} for
every pruned tree S on 2 and m € w.

(a) For every { € w, hy is a projection.

(b) For every { € w, if T € A and u(hy(T)) < ¢, then there is some S < T such that
he(S) < (he(T), €).

(c) For every S € RuUA and every n € w, the set {k: u(A7 n [S]) = 0} has size < 2",

(d) For every T € A and every n < m € w, there is some k € w such that for every j >k,
K (T') = Kin(T) U {(n, j)}, where S < T is such that [S] = [T]\A}.

Proof. Cf. [32], Proof of Theorem 4.3 & Lemmas 4.4, 4.5, and 4.8]. Also consider the
remarks on |35, p. 65]. O

Lemma 4.3.3. Let T € A, { € w and let hy(T) = (O,¢). Then there is some T' < T such
that for every S € (T"), u(he(S)) < e.

Proof. Let m € w such that

p(he(T)) + . 2 /am < e

nz=zm

Now we leave it to the reader to verify that for every 7" € A and every n < m, that
limy oo (AL A [T7]) = 172" u([T7]) > 1/27F11/2 = 1/2m+!

Now one can use the last point of the previous lemma repeatedly to obtain 77 < T
such that K,,(T") = K,,,(T) and u([T])—1/2 < 1/2™FL. Then there are only finitely many
pairs (n,m) € mxw such that 0 < p(APN[T']) < u([T"])—1/2. One can again use the last
point of the previous lemma repeatedly to obtain 7” < T such that K,,(T") = K,,(T) and
for every k € w and every n < m, if u(Ap n[17]) > 0, then p([T"] N A}) > w([T"]) — 1/2.
Then for every S € (T"), K,,(S) = K,,(T") = K,,(T). Hence by the third point of the
previous lemma we have

pu(he(S)) < p(he(T)) + Y [{k = (AR A S) = 0}/47" < p(he(T)) + Y 27 /A" <«

nz=zm n=m

Therefore, 7" < T and for every S € (T"), u(hy(S)) < e. O

Theorem 4.3.4. For any projective pointclass T', T'(A) = TI'(Ay)
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Proof. By Wansner’s Implication Lemma [2.3.7], we need to prove the following:
(i) {he.eew} is a sequence of Borel functions;
(ii) {h¢: ¢ € w} is a sequence of projections from A to Ay;
(iii) for every ¢ € w and every T € A, there is a T' < T such that hy((T")) < [he(T)]; and
(iv) Upe,, Pe[A] is dense in Ay,
In order to prove that h, is Borel, define formulas ¢ and ¢’ by

(S,i) 1 = Tk, n(u(AF A [S]) = 0 A (a5,b) < U™,
(S, 1) = Vi(p(P,i) = z(i) =1).

Note that ¢’ is arithmetical. Let ¢ be a code for an element of O. Then

(S,¢) € hyIR > ¢'(S,¢) AVx e w(P(S,y) > View(c(i) =1— z(i) =1))
wa@Aw@m:1:

3z € w* (Yny (S, 2(n)) A (a;,b;) < U az(n),bzm))).

new

Hence, h¢IR is a A} set and therefore hy is Borel.
Claim (ii) follows from Lemma [4.3.2l We prove (iii):if ¢ € w and T € A, then there
exists 7" < T such that for every S € (T"), u(he(S)) < e. Then, he[(T")] < [he(T)].
Finally, to show (iv), let (O, ¢) € A,,. Then there is some ¢ € w and some z € w* such
that O = (J _, U%".. Let T be the tree such that [T] = 2\, _, A%y Then T € A and

n>1 " xz(n) 4
he(T) = O. Then there is some 7" < T such that he(T") < (he(T"),e) = (O,¢). Thus
he(T") < (O, €). O

Corollary 4.3.5. The following are equivalent:

(i) SHA),

(i1) for every r € w®, {x; x is not Amoeba generic over L[r]} is Ca-small, and
(111) Np is inaccessible by reals.

Proof. The equivalence of (i) and (ii) is Theorem [2.6.3] (using Lemma[2.4.3)); the direction
(iii)=(i) is Proposition Finally, if (i) holds, we get 33(A,) by Theorem m
whence we obtain X3(D) by Theorem and thus that Ny is inaccessible by reals by
Fact 2.7.3 O
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4.4 Amoeba for category and inaccessibles

Following the proof strategy of §[4.3] we shall now prove the analogous result for Amoeba
for category forcing UM.

Theorem 4.4.1. For every projective pointclass I', T'(UM) = T'(D)

Proof. For every n € w, let t,, denote the sequence with n consecutive 0’s followed by a 1.

We define h: U — w® and h : UM — D by

h(z)(n) := min{|s| : s € ran(s) and t,, < s} and

h(o,E) := <n(U»E)7f(0,E))
where 1, gy is maximal such that for every z, 2’ € [0, E], h(z)[n = h(z") [n and fo g (n) =
min{h(z)(n) : z € [0, E]}. By Wansner’s Implication Lemma [2.3.7, we prove the following
in order to prove the theorem.

(i) h is a projection;

(ii) for every (o, E), h[o, E] < [h(o, E)];
(iii) A[UM] is dense in D; and
(iv) h is Borel.

Evidently, h is order-preserving. Let (o, F) € UM and let (n, f) < h(o, E). Then for
every n(,g) < m < n, there is an s,, € F such that t¢,, < s,,, and Ih(s) = f(m). We define
0" =0"(s8m nEp <m<nyand ' = {se€ E:3Im e w(t, < s) and lh(s) > f(n)}. £ is
still dense in 2<¥. So, (¢/, E') < (0, E). By definition, n gy = n, for,eyIn = fIn and
for every m = n, for gy(m) = f(m). Hence, h(o’, E') < (n, f).

We prove (ii), by letting (o, £) € UM and z € [0, E]. Then h(x) 1.5y = fio.6) 70,8
and for every n € w, h(z)(n) = fo.x5). Hence, z € [h(o, E)].

We now prove (iii): let (n, f) € D and for every m < n, s,, € 2<% such that ¢,, < s,,
and lh(s,,) = f(m). We define 0 = (s,, : m < ny and E = {s € 2<% : Im € w(t,, <
s and lh(s) > f(m))}. Then ne, g = n and for every m € w, fi,g)(m) = f(m). Hence
h(o', E') = (n, f).

Finally, for (iv), let s € w=. Then A~ '([s]) = (][] : $ S fio.B)tnon}- S0, K ([s]) is
closed in U. Hence, h is Borel. O

Theorem 4.4.2. The following are equivalent:
(i) Z(UM),
(i1) for everyr € R, the set {P € U; P is not an Ij-quasigeneric over L{r|} is U-small,
and
(11i) Ny is inaccessible by reals.

Proof. The equivalence of (i) and (ii) is Theorem [2.6.3} the direction (iii)=>(i) is Proposi-
tion Finally, if (i) holds, we get 33(D) by Theorem and from that we obtain
that N, is inaccessible by reals by Fact [2.7.3] O
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4.5 Localisation and inaccessibles

In this section, we shall prove that 33(LOC) implies that XN is inaccessible by reals.
However, this proof differs from the proofs in §§[4.3] & .4k instead of using Wansner’s
Implication Lemma [2.3.7] we shall use the technique of Brendle-Labedzki lemmas from
§12.8

In order to prove a Brendle-Labedzki lemma, we need a formula ¥ such that in each
model of set theory there is a set of size 2% with property ¥ and an assignment of Borel
sets coded in the model to that set.

For every real x € w*, we define X, to be the set {f € LOC : 3%n € w(x(n) ¢ f(n))}.
It is easy to see that X, is Borel in LOC and since D, = {(0, E) : x € E} is dense, X, is
always nowhere dense.

We let W be the property “A is a pairwise eventually different family” and if a € A,
we let ¢2 be a Borel code for X,. The following lemma is a Brendle-Labedzki lemma for
LOC.

Lemma 4.5.1 (Brendle-Labedzki Lemma for LOC). Let € be a pairwise eventually dif-
ferent family and let A < Loc be meagre in the localisation topology. Then there are only
countably many g € € such that X, < A.

Proof. There are maximal antichains A,, such that

An ﬂU{[J,E] (o,E)e A} =2

new

Since LOC satisfies the c.c.c., every A, is of the form {(¢]’, E") : m € w}. For every finite
subset M of w?, we set Epy = {E" : (n,m) € M}. M is said to cover g € w* if for all but
finitely many k € w, there is a x € Fy; such that z(k) = g(k). Since £ is an eventually
different family, each M can cover at most finitely many g € £. Hence, at most countably
many g € £ are covered by some or the other M.

Let g be such that it is not covered by any M. Then we seek to construct a sequence
(T, : n € w) such that

(i) 7, € dom(LOC),

(i) 7 & Tot1,

(iii) there is some k € dom(7,.1\7,) such that g(k) ¢ 7,,11(k),
)

(iv) for every k < n, there is an my, € w such that o}, < 7, and for every x € E}, and
every { € dom(r,\o}, ), z(f) € 7;,(¢), and

(V) (T, Ey(k,mp):k<n}) € LOC.

If (1, : n € w) satisfies the above properties, then |J, . 7 € X, n ()., U{[o, E] :
(0,F) € A,}. Therefore X, € A. Therefore we just inductively define such a sequence.
Let 79 = @. Assume that 7, has already been defined. Let M = {(k,my) : k < n}.
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Since M does not cover g, there are infinitely many k£ € w such that for every x € E,,,
x(k) # g(k). Let lh(7,) be the minimal such. Then there is some 7/ € dom(LOC) such
that (7, Ey) < (7, Ey) and g(€) ¢ 7)(¢). Since A, is a maximal antichain, there is
some m € w such that (7, Ey) < (7n, Ear) and g(¢) ¢ 7/(¢). Since A, is a maximal
antichain, there is some m € w such that (7, Ey) and (o7, E"). Let (0, E) < (7}, En)
and (o, E") be a witness. We set m,, = m and 7,41 = 0. O

We can now apply Lemma to obtain the desired result.
Theorem 4.5.2. The following are equivalent:
(i) 35(LOC),

1. for every r € R, the set {{ € Loc; { is not Ioc-quasigeneric over L|r]} is L-small,
and

2. Ny s inaccessible by reals.

Proof. The equivalence of (i) and (ii) is Theorem [2.6.3} the direction (iii)=(i) is Propo-
sition [2.7.2] Finally, (i)=(iii) in the presence of a Brendle-Labedzki lemma by Theorem
2.8.3) but Lemma provides exactly that. O
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Chapter 5

Matet and Willowtree forcing

5.1 Implication diagrams

We remind the reader of Brendle’s Uniform Forcings Diagram from p.

S oM 2L
I U

W o T U
U O
\Y - R

The inclusions in this diagram immediately give rise to implications between the corre-
sponding regularity properties

A3(V) A,(R)

which we shall call the Uniform Regularities Diagram. We believe that the Uniform
Regularities Diagram is complete in the sense of §[2.11} The status of the subdiagram
with Matet and Willowtree forcing removed was known, i.e., that the diagram

A;(S) = A3(M) = Ay(L)



is complete in the above sense (cf. Figure . We should like to emphasise that one
component of this completeness is the fact that Aj(L) does not imply Aj(V) which is the
main result of Chapter [3| (Corollary (3.4.2)).

Observation 5.1.1. The Uniform Regularities Diagram is complete if the following non-
implications hold:

(a) ALYT) = ALV
(b) Ay(T) = Ay(L
(c) Ay(L) = Ay(W).

),
)

, and

Proof. We go through all non-implications that need to be checked.

By the completeness of the subdiagram with Matet and Willowtree forcing removed, we
only need to show the non-implications with the two additional forcings for the forcings
S, M, L, and V. (The forcing R does not have any non-implications in the Uniform
Regularities Diagram.) Sacks, Miller and Laver regularity cannot imply either Matet or
Willowtree regularity by (c) and transitivity. Since Silver forcing does not does not add
unbounded reals (cf. [6, Proposition 4.2]), we have A}(V) = AL(M); thus Silver regularity
cannot imply Matet regularity by transitivity.

Again, since Aj(V) = AL(M), by transitivity, Willowtree regularity cannot imply
Miller regularity (and therefore not Matet, Laver, or Mathias regularity). Finally, the
Matet non-implications all follow directly from (a) and (b). O

In this chapter, we shall prove two of the assumptions of Observation [5.1.1} statement
(a) in Corollary and a weaker version of (c), viz. A3(S) = A(W) (cf. Corollary
5.4.3). The combination of Corollaries & implies that the following subdiagram
is complete:

AL(S)
I
AL(W)
PN
AL(V) AL(T)

Note that statement (a) follows from the fact that Matet forcing preserves p-points which
was proved by [11, Theorem 4]. Our proof is more direct and combinatorial.

5.2 Fusion techniques for Matet forcing
As in Chapter|3| the fusion technique will be at the heart of our argument. In this section,

we shall introduce the special situation and necessary terminology for fusion arguments
for Willowtree and Matet forcing.
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We shall denote by FU(A) the set of all finite concatenations of elements of A. For
A, B subsets of [w]<¥, A= B (read “A is a condensation of B”) if and only if every a € A
is an element of FU(B).

For any finite subset t of w, A past t := {a € A; min(a) > max(t)}. By abuse of
notation, we shall write ¢ < a when min(a) > max(t).

Lemma 5.2.1. If (s, A) is a Matet condition and (A,) is a sequence of subsets of [w]=¥
such that A,.1 E A, past a®, where a® is the first element of A, with respect to <, and
if B = {a®:new}, then (s, B) < (s, A).

Proof. Follows directly from the definition of the ordering. O

Definition 5.2.2. Let P be any forcing adding a generic real. We say that P adds a
generic of minimal degree among reals if for every ground model M, every P-generic ¢
over M, and every real x € M|c|, we have that c € M|z].

Pure decision and reals of minimal degree. Our first objective is to show that
Matet forcing has pure decision property and adds reals of minimal degree. The proof of
the first can be found in [I1, Lemma 2.6] but we include it here as it is an integral part
of the argument. The proofs of the above two shall also illustrate the fusion technique in
detail.

Theorem 5.2.3. Let ¢ be a sentence and (s, A) a Matet condition. Then there is an
extension (s, B) such that for any t € FU(B), (s, B past t) decides .

Proof. We shall by induction define a sequence A, of subsets of [w]<* starting with
A_; = A, such that

1. A,y E A, past a® and
2. (s7al, A, past a) decides .

Given A,, let’s call the increasing enumeration of A, to be (a¥)ic, we can simply find
an extension of (s”al, A, past al) say (s7t, A)) such that it decides p. We let A, =
Al o {t}.

We now set A’ = {a® : n e w}. Now, either for infinitely many of t € A’, (s7t, A’ past
t) I+ ¢ or for infinitely many of them (s7t, A" past t) - —¢p. We set B = {t € A’
(s"t, A’ past t) IF p} or B = {te A" : (s°t, A" past t) - —¢} depending on which is
infinite. Therefore, (s, B) is the required extension. ]

Theorem 5.2.4 (Eisworth; [I1, Lemma 2.7]). Let & be a name for a non-ground model
real and (s, A) be a Matet condition forcing that, then there is an extension (s,C') such
that for every t € FU(C), there is a ground model real called the guiding real zy, such that
if (tk)kew 1S an increasing enumeration of C past t then for all k € w we have:

(s7t,C past ty) I+ @tk =z, Tk
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Proof. First of all we notice that, it is possible to inductively define a sequence A,,
starting with A_; = A, such that A, £ A, past @, and (s, A,) decides & up to n.
Now, considering (s, B), where B = {a’ : n € w}, we have that there is a guiding real
corresponding to s, say .

Now, we shall use the above argument repetitively in an inductive manner to arrive
at the required condition. We need to define a sequence B,,, starting with B_; = B such
that:

1. B,1 E B, past 02.

2. for all t e FU({#} : k < n}), we have (s"t, B, past t) satisfying the condition
that there is a guiding real corresponding to ¢, say x.

Given B,, we simply enumerate the elements of FU({0) : k < n}) as tg,...,tm. Set
Co = B, past 2. Given C;, set Ciy1 = C; past t;,1, such that for (s7¢t;,1,Ciy1), there is
a guiding real z,,,. We set B, 11 = Cy,. Setting C' = {bY : n € w}, we have (s,C) to be
the required condition. O

Theorem 5.2.5. Matet forcing adds a generic of minimal degree among reals.

Proof. Let & be a name for a non ground model real and (s, A) a Matet condition. Now
for every t € FU(A), we shall denote the guiding real corresponding to s~t and (s, A) as
x4~ We choose not to mention (s, A) since for any extension (s, B) of (s, A), the guiding
real corresponding to (s, B) and s~t and that of (s, A) and s~t are the same.

We are going to build a sequence A,,, starting with A_; = A and for every t € FU({a? :
j < n}), ., denotes the maximal initial segment decided by (s7t,(An41 U {af : j <
n+1}) past t) and £(s"t), denotes the largest set according to < in A, u{a) : j < n+1}
which is a subset of s™¢.

Now, that we have set up the terminology, we can proceed with the proof. We require
that for every n € w, A1 E A, past a’ and for every t € FU({ag 1 J < n}),

(s7t, (Apyr U {a) : j <n+1}) past t) - 0, # Togpmineis-o) 0]
and
(s"ttmin(f(s7t)), (Apyru{aj - j < n+1}) past t) |- T minee o) = Tsmttmineso) [T
The set A, ;1 is actually constructed inductively. Let’s say we enumerate FU{a? :j<n}

as (t;)iem, we set By = A, past a2. We form a sequence (B;)iem, such that B;,; £ B;,
b < b4, and for all i € m,

~1~10 0 . B;pastb? . B;pastb?
(s7t7by, Bipast b)) =@ "~ 0" # w00
1 K2 k2 1
and . .
~ 0 . Bipastb; . B;pastb;
(s7ti, Bi past by) |- 257 = oy, | T g0
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here, xfﬂffngo denotes the initial segment decided by (s"t;, B; past 0?).
This is f)ossible because all the guiding reals are ground model and (s, A) forces that
2 is not ground model. Finally, A,,.1 = B,,.

Now, we just let B = {a® : n € w}. Then, we have that the function f : [(s, B)] — 2

defined as
F@) = aeppm

kew

where, © = s~ ~je, U™, to be a continous injective ground model one, such that (s, B) |-
flze) = &. o

Note that the function f in the proof of Theorem is a continuous function that
lives in the ground model.

Matet forcing and graphs. We shall show how Matet forcing avoids quasigenerics of
closed locally countable graphs. If GG is a closed locally countable graph on 2%, we shall
show that for any real say r added by the Matet forcing, it is contained in a ground model
Borel set B, such that B is G-independent, i.e., any two elements of B do not form a G
edge. As said earlier, this will also be a fusion argument. It is easy to observe that

Tisp) (@) = {iae) : (1,C) < (s,B)}
is a perfect tree.

Theorem 5.2.6. Matet forcing does not add quasigenerics of closed locally countable
graphs.

Proof. Now, we look forward to create once again a sequence A,, as before, starting with
A_y = A such that A, ,, = A, past a) and for every t € FU({a] : j < n}) we have

(s7t, (A1 u{al : j <n+1}) past ) I- ([22,] X [Ze~ipmingeise) HE0]]) 0 G = 2.

Like in the proofs of Theorems &[5.2.3) given A, we enumerate FU({a} : j < n})
as (t;)iem and set By = A, past a® and we define a sequence (B;);e,, such that, B; 1, E B;,
v < b, and

J.;Bipastb? ]) A G -

~4+720
87t by

(s“tébo B; past b?) I+ ([iBipaStb?] X [Ty, |

1 Vi A~ 10
87t by

This is possible, due to the fact that T(s p) is a perfect tree and choosing &Y, ,, long
enough, we shall have (z .~ g Ts~y,) ¢ G, and B,y is then obtained by deleting suffi-
i i+

ciently many elements of B; past bY,; in an increasing order, since for sufficiently long

initial segments o and 7 of . ,~,, and x4~ respectively, we have ([o] x [T])nG = @, due
i 141

to closedness of G. B,, = A, and we define C to be {a® : n € w}. Then, (s,C) is the re-
quired condition for which [T(, )(2)] is G independent that is for any two elements  and
yof it, (x,y) ¢ G. It is also a ground model closed set. Moreover (s,C) I+ 2 € [T(sc)(2)].
This completes the proof. O
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5.3 Silver regularity in the Matet model

As in Chapter [3] the argument of Theorem [5.2.6| can be generalised to the iteration case.
In essence, we are now going to adapt the general definitions of §2.9to the case of Matet
forcing.

Definition 5.3.1. Let a be an ordinal such that o < wy. Then, if (s(§), A(§))eca € Ta,
and F' < supp(s(§), A(€))eea, finite and k : F — w. We say that (t(€), B(§))eea <ruk
ai(y

(8(6), A(€))¢ea iff for all v € F (¢(S), B(§))eea v - t(v) = s(v) and (bi(vy) = )) for all
i < k(7).

Definition 5.3.2. A fusion sequence consists of sequences Fy,, ky, s,(£), and A,(§), for
new and & € a such that

1. F,, < supp(s(&), A(€))eea is a finite set,

2. the sequence (F, ; n € w) is S-increasing,
3.k, F, > w,

4' Une‘u Fn = SU-pp(S(g)v A(g))ﬁea;

5. for every v € supp(s(§), A(§))eea and every n € w, there exists m € w such that
v € F and i (7) = n,

6. kn+1(7) > kn(fy); fOT' all Y E Fn; and
7. ($n4+1(8), Ans1(§))eca <Pk (50(8), An(§))eca-

Then (t(§), B(€))¢ea is the fusion of (5,(§), An(§))eca if and only if (t(§), B(§))eealy -
t(v) = s(v) and B(7) = (Nen An(7)-

We aim to build a fusion sequence (s,,(§), An(§))eca, Fn, kn such that if (¢(€), B(€))¢ea
is the fusion of (s,(€), An(§))ecas then Tiye),B(e)ee. (¥) is G-independent,.

For a Matet condition (s, A) we shall denote by T{; 4y the tree on w“ defined by
st(T(s,4)) = s and for t € T 4y, succ(t) = {{ € A :t < {}. For the sake of notational
convenience we shall be identifying the nodes of a Matet tree with w=“ with the help
of the natural order preserving-bijection. We define recursively (s, A) x & = st(s, A)
and let (s, A) %o (07n) be the nth immediate successor of (s, A) 9 o according to the
lexicographic ordering on T\, 4). We shall be using the notations (s, A) xo o and T{s ) *o 0
interchangeably. For a condltlon (s(£), A(€))cea € Ta, we shall denote the initial segment

of & decided by (s(£), A(§))¢eq as T (5(€),A(€) eca-

Definition 5.3.3. We say that a condition (s
condition if and only if for all 0,0’ € ]_[%F ()"

[%(s(6), A())ecaroor]) N G = D.

(€), A(§))eca € Ta is an (F,, ky)-faithful
k(v ) such that o # o’ ([.@(3(5),14(5))&0‘*00] X
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Lemma 5.3.4. Suppose that (s(€), A(&))eea 15 (Fn, kn)-faithful and kI, is such that k() =
kn(7)+1 and for all § € E,\{v}, k,(8) = kn(B). Then one can find (s(€), B(§))eea <k
(s(£), A(€))cea, such that (s(§), B(§))eea is (Fn, ki,)-faithful.

Proof. Let {00,071, ..., 01} be an enumeration of [ [ ... E(7)*) and write Yiay = max(F},).
We inductively define a <p, j, decreasing sequence (s(§), B (§))eea, such that for all
natural numbers n,n’ with n # n':

(L2 (5(6), B (©))ecaso(@m (imar)m))] X [E(5(6), B (€)0(0m (ymar)~n)]) N G = 2.

Suppose that (s(§), Bin—1(£))eea has already been defined. Then, due to the fact that

G is closed and locally countable, just as in the single step proof (Theorem [5.2.6)),
(5(€), Bin—1(&))eea*0(0m) | Ymax forces that for every n € w, there is a tail ¢, < (s(§), Bm-1(£))*o
(O (Ymax) 1) [Ymax, @), such that for any two natural numbers n,n’ with n % n’, we have

([I’tn] X [l’tn,]) M G = .
Therefore, one can find (s(€), Bin(€))eea <(#nkn) (5(§); Bm-1(£))¢ea, such that the condi-
tion
(5(€), Bm(&))eea *0 ((0m)) [Vmax

forces that for all n € w there exists some p,, € w such that (s(£), By,(§))eea #0 (0m(7)"n) =
tp, and therefore we have that for all n,n’ € w such that n # n”:

([2 01, B (@) ccarotomOman) m | X [E(5(6).B(@)ccaro(om e -n)]) 0 G = .
We let (s(€), B(§))eea to be (s(§), Bi(€))eea- This completes the proof. O

Theorem 5.3.5. The Matet model and the wy-Matet model have no quasigenerics of
closed locally countable graphs.

Proof. Using Lemma for every a € w; for the Matet model and a € w, for
the wye-Matet model, and (s(€), A(§))eca € Ta, one can construct a fusion sequence as
(5n(€), An(§))eea as above and define the fusion of it as (s(€), B(£))eea such that

vy € a((s(€), B(§))eca 7 I- Y € w(B(7) £ Au(7)))-
We now define a function f : (w®)sPP(():BE)eca — 29 with

F (@) resupp(s(€). B@)ee) 7= | F(6(6) BE)ccar (@) ton (s

new

Notice that this is a ground model Borel injective map and it maps the generic to x. [

Corollary 5.3.6. If G is a locally countable graph then xg(G) = Wy in the wy-Matet
model.

Corollary 5.3.7. The Matet model does not satisfy Ay(V).

Proof. There is a graph G that is closed locally countable with the property that G-
quasigenerics are precisely the Silver quasigenerics (cf. [36, Claim 2.3.39]). Now the claim

follows from Theorem 2.6.1] O
Corollary 5.3.8. The statement Ay(T) does not imply the statement AL(V).
Proof. Directly from Corollary with Proposition [2.4.4] O
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5.4 Willowtree regularity in the Sacks Model

In this section, we prove a weaker version of condition (c¢) in Observation [5.1.1], viz. that
the Sacks model does not satisfy Aj(W).

Theorem 5.4.1. Countable support iteration of length wy of Sacks forcing does not add
Willowtree quasigenerics.

Fix o € wy, a name x for a real not added at a proper initial stage of the iteration; we
ensure that for every condition p € S, one can find an extension r of p, such that T,.(z) has
all its splitting levels at different heights. The fact that [T,.(z)] is Borel will ensure that
it is Willow regular, but at the same time for any willow tree T, [T| & [T,(2)]. We shall
here be assuming that there is a ground model homeomorphism A : (2¢)*P* @) — T, (i) as
outlined in [16, Lemma 78].

Given a finite set F' < supt(p) and n : F' — w, we say that a condition ¢ < p is
(£, n)-faithful if for any two elements o and 7 of [ 21 | gwoo| # |Tgsor|- Here @,
denotes the initial segment decided by p. For any two conditions ¢ and p in S,, we say
that ¢ <z, p, if for all o € HveF 210) g g0 = pxgo0.

Our goal is to build a sequence (p,, Fy,, n,) which satisfies the following properties:

(1) Prt1 <(Bomn) Prs
(1) pyn is (F,, n,)-faithful,
(ili) F, S Fop,
(iv) for every n € w and 7 € supp(p,,) there exists m € w such that v € F,,, and n,,,(vy) = n,
(v) U,ep, Fn = supt(p), and
(vi) ma(m) < npe1(m) for all m e F,.
To this end, the following lemma plays a crucial role.

Lemma 5.4.2. Suppose that o < wy is an ordinal, p an S, condition, F' < « 1is finite,
n:F—w,n:F —waresuch that n! F\{8} = 01 F\{8} and n'(B8) = n(B)+1. Moreover
let p be (F,n)-faithful. Then, there exists ¢ <(py) p such that for all o,7 € ]_[%F 21 ()
’:tQ*oU’ 7 ’$Q*0T|'

Proof. Suppose we have an enumeration {07y, ..., 0,,} of HVE » 2", Then we shall induc-
tively build a <(f,,) decreasing sequence g;.

Suppose that we have already found ¢;_;. Then, we take ¢,, o and g,, 1 to be such that
and g;_1 *g 0; 10 forces the following:

(1) Gorp < q(0) 0 q(o; k)"q1 (9, @),

(ii) |&q,, | > |#q,,|, and
(i) |Zqy, of < [Tg,, 4l
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One can now choose a condition q; <(g,) g;—1 such that

qj *0 0510 - q;(9) #o Uj(fs)AkAq;(J((;a Q) = Goy
Then our required ¢ is simply g,. O

Using Lemma [5.4.2) one can construct a fusion sequence (p,, F,,,n,), such that it’s
fusion say r, is such that 7,.(¢) is a tree with splitting levels all at different heights. This
completes the proof of Theorem [5.4.1]

Corollary 5.4.3. The statement A}(S) does not imply Aj(W).

Proof. By Proposition [2.4.4 the Sacks model satisfies A}(S). Since Willowtree forcing has
the Tkegami property and the Sacks model does not contain any Willowtree quasigenerics,
it does not satisfy Ag(W). O
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English summary

This thesis studies implications between regularity properties at the second level of the
projective hierarchy. The results of Chapters [3| and [5| show non-implications between
certain statements of the form “all A} sets are regular”; the results of Chapter 4] show
that certain statements of the form “all ) sets are regular” are equivalent to “N; is
inaccessible by reals”, the strongest regularity property. The following theorems are the
main contributions of this thesis:

1.

2.

6.
7.

In the Laver model, 33(L) holds and A}(Ey) and A3(V) fail (Corollary [3.4.2)).

In the Laver model, Aj(V) fails, but for every real r, there is a splitting real over
L[r] (Corollary [3.4.4)).

The statement 33(A) is equivalent to the statement “N; is inaccessible by reals”

(Corollary 4.3.5)).

The statement X3(UM) is equivalent to the statement “N; is inaccessible by reals”

(Theorem {4.4.2)).

. The statement X3(LOC) is equivalent to the statement “Y; is inaccessible by reals”

(Theorem 4.5.2)).
In the Matet model, Aj(V) fails (Corollary [5.3.8)).

In the Sacks model, A}(W) fails (Corollary [5.4.3)).

Result 1. solves an open question mentioned three times in the literature; result 2. solves
a question asked by Brendle, Halbeisen, and Lowe.
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Deutsche Zusammenfassung

Diese Dissertation untersucht Implikationen zwischen Regularitatseigenschaften auf der
zweiten Ebene der projektiven Hierarchie. Die Ergebnisse in Kapitel [3]und [5|liefern Nicht-
Implikationen zwischen bestimmten Aussagen der Form “alle Aj-Mengen sind regulir”;
die Ergebnisse in Kapitel |4 zeigen, daB bestimmte Aussagen der Form “alle ¥3-Mengen
sind regular” aquivalent zu “N; ist durch reelle Zahlen unerreichbar” ist, der starksten
aller Regularitatseigenschaften. Die folgenden Theoreme sind die Hauptresultate der Dis-
sertation:

1.
2.

6.
7.

Im Laver-Modell gilt 35(L) und Aj(Eg) sowie Aj(V) gelten nicht (Korollar |3.4.2)).

(
Im Laver-Modell gilt Aj(V) nicht, aber fiir jede reelle Zahl r gibt es eine spaltende
Zahl iiber L[r] (Korollar [3.4.4)).

Die Aussage 35(A) ist dquivalent zu “¥; ist durch reelle Zahlen unerreichbar” (Ko-

rollar [4.3.5)).

Die Aussage 335(UM) ist dquivalent zu “N; ist durch reelle Zahlen unerreichbar”

(Theorem 4.4.2)).

Die Aussage X3(LOC) ist #quivalent zu “¥; ist durch reelle Zahlen unerreichbar”

(Theorem {4.5.2)).
Im Matet-Modell gilt Aj(V) nicht. (Korollar [5.3.8)).

Im Sacks-Modell gilt Aj(W) nicht. (Korollar [5.4.3)).

Resultat 1. 10st eine offene Frage, die dreifach in der Literatur erwédhnt war; Resultat 2.
16st eine Frage, die von Brendle, Halbeisen und Lowe gestellt wurde.
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