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Example

◮ Add connective 〈∗〉 to the language ML of modal logic

◮ 〈∗〉p :=
∨

n∈ω 3
np

s 
 〈∗〉p iff there is a finite path from s to some p-state
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Example

◮ Add connective 〈∗〉 to the language ML of modal logic

◮ 〈∗〉p :=
∨

n∈ω 3
np

s 
 〈∗〉p iff there is a finite path from s to some p-state

◮ 〈∗〉p↔ p ∨ 3〈∗〉p

◮ Fact 〈∗〉p is the least fixpoint of the ‘equation’ x↔ p ∨ 3x

(a fixpoint of a map f : C → C is an a ∈ C with fa = a)

◮ Notation: 〈∗〉p ≡ µx.p ∨ 3x.
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Other Examples

◮ common knowledge: CGp ≡ νx.p ∧
∧

a∈GKax

◮ until: Upq ≡ µx.p ∨ (q ∧ 3x)

◮ no infinite paths: F ≡ µx.2x.
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Modal Fixpoint Logics

◮ Modal fixpoint languages extend basic modal logic with either

• new fixpoint connectives such as 〈∗〉, U , CG, F, . . .
• explicit fixpoint operators µx, νx.
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Modal Fixpoint Logics

◮ Modal fixpoint languages extend basic modal logic with either

• new fixpoint connectives such as 〈∗〉, U , CG, F, . . .
• explicit fixpoint operators µx, νx.

◮ Motivation: increase expressive power

• e.g. enable specification of ongoing behaviour

◮ Many applications in process theory, epistemic logic, . . .

◮ Rich theory:

• game-theoretical semantics
• connections with theory of automata on infinite objects
• connections with theory of (complete) lattice expansions
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General Program

Achieve a better understanding of modal fixpoint logics by studying the
interaction between
• combinatorial
• model-theoretic and
• algebraic and
• coalgebraic
aspects of fixpoint logics.
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General Program

Achieve a better understanding of modal fixpoint logics by studying the
interaction between
• combinatorial
• model-theoretic and
• algebraic and
• coalgebraic
aspects of fixpoint logics.

Here: consider simple, ‘flat’ modal fixpoint logics, in full generality
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Overview

◮ Introduction

◮ Flat Modal Fixpoint Logics

◮ Constructiveness & continuity
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◮ Fix set Γ of formulas γ(x,p) in which x occurs only positively
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Flat Modal Fixpoint Logics: Syntax

◮ Fix set Γ of formulas γ(x,p) in which x occurs only positively

◮ For each γ ∈ Γ, add a fixpoint connective ♯γ to the language of ML
(arity of ♯γ depends on γ but notation hides this)

◮ Intended reading: ♯γ(ϕ) ≡ µx.γ(x,ϕ) for any ϕ = (ϕ1, . . . , ϕn).

◮ Obtain language MLΓ:

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | 3iϕ | ♯γ(ϕ)

◮ Examples: CTL, LTL, (PDL), . . .

For simplification assume ML has only one diamond 3, and Γ is singleton.
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Modal Logic: Kripke Semantics

◮ Kripke frame S = 〈S,R〉 with R ⊆ S × S.

◮ Complex algebra: S+ := 〈℘(S),∅, S,∼S,∪,∩, 〈R〉〉,

〈R〉 : ℘(S) → ℘(S) given by 〈R〉(P ) := {s ∈ S | Rst for some t ∈ P}
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◮ Complex algebra: S+ := 〈℘(S),∅, S,∼S,∪,∩, 〈R〉〉,

〈R〉 : ℘(S) → ℘(S) given by 〈R〉(P ) := {s ∈ S | Rst for some t ∈ P}

◮ Every modal formula ϕ(p1, . . . , pn) corresponds to a term function

ϕS : ℘(S)n → ℘(S).

pS
i (P ) := Pi

(ϕ ∨ ψ)S(P ) := ϕS(P ) ∪ ψS(P )
(¬ϕ)S(P ) := S \ ϕS(P )
(3ϕ)S(P ) := 〈R〉ϕS(P )

◮ How to define the semantics of ♯S?

Want: ♯S(P ) is the least fixpoint of the map γS
P

= λX.γS(X,P ).
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∧
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Knaster-Tarski Theorem

Theorem

Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 1

Define PRE(f) := {c ∈ C | fc ≤ c}, and put q :=
∧

PRE(f).

Then f(q) ≤
∧
f [PRE(f)] ≤

∧
PRE(f) = q, so q ∈ PRE(f).

For y ∈ PRE(f), f(fy) ≤ f(y), so f(y) ∈ PRE(f).

In particular, f(q) ∈ PRE(f), so by definition, q ≤ fq.

Hence q = fq and so
∧

PRE(f) is the least fixpoint of f .
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Theorem

Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 2
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Theorem

Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 2

Define

f0(x) := x, fβ+1(x) := f(fβ(x)), fλ(x) :=
∨

β<λ f
β(x)
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Proof 2

Define

f0(x) := x, fβ+1(x) := f(fβ(x)), fλ(x) :=
∨

β<λ f
β(x)

Then {fα(⊥) | α an ordinal} form an increasing chain in C.

LFP.f =
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α

fα(⊥)

Definition LFP.f is constructive if LFP.f = fω(⊥) =
∨

n∈ω f
n(⊥).
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Theorem

Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 2

Define

f0(x) := x, fβ+1(x) := f(fβ(x)), fλ(x) :=
∨

β<λ f
β(x)

Then {fα(⊥) | α an ordinal} form an increasing chain in C.

LFP.f =
∨

α

fα(⊥)

Definition LFP.f is constructive if LFP.f = fω(⊥) =
∨

n∈ω f
n(⊥).

This definition applies to non-complete lattices too!

Flat Modal Fixpoint Logics 10



Venema Core Logic

Flat Modal Fixpoint Logics: Kripke Semantics

◮ Kripke frame S = 〈S,R〉 with R ⊆ S × S.

◮ Complex algebra: S+ := 〈℘(S),∅, S,∼S,∪,∩, 〈R〉〉

◮ x positive in γ ⇒ γS : ℘(S)n+1 → ℘(S) order preserving in first coord.
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Flat Modal Fixpoint Logics: Kripke Semantics

◮ Kripke frame S = 〈S,R〉 with R ⊆ S × S.

◮ Complex algebra: S+ := 〈℘(S),∅, S,∼S,∪,∩, 〈R〉〉

◮ x positive in γ ⇒ γS : ℘(S)n+1 → ℘(S) order preserving in first coord.

◮ By Knaster-Tarski we may define ♯S : ℘(S)n → ℘(S) by

♯S(P ) := LFP.γS
P
.
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Questions

◮ When are fixpoint connectives constructive?

◮ How to axiomatize flat fixpoint logics?
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◮ Introduction

◮ Flat modal fixpoint logics

◮ Constructiveness & continuity
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First results

Proposition (folklore?)
Let S be an LTS and let x be positive in γ(x,p).

(1) If S is image-finite then ♯γ is constructive on S.

(2) If γ ∈ EFx then ♯γ is constructive on S,
with EFx x-existential fragment given by

ϕ ::= x | ‘x-free’ | ⊥ | ⊤ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 3iϕ

Proof

In both cases, γ is continuous in x.
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Continuity

Definition

Let S be an LTS. A formula γ is continuous in x on S if

γS(X,P ) =
⋃

F⊆ωX

γS(F,P ).

(This is equivalent to requiring γS
P

to be Scott continuous on ℘(S).)
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Continuity

Definition

Let S be an LTS. A formula γ is continuous in x on S if

γS(X,P ) =
⋃

F⊆ωX

γS(F,P ).

(This is equivalent to requiring γS
P

to be Scott continuous on ℘(S).)

Proposition

γ continuous ⇒ ♯γ constructive

Proposition

Let S be an LTS and let x be positive in γ(x,p).
If S is image-finite or if γ ∈ EFx then γS is continuous in x.
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Characterizing Continuity

Theorem (Fontaine & Venema)
Let γ(x,p) be a modal formula.
Then γ is continuous in x if and only if γ is equivalent to some γ′ ∈ EFx.
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Characterizing Continuity

Theorem (Fontaine & Venema)
Let γ(x,p) be a modal formula.
Then γ is continuous in x if and only if γ is equivalent to some γ′ ∈ EFx.

Corollary

Let γ(x,p) be a modal formula.
If γ is continuous in x then it is ‘uniformly continuous’: ∃k < ω, ∀S LTS:
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Characterizing Continuity

Theorem (Fontaine & Venema)
Let γ(x,p) be a modal formula.
Then γ is continuous in x if and only if γ is equivalent to some γ′ ∈ EFx.

Corollary

Let γ(x,p) be a modal formula.
If γ is continuous in x then it is ‘uniformly continuous’: ∃k < ω, ∀S LTS:

γS(X,P ) =
⋃

F⊆k+1X

γS(F,P ).

Questions

• ♯γ constructive ⇒ γ continuous?
• Is it decidable whether a formula γ is continuous/constructive in x?
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