
Cantor (1).

Georg Cantor
(1845-1918)
studied in Zürich, Berlin, Göttingen
Professor in Halle

Work in analysis leads to the notion of cardinality
(1874): most real numbers are transcendental.

Correspondence with Dedekind (1831-1916): bijection
between the line and the plane.

Perfect sets and iterations of operations lead to a notion
of ordinal number (1880).
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Cantor (2).

Georg Cantor (1845-1918)

1877. Leopold Kronecker (1823-1891) tried to prevent
publication of Cantor’s work.
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Cantor (2).

Georg Cantor (1845-1918)

1877. Leopold Kronecker (1823-1891) tried to prevent
publication of Cantor’s work.

Cantor is supported by Dedekind and Felix Klein.

1884: Cantor suffers from a severe depression.

1888-1891: Cantor is the leading force in the foundation
of the Deutsche Mathematiker-Vereinigung.

Development of the foundations of set theory:
1895-1899.

Core Logic – 2004/05-1ab – p. 3/28



Cardinality (1).

The natural numbers 0
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5 6 7 8 ...

The even numbers 0 2 4 6 8 ...

There is a 1-1 correspondence (bijection) between N

and the even numbers.

There is a bijection between N× N and N.

There is a bijection between Q and N.

There is no bijection between the set of infinite 0-1
sequences and N.

There is no bijection between R and N.
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Cardinality (2).

Theorem (Cantor). There is no bijection between the set of
infinite 0-1 sequences and N.

Theorem (Cantor). There is a bijection between the real
line and the real plane.
Proof. Let’s just do it for the set of infinite 0-1 sequences and the set of pairs of infinite 0-1
sequences:
If x is an infinite 0-1 sequence, then let

x0(n) := x(2n), and

x1(n) := x(2n+ 1).

Let F (x) := 〈x0, x1〉. F is a bijection. q.e.d.

Cantor to Dedekind (1877): “Ich sehe es, aber ich glaube
es nicht!”
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Transfiniteness (1).

If X ⊆ R is a set of reals, we call x ∈ X isolated in X if no
sequence of elements of X converges to x.

Cantor’s goal: Given any set X, give a construction of a
nonempty subset that doesn’t contain any isolated points.

Idea: Let X isol be the set of all points isolated in X, and
define X ′ := X\X isol.

Problem: It could happen that x ∈ X ′ was the limit of a
sequence of points isolated in X. So it wasn’t isolated in X,
but is now isolated in X ′.

Solution: Iterate the procedure: X0 := X and
Xn+1 := (Xn)

′.
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Transfiniteness (2).

X′ := X\X isol; X0 := X and Xn+1 := (Xn)′.

Question: Is
⋂

n∈N Xn a set without isolated points?

Answer: In general, no!

So, you could set X∞ :=
⋂

n∈N Xn, and then X∞+1 := (X∞)
′;

in general, X∞+n+1 := (X∞+n)
′.

The indices used in transfinite iterations like this are called
ordinals.
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Sets.

The notion of cardinality needs a general notion of function
as a special relation between sets. In order to make the
notion of an ordinal precise, we also need sets.

What is a set?
Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge
unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)

The Full Comprehension Scheme. Let X be our universe
of discourse (“the universe of sets”) and let Φ be any
formula. Then the collection of those x such that Φ(x) holds
is a set:

{x ; Φ(x)}.
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Frege (1).

Gottlob Frege (1848-1925)

Frege’s Comprehension Principle. If Φ is any formula,
then there is some G such that

∀x(G(x)↔ Φ(x)).

The ε operator. In Frege’s system, we can assign to
“concepts” F (second-order objects) a first-order object εF

(“the extension of F ”).

Core Logic – 2004/05-1ab – p. 9/28



Frege (2).

Basic Law V. If F and G are concepts (second-order
objects), then

εF = εG ↔ ∀x(F (x)↔ G(x)).

Frege’s Foundations of Arithmetic. Let F be an absurd
concept (“round square”). Let G be the concept “being
equinumerous to εF ”. We then define 0 := εG.
Suppose 0, ... , n are already defined. Then let H be the
concept “being either 0 or ... or n” and let H be the concept
“being equinumerous to εH”. Then let n+ 1 := εH.
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Russell (1).

Bertrand Arthur William
3rd Earl Russell (1872-1970)

Grandson of John 1st Earl Russell (1792-1878); British prime minister (1846-1852 &
1865-1866).

1901: Russell discovers Russell’s paradox.

1910-13: Principia Mathematica with Alfred North Whitehead (1861-1947).

1916: Dismissed from Trinity College for anti-war protests.

1918: Imprisoned for anti-war protests.

1940: Fired from City College New York for anti-war protests.

1950: Nobel Prize for Literature.

1957: First Pugwash Conference.
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Russell (2).

Frege’s Comprehension Principle. Every formula defines a concept.
Basic Law V. If F and G are concepts, then εF = εG ↔ ∀x(F (x)↔ G(x)).

Theorem (Russell). Basic Law V and the Full
Comprehension Principle together are inconsistent.
Proof. Let R be the concept “being the extension of a concept which you don’t fall under”,
i.e., the concept described by the formula

Φ(x) :≡ ∃F (x = εF ∧ ¬F (x)).

This concept exists by Comprehension. Let r := εR.
Either R(r) or ¬R(r):

1. If R(r), then there is some F such that r = εF and ¬F (r). Thus εF = εR, and by
Basic Law V, we have that F (r)↔ R(r). But then ¬R(r). Contradiction!

2. If ¬R(r), then for all F such that r = εF we have F (r). But R is one of these F , so
R(r). Contradiction!

q.e.d.
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Russell (3).

Theorem (Russell). The Full Comprehension Principle
cannot be an axiom of set theory.
Proof. Suppose the Full Comprehension Principle holds, i.e., every formula Φ describes a
set {x ; Φ(x)}. Take the formula Φ(x) :≡ x /∈ x and form the set r := {x ; x /∈ x} (“the
Russell class”).
Either r ∈ r or r /∈ r.

1. If r ∈ r, then Φ(r), so r /∈ r. Contradiction!

2. If r /∈ r, then ¬Φ(r), so ¬r /∈ r, i.e., r ∈ r. Contradiction!

q.e.d.
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Frege & Russell.

Russell discovered the paradox in June 1901.

Russell’s Paradox was discovered independently by
Zermelo (Letter to Husserl, dated April 16, 1902).

B. Rang, W. Thomas, Zermelo’s discovery of the “Russell paradox", Historia
Mathematica 8 (1981), p. 15-22.

Letter to Frege (June 16, 1902) with the paradox.

Frege’s reply (June 22, 1902): “with the loss of my Rule
V, not only the foundations of my arithmetic, but also the
sole possible foundations of arithmetic, seem to vanish”.
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Attempts to resolve the paradoxes.

Theory of Types.
Russell (1903, “simple theory of types”; 1908, “ramified
theory of types”). Principia Mathematica.

Axiomatization of Set Theory.
Zermelo (1908). Skolem/Fraenkel (1922). Von
Neumann (1925). “Zermelo-Fraenkel set theory” ZF.

Foundations of Mathematics.
Hilbert’s 2nd problem: Consistency proof of arithmetic
(1900). Hilbert’s Programme (1920s).
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Principia Mathematica.

Alfred North Whitehead (1861-1947).

Mathematician at Trinity College, one of Russell’s
teachers.

Continuation of Frege’s logicistic programme.

Later: Philosophy of Science, in particular Process
Ontologies.

Principia Mathematica: three volumes with a type-theoretic
foundations for mathematics; including an axiomatization of
arithmetic (1910, 1912, 1913).
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Zermelo.

Ernst Zermelo (1871-1953)
1894: PhD in Berlin, student of Hermann Amandus Schwarz (1843-1921).

Assistant of Max Planck, working in hydrodynamics (1894-1897).

1904: Proof of the Zermelo Wellordering Theorem (more next week).

1905: Professor in Göttingen.

1908: Zermelo’s Axiom System for Set Theory: Zermelo Set Theory Z.

1912: Applications of set theory to mathematical games: Zermelo’s Theorem on the
determinacy of finite games.
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Hilbert’s Programme (1).

1917-1921: Hilbert develops a predecessor of modern
first-order logic.

Paul Bernays (1888-1977)
Assistant of Zermelo in Zürich (1912-1916).

Assistant of Hilbert in Göttingen (1917-1922).

Completeness of propositional logic.

“Hilbert-Bernays” (1934-1939).

Hilbert-Ackermann (1928).

Goal. Axiomatize mathematics and find a finitary
consistency proof.
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Hilbert’s Programme (2).

1922: Development of ε-calculus (Hilbert & Bernays).
General technique for consistency proofs:
“ε-substitution method”.

1924: Ackermann presents a (false) proof of the
consistency of analysis.

1925: John von Neumann (1903-1957)
corrects some errors and proves the con-
sistency of an ε-calculus without the in-
duction scheme.

1928: At the ICM in Bologna, Hilbert claims that the
work of Ackermann and von Neumann constitutes a
proof of the consistency of arithmetic.
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Brouwer (1).

L. E. J. (Luitzen Egbertus Jan) Brouwer
(1881-1966)

Student of Korteweg at the UvA.

1909-1913: Development of topology. Brouwer’s Fixed
Point Theorem.

1913: Succeeds Korteweg as full professor at the UvA.

1918: “Begründung der Mengenlehre unabhängig vom
Satz des ausgeschlossenen Dritten”.
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Brouwer (2).

1920: “Besitzt jede reelle Zahl eine
Dezimalbruch-Entwickelung?”. Start of the
Grundlagenstreit.

1921: Hermann Weyl (1885-1955),
“Über die neue Grundlagenkrise der
Mathematik”

1922: Hilbert, “Neubegründung der Mathematik”.

1928-1929: ICM in Bologna; Annalenstreit. Einstein
and Carathéodory support Brouwer against Hilbert.
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Intuitionism.

Constructive interpretation of existential quantifiers.

As a consequence, rejection of the tertium non datur.

More in the guest lecture on November 17.

The big three schools of philosophy of mathematics:
logicism, formalism, and intuitionism.

Nowadays, different positions in the philosophy of
mathematics are distinguished according to their view
on ontology and epistemology. Main positions are:
(various brands of) Platonism, Social Constructivism,
Structuralism, Formalism.
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Gödel (1).

Kurt Gödel (1906-1978)

Studied at the University of Vienna; PhD supervisor
Hans Hahn (1879-1934).

Thesis (1929): Gödel Completeness Theorem.

1931: “Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme I”.
Gödel’s First Incompleteness Theorem and a proof
sketch of the Second Incompleteness Theorem.
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Gödel (2).

1935-1940: Gödel proves the consistency of the Axiom
of Choice and the Generalized Continuum Hypothesis
with the axioms of set theory (solving one half of
Hilbert’s 1st Problem).

1940: Emigration to the USA: Princeton.

Close friendship to Einstein, Morgenstern and von
Neumann.

Suffered from severe hypochondria and paranoia.

Strong views on the philosophy of mathematics.
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Gödel’s Incompleteness Theorem (1).

1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann
constitutes a proof of the consistency of arithmetic.

1930: Gödel announces his result (G1) in Königsberg in
von Neumann’s presence.

Von Neumann independently derives the Second
Incompleteness Theorem (G2) as a corollary.

Letter by Bernays to Gödel (January 1931): There may
be finitary methods not formalizable in PA.

1931: Hilbert suggests new rules to avoid Gödel’s
result. Finitary versions of the ω-rule.

By 1934, Hilbert’s programme in the original formulation
has been declared dead.
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Gödel’s Incompleteness Theorem (2).

Theorem (Gödel’s Second Incompleteness Theorem). If T

is a consistent axiomatizable theory containing PA, then
T 6` Cons(T ).

“consistent”: T 6` ⊥.

“axiomatizable”: T can be listed by a computer
(“computably enumerable”, “recursively enumerable”).

“containing PA”: T ` PA.

“Cons(T )”: The formalized version (in the language of
arithmetic) of the statement ‘for all T -proofs P , ⊥
doesn’t occur in P ’.
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Gödel’s Incompleteness Theorem (3).

Thus: Either PA is inconsistent or the deductive closure
of PA is not a complete theory.

All three conditions are necessary:

Theorem (Presburger, 1929). There is a weak
system of arithmetic that proves its own consistency
(“Presburger arithmetic”).

Mojzesz Presburger (1904-c. 1943)

If T is inconsistent, then T ` ϕ for all ϕ.
If N is the standard model of the natural numbers,
then Th(N) is a complete extension of PA (but not
axiomatizable).

Core Logic – 2004/05-1ab – p. 27/28



Gödel’s Incompleteness Theorem (3).

Thus: Either PA is inconsistent or the deductive closure
of PA is not a complete theory.

All three conditions are necessary:

Theorem (Presburger, 1929). There is a weak
system of arithmetic that proves its own consistency
(“Presburger arithmetic”).
If T is inconsistent, then T ` ϕ for all ϕ.
If N is the standard model of the natural numbers,
then Th(N) is a complete extension of PA (but not
axiomatizable).

Core Logic – 2004/05-1ab – p. 27/28



Gentzen.

Gerhard Gentzen (1909-1945)

Student of Hermann Weyl (1933).

1934: Hilbert’s assistant in Göttingen.

1934: Introduction of the Sequent Calculus.

1936: Proof of the consistency of PA from a transfinite
wellfoundedness principle.

Theorem (Gentzen). Let T ⊇ PA such that T proves
the existence and wellfoundedness of (a code for) the
ordinal ε0. Then T ` Cons(PA).
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