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Symplectic Geometry

Problem Set 2

1. In a finite dimensional real vector space V , any euclidean inner product g deter-
mines an open ellipsoid via

Eg = {v ∈ V : g(v, v) < 1}.

a) Let g be a euclidean inner product on R
2, and let ωst = e∗ ∧ f ∗ be the

standard symplectic form. Prove that one can find a new symplectic basis
{e′, f ′} such that e′ ⊥g f ′ and ‖e′‖g = ‖f ′‖g.

b) Prove that for any ellipsoid E ⊂ (R2n, ωst) there exists a symplectic linear
map ϕ : R2n → R

2n such that ϕ(E) is a standard symplectic ellipsoid,
meaning it is of the form

E(r1, . . . , rn) := {(z1, . . . , zn) ∈ Cn ∼= R
2n :

∑
j

|zj|2

r2j
< 1}.

Here the numbers 0 < r1 ≤ r2 ≤ · · · ≤ rn are uniquely determined by E.

2. Prove that given two Lagrangian subspaces L0, L1 ⊂ (V, ω) of a symplectic vector
space such that L0 ∩ L1 = {0} (i.e. L0 and L1 are transverse), there exists
a symplectic basis e1, f1, . . . en, fn such that L0 = span(e1, . . . , en) and L1 =
span(f1, . . . , fn).

3. We denote by L(n) the space of Lagrangian subspaces of (R2n, ωst)

a) Prove that the loop Ψ : R/Z→ Sp(4,R) defined in the lecture as

Ψ(t) := eπit
(

cos(πt) − sin(πt)
sin(πt) cos(πt)

)
∈ U(2) ⊂ Sp(4,R)

has Maslov index 1.

Please turn!



b) Prove that with Λ0(t) = eπit ·R ∈ L(1) and Λ(t) := Λ0(t)⊕Λ0(t) ∈ L(2) we
have

Λ(t) = Ψ(t) · (R2 ⊕ {0}).

As discussed in the lecture, this proves that µ(Λ0) = 1.

c) Prove that the Maslov index for Lagrangian subspaces is characterized uni-
quely by the (homotopy), (product), (direct sum) and (zero) axioms.

d) Prove that the Maslov index for Lagrangian loops has the concatenation
property: If Λ1 and Λ2 are two loops in L(n) with Λ1(0) = Λ2(0), then

µ(Λ1 ? Λ2) = µ(Λ1) + µ(Λ2).

e) The space Lor(n) of oriented Lagrangian subspaces of (R2n, ωst) is a double
cover (two-sheeted covering space) of L(n). Prove that if p : Lor(n)→ L(n)
is the covering projection map, then p∗(π1(Lor(n)) = 2Z ⊂ Z ∼= π1(L(n)).
In other words: the Maslov index of a loop of oriented Lagrangian subspaces
is even.

4. This exercise assumes some familiarity with techniques in differential topology.
Still, it is included to give an idea of an alternative approach to the Maslov
index for loops of symplectic matrices. Throughout, we consider (R2n, ωst) with
coordinates (x1, . . . , xn, y1, . . . yn).

a) Prove that a matrix Ψ =

(
A B
C D

)
∈ GL(2n,R) is symplectic if and only

if
CTA = ATC, DTB = BTD and ATD − CTB = 1.

Now we define the (noncompact) Maslov cycle ∆ ⊆ Sp(2n,R) by

∆ := {Ψ =

(
A B
C D

)
∈ Sp(2n,R) | det(B) = 0}

= ∆1 t∆2 t · · · t∆n,

where ∆i = {Ψ | rank(B) = n− i} has closure ∆i = ∪j≥i∆j.

b) For n = 1, describe ∆ = ∆1 ⊆ Sp(2,R) explicitly, and prove that its
complement consists of two regions, both diffeomorphic to R3.

c) Prove that every loop in Sp(2,R) is homotopic to a new loop Ψ such that
Ψ∩∆ consists of finitely many transverse intersections. We call such a loop
regular, and the corresponding transverse intersection points Ψ ∩∆ regular
crossings.

See next page!



d) For a loop Ψ in Sp(2,R), we call a regular crossing Ψ(t) positive if−d(t)b′(t) >
0, and negative otherwise. Prove that for a regular loop Ψ in Sp(2,R) its
Maslov index µ(Ψ) is given by

µ(Ψ) =
1

2
(#(positive crossings)−#(negative crossings)),

where # denotes the count.
Hint: Check that this gives the right answer on the standard loops

Ψk(t) =

(
cos 2kπt − sin 2kπt
sin 2kπt cos 2kπt

)
and then use homotopy invariance of the right hand side.
For more information, including a discussion of the higher dimensional case
and the Lagrangian version, see the book “Introduction to symplectic topo-
logy” by McDuff and Salamon or the article by Robbin and Salamon, “The
Maslov index for paths”, Topology 32 (1993), 827–844.


