Winter 2012/13

Universität Hamburg Janko Latschev Andreas Gerstenberger

Symplectic Geometry

Problem Set 5

- 1. We consider the two Lagrangian submanifolds of $(\mathbb{R}^{2n}, \omega_{st})$ that were discussed in the lecture.
 - **a**) Verify directly that for $n \ge 1$ and any fixed $0 < \epsilon < 1$ the map

$$\varphi_0: S^1 \times S^{n-1} \to \mathbb{C}^n \cong \mathbb{R}^{2n}$$
$$(e^{it}, x) \mapsto (1 + \epsilon e^{it}) \cdot x$$

is a Lagrangian embedding, and compute the Maslov index of the loop γ_0 : $\mathbb{R}/\mathbb{Z} \to L$, given by $\gamma_0(t) = \varphi_0(e^{2\pi i t}, (1, 0, \dots, 0)).$

b) For $n \ge 2$, consider the Lagrangian submanifold $L \subset \mathbb{R}^{2n}$ given as the image of the immersion

$$\varphi_1: S^1 \times S^{n-1} \to \mathbb{C}^n \cong \mathbb{R}^{2n}$$
$$(\lambda, x) \mapsto \lambda \cdot x,$$

and compute the Maslov index of the loop $\gamma_1 : \mathbb{R}/\mathbb{Z} \to L$, given by $\gamma_1(t) = \varphi_1(e^{i\pi t}, (\cos(\pi t), \sin(\pi t), 0, \dots, 0)).$

- **2.** Consider a closed coisotropic submanifold $W \subset (M, \omega)$ of a symplectic manifold, and suppose that $W = H^{-1}(c)$ for a smooth function $H : M \to \mathbb{R}^k$ which has $c \in \mathbb{R}^k$ as a regular value. We denote by H_1, \ldots, H_k the components of H.
 - a) Prove that the subbundle ker $\omega|_W \subset TW$ is spanned pointwise by the Hamiltonian vector fields X_{H_1}, \ldots, X_{H_k} .
 - **b)** Prove that $[X_{H_i}, X_{H_j}]|_W = 0$ for all $1 \le i, j \le k$. By Frobenius' Theorem, this implies that ker $\omega|_W$ is integrable, i.e. tangent to a foliation.
 - c) Suppose that the Hamiltonian flows $\varphi^{X_{H_i}}$ are 1-periodic, so that together these flows combine to a free action of the torus T^k on W. Prove that the quotient space W/T^k inherits a symplectic structure from M.

- **d)** Prove that for $W = S^{2n-1} \subset (\mathbb{R}^{2n}, \omega_{st})$, viewed as a level set of the function $H(z) = \frac{1}{2} ||z||^2$, part **c**) applies with k = 1, and the quotient space is $\mathbb{C}P^{n-1}$.
- **3.** a) Show that if L_1 and L_2 are two Lagrangian submanifolds passing through $p = (x, y) \in (\mathbb{R}^{2n}, \omega_{st})$ such that $T_p L_0 \cap T_p L_1 = \{0\}$, there exists a symplectomorphism $\varphi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ such that for a sufficiently small $\epsilon > 0$ one has $\varphi(L_0 \cup L_1) \cap B(p, \epsilon) = (\mathbb{R}^n \times \{y\} \cup \{x\} \times \mathbb{R}^n) \cap B(p, \epsilon).$
 - **b)** Construct a Lagrangian submanifold $L \subset (\mathbb{R}^{2n}, \omega_{st})$ diffeomorphic to $\mathbb{R} \times S^{n-1}$, such that

 $L \cap (\mathbb{R}^{2n} \setminus B^{2n}(0,1)) = (\mathbb{R}^n \times \{0\} \cup \{0\} \times \mathbb{R}^n) \cap (\mathbb{R}^{2n} \setminus B^{2n}(0,1)).$