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23 The Listing Theorem 
We promised to explain the word enumerable in ‘computably enumer-

able’. 

23.1 Theorem. (i) A nonempty set is c.e. iff it is the range of a total 
computable function. 
(ii) A set is c.e. iff it is either finite or the range of a 1-1 total computable 
function. 

Proof. (i) (⇒) Suppose We ≠ 0⁄ . Then there is a least s such that We,s ≠ 0⁄ ; let 
a be its least element. Now define 

 f(〈s, x〉) = x if x ∈ We,s+1 – We,s; 
  a otherwise. 

Then We = Ran f. 
(⇐) By (4) of §22, the range of a p.c. function is c.e. 
(ii) Suppose We is infinite; construct f as in (i). From the infinite sequence 

f(0), f(1), f(2), f(3), … 

remove the recurrences of a. The enumeration of the resulting sequence is a 
1-1 total computable function.  

The gumball gauge principle. 

23.2 Corollary. There are binary p.c. functions η and θ such that for all e, 
(i) We = Ran(λx.η(e, x)), and λx.η(e, x) is total if We ≠ 0⁄ ; 
(ii) We = Ran(λx.θ(e, x)), and λx.θ(e, x) is 1-1, and total if We is infinite. 

24 C.e. sets under inclusion 
24.1 Sublattice Theorem. There exist computable functions f and g such 
that for all x, y, Wf(x,y) = Wx ∪ Wy and Wg(x,y) = Wx ∩ Wy. 

Proof. Define: ϕf(x,y)(z) ~– ϕx(z) if ∃s(z ∈ Wx,s – Wy,s), 
 ϕy(z) otherwise; 
and ϕg(x,y)(z) ~– ϕx(z) + ϕy(z).  

So the c.e. sets form a sublattice of the Boolean algebra of subsets of ω. 

24.2 Reduction Principle for c.e. sets. For any c.e. sets A and B, there exist 
c.e. sets A1 ⊆ A and B1 ⊆ B such that A1 ∩ B1 = 0⁄  and A1 ∪ B1 = A ∪ B. 

Proof. Define R := ({0} × A) ∪ ({1} × B). By the previous, R is c.e. Let ψ 
be a selector function for R. Take A1 = ψ–1{0} and B1 = ψ–1{1}.  

25 Δ1 sets 

25.1 Definition. (i) Π1 = { A–| A ∈ Σ1}; 
(ii) Δ1 = Σ1 ∩ Π1. 
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25.2 Complementation Theorem (Post). A set is computable iff it is Δ1. 

Proof. (⇒) If A is computable, then so is  A–. 
(⇐) Suppose A = We and  A– = Wi. Define: f(x) = µs(x ∈ We,s or x ∈ Wi,s). 
Then f is computable, and x ∈ A iff x ∈ We, f(x).  

It follows that the computable sets form a subalgebra of the Boolean al-
gebra of subsets of ω. 

25.3 Corollary.  K– is not c.e. 

Proof. If it were, K would be computable.  

26 Exercises 
:1 (a) Prove: if A ≤m B ∈ Σ1, then A ∈ Σ1. 
(b) Show that Fin and Tot are not c.e. 
(c) Show that Cof is not c.e. 
:2 Prove: if A is c.e. and ψ is computable, then ψ[A] and ψ–1[A] are c.e. 
:3 Let f be a total function. Prove: f is a computable function iff it is a com-
putable relation. 
(S. 2.1.23 is misstated; compare 23.2.) 

27 Static and dynamic 
A c.e. set We is the union of a chain 

We,0 ⊆ We,1 ⊆ We,2 ⊆ … ⊆ We,s ⊆ … 

of decidable finite sets, a computable enumeration of We. We refer to prop-
erties of this chain as dynamic properties of We. The attributes of We proper, 
independent of the way it is enumerated, we call static. 

28 Uniform sequences and simultaneous enumerations 
An initial segment of ω is either a finite set {0,…, n – 1} (which means 0⁄  

in case n = 0) or ω itself.  

28.1 Definition. A sequence V = (Ve| e ∈ ω) of c.e. sets is uniformly c.e. 
(u.c.e.) if there is a computable function f such that Ve = Wf(e). 

Examples. (i) The standard sequence W := (We| e ∈ ω). 
(ii) The sequence (We,i | i ∈ ω) of decidable finite sets that approximate the 
c.e. set We. 
(iii) The sequence (We,n | e ∈ ω). Its elements are subsets of {0,…, n – 1}; if 
e ≥ n , We,n = 0⁄ . 

28.2 Definition. (i) Let V be a u.c.e. sequence. A 1-1 function h from an 
initial segment of ω into ω is a simultaneous computable enumeration 
(s.c.e.) of V if Ranh = {〈x, e〉| x ∈ Ve}. Assuming h, we define: 
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Ve,s = {x| ∃t ≤ s h(t) = 〈x, e〉}. 

(ii) Given h, we may define Ve := {x| ∃s h(s) = 〈x, e〉}, and denote the result-
ing u.c.e. sequence by Vh. 

Examples. (i) An s.c.e. for W := (We| e ∈ ω) is h1 = π1 o g, with g defined by 
 g(0) = µz.T(π2(π1(z)), π1(π1(z)), π2(z)), 
  g(x + 1) = µz[T(π2(π1(z)), π1(π1(z)), π2(z)) & z > g(x)]. 
Unfortunately, this implies a new definition of We,s that is not equivalent to 
the original one. The new definition has the virtue, over the old one, that 
We ,s+1 – We,s always contains exactly one element. The old definition, on 
the other hand, has the property 

x ∈ We,s ⇒ x, e < s    (*). 
We should like to have some variant h of h1 that induces (*) to hold, but this 
is impossible: h(0) would have to be a pair of numbers less than 0. 

There are, however, a few little tricks we can apply. First relax (*) to 

x ∈ We,s ⇒ x, e ≤ s    (**). 
Now observe that (**) implies something like 

∑e|We ∩ {0,…, n – e}| ≥ n    (†). 

To ensure (†) is possible, we move a few fat sets to the beginning of the 
enumeration; it suffices to stipulate W0 = W1 = ω. Once (†) has been se-
cured, there is always room to solve the finite puzzle of defining the next 
value of h. So when it suits us, we may assume we have an s.c.e. h0 of W 
that satisfies (**); or even (*), allowing exceptions for s ≤ 1. 
(ii) Define an s.c.e. h of (We,i | i ∈ ω) by 

h(s) = 〈x, i〉 iff 

! 

|We, j |
j<i
"  + |{y ∈ We,i | y < x}| = s. 

The domain of this enumeration may be finite. 
(iii) The domain of an s.c.e. of (We,n | e ∈ ω) will certainly be finite. 

28.2 Definition. Let h be an s.c.e. of a u.c.e. sequence V. For some i, j, put 
Xs = Vi,s and Ys = Vj,s. Then 
(i) X \ Y = {z| ∃s z ∈ Xs – Ys}; 
(ii) X  Y = (X \ Y) ∩ Y. 

Beware: much is suppressed in these dynamic notations. 

28.3 Dynamic Flow Theorem. Fix an s.c.e. of W, and for some b, put Bs = 
Wb,s and B = Wb. If B is noncomputable, then for every e such that We in-
cludes B–, We  B is infinite. 

Proof. If We  B is finite, then We \ B =* B–, which makes B computable.  

By essentially the same argument, We  B is noncomputable. 
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29 Exercise 
Let (Xs| s ∈ ω) and (Ys| s ∈ ω) be computable enumerations of c.e. sets X 
and Y. Prove: 
(a) X \ Y and X  Y are c.e.; 
(b) X \ Y = (X – Y) ∪ (X  Y); 
(c) if X – Y is not c.e., then X  Y is noncomputable; 
(d) the Reduction Principle, by putting, for A = Wx and B = Wy, A1 = Wx \ Wy 
and B1 = Wy \ Wx. 

30 Friedberg’s Splitting Theorem 
In the proof of the next theorem, we build a set that is to satisfy an in-

finite list R0, R1, R2,… , Rn,… (n ∈ ω) of requirements. The earlier a re-
quirement appears in the list, the higher its priority. At any stage in the con-
struction, there may be requirements demanding attention; then we satisfy 
one of them, the one with highest priority. 

In the present case, once a requirement has been acted on, it remains sat-
isfied. In more advanced applications of the method, violations may occur. 

Theorem. For any noncomputable c.e. set B, there exist disjoint noncom-
putable c.e. sets A0 and A1 such that  B = A0 ∪ A1. 

Proof. Let f be a 1-1 computable listing of B; define: Bs = { f(0),…, f(s)}. 
To ensure A0 and A1 are noncomputable, we meet the requirements 

R〈e, i〉 : We ≠ 

! 

Ai ,  e ∈ ω,  i = 0, 1. 

Stage 0: A0 = { f(0)}, A1 = 0⁄ . 
Suppose we have constructed Ai,s, for i = 0, 1. 

Stage s + 1: If there are 〈e, i〉 such that 

f(s + 1) ∈ We,s    &     We,s ∩ Ai,s = 0⁄    (‡), 

take the least one and add f(s + 1) to Ai; so Ai ,s+1 = Ai,s ∪ { f(s + 1)}, and 

! 

A
sg(i),s+1

 = 

! 

A
sg(i),s

. If there are no such 〈e, i〉, add f(s + 1) to A0. 

Observe that a requirement, once met, is satisfied forever after. Put Ai = 
Us Ai,s. Clearly A0 and A1 are disjoint, and A0 ∪ A1 = B. 

If the requirements are not all met, take the least 〈e, i〉 for which R〈e, i〉 is 
failed. Then We = 

! 

Ai , so We ⊇ B–. So We  B is infinite, by the Dynamic 
Flow Theorem. Hence there will be s where (‡) holds after all R〈d, j〉 with 
〈d, j〉 < 〈e, i〉 have been met. But by construction, at the stage following the 
first such s, R〈e, i〉 is satisfied: a contradiction.  

 


