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15 Reduction
15.1 Definition. Let A and B be sets (of natural numbers).
(i) A is many-one reducible (m-reducible) to B, notation A ≤m B, if there ex-
ists a computable function f such that x ∈ A ⇔ f(x) ∈ B.
(ii) A is one-one reducible (1-reducible) to B, notation A ≤1 B, if there exists
a 1-1 computable function f such that x ∈ A ⇔ f(x) ∈ B.

For example, K ≤1 K0. Observe that A ≤m B implies A– ≤m B–, by the same
function. These reducibilities are easily seen to be reflexive and transitive,
so ≤m ∩ ≥m and ≤1 ∩ ≥1 are equivalence relations. We denote them by ≡m
and ≡1, respectively. The m-degree degm(A) is A /≡m; the 1-degree deg1(A)
is A /≡1.

15.2 Proposition. If A ≤m B and B is computable, then A is computable.

15.3 Theorem. K ≤1 Tot := {x | Domϕx = ω}.

Proof. There exists a 1-1 computable function f such that ϕf(x)(y) ~– ϕx(x).


The proof shows that we cannot decide either whether a p.c. function is a
constant function, or whether it is empty. Moreover, we can substitute any
c.e. set for K.

16 Index sets
The method of Theorem 15.3 applies to almost all classes that correspond

to properties of functions.

16.1 Definition. A is an index set if

x ∈ A & ϕx  = ϕy  ⇒ y ∈ A.

For example, Tot is an index set.

16.2 Index Set Theorem. If A is a nontrivial (i.e. other than 0⁄  and ω) index
set, then K ≤1 A or K ≤1 A–.

Proof. Let e0 be an index of the empty function. If e0 ∈  A–, then we show
K ≤1 A as follows. Take e1 ∈ A. Then ϕe1 ≠ ϕe0 since A is an index set. By
the s-m-n Theorem, construct a 1-1 computable function f such that

ϕf(x)(y) ~– ϕe1(y) + 0·ϕx(x). 

16.3 Rice’s Theorem. Let C be a class of (unary) p.c. functions. Then the
set of indices of elements of C is computable only if C is empty or C con-
tains all p.c. functions.

Here are some more index sets:
K1 = {x | Wx ≠ 0⁄ };
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Fin = {x | Wx is finite};
Inf = ω – Fin;
Con = {x | ∃n ϕx = λy.n} (indices of constant functions);
Cof = {x | Wx is cofinite};
Cput = {x | Wx is computable};
Ext = {x | ∃y ∈ Tot ϕx ⊆ ϕy} (extendible to total functions).

17 Complete sets, degrees and lattices
17.1 Definition. A c.e. set A is 1-complete if B ≤1 A for every c.e. set B.

For example, K0 is 1-complete.
Classifying sets by degrees of unsolvability and comparing degrees are

major concerns of recursion theory. As to comparing degrees: clearly the
original quasi-ordering induces an ordering of the degrees. We have

a ≤ b iff ∃A ∈ a ∃B ∈ b A ≤ B
         iff ∀A ∈ a ∀B ∈ b A ≤ B

An order (partially ordered set) (X, ≤) is an upper semilattice if every two
elements x, y have a join (least upper bound, supremum) x ∨ y; that is,

(*) ∀u ∈ X (x ≤ u & y ≤ u ⇔ x ∨ y ≤ u).

The join is unique, for if a and b are joins of x and y, then by (*), since a ≤
a, x ≤ a and y ≤ a. Hence by (*) again, b ≤ a. Switching a and b in the argu-
ment, we get b ≤ a. So a = b by antisymmetry.

The order (X, ≤) is an lower semilattice if every two elements x, y have a
meet (greatest lower bound, infimum) x ∧ y; that is,

(*) ∀u ∈ X (x ≥ u & y ≥ u ⇔ x ∧ y ≥ u).

The meet is unique as well, being the join in the upper semilattice (X, ≥).
A lattice is an order that is both an upper and a lower semilattice.
By Exercise 18:2, the m-degrees form an upper semilattice.

17.2 Definition. Let A and B be sets. Then

A ⊕ B = {2a | a ∈ A} ∪ {2b + 1| b ∈ B}.

This join contains, in an obvious sense, precisely the information con-
tained in A and B. Your proof of 18:2, however, will not carry over to 1-re-
ducibility.

18 Exercises
:1 Suppose B = A ⊕ A– for some set A ⊂ ω. Prove B ≤1 B–.
:2 Prove that degm(A ⊕ B) = degm(A) ∨ degm(B).
:3 Prove that K0, K1 and K are 1-equivalent.
:4 Prove that K ≤1 Fin directly, that is, without using Rice’s Theorem.


