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Basic ideas

conclusion
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comply the derivation rules




Syntax

» connectives: A, —, L
» -a: a—l

» a< b:a—-bAb—a




Syntax
LGl

» connectives: A, —, L

» -a: a—l

» a«< b:a—obAb—a

» from a, a —b conclude b:
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» if anb is true, than a is true:
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Dont be afraid of other syntax!

L

13

p—q) A (=r = q))
2 p
u w 3 ((p—= @) A (—r— —q)) 1, Reiteration
A true B true
Wy, 4 (r—q) 3, A\E
A N Btrue
D 5 q 2.4, —E
B> (A B) true o ] (= = —q)) 3. AE
AD (BD(ANB)) true ; { .
8 _(—17“ — —q)) 6, Reiteration
9 —q 7.8, —>E
10 q 5, Reiteration
1 -7 7-10, -1
12 r 11, =—E

(p—r) 2-12, I
4 ((p=QN(Er——q)—(p—r)) 1-13, =1




Derivation rules

» basic rules: express intuitive meaning of connectives




Derivation rules

» basic rules: express intuitive meaning of connectives

introduction

eliminate connectives Introduce connectives




Introduction rules

» live




Elimination rules

» live




Overview

INTRODUCTION RULES ELIMINATION RULES
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We have two rules for L, both of which eliminate L, but introduce a for-
mula.
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INTRODUCTION RULES ELIMINATION RULES

wn 2l e Y PN

pANY ¥

First example
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Proof strategy

fanb—c} - {a—(b—c)}
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Proof strategy

fanb—c} - {a—(b—c)}
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Proof strategy

fanb—c} - {a—(b—oc)}
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Proof strategy

fanb —c} — {a—(b—c)}
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Proof strategy
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Hypothesis
» hypothesis is cancelled

(= 1) » no need of hypothesis
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Hypothesis

[—] » hypothesis is cancelled

(RAA) » hypothesis is wrong
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Structure of derivation

INTRODUCTION RULES ELIMINATION RULES
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We have two rules for 1, both of which eliminate |, but introduce a for-
mula.




Structure of derivation

proof: —(@p<——¢p)
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Derivation: theoretical approach

set of derivation = smallest set X:

(1) The one element tree@belongs to@ for all \p e PROP.
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(2n) If ., € X, then ¢ o eX (2—) If D € X, then . €X. L ;
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Sets of propositions

» I I a: derivation with (uncancelled) hypotheses in I' with conclusion a
» a derivable from I
» F:turnstile

» I'=0@: + a, a: theorem
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Sets of propositions

» I I a: derivation with (uncancelled) hypotheses in I' with conclusion a
» a derivable from I

» :turnstile \\/

» I'=0@: + a, a: theorem (G)@L@J@EL
(b)FI—ap,F’I—z,bﬁlFUF’!—go/\'z,b
(c)'FpANp=T+Fpand '+,
(d)I'Upk1y=TFp—,

(e) 'Fo,I"Fp—1Y=TUl"F,
(f) '+ L=1T1Fp,
(9) 'U{—-p}tF L =11

Proof by using derivation (last slide)



Sets of propositions: theorem

» T + a: derivation with (uncancelled) hypotheses in I' with conclusion a

» Ifr=0
F a
a: theorem
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We have two rules for L, both of which eliminate L. but introduce a for-
mula.
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