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Formulation of Martin’s Axiom: Definitions

Definition

• A forcing poset is a triple pP,ď,1q such that ď is a preorder on P and

1 P P is a largest element p@p P P p ď 1).

• p, q P P are incompatible (p K q) iff they have no common extension

p␣Dr P P pr ď p^ r ď qqq. An antichain is a subset A Ď P whose

elements are pairwise incompatible. P has the countable chain condition

iff every antichain in P is countable.

• D Ď P is dense in P iff @p P P Dq P D q ď p.

• G Ď P is a filter on P iff

• 1 P G.

• @p, q P G Dr P G pr ď p ^ r ď qq.

• @p, q P P pq ď p ^ q P G Ñ p P Gq.
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Formulation of Martin’s Axiom: Example

Example

For any I, J : FnpI, Jq is the set of all finite partial functions from I to J ; that

is p P FnpI, Jq iff p P rI ˆ Jsăω and p is the graph of a function. We make

FnpI, Jq into a forcing poset by letting ď be Ě and 1 “ H.

For P “ Fnpω, ωq,

• tp0, 0qu, tp1, 0qu, tp0, 1qu P P;

• tp0, 0qu Mtp1, 0qu since tp0, 0q, p1, 0qu is a common extension;

• tp0, 0quKtp0, 1qu;

• D “ tp P P : Dk P N |domppq| “ 2ku is dense in P;

• G “ tp P P : 1 R domppqu is a filter on P.
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Formulation of Martin’s Axiom

Definition

• MAPpκq is the statement that whenever D is a family of dense subsets of

P with |D| ď κ, there exists a filter G on P such that GXD ‰ H for all

D P D.

• MApκq is the statement that MAPpκq holds for all ccc posets P.

• MA is the statement @κ ă c MApκq.
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Martin’s Axiom and CH

Lemma (III.3.13)

MApκq fails for κ ě c.

Lemma (III.3.14)

MApκq holds for κ “ ℵ0.

6



Proof of Lemma III.3.13

Definition

A family of sets A forms a delta system with root R iff X X Y “ R whenever

X,Y P A with X ‰ Y .

Lemma (Delta System)

Let κ be an uncountable regular cardinal, and let A be a family of finite sets

with |A| “ κ. Then there is a B P rAsκ such that B forms a delta system.

Lemma (III.3.7)

FnpI, Jq has the ccc iff I “ H or J is countable.

Lemma (III.3.13)

MApκq fails for κ ě c.
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Martin’s Axiom and CH

Lemma (III.3.13)

MApκq fails for κ ě c.

Lemma (III.3.14)

MApκq holds for κ “ ℵ0.

• CH Ñ MA.

• ZFC + MA + ␣ CH is consistent. (Proof uses iterated forcing.)

• By identifying certain small cardinals with c, MA puts restrictions on what

c can be. E.g., if MA holds then c is regular.
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Equivalence: Motivation

Theorem (Equivalence)

For any infinite cardinal κ, the following are equivalent:

1. MApκq.

2. MABpκq holds for all complete ccc Boolean algebras B.
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BAs as Forcing Posets

Definition

A Boolean algebra is a structure pB,␣,_,^, 0, 1q such that

• ď is a partial order

• For every a, b P B, a^ b and a_ b exist

• distributivity of ^ and _

• For all b P B, 0 ď b ď 1

• For all b P B there is a complement ␣b (b^␣b “ 0, b_␣b “ 1)

B is complete if for every S Ď B, inf(S) and sup(S) exist.

If B is a Boolean algebra, then B and Bzt0u are forcing posets.

For p, q P Bzt0u, p K q iff p^ q “ 0.

If B is an atomless BA, then Bzt0u is an atomless forcing poset.
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Proof of the Equivalence: Idea

Theorem (Equivalence)

For any infinite cardinal κ, the following are equivalent:

1. MApκq.

2. MABpκq holds for all complete ccc Boolean algebras B.

Proof strategy: Mapping an arbitrary poset into a complete BA.

Lemma (1)

For every forcing poset P, there is a complete BA B and a dense embedding

i : PÑ Bzt0u.

Lemma (2)

Let i : QÑ P be a dense embedding. Then MAPpκq implies MAQpκq.
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Proof of Lemma 1: Definitions

Definition

Let P and Q be forcing posets and i : QÑ P. Then i is a dense embedding

iff:

1. ip1Qq “ 1P.

2. @q1, q2 P Q rq1 ďQ q2 Ñ ipq1q ďP ipq2qs.

3. @q1, q2 P Q rq1 KQ q2 Ø ipq1q KP ipq2qs.

4. ipQq is a dense subset of P.

Example

Let P “ Fnpω, ωq.

• Let T “ tp P P : domppq P ωu. Then i : TÑ P with ippq “ p is a dense

embedding.

• Let T “ pN,ěq. Then there cannot be an embedding i : PÑ T; and

there cannot be a dense embedding TÑ P.
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Proof of Lemma 1: Definitions

Definition

If P is a forcing poset, the poset topology on P is defined by

TP “ tU Ď P : @s P Ups Ó Ď Uqu.

Recall: s Ó“ tx P P : x ďP su.

Example

Let P “ Fnpω, ωq. Then TP “ tU Ď P : @p@q P P pp P U ^ p Ď q Ñ q P Uqu.

For example,

• tp : pp1q “ 0u P TP;

• tp : 1 P ranppqu P TP;

• ttp1, 0quu R TP ;

• tp : Dk P N |domppq| “ 2ku R TP.

13



Proof of Lemma 1: Definitions

Definition

If P is a forcing poset, the poset topology on P is defined by

TP “ tU Ď P : @s P Ups Ó Ď Uqu.

Recall: s Ó“ tx P P : x ďP su.

Example

Let P “ Fnpω, ωq. Then TP “ tU Ď P : @p@q P P pp P U ^ p Ď q Ñ q P Uqu.

For example,

• tp : pp1q “ 0u P TP;

• tp : 1 P ranppqu P TP;

• ttp1, 0quu R TP ;

• tp : Dk P N |domppq| “ 2ku R TP.

13



Proof of Lemma 1: Definitions

Definition

If P is a forcing poset, the poset topology on P is defined by

TP “ tU Ď P : @s P Ups Ó Ď Uqu.

Recall: s Ó“ tx P P : x ďP su.

Example

Let P “ Fnpω, ωq. Then TP “ tU Ď P : @p@q P P pp P U ^ p Ď q Ñ q P Uqu.

For example,

• tp : pp1q “ 0u P TP;

• tp : 1 P ranppqu P TP;

• ttp1, 0quu R TP ;

• tp : Dk P N |domppq| “ 2ku R TP.

13



Proof of Lemma 1: Definitions

Definition

If P is a forcing poset, the poset topology on P is defined by

TP “ tU Ď P : @s P Ups Ó Ď Uqu.

Recall: s Ó“ tx P P : x ďP su.

Example

Let P “ Fnpω, ωq. Then TP “ tU Ď P : @p@q P P pp P U ^ p Ď q Ñ q P Uqu.

For example,

• tp : pp1q “ 0u P TP;

• tp : 1 P ranppqu P TP;

• ttp1, 0quu R TP ;

• tp : Dk P N |domppq| “ 2ku R TP.

13



Proof of Lemma 1: Definitions

Definition

If P is a forcing poset, the poset topology on P is defined by

TP “ tU Ď P : @s P Ups Ó Ď Uqu.

Recall: s Ó“ tx P P : x ďP su.

Example

Let P “ Fnpω, ωq. Then TP “ tU Ď P : @p@q P P pp P U ^ p Ď q Ñ q P Uqu.

For example,

• tp : pp1q “ 0u P TP;

• tp : 1 P ranppqu P TP;

• ttp1, 0quu R TP ;

• tp : Dk P N |domppq| “ 2ku R TP.

13



Proof of Lemma 1: Definitions

Definition

If P is a forcing poset, the poset topology on P is defined by

TP “ tU Ď P : @s P Ups Ó Ď Uqu.

Recall: s Ó“ tx P P : x ďP su.

Example

Let P “ Fnpω, ωq. Then TP “ tU Ď P : @p@q P P pp P U ^ p Ď q Ñ q P Uqu.

For example,

• tp : pp1q “ 0u P TP;

• tp : 1 P ranppqu P TP;

• ttp1, 0quu R TP ;

• tp : Dk P N |domppq| “ 2ku R TP.

13



Proof of Lemma 1: Definitions

Definition

Let X be a non-empty topological space. Then its regular open algebra, ro(X),

is the set of all U Ď X that are both open and regular (U “ intpclpUqq). The

ď,^, 0, 1 are Ď,X,H, X, respectively. U _ V “ intpclpU Y V qq and

␣U “ intpXzUq.

ro(X) is always complete.

intpclpUqq “ tx : @y, y ď x Dz, z ď y z P Uu

Example

Consider pP, TPq with P “ Fnpω, ωq.

• For U “ tp : pp1q “ 0u:

clpUq “ tp : pp1q “ 0_ 1 R domppqu.

intpclpUqq “ U .

So U P ropPq.

• For U “ tp : 1 P ranppqu:

clpUq “ P.

intpclpUqq “ P.

So U R ropPq.
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␣U “ intpXzUq.

ro(X) is always complete. intpclpUqq “ tx : @y, y ď x Dz, z ď y z P Uu

Example

Consider pP, TPq with P “ Fnpω, ωq.

• For U “ tp : pp1q “ 0u:

clpUq “ tp : pp1q “ 0_ 1 R domppqu.

intpclpUqq “ U .

So U P ropPq.

• For U “ tp : 1 P ranppqu:

clpUq “ P.

intpclpUqq “ P.

So U R ropPq.
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Proof of Lemma 1

Lemma (1)

For every forcing poset P, there is a complete BA B and a dense embedding

i : PÑ Bzt0u.

Give P the poset topology TP. Let B “ ropP, TPq, and let ippq “ intpclpp Óqq.

Check conditions for i being a dense embedding:

1. ip1Qq “ 1P. Clear, since 1B “ P.

2. @q1, q2 P Q rq1 ďQ q2 Ñ ipq1q ďP ipq2qs. Clear, since ďB is Ď.

3. @q1, q2 P Q rq1 KQ q2 Ø ipq1q KP ipq2qs.

4. ipQq is a dense subset of P.
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Proof of Lemma 2

Lemma

The statement:

’Whenever D is a family of maximal antichains in P with |D| ď κ, there exists

a linked family [filter] A in P such that D XA ‰ H for all D P D’

is equivalent to MAP(κq.

(A Ď P is a linked family if pMq for all p, q P A.)

Lemma

If i : PÑ Q is a dense embedding, then for all maximal antichains A Ď P,

ipAq is a maximal antichain in Q.
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Proof of the Equivalence

Theorem (Equivalence)

For any infinite cardinal κ, the following are equivalent:

1. MApκq.

2. MABpκq holds for all complete ccc Boolean algebras B.

Lemma (1)

For every forcing poset P, there is a complete BA B and a dense embedding

i : PÑ Bzt0u.

Lemma (2)

Let i : QÑ P be a dense embedding. Then MAPpκq implies MAQpκq.

Fix a ccc poset P. We must prove MAPpκq.

Fix i : PÑ Bzt0u as in Lemma 1. B has the ccc.

MAPpκq follows from MABpκq by Lemma 2.
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Thank you!

Questions?
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