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Example |
For any I, J: Fn(I,J) is the set of all finite partial functions from I to J; that
ispeFn(l,J)iff pe[I x J]=“ and p is the graph of a function. We make
Fn(I,J) into a forcing poset by letting < be 2 and 1 = (.

For P = Fn(w,w),

{(0,0)},{(1,0)},{(0,1)} e P;

{(0,0)} £{(1,0)} since {(0,0),(1,0)} is a common extension;

{(0,0)} L{(0, )};

D= {peP: JkeN |dom(p)| = 2k} is dense in P;

G={peP: 1¢dom(p)}is a filter on P.



Formulation of Martin’s Axiom

Definition
e MAp(k) is the statement that whenever D is a family of dense subsets of
P with |D| < k&, there exists a filter G on P such that G n D # & for all
DeD.

e MA(k) is the statement that M Ap(x) holds for all ccc posets P.
e MA is the statement Vk < ¢ M A(k).



Martin’s Axiom and CH

Lemma (111.3.13)
MA(k) fails for k > c.

Lemma (111.3.14)
MA(k) holds for k = Rq.
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Martin’s Axiom and CH

Lemma (111.3.13)
M A(k) fails for k = c.

Lemma (111.3.14)
MA(k) holds for k = Ng.

e CH —» MA.
e ZFC + MA + — CH is consistent. (Proof uses iterated forcing.)

e By identifying certain small cardinals with ¢, MA puts restrictions on what
¢ can be. E.g., if MA holds then ¢ is regular.



Equivalence: Motivation

Theorem (Equivalence)
For any infinite cardinal k, the following are equivalent:
1. MA(k).
2. M Ag(k) holds for all complete ccc Boolean algebras B.



BAs as Forcing Posets

Definition
A Boolean algebra is a structure (B, —, v, A,0, 1) such that

e < is a partial order

e For every a,be B, a A band a v b exist

e distributivity of A and v

e ForallbeB,0<b< 1

e For all b e B there is a complement —b (b A —b=0,bv —b=1)
B is complete if for every S < B, inf(.S) and sup(S) exist.
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B is complete if for every S < B, inf(.S) and sup(S) exist.

If B is a Boolean algebra, then B and B\{0} are forcing posets.
For p,qe B\{0}, p L qiffp A ¢ =0.

If B is an atomless BA, then B\{0} is an atomless forcing poset.
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Theorem (Equivalence)
For any infinite cardinal k, the following are equivalent:
1. MA(k).
2. M Ag(k) holds for all complete ccc Boolean algebras B.

Proof strategy: Mapping an arbitrary poset into a complete BA.

Lemma (1)

For every forcing poset P, there is a complete BA B and a dense embedding
i : P — B\{0}.

Lemma (2)
Let i : Q — IP be a dense embedding. Then M Ap (k) implies M Ag (k).
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Proof of Lemma 1: Definitions

Definition ‘
Let IP and Q be forcing posets and i : @ — IP. Then i is a dense embedding

iff:
1. i(1g) = 1p.
2. Yq1,q2 € Q [ <q @2 — i) <p i(q2)]-
3. Vq1,42 € Q [¢1 Lq g2 <> i(q1) Lp i(q2)]-
4. {(Q) is a dense subset of P.
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Proof of Lemma 1: Definitions

Definition ‘

Let IP and Q be forcing posets and i : @ — IP. Then i is a dense embedding
iff:

1. i(1g) = 1p.

2. Yq1,q2 € Q [q1 <q g2 — i(q1) <p i(g2)].

3. V¥q1,q2 € Q [q1 Lq g2 < i(q1) Lp i(g2)]-

4. {(Q) is a dense subset of P.

Example
Let P = Fn(w, w).
o Let T = {peP:dom(p) € w}. Then i: T — P with i(p) = p is a dense
embedding.

e Let T = (IN,>). Then there cannot be an embedding i : P — T; and
there cannot be a dense embedding T — P.
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Te={UcP: VseU(s| cU)}.
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Proof of Lemma 1: Definitions

Definition
If IP is a forcing poset, the poset topology on IP is defined by
Te={UcP: VseU(s| cU)}.

Recall: s |={zeP:z <p s}.

Example
Let P = Fn(w,w). Then Tp = {U S P :VpVqge P (peU Ap<S q—qeU)}.
For example,
e {p:p(l) =0} € Tp;
{p:1eran(p)} € Tp;
{(1,0)}} ¢ 7o ;
e {p:3ke NN |dom(p)| = 2k} ¢ Tp.
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Definition ‘
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=U = int(X\U).

ro(X) is always complete.
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c(U) = P.
int(cl(U)) = P.
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Proof of Lemma 1

Lemma (1)

For every forcing poset P, there is a complete BA B and a dense embedding
i: P — B\{0}.
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For every forcing poset P, there is a complete BA B and a dense embedding
i: P — B\{0}.

Give IP the poset topology Tp. Let B = ro(IP, Tp), and let i(p) = int(cl(p |)).
Check conditions for ¢ being a dense embedding:

. i(1g) = 1p. Clear, since Ig = PP.

- Vag1,q2 € Q [¢1 <q ¢2 — i(q1) <p i(g2)]. Clear, since <g is <.

V1,2 € Q [ Le g2 < i(q1) Le i(g2)]-
i(Q) is a dense subset of P.

A W N R
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Proof of Lemma 2

Lemma

The statement:

"Whenever D is a family of maximal antichains in IP with |D| < k, there exists
a linked family [filter] A in P such that D n A # (& for all D € D’

is equivalent to MAp (k).

(A < P is a linked family if p£q for all p,q € A.)
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The statement:

"Whenever D is a family of maximal antichains in IP with |D| < k, there exists
a linked family [filter] A in P such that D n A # (& for all D € D’

is equivalent to MAp (k).

(A < P is a linked family if p£q for all p,q € A.)

Lemma

Ifi: P — Q is a dense embedding, then for all maximal antichains A < P,
i(A) is a maximal antichain in Q.
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Leti: Q — P be a dense embedding. Then M Ap (k) implies M Aq(k).

Fix a ccc poset IP. We must prove M Ap (k).
Fix i : P — B\{0} as in Lemma 1. BB has the ccc.
M Ap (k) follows from M Ag (k) by Lemma 2.
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Thank you!
Questions?



