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0 Introduction

This course presents an overview of the rich mathematical theory of two-person, perfect-
information, zero-sum games, of finite or infinite length. The systematic study of mind
games such as chess, checkers, Go etc. goes back to the middle ages, although it was
Ernst Zermelo in 1913 who started the modern investigation of strategies in such mind
games, using modern set-theoretic techniques and setting the stage for further analysis.
Various mathematicians, including Dénes König and László Kalmár, followed in Zer-
melo’s footsteps by correcting, improving and extending Zermelo’s original theory in the
1930s and 1940s. Roughly at the same time (but largely unnoticed by the mathematical
community) Polish mathematicians such as Stefan Banach and Stanis law Mazur used
infinite games to solve problems in pure topology and set theory. In the 50s, 60s and
70s, the theory of infinite games gained increasing popularity after Jan Mycielski and
Hugo Steinhaus introduced the Axiom of Determinacy (a statement contradicting the
Axiom of Choice) and Tony Martin proved Borel determinacy. Following this, infinite
games became a key topic of research in pure set theory, yielding mathematical advances
that seem unimaginable without the use of infinite games.

In this course we will cover the history of finite and infinite games from its beginning.
In Part I, we present the basic theory of games following Zermelo, König, Kalmár, Gale
and Stewart. Here, we will distinguish between three concepts: finite games, i.e., games
in which the maximum number of moves is pre-determined by a natural number N ;
finite-unbounded games, i.e., those in which “winning” or ”losing” is determined at a
finite stage but the maximum number of moves is not bounded; and infinite games, i.e.,
those which go on forever, so to say, and where “winning” or ”losing” is only determined
at the “limit”. The three concepts are closely related, and we will see how the latter
concept can conveniently capture the former two.

In Part II, we will see more advanced applications of the theory of (infinite) games
to analysis, topology and set theory.

It is interesting to note that the progress from the finite to the infinite represents a
gradual paradigm shift: from using mathematical tools to study real-life games (which
are deemed interesting in themselves), to “constructing” or “inventing” games in order
to study other mathematical objects (deemed interesting in themselves). The games
change from being the subject of research to being tools in the study of other subjects.

Prerequisites
In this course we assume familiarity with basic mathematical concepts and structures,

in particular infinite sets, power sets, the set of all functions from one set to another, etc.
We assume that the readers know terms such as “surjection”, “injection”, “transitive
relation” and so on. We also assume familiarity with the notions of cardinality of a set,
writing |A| to denote the cardinality of A. Familiarity with abstract set theory will not
be assumed, although some knowledge of ordinals and cardinals and the Axiom of Choice
would be useful. Meta-mathematical results (i.e., results about provability/unprovability
of statements in formal ZFC set theory and similar facts) will be mentioned in passing
but will not form an important part of the course. A basic knowledge of topology will
be assumed, although most concepts will be defined.
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Notation used in this course
N denotes the set of all natural numbers {0, 1, 2, 3, . . . }. Nn is the n-Cartesian

product of N, i.e., N × · · · × N repeated n times. We will denote elements of Nn by
〈x0, x1, . . . , xn−1〉 where xi is a natural number, and call these finite sequences (of natural
numbers). For technical reasons we will frequently identify a finite sequence with a
function f : {0, . . . , n − 1} −→ N, and if f is such a function we may write f(m) to
denote the m-th element of the sequence f . We will usually use letters s, t etc. for
finite sequences. The empty sequence is denoted by 〈〉. The set of all finite sequences is
denoted by N∗, i.e.,

N∗ =
⋃
n∈N

Nn,

and for s ∈ N∗, |s| is the length of s, i.e., |s| = n such that s ∈ Nn.
Generalizing this to an infinite Cartesian product, we let

NN := {f : N −→ N}

be the set of all functions from N to N. We can view such functions as infinite sequences of
natural numbers, and for that reason we shall sometimes use a notation like 〈0, 0, 0, . . . 〉,
or 〈x0, x1, . . . 〉 to denote such infinite sequences. We will usually use the letters x, y etc.
for elements of NN.

If x ∈ NN and n ∈ N, then x�n denotes the initial segment of x of length n:

x�n := 〈x(0), x(1), . . . , x(n− 1)〉

If s ∈ N∗ and x ∈ NN, then we say that s is an initial segment of x, denoted by

s C x

if s(m) = f(m) for all m < |s| (equivalently, if x�|s| = s). For two finite sequences
s, t ∈ N∗, the concatenation of s and t, denoted by s_t, is defined by

s_t(i) :=

{
s(i) if i < |s|
t(i− |s|) if |s| ≤ i < |t|

In other words, if |s| = n and |t| = m then s_t = 〈s(0), . . . , s(n− 1), t(0), . . . , t(m− 1)〉.
For s ∈ N∗ and x ∈ NN the concatenation s_x is defined analogously.

Any piece of notation not included in the list above will be defined as we go along.

Acknowledgments
I would like to extend my sincere gratitude to Prof. Igor Evstingeev for inviting me to

give a series of lectures at the trimester programme “Stochastic Dynamics in Economics
and Finance” at the Hausdorff Institute for Mathematics in Bonn.

The material and presentation in this course is largely based on the inspiring and
motivating lectures of Prof. Benedikt Löwe, from whom I also learned most of the theory
covered here.

These lecture notes are adapted from an earlier version of a course that I taught at
Sofia University, Bulgaria, in the summer of 2010. I would like to thank Prof. Alexandra
Soskova for hosting me in Sofia and giving me the opportunity to teach the course.
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Part I

Finite, finite-unbounded and infinite
games: from Zermelo to Martin

1 Finite games

1.1 Our basic setting

We start by considering real-life, finite games. We will present the general setting, derive
a mathematical formalism and then show how it applies to some concrete examples such
as chess. Technically, the finite case is very straightforward, but the formalism developed
in this section should help understanding the more complex situations with infinite games
that will be considered later.

The games we will consider are typically called two-player, perfect information, zero
sum games. Let us unravel the definitions:

• “Two-player” refers to the following setting: there are two players, called Player
I and Player II, who are playing a turn-based mind game against each other. By
convention, Player I is a male player whereas Player II is female. Player I always
starts the game by making some move, after which Player II makes a move, and
then they both take turns in playing the game.

• “Perfect information” means that at every stage of the game, both Players I and
II have complete access to and knowledge of the way the game has been played so
far.

• “Zero-sum” means that exactly one of the two players wins the game, there are no
“draws” and no “mutual benefits”. In other words

Player I wins a game if and only if
Player II loses the game, and vice versa.

The reader might be surprised by the “zero-sum” condition, as most two-player
games, such as chess, checkers etc., do not seem to satisfy it because of the existence
of draws. Indeed, in our mathematical formalism draws will not exist, so a particular
game must always end with a win for one of the two players. Therefore, when modeling
a game like chess, we must decide that a draw signifies a win for one of the two players
(for example, a draw in chess is a win for Black). At the end of this section, we will see
why this is justified and does not, in fact, limit the class of games we can model.

Our framework includes such famous and popular mind games as chess, checkers,
Go, Nine Men’s Morris, tic-tac-toe, etc. But at the same time, many important games
are left out. Specifically, we will not be considering games where:
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1. Chance events are involved, e.g., throwing a die, dealing cards, turning a roulette
etc.

2. Players take turns simultaneously (or so quickly following one another that they
have no chance to react to the opponent’s move), e.g. “Rock-Paper-Scissors”.

3. Certain moves are known to one player but hidden from the other, e.g. “Stratego”.

A crucial distinction involves the length of a game, i.e., the number of moves that
can be made. In real life, a game must end after a finite number of moves. But do we
know in advance what that number is? We will use the following terminology:

• A game is finite if there exists a pre-determined number N such that a game can
never take more than N moves.

• A game is finite-unbounded if it is finite in principle, but the number of moves
after which it ends is potentially unbounded.

• A game is infinite if there it goes on for countably-infinite many moves.

In the first section, we consider only finite games. Note that, even in this finite
setting, we do not restrict the number of possible options that a certain player has at
each given stage, in particular, there can be an infinite number of options. So we can
imagine such games being played “on an infinite board”, “with infinitely many pieces”,
and so on. This is not as far-fetched an assumption as it may sound: while actual board
games, of course, are finite, it is easy to think of real-life examples of games played on
an “infinite board”: an infinitary version of Gomoku (“five in a row”), which can be
simulated on a computer; infinite versions of Nim; any other game in which players may
pick arbitrarily large natural numbers, etc.

1.2 Chess

Let us start by a (still informal) discussion of the game of chess, which, as Zermelo put
it in 1913, is the “most well-known of all games of this kind”. As already mentioned,
we alter the rules of chess so that a draw is considered a win for Black (and we will
later see why this is justified). It is clear that, with this condition, chess fulfills all
our requirements: there are two players—White and Black in this case—White starts
and then the players alternate in taking turns. At each stage, the players have perfect
information about all preceding moves, as the board is fully visible to both players. At
the end, either White wins, or Black wins, or there is a draw—which again means that
Black wins. So chess is a two-player, perfect information, zero-sum game.

Is chess a finite game (in the sense of our definition above)? The answer depends
somewhat on the exact rules we choose to adopt. In chess, there is usually the so-called
“threefold repetition rule”, i.e., “if a position on the board is repeated three times, with
the same player having to go, then the game is called a draw”. The number of positions
in chess is finite: there are 64 squares, each can be occupied by at most one piece, there
are 32 pieces, so there are at most 6433 unique positions. Thus no game of chess can
take longer than 3 · 6433 moves.
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Notice that we could easily get a much smaller estimate if we took into account how
many pieces of each kind there are in chess, that some pieces are identical and do not
need distinguishing between each other, that many combinations of pieces on the board
are not even legal, and so on. But in this course we are not interested in questions of
real-life complexity, and for our purposes any finite number is as good as another.

How can we model or formalize the game of chess? Obviously, there are many ways.
The most natural one, perhaps, is to use algebraic chess notation. Each game of chess
can then be written down as a sequence of moves. Below is an example of a short game
of chess (scholar’s mate):

White: e4 Qh5 Bc4 Qxf7#
Black: e5 Nc6 Nf6

An alternative way would be to assign a natural number between 0 and 6433 to each
unique position of the pieces on the board, and to write the positions, rather than the
moves, in a table analogous to the one above:

White: x0 x1 x2 x3
Black: y0 y1 y2 . . .

So x0 is a number ≤ 6433 which encodes the position of the pieces on the board
after the first move by White. y0 is again a number that encodes the position after the
first move by Black, etc. Whether we use this notation or the “algebraic notation”, we
require that each step in the game corresponds to a legal move according to the rules
of chess, and when the game ends, there is a clear algorithm for determining who the
winner is. Using the first formalism, this is incorporated into the notation (a “#” means
“check-mate”), whereas in the second one, certain numbers n correspond to a winning
or losing position.

One could think of many other ways of encoding a game of chess. Regardless which
method we use, each completed game of chess is encoded as a finite sequence of natural
numbers of length at most 2 ·3 ·6433. In other words, each game is an elements of Nn, for
some n ≤ 2 · 3 · 6433. Let LEGAL be the set of those finite sequences that correspond to
a sequence of legal moves according to the rules of chess (keeping in mind the particular
encoding we have chosen). Now let WIN ⊆ LEGAL be the subset of all such sequences
which encode a winning game for White. Clearly LEGAL \WIN is the set of legal games
that correspond to a win by Black. Thus, once the formalism of encoding moves of
chess into natural numbers has been agreed upon, the game called “chess” is completely
determined by the sets LEGAL and WIN.

1.3 General finite games

After an informal introduction to the mathematization of chess, we give a general defi-
nition of finite games as a natural abstraction from the particular case handled above.

Definition 1.1. (Two-person, perfect-information, zero-sum, finite game.) Let
N be a natural number (the length of the game), and A an arbitrary subset of N2N .
The game GN (A) is played as follows:
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• There are two players, Player I and Player II, which take turns in picking one
natural number at each step of the game.

• At each turn i, we denote Player I’s choice by xi and Player II’s choice by yi.

• After N turns have been played the game looks as follows:

I: x0 x1 . . . xN−1
II: y0 y1 . . . yN−1

The sequence s := 〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 is called a play of the game
GN (A).

• Player I wins the game GN (A) if s ∈ A, and Player II wins if s /∈ A. The set A is
called the pay-off set for Player I or the set of winning conditions for Player I.

If we look at this definition we immediately notice two aspects in which it differs
from the informal discussion of chess in the last section. Firstly, we are only considering
sequences of length exactly 2N as valid plays, rather than sequences of length less then
or equal to 2N . Secondly, instead of restricting the possible plays to some given set (like
we defined LEGAL before) and only considering those sequences, we allow any sequence
of natural numbers of length 2N to be considered a valid play.

As it turns out, this change of formalism does not restrict the class of games we can
model. The first issue is easily fixed simply by assigning one particular natural number
(say 0) to represent the state in which “the game has been completed”. For example,
suppose a particular game of chess only took 20 moves, but our model requires the game
to be N moves long (for N = 3 · 6433, say). Then we simply fill in 0’s for all the moves
after the 20-th until the N -th. It is clear that this allows us to model the same class of
games.

For the second point, let us think about the following situation: suppose in a game
of chess, a player makes an illegal move, i.e., a move that is not allowed by the rules of
chess. One could then do one of two things: tell the player that the move was illegal
and request that it be re-played, or (in a rather strict environment) disqualify the player
immediately, thus making him or her lose that particular game. In our mathematical
formalism, we choose the second option: so instead of stipulating that only certain moves
are allowed, we allow all possible moves to be played but make sure that any player who
makes an illegal move immediately loses the game. That information can be encoded in
the pay-off set A ⊆ N2N . It is clear that the essence of the game remains the same, so,
in fact, Definition 1.1 is sufficient to mathematically model games such as chess.

The reason we chose this formalism, rather than the one involving LEGAL, is purely
technical: it is much easier to work with one set A rather than a combination of two
sets.

At this point, it is a useful exercise to think of some concrete games where Players
I and II pick natural numbers and the winning conditions are given by simple informal
rules, and to try to write down the game according to Definition 1.1 (it is not relevant
whether the game is interesting or trivial in practice).

Example 1.2. Consider games with the following (silly?) rules:
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1. Players I and II make 10 moves each; the first person to play a 5 loses; if no 5’s
have been played, II wins.

N = 10, A = {s ∈ N20 | ∃n ≤ 10 [s(2n+ 1) = 5 ∧ (∀j < 2n+ 1(s(j) 6= 5))]}.

2. Players I and II make 100 moves each; the first person to play a number that has
already been played before, loses; if no numbers have been repeated, II wins.

N = 100, A = {s ∈ N200 | ∃n ≤ 100 [∃i < 2n + 1(s(2n + 1) = s(i)) ∧ ∀i 6= j <
2n+ 1 (s(i) 6= s(j))]}.

3. Players I and II make 100 moves each; player I starts by playing any number x0;
every number must be strictly larger than the one played in the previous move;
when 100 moves have been played, I wins if and only if the sum of all the numbers
played is a multiple of x0.

N = 100, A = {s ∈ N200 | ∃n ≤ 100 [s(2n + 1) ≤ s(2n) ∧ ∀j < 2n (s(j + 1) >

s(j))] ∧ ∃m (
∑200
n=0 s(n) = s(0) ·m)}.

The readers can experiment further with games of this kind.

1.4 Strategies

So far, we have only discussed a convenient mathematical abstraction of finite games,
but we have not seen anything of mathematical importance yet. The main concept in
the study of games is that of a strategy. Informally, a strategy for a player is a method
of determining the next move based on the preceding sequence of moves (remember that
both players have complete information of the preceding sequence of moves). Formally,
we introduce the following definition:

Definition 1.3. Let GN (A) be a finite game of length N . A strategy for Player I is a
function

σ : {s ∈
⋃

n<2N

Nn | |s| is even } −→ N

A strategy for Player II is a function

τ : {s ∈
⋃

n<2N

Nn | |s| is odd } −→ N

So a strategy for Player I is a function assigning a natural number to any even
sequence of natural numbers, i.e., assigning the next move to any sequence of preceding
moves; the same holds for Player II. Note that it is Player I’s turn to move if and only
if the sequence of preceding moves is even, and Player II’s turn if and only if it is odd.

Given a strategy σ for Player I, we can look at any sequence t = 〈y0, . . . , yN−1〉 of
moves by Player II, and consider the play of a game GN (A) which arises when Player
I uses strategy σ and II plays the moves given by t. We denote this play by σ ∗ t. By
symmetry, if τ is a strategy for Player II and s = 〈x0, . . . , xN−1〉 is the sequence of I’s
moves, we denote the result by s ∗ τ . Formally:
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Definition 1.4.

1. Let σ be a strategy for player I in the game GN (A). For any t = 〈y0, . . . , yN−1〉
we define

σ ∗ t := 〈x0, y0, x1, y1, . . . , xN−1, yN−1〉

where the xi are given by the following inductive definition for i < N :

• x0 := σ(〈〉)
• xi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi〉)

2. Let τ be a strategy for player II in the game GN (A). For any s = 〈x0, . . . , xN−1〉
we define

s ∗ τ := 〈x0, y0, x1, y1, . . . , xN−1, yN−1〉

where the yi are given by the following inductive definition for i < N :

• y0 := σ(〈x0〉)
• yi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi, xi+1〉)

Definition 1.5. Let GN (A) be a game and σ a strategy for Player I. We denote by

PlaysN (σ) := {σ ∗ t | t ∈ NN}

the set of all possible plays in the game GN (A) in which I plays according to σ. Similarly,

PlaysN (τ) := {s ∗ τ | s ∈ NN}

denotes the set of all possible plays in which II plays according to τ .

Now we introduce what may be called the most important concept in game theory:

Definition 1.6. Let GN (A) be a finite game.

1. A strategy σ is a winning strategy for Player I if for any t ∈ NN , σ ∗ t ∈ A.

2. A strategy τ is a winning strategy for Player II if for any s ∈ NN , s ∗ τ /∈ A.

Lemma 1.7. For any GN (A), Players I and II cannot both have winning strategies.

Proof. Suppose both I and II have winning strategies σ and τ . Let σ ∗ τ be the result
of the game where I plays according to σ and II according to τ . Then on one hand
σ ∗ τ ∈ A but on the other σ ∗ τ /∈ A, contradiction.

Again, it is a useful exercise to find winning strategies for I and II in simple games
such as the ones in Example 1.2 (see also Exercise 2).
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1.5 Determinacy of finite games

The following question naturally arises: is it always the case that either Player I or
Player II has a winning strategy in a given finite game GN (A)? We refer to this as the
determinacy of a game.

Definition 1.8. A game GN (A) is called determined if either Player I or Player II has
a winning strategy.

Theorem 1.9. Every finite game GN (A) is determined.

Proof. Let us analyze the concept of a winning strategy once more. On close inspection
it becomes clear that Player I has a winning strategy in the game GN (A) if and only if
the following holds:

• ∃x0∀y0∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A)

So suppose I does not have a winning strategy. Then

• ¬(∃x0∀y0∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

By elementary rules of logic, this implies

• ∀x0¬(∀y0∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

Continuing in this fashion (2N times) we derive the following true statements in sequence

• ∀x0∃y0¬(∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

• ∀x0∃y0∀x1¬(∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

• ∀x0∃y0∀x1∃y1¬(. . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

. . .

• ∀x0∃y0∀x1∃y1 . . . ∀xN−1∃yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 /∈ A)

Now it is easy to see that the last statement holds if and only if Player II has a winning
strategy in GN (A).

The above theorem is frequently credited to Zermelo, though in fact, the games
considered by Zermelo were somewhat more complicated and it is not very clear what
he, in fact, proved about them.1

1.6 Back to real-life games

So what does the above have to say about actual, real-life games? Certainly, games
that are zero-sum (no draws) are determined by Theorem 1.9. For chess, for example,
it follows that either White has a winning strategy or Black has a strategy to win or
draw. But what does this have to say about real chess, where a draw is an option? The
easiest trick is the following: simply define two different games, call them “white-chess”
and “black-chess”, which are played exactly as chess but in the first case, a draw is
considered a win for White and in the second case, a win for Black. Both games are

1See [SW01] for a discussion of this point and a translation of Zermelo’s paper.
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finite, zero-sum, therefore determined. If White has a winning strategy in Black-chess,
then White has a strategy to win actual chess, by definition. Likewise, if Black has a
winning strategy in White-chess, then Black can win chess. Both of these cannot happen
at the same time (why?), however, it can happen that White has a winning strategy in
White-chess and Black has one in Black-chess. For real chess, this means that White
and Black have “drawing strategies”, i.e., strategies such that, if they follow them, the
game will result in a draw. Table 1 illustrates this:

White wins White-chess Black wins White-chess
White wins Black-chess White wins chess Impossible
Black wins Black-chess Draw Black wins chess

Table 1: White-chess, Black-chess and real chess.

The corollary of this (again, typically attributed to Zermelo) is:

Corollary 1.10. In chess, either White has a winning strategy, or Black has a winning
strategy, or both have a drawing strategy.

Of course, the above corollary merely tells us a mathematical fact, namely that there
is such or such a strategy, and obviously does not tell us which one it is, which is much
harder to determine. To accomplish this, one would need to parse through the tree of all
possible games of chess, a feat which would involve such enormous computational power
that it is practically not feasible (although there are easier games than chess for which
this has been achieved—most notably checkers, by the team led by Jonathan Schaeffer
in 2007). Moreover, a tree-parsing method is only possible in games with a finite number
of possible moves but we have not taken any such restrictions in our setting, so Theorem
1.9 applies equally well to finite games with infinite possibilities of moves.

1.7 Exercises

1. Describe at least two ways of formalizing the game “tic-tac-toe” (noughts and
crosses). What is the length of the game? What kind of winning, losing or drawing
strategies do the players have?

2. Who has a winning strategy in the games from Example 1.2? Describe the winning
strategy informally.

10



2 Finite-unbounded games

2.1 Basic definitions

Our next paradigm is a partial extension from the finite to the infinite. We stick with
the real-life intuition that games end after finitely many moves, but we depart somewhat
from real life in considering games that can, at least in theory, continue ad infinitum
and remain undecided. In the next chapter, we will let go entirely of the finiteness-
concept, and see that, in a sense, things will get easier. But to motivate this transition
to purely infinite games, it is instructive and interesting to consider this intermediate
stage, namely the class of finite-unbounded games, which also formed the main subject
of concern for mathematicians in the early 20th century such as Zermelo, König, Kalmár
and von Neumann (although the setting they used was not precisely the same we are
presenting). It is also interesting to note that, although the games we are describing are
finite in a sense, it is not possible to give a correct formalization without mentioning
infinite plays or infinite sequences of numbers.

Let us start again by looking at chess (equating draw with a win for Black), but
without the “threefold repetition rule”. It is now possible that a game of chess goes on
forever, with neither player winning or losing at any stage. We would like to stress that
this is not the same as a draw. Although some authors (Zermelo, Kalmár) did talk of
an infinite run of a game as a draw, we would like to explicitly distinguish between the
two concepts. For us a “draw”, such as a stalemate, is something that is determined
and known at a finite stage of the game, and we handle that by equating it to a win by
Black. On the other hand, a game that does not stop is conceptually different, since, at
any finite stage, it may be impossible to tell the outcome of the game. In chess, there
are some rules which specifically take care of this—for example, if there are only two
Kings left on the board, the game is decided and called a draw, since it is clear that
neither of the players can win. But there are other situations (e.g., “perpetual check”)
in which the game can go on forever with no official rule saying that the game has ended
with a draw, other than the “threefold repetition rule” which we explicitly abandoned.

The formalization of such games, and the related concepts such as winning strategies
etc., are now more involved for several reasons:

1. We cannot simply say, as we did in the previous chapter, that “when a game has
been completed, extend it with 0’s to form a game of length N”, since now we do
not have such an N .

2. Consequently, it is not sufficient to encode the game with one set A.

3. There are two different goals a player can have in mind, namely

(a) winning the game, and

(b) prolonging the game ad infinitum.

We now give a formal definition of a finite-unbounded game analogously to Defini-
tion 1.1. Recall the notation from the introduction: N∗ stands for the set of all finite
sequences of natural numbers (but without a bound on their length) and NN stands for
the set of infinite sequences of natural numbers.
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Definition 2.1. (Two-person, perfect-information, zero-sum, finite-unbounded
game.) Let AI and AII be disjoint subsets of N∗. The game G<∞(AI, AII) is played as
follows:

• There are two players, Player I and Player II, who take turns in picking natural
numbers at each step of the game.

• At each turn i, we denote Player I’s choice by xi and Player II’s choice by yi.

I: x0 x1 x2 . . .
II: y0 y1 y2 . . .

• The game is said to be finished or decided if 〈x0, y0, . . . , xn−1, yn−1〉 ∈ AI ∪AII for
some value of n.

• Player I wins the game G<∞(AI, AII) iff for some n, 〈x0, y0, . . . , xn, yn〉 ∈ AI, and
Player II wins the game G<∞(AI, AII) iff, for some n, 〈x0, y0, . . . , xn, yn〉 ∈ AII.
The game is undecided iff 〈x0, y0, . . . , xn, yn〉 /∈ AI ∪AII for any n ∈ N.

• AI is called the pay-off set for Player I or the set of winning conditions for Player
I, and AII the pay-off set or set of winning conditions for Player II.

For purely technical reasons, it will be convenient to assume that the pay-off sets AI

and AII are closed under extensions. The intuition here is that, after a game has been
completed, the players can still carry on playing the game, but the outcome will remain
the same (it would be possible to avoid this convention, but that would complicate the
definitions and proofs unnecessarily.)

Convention 2.2. (Recall the notation s C t for “s is an initial segment of t”). If s ∈ AI

and s C t then t ∈ AI. If s ∈ AII and s C t then t ∈ AII.

It is easy to define strategies for finite-unbounded games in an analogous way as we
did before. Since we do not have an upper bound on the length of the games, we make
sure that strategies are defined on all sequences of natural numbers.

Definition 2.3. Let G<∞(AI, AII) be a finite-unbounded game. A strategy for Player
I is a function

σ : {s ∈ N∗ | |s| is even } −→ N

A strategy for Player II is a function

τ : {s ∈ N∗ | |s| is odd } −→ N

The notation σ∗t and s∗τ , for s, t ∈ N∗, is the same as before. Also, the sets Plays(σ)
and Plays(τ) of all (finite) plays of the game according to σ or τ , respectively, remains
the same. The problem arises when trying to define winning strategies. In the finite
case, it was easy—every play of the game was either a win for I or a win for II. Now,
we have the additional possibility of an undecided game. With it comes the following
scenario: even if a player may not have the strategy to win, he or she might still have a
strategy to prevent the opponent from winning. So we have the distinct concepts of a
winning strategy and a non-losing strategy. The latter can be defined without reference
to infinite sequences, but the former cannot.

12



Definition 2.4. Let G<∞(AI, AII) be a finite-unbounded game.

1. (a) A strategy ∂ is a non-losing strategy for Player I iff for any t ∈ N∗, σ∗t /∈ AII.

(b) A strategy ρ is a non-losing strategy for Player II iff for any s ∈ N∗, s∗ρ /∈ AI.

2. (a) A strategy σ is a winning strategy for Player I iff

∀y ∈ NN ∃n (σ ∗ (y�n) ∈ AI).

(b) A strategy τ is a winning strategy for Player II iff

∀x ∈ NN ∃n ((x�n) ∗ τ ∈ AII).

In words: a non-losing strategy guarantees that, after a finite play of the game follow-
ing this strategy, the game is either undecided or a win; a winning strategy guarantees
that, if the strategy is followed, then, no matter what the opponent plays, at some stage
the game will be decided and result in a win (although we do not say anything about how
soon this will happen). Notice that this latter concept cannot be formulated without
reference to NN.

As in Lemma 1.7, it is clear that I and II cannot both have winning strategies.
Moreover, if I has a winning strategy, II cannot have a non-losing strategy, and vice
versa (exercise). However, it is perfectly possible for both to have non-losing strategies:
in that case, the result of a play where both use these strategies will always be an infinite,
undecided run of the game.

Again, it is instructive to consider some games with simple, informally-defined rules.

Example 2.5. Consider finite-unbounded games with the following rules:

1. The first person to play a 5 loses.

AI = {s ∈ N∗ | ∃n [s(2n+ 1) = 5 ∧ (∀j < 2n+ 1(s(j) 6= 5))]}.
AII = {s ∈ N∗ | ∃n [s(2n) = 5 ∧ (∀j < 2n(s(j) 6= 5))]}.

2. The first person to play a number that has already been played before, loses.

AI = {s ∈ N∗ | ∃n [∃i < 2n+ 1(s(2n+ 1) = s(i)) ∧ ∀i 6= j < 2n+ 1 (s(i) 6= s(j))]}.
AII = {s ∈ N∗ | ∃n [∃i < 2n(s(2n) = s(i)) ∧ ∀i 6= j < 2n (s(i) 6= s(j))]}.

It is obvious that in the above games, neither I nor II has a winning strategy, but
both have non-losing strategies (which one)? On the other hand, if the rules would say
“the first to play a 5 wins”, then I would have a winning strategy. How about the game
with the rule “the second one to play a 5 wins”?

2.2 Determinacy of finite-unbounded games

How can we properly define the important concept of determinacy? Clearly, the defini-
tion “either I or II has a winning strategy” will not suffice, because, as we have seen in
the above examples, it is not true even for very simple games. However, what we want
in this setting is the following:
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Definition 2.6. A game G<∞(AI, AII) is called determined if either I has a winning
strategy, or II has a winning strategy, or both I and II have non-losing strategies.

We will show that finite-unbounded games are, indeed, determined in the above sense.
For this, we prove the following theorem (which we credit jointly to Zermelo/König/Kalmár
or to Gale-Stewart, since it is not entirely clear who deserves the full credit for it).

Theorem 2.7 (Zermelo/König/Kalm’ar; Gale-Stewart). Let G<∞(AI, AII) be a finite-
unbounded game. If I does not have a winning strategy, then II has a non-losing strategy.
If II does not have a winning strategy, then I has a non-losing strategy.

Before proceeding with the proof, let’s give an intuitive motivation. Suppose that, in
some simple board-game, we know that Player I does not have a winning strategy. Will
that always remain the case as the game progresses? In other words, after n moves have
been played, will it still be the case that Player I has no winning strategy in the game
from the n-th move onwards? Surely, this doesn’t seem right. After all, Player II might
make a mistake. She might play badly, meaning that even though I had no winning
strategy to begin with, he might acquire one following a mistake made by Player II.
But, surely, this should not happen if Player II plays optimally, in some sense? In fact,
we will show that there is such an optimal strategy, i.e., the strategy of “not making
any mistakes”, and that this is precisely the non-losing strategy we need to prove the
theorem. First we have to define what we mean by a certain position in a game.

Definition 2.8. Let G<∞(AI, AII) be a finite-unbounded game. If s ∈ N∗ is a se-
quence of even length, then let G<∞(AI, AII; s) denote the game in which Player I
starts by playing x0, Player II continues with y0, etc., and Player I wins the game iff
s_ 〈x0, y0, . . . xn, yn〉 ∈ AI for some n, and Player II wins the game iff s_ 〈x0, y0, . . . xn, yn〉 ∈
AII for some n

In other words, G<∞(AI, AII; s) refers to the game G<∞(AI, AII) but instead of
starting at the initial position, starting at position s, i.e., te position in which the
first moves played are exactly s(0), s(1), . . . , s(n − 1) (where n = |s|). The reason we
only consider sequences of even length is because it corresponds to a certain number of
complete moves having been made (and it is again I’s turn to move, as in the beginning
of the game).

Lemma 2.9. The game G<∞(AI, AII; s) is the same as the game G<∞(AI/s,AII/s)
where

AI/s := {t ∈ N∗ | s_t ∈ AI}

AII/s := {t ∈ N∗ | s_t ∈ AII}

Proof. Exercise 1.

Because of this lemma we do not need to introduce new terminology when talking
about games at certain positions, but can simply refer to a different game. For example,
I has a winning strategy in G<∞(AI, AII; s) iff he has one in G<∞(AI, AII; s), and the
same for Player II.

Proof of Theorem 2.7. The conceptual idea for both directions is the same, but we will
give both proofs since the details are slightly different.
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Suppose Player I does not have a winning strategy in G<∞(AI, AII). We will define ρ in
such a way that for any s, Player I does not have a winning strategy inG<∞(AI, AII; s∗ρ),
by induction on the length of s.

The base case is s = 〈〉. By definition s ∗ ρ is also the empty sequence, i.e., the initial
position of the game, so Player I does not have a winning strategy inG(A) by assumption.

Assume that ρ is defined on all s of length ≤ n, and Player I does not have a winning
strategy in G<∞(AI, AII; s∗ρ). We will show that the same holds for sequences of length
n+ 1. Fix an s with |s| = n.

Claim. For all x0 there is a y0 such that Player I still does not have a winning strategy
in G<∞(AI, AII; (s ∗ ρ)_ 〈x0, y0〉).

Proof of Claim. If not, then there exists some x0 such that for all y0 Player I has a
winning strategy, say σx0,y0 , in the game G<∞(AI, AII; (s ∗ ρ)_ 〈x0, y0〉). But then
Player I already had a winning strategy in the game G<∞(AI, AII; s ∗ ρ), namely the
following one: play x0, and after II replies with y0, continue following strategy σx0,y0 .
This contradicts the inductive hypothesis. � (Claim)

Now we extend ρ by defining, for every x0, ρ((s ∗ ρ)_ 〈x0〉) := y0, for the particu-
lar y0 given to us by the Claim. It is clear that now I has no winning strategy in
G<∞(AI, AII; (s_ 〈x0〉) ∗ ρ) for any x0, so we have extended the induction with one
more step.

It remains to prove that ρ is a non-losing strategy for II. But suppose, towards contradic-
tion, that it weren’t: then for some s, s∗ρ ∈ AI. But then I has a trivial winning strategy
in the game G<∞(AI, AII; (s ∗ ρ)), namely the trivial (empty) strategy—contradiction.

The other direction is very similar, with the roles of I and II reversed. Suppose now
II has no winning strategy in G<∞(AI, AII). We define ∂ by induction. The base case
is again the empty play; assume ∂ is defined for all t and II has no winning strategy in
G<∞(AI, AII; (∂ ∗ t)).

Claim. There exists an x0 such that, for any y0, Player II still does not have a winning
strategy in G<∞(AI, AII; (∂ ∗ t)_ 〈x0, y0〉).

Proof of Claim. If not, then for all x0 there is y0 such that Player II has a winning
strategy, say τx0,y0 , in G<∞(AI, AII; (∂∗t)_ 〈x0, y0〉). But then II already had a winning
strategy in G<∞(AI, AII; (∂ ∗ t)), namely the following one: if I plays x0, respond by
playing y0 as given above, and after that continue following τx0,y0 . This contradicts the
inductive hypothesis. � (Claim)

Now extend ∂ by defining ∂(∂ ∗ s) := x0. Clearly II has no winning strategy in
G<∞(AI, AII; (∂ ∗ (t_ 〈y0〉)) for any y0, so we have extended the induction with one
more step. The rest is obvious.

Corollary 2.10. Finite-unbounded games are determined (in the sense of Definition
2.6).
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2.3 Upper bound on the number of moves

Except for the determinacy of finite-unbounded games which we have proved, Zermelo,
König, Kalmár and von Neumann were also concerned with the following question:
assuming a player does have a winning strategy, is there one (uniform) N ∈ N such that
this player can win in at most N moves, regardless of the moves of the opponent? Notice
that the definition of a winning strategy (say, for I), says “∀y ∈ NN ∃n (σ ∗ (y�n) ∈ AI)”.
But n may, in general, depend on y. Under which conditions is there a uniform n, i.e.,
a fixed n such that ∀y ∈ NN (σ ∗ (y�n) ∈ AI)?

Zermelo in [Zer12] approached this question and claimed to prove that, assuming a
finite number of possible positions in a game, there is such a uniform n. König filled
a gap (or carelessness?) in Zermelo’s argument, in the paper [Kön27] where he also
presented his famous result nowadays called König’s Lemma: every finitely branching,
infinite tree contains an infinite branch.

Theorem 2.11 (Zermelo/König). Let G<∞(AI, AII) be a finite-unbounded game. If
Player I has a winning strategy σ, and if, at every move, Player II has at most finitely
many options to play (otherwise she loses immediately), then there exists N ∈ N such
that, if I follows σ, he will win in at most N moves. Likewise for Player II.

Before proving this Theorem, let us see why the condition of finitely many options is
necessary. Consider the board game depicted in Figure 1, with the following rule: there
is a chip on field 0, Player I starts, and each player can move the chip one step forward.
The first player unable to make a move loses. We leave it up to the reader to check
that in this finite-unbounded game, Player I has a winning strategy, but for any N ∈ N,
Player II can make sure that she does not lose in less than N moves.

Proof of Theorem 2.11. The proof is a direct reformulation of the proof of König’s
Lemma. We will just do the case for Player I, as the other case is identical. Fix a
game G<∞(AI, AII)) and a winning strategy σ for Player I. Let’s introduce the following
terminology:

• A position σ∗t of the game is a win-in-n for Player I if, assuming he follows strategy
σ in the game G<∞(AI, AII);σ ∗ t), he will win in at most n moves (compare this
to mate-in-n chess problems).

The goal is to prove that the initial position 〈〉 is already a win-in-n for some n ∈ N.
We proceed inductively. Towards contradiction, assume that the initial position is not
a win-in-n, and let x0 be I’s first move. For every move y0 by Player II, let’s again
introduce the following terminology:

• y0 is non-optimal if there exists an n such that 〈x0, y0〉 is a win-in-n-position for
Player I, and

• y0 is optimal if that’s not the case.

Now notice that, by assumption, II has at most finitely many “legal” moves. According
to our formalism this means that for all y0 except for finitely many, 〈x0, y0〉 is already
a loss for II, trivially implying that such y0 is non-optimal (it is a win-in-0-position for
I). So there remain at most k possible values, say y00 , . . . , y

k
0 . We claim that at least

one of them is optimal. Assume, towards contradiction, that all of them were non-
optimal. Then, for each i ≤ k, there is an nk such that

〈
x0, y

i
0

〉
is a win-in-nk-position
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Figure 1: An infinite board-game

for I. But then, letting N := max{ni | i ≤ k}, the initial position was a win-in-N for I,
contradicting the assumption.

So, fix one y0 which is optional for II, and continue inductively. Let x1 be I’s next move
according to σ, and consider all possible next moves y1. Again, only finitely many are
“legal”, and among those, by the same argument as above, at least one must be optimal
(otherwise it would contradict the optimality of y0 from the last step). So, again, fix
such a y1 and continue inductively.

We can clearly continue the procedure in this fashion, constructing an infinite sequence
y := 〈y0, y1, y2, . . . 〉 ∈ NN, such that every yi is optimal.

But σ is a winning strategy! By definition, there must be some m ∈ NN such that
σ ∗ (y�m) is a win for I. Then σ ∗ (y�m) is a win-in-0-position for I, contradicting the
assumption that all yi were optimal. This completes the proof.

Although we gave a direct proof along the lines of König’s original argument (largely
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for historical reason), we could easily have given a short proof by alluding to König’s
Lemma, see Exercise 4.

2.4 Exercises

1. Prove Lemma 2.9.

2. Prove that if I has a winning strategy then II cannot have a non-losing strategy,
and vice versa.

3. Consider the games in Example 2.5. Who has winning and/or non-losing strategies
in these games? Describe this strategy (informally).

4. König’s Lemma says the following: if a tree contains infinitely many nodes but
every node is only finitely branching, then there exists an infinite path through the
tree. Prove Theorem 2.11 in the following way: let T be the tree of finite sequences
t such that σ ∗ t /∈ AI, ordered by end-extension. Assume that there is no N such
that σ is winning in at most N moves, and, using König’s Lemma, conclude that
σ cannot be a winning strategy.
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3 Infinite games

3.1 Basic definitions

In the previous section we considered a version of finite games with no bound on the
possible number of moves. We saw that, although the games we considered were finite in
a sense, a formal study involves the mentioning of infinite sequences, i.e., elements of NN.
On the other hand, we were bound by the criterion that winning/losing must happen
at a finite stage. In this section, we let go entirely of this finiteness restriction, and
simply consider infinite games. This concept takes some time getting used to, but in the
long-run, the readers will see that most concepts become cleaner and easier. Moreover,
we will see how the finite-unbounded paradigm is easily captured in the paradigm of
infinite games. Also, we no longer need to worry about the sets AI and AII, and we may
go back to the convenient formalism used in the first chapter, namely, that a game is
completely determined by its payoff set A. As from now on we will only consider infinite
games, we use the simple notation G(A).

Definition 3.1. (Two-person, perfect-information, zero-sum, infinite game.)
Let A be an arbitrary subset of NN. The game G(A) is played as follows:

• There are two players, Player I and Player II, who take turns in picking natural
numbers at each step of the game.

• At each turn i, we denote Player I’s choice by xi and Player II’s choice by yi.

I: x0 x1 x2 . . .
II: y0 y1 y2 . . .

• Let z := 〈x0, y0, x1, y1, x2, y2, . . . 〉 ∈ NN be an infinite sequence, called a play of
the game G(A). Player I wins if and only if z ∈ A, otherwise II wins. A is called
the pay-off set for Player I or the set of winning conditions for Player I.

Strategies are defined exactly as in the finite-unbounded case. The same holds for
σ ∗ t and s ∗ τ , where s and t are finite. However, now it is more important to have a
notation for the result of playing a strategy agains an infinite sequences of moves by the
opponent.

Definition 3.2.

1. Let σ be a strategy for player I. For any y = 〈y0, y1, . . . 〉 define

σ ∗ y := 〈x0, y0, x1, y1, . . . 〉

where the xi are given by the following inductive definition:

• x0 := σ(〈〉)
• xi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi〉)

2. Let τ be a strategy for player II. For any x = 〈x0, x1, . . . 〉 define

s ∗ τ := 〈x0, y0, x1, y1, . . . 〉

where the yi are given by the following inductive definition:
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• y0 := σ(〈x0〉)
• yi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi, xi+1〉)

Also, it seems more interesting to define the following Plays(σ) := {σ ∗ x | x ∈ NN}
and Plays(τ) := {y ∗ τ | y ∈ NN}. Unlike the previous case, these two sets are subsets of
NN.

It is now straightforward to define winning strategies.

Definition 3.3. Let A ⊆ NN be a given pay-off set and G(A) an infinite game.

1. A strategy σ is a winning strategy for Player I in G(A) if ∀y ∈ NN (σ ∗ y ∈ A).

2. A strategy τ is a winning strategy for Player II in G(A) if ∀x ∈ NN (x ∗ τ /∈ A).

There are no “non-losing” strategies in this context, as not losing is always equivalent
to winning. There are no “undecided games”, since all games are decided at the limit
anyway. Notice how much closer this formalism is to the case of finite games. Indeed,
we may consider infinite games to be games of fixed length, namely length ω (the first
uncountable ordinal number).

Lemma 3.4. For any A ⊆ NN, Players I and II cannot both have winning strategies.

Proof. Obvious.

Let’s see what kind of interesting games we can model.

Example 3.5.

1. Player I wins iff infinitely many 5’s have been played.

A := {x ∈ NN | ∀n∃m ≥ n (x(m) = 5)}.

Who has a winning strategy in this game?

2. I and II pick numbers xi and yi. Let z be the result of the infinite game. Player I
wins if and only if the infinite sum of the 1

xi+1 ’s and 1
yi+1 ’s, for all i, is convergent.

A := {z ∈ NN |
∑∞
n=0

1
z(n)+1 <∞}.

Who has a winning strategy in this game?

3. Now, the game is as above, but with the additional assumption that, at every step,
II’s move must be at least as large as the preceding move by I.

A := {z ∈ NN | ∀n (z(2n+ 1) ≥ z(2n)) ∧
∑∞
n=0

1
z(n)+1 <∞}.

Now who has a winning strategy?
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3.2 Cardinality arguments

Before getting into the determinacy of infinite games, let us prove some easy results that
might give the flavour of what is to come. As will become increasingly clear, the study
of infinite games G(A) is essentially related to the complexity of the sets A themselves,
among other things, the cardinality of A.

Lemma 3.6. Let A ⊆ NN be a countable set. Then II has a winning strategy in G(A).

Proof. Let {a0, a1, a2, . . . } enumerate A. Let τ be the strategy that says “at your i-th
move, play any natural number different from ai(2i+ 1) (this is the (2i+ 1)-st digit of
the i-th element of A)”. Let z be the result of this strategy against anything played by
Player I, and write z := 〈x0, y0, x1, y1, . . . 〉. By construction, for each i:

z(2i+ 1) = yi 6= ai(2i+ 1)

Hence, for each i, z 6= ai.

We continue with some more “cardinality arguments”. Recall that NN has the car-
dinality of the continuum 2ℵ0 .

Lemma 3.7. Let A be a set with |A| < 2ℵ0 . Then Player I cannot have a winning
strategy in G(A).

Proof. Assume, towards contradiction, that σ is a winning strategy for Player I. It is
easy to see that for all y1, y2 ∈ NN, if y1 6= y2 then σ ∗y1 6= σ ∗y2, so there is an injection
from NN to the set Plays(σ). But since σ is winning, Plays(σ) ⊆ A, contradicting
|A| < 2ℵ0 .

Note that if the Continuum Hypothesis is true, i.e., if 2ℵ0 is the smallest uncountable
cardinality, then Lemma 3.7 follows from Lemma 3.6 and Lemma 3.4. So Lemma 3.7
has relevance only if the Continuum Hypothesis is false.

Obviously these two theorems also hold with the roles of I and II reversed, i.e., if
NN \A is countable then I has a winning strategy, and if |NN \A| < 2ℵ0 then II cannot
have a winning strategy.

3.3 Determinacy of infinite games

We come to the main point of the theory. Since, as we mentioned, every infinite game
results in a win for exactly one of the players (and there no undecided games), the only
sensible definition of determinacy is the generalization of the concept from finite games.

Definition 3.8. A game G(A) is determined if either Player I or Player II has a winning
strategy.

Here we see the first essential difference between infinite games and their finitary
version.

Theorem 3.9 ([MS62]). Not every infinite game is determined.
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The proof is by transfinite induction on ordinals α < 2ℵ0 . Since we do not assume
familiarity with ordinals in this course, we supply a black box result which encompasses
exactly what we need for the proof.

Lemma 3.10. For every set X, there exists a well-ordered set (I,≤), which we call the
index set for X, such that

1. |I| = |X|, and

2. For every α ∈ I, the set {β ∈ I | β < α} has cardinality strictly less than |I| = |X|.

Proof. (Ordinal and cardinal theory.) By the Axiom of Choice every set X can be well-
ordered, hence there is an ordinal α order-isomorphic to it. Let κ be |α| = |X|, i.e., the
least ordinal in bijection with α. Since κ is a cardinal, clearly |κ| = κ = |α| = |X|, and
for any γ < κ, the set {β < κ | β < γ} = β has cardinality < κ. So (κ,∈) is the desired
index set.

Those unfamiliar with ordinals can treat this lemma as a black box result and ignore
its proof. Intuitively, one can compare the situation with that of a countable set X, in
which case the index set is simply (N,≤).

Proof of Theorem 3.9. We start by counting the possible number of strategies. A strat-
egy is a function from a subset of N∗ to N. But N∗ is countable, so, there are as many
strategies as functions from a countable set to a countable set, namely 2ℵ0 .

Let Strat(I) be the set of all possible strategies of Player I and Strat(II) the set of
strategies of Player II. Applying Lemma 3.10, let I be an index set, of cardinality 2ℵ0 ,
which is in bijection with Strat(I) and Strat(II). Now we can use I to “enumerate” the
strategies, as follows:

Strat(I) = {σα | α ∈ I}

Strat(II) = {τα | α ∈ I}

We will produce two subsets of NN: A = {aα | α ∈ I} and B = {bα | α ∈ I}, by
induction on (I,≤).

• Base case: Let 0 ∈ I stand for the ≤-least member of I. Arbitrarily pick any
a0 ∈ Plays(τ0). Now, Plays(σ0) clearly contains more than one element, so we can
pick b0 ∈ Plays(σ0) such that b0 6= a0.

• Induction step: Let α ∈ I and suppose that for all β < α, aβ and bβ have
already been chosen. We will chose aα and bα.

Note that since {bβ | β < α} is in bijection with {β ∈ I | β < α}, it has cardinality
strictly less than 2ℵ0 (by Lemma 3.10 (2)). On the other hand, we already saw that
Plays(τα) has cardinality 2ℵ0 . Therefore there is at least one element in Plays(τα)
which is not in {bβ | β < α}. Pick any one of these and call it aα.

Now do the same for the collection {aβ | β < α} ∪ {aα}. This still has cardinality
less than 2ℵ0 whereas Plays(σα) has cardinality 2ℵ0 , so we can pick a bα in Plays(σα)
which is not a member of {aβ | β < α} ∪ {aα}.
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This completes the inductive definition of A and B. Now we claim the following:

Claim 1. A ∩B = ∅.

Proof. Take any a ∈ A. By construction, there is some α ∈ I such that a = aα. Now,
recall that at “stage α” of the inductive procedure, we made sure that aα is not equal
to bβ for any β < α. On the other hand, at each “stage γ” for γ ≥ α, we made sure that
bγ is not equal to aα. Hence aα is not equal to any b ∈ B. (Claim 1)

Claim 2. G(A) is not determined.

Proof. First, assume that I has a winning strategy σ in G(A). Then Plays(σ) ⊆ A. But
there is an α ∈ I such that σ = σα. At “stage α” of the inductive procedure we picked
a bα ∈ Plays(σα). But by Claim 1, bα cannot be in A—contradiction

Now assume II has a winning strategy τ in G(A). Then Plays(τ)∩A = ∅. Again, τ = τα
for some α, but at “stage α” we picked aα ∈ Plays(τα)—contradiction. (Claim 2)

By a similar argument, G(B) is not determined either.

The above prove is entirely non-constructive, i.e., it shows that an undetermined
infinite game must exist, but gives no information as to what this game really is. It also
uses the Axiom of Choice in an essential way (we will come back to this in Section 4.4).
Therefore, it is similar to the proof that, e.g., there exists a non-Lebesgue-measurable
set (Vitali set), a set without the property of Baire etc.

Although this is a delimitative result, showing that we cannot hope to prove that all
games are determined, we will go on to show that this does not undermine the whole
enterprise of infinite game theory. For example, the games from Example 2.5, despite
having infinitary rules, were determined. Also, consider the following: if G<∞(AI, AII)
is a finite-unbounded game, define A = {x ∈ NN | ∃s ∈ AI (s C x)}, i.e., A is the set
of all infinite extensions of completed finite games that are won by I. The Gale-Stewart
theorem, which we present in the next section, is precisely the statement that such games
are determined.

Although the Gale-Stewart theorem can be formulated and proved directly using
Corollary 2.10, it is best understood in the language of a topology on the space NN. In
fact, the connections between infinite games and topology are numerous, surprising and
very fruitful. The bottom line is that there is an intrinsic relation between determinacy of
games G(A) and the complexity of the set A, where complexity is measured topologically.

3.4 Exercises

1. Describe the winning strategies of the games in Example 3.5.

2. Let z ∈ NN be an infinite sequence. Describe informally the game G(A) where
A = {z}. Who has a winning strategy in this game? How many moves does that
player need to make sure he or she has won the game?

3. For every set A ⊆ NN and every n ∈ N, define

〈n〉_A := {〈n〉_x | x /∈ A}
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(a) Prove, or at least argue informally, that for every A ⊆ NN, Player II has a
winning strategy in G(A) if and only if for every n, Player I has a winning
strategy in G(〈n〉_A).

(b) Similarly, prove that for every A ⊆ NN, Player I has a winning strategy in
G(A) if and only if there is some n such that Player II has a winning strategy
in G(〈n〉_A).

4.∗ Adapt the proof of Theorem 3.9 to prove that the property of “being determined”
is not closed under complements, i.e., that there is a set A such that G(A) is
determined but G(NN \A) is not.
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4 Topology on NN, Gale-Stewart, and Borel determi-
nacy

4.1 Topology on the Baire space

The following is called the standard topology on NN.

Definition 4.1. For every s ∈ N∗, let

O(s) := {x ∈ NN | s C x},

i.e., O(s) is the set of all infinite sequences of natural numbers of which s is an initial
segment. The standard topology on NN is generated by the basic open sets {O(s) | s ∈
N∗}. The space NN endowed with this topology is called the Baire space.

This is equivalent to the product topology (Tychonoff topology) generated by count-
ably many copies of N with the discrete topology. It is also equivalent to the topology
inherited from the following metric:

d(x, y) :=

{
0 if x = y
1/2n where n is least s.t. x(n) 6= y(n)

The following basic properties of the topology are easy to see, but useful to keep in
mind:

Definition 4.2. Let s, t ∈ N∗. We say that s and t are compatible, notation s||t, if
either s C t or t C s (or s = t). Otherwise s and t are called incompatible, denoted by
s⊥t.

Fact 4.3.

1. s C t if and only if O(t) ⊆ O(s),

2. s||t if and only if O(s) ⊆ O(t) or O(t) ⊆ O(s),

3. s⊥t if and only if O(s) ∩O(t) = ∅,

4. O(s) ∩O(t) is either ∅ or basic open,

5. for any x ∈ NN and n ∈ N , O(x�n) is the open ball around x with radius ε = 1/2n.

The Baire space has many similarities with the real line R—in fact, so many that
pure set theorists prefer to study the Baire space instead of R and call elements x ∈ NN

real numbers. The Baire space is homeomorphic to the space of irrational numbers R\Q
with the standard topology. But there are also some differences: the Baire space is
totally disconnected, as follows from the following lemma.

Lemma 4.4. For every s, O(s) is clopen.

Proof. Show that NN \O(s) =
⋃
{O(t) | |t| = |s| and t 6= s}.
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It is also useful to keep in mind what convergence and continuity are in this topology:

Fact 4.5.

1. Let {xn}n∈N be an infinite sequence of elements of NN. Then x = limn→∞ xn iff
the following holds

∀s C x ∃N ∀n ≥ N (s C xn).

In words: if we fix a finite initial segment of x, eventually every xn will extend it.
We will usually just write “xn → x”.

2. A function f : NN −→ NN is continuous iff for each x ∈ NN we have

∀s C f(x) ∃t C x ∀y (t C y → s C f(y))

In words: if we fix a finite initial segment s of f(x), then we can find a finite initial
segment t of x, such that if y extends t then f(y) extends s.

4.2 The Gale-Stewart theorem, and relation to finite-unbounded
games

If A is an open set, then A =
⋃
{O(s) | s ∈ E} for some subset E ⊆ N∗. Therefore, if

any infinite sequence x is in A, then there must be a finite initial segment s C x, such
that any other y extending s will also be in A. In other words: membership of x in A
is secured at a finite stage. Games G(A) for such sets A are determined, as proved by
Gale-Stewart in [GS53].

Theorem 4.6 (Gale-Stewart). If A is open or closed, then G(A) is determined.

Proof. Suppose A is open. Assume I does not have a winning strategy. As in the proof
of Theorem 2.7, say that G(A; s) is the game G(A) played starting from position s, i.e.,
G(A; s) := G(A/s) where A/s := {x ∈ NN | s_x ∈ A}. Using the exact same argument
as in the proof of Theorem 2.7, we can construt a stragegy ρ for Player II, such that,
for all t ∈ N∗, I does not have a winning strategy in the game G(A; (t ∗ ρ)).

But then, we claim that ρ must in fact be a winning strategy for Player II. Suppose,
towards contradiction, that x ∈ NN is such that x ∗ ρ ∈ A. Since A is open, there is an
initial segment s C (x ∗ ρ) (wlog. |s| is even) such that all y ∈ O(s) are in A. But that
means that I has a winning strategy in G(A; s), contradicting the definition of ρ.

Similarly, if A is closed, then assume II does not have a winning strategy, and by the
analogous argument produce a strategy ∂ for I such that II does not have a winning
strategy in G(A; ∂ ∗ t), for any t. Then ∂ is winning for I by the same argument as
above, using that NN \A is open.

The Gale-Stewart theorem is, essentially, a restatement of Corollary 2.10 which said
that finite-unbounded games are determined. Let us now see precisely how the finite-
unbounded paradigm can be translated into the infinite one and vice versa. Recall that
when we handled finite games in Chapter 1, we required that all games have a fixed
length N , even if, actually, the game ended much earlier. Here we can do the same,
but instead of a fixed length N , we used the fixed uncountable length ω. What used to
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be an “undecided game” can now be called a “draw”; and “draws”, as we have seen in
Chapter 1, can be handled by defining two games, one in which the draw is a win for I
and another in which it is a win for II. This is exactly what we now use.

Let G<∞(AI, AII) be a finite-unbounded game. Let ÃI :=
⋃
{O(s) | s ∈ AI} and

ÃII :=
⋃
{O(s) | s ∈ AII}. So every x ∈ ÃI is an infinite extension of a finite play which

is a win for I in G<∞(AI, AII), and every x ∈ ÃI is an infinite extension of a finite play
which is a win for II in G<∞(AI, AII). Clearly ÃI and ÃII are disjoint, but there may be
x ∈ NN which are neither in ÃI nor in ÃII, namely, the undecided plays of G<∞(AI, AII).
If we stipulate that such undecided plays are a win for Player II, we get the infinite game
G(ÃI). On the other hand, if such undecided plays are wins for I, we get the infinite
game G(NN \ ÃII).

Lemma 4.7. Let G<∞(AI, AII) be a finite-unbounded game and ÃI and ÃII as above.
Then:

1. I has a winning strategy in G<∞(AI, AII) iff I has a winning strategy in G(ÃI).

2. I has a non-losing strategy in G<∞(AI, AII) iff I has a winning strategy in G(NN \
ÃII).

3. II has a winning strategy in G<∞(AI, AII) iff II has a winning strategy in G(NN \
ÃI).

4. II has a non-losing strategy in G<∞(AI, AII) iff II has a winning strategy in G(ÃI).

Proof. We leave the details as an exercise to the reader. It is a straightforward matter
of translating the definitions of winning/non-losing strategies.

Since ÃI and ÃII are open sets, all the infinite games in the lemma are determined.
Therefore, the determinacy of finite-unbounded games (Corollary 2.10) follows from the
Gale-stewart theorem, using the same trick we used to analyse chess (cf. Table 1).

I wins G(NN \ ÃII) II wins G(NN \ ÃII)

I wins G(ÃI) I wins G<∞(AI, AII) Impossible

II wins G(ÃI) G<∞(AI, AII) is undecided
(both I and II have non-losing
strategies)

II wins G<∞(AI, AII)

Table 2: Finite-unbounded games vs. infinite games

In the other direction, a given infinite game G(A) for open A can be translated to a
finite-unbounded game, as follows. Since A is a union of basic open sets O(s), we can
find AI ⊆ N∗ such that A =

⋃
{O(s) | s ∈ AI}. On other hand, let AII := {s ∈ N∗ |

O(s) ⊆ (NN \A)}. Notice that
⋃
AII is the topological interior of the closed set NN \A.

Lemma 4.8.

1. I has a winning strategy in G(A) iff I has a winning strategy in G<∞(AI, AII).
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2. II has a winning strategy in G(A) iff II has a non-losing strategy in G<∞(AI, AII).

Proof. Again, a direct consequence of the definitions.

Similarly, if A was closed, we could apply the same trick to NN \A. The bottom line
is that the Gale-stewart theorem follows from Theorem 2.7.

4.3 Beyond open and closed

Although games G(A) for open and closed A represent a direct abstraction from finite-
unbounded games, they are pretty simple from a topological point of view. Once we
are in the infinitary context, why not look at more complex pay-off sets? The games
from Example 2.5 are not open or closed, but still easily seen to be determined. So the
natural question is: what about the determinacy of games with more complex pay-off
sets? For example, what about Fσ and Gδ sets? In 1955 Philip Wolfe [Wol55] proved
the determinacy of Fσ and Gδ sets, in 1964 (almost ten years later!) Morton Davis
[Dav64] proved determinacy of the next level in the Borel hierarchy. Finally, in 1975
(again about ten years later!) Tony Martin [Mar75] proved Borel determinacy, a result
that had been expected for a while.

Theorem 4.9 (Tony Martin). If A ⊆ NN is Borel then G(A) is determined.

Unfortunately, it is far beyond the scope of our course to provide a proof of this
theorem. Interested readers can find a clear exposition in [Kec95, pages 140–146].

While the Borel sets are sufficient for many applications in topology and analysis,
there are some natural mathematical operations that transcend them, for example, the
analytic sets (continuous images of Borel sets), then the coanalytic sets (complements of
analytic sets), and in general, the projective sets (obtained by an iterated application of
the operations of taking complements and continuous images). In general, determinacy
is usually studied in the following context:

Definition 4.10. Let Γ ⊆P(NN) be a collection of subsets of NN. We call Γ a boldface
point-class2 iff it is:

1. closed under continuous pre-images (i.e., A ∈ Γ → f−1[A] ∈ Γ), and

2. closed under intersections with closed sets (i.e., A ∈ Γ and C closed → A∩C ∈ Γ).

Closed, Fσ, Gδ, and Borel sets B, are all examples of boldface pointclasses, as well
as the analytic, coanalytic sets and further classes of the projective hierarchy. P(NN)
is a trivial boldface pointclass.

Definition 4.11. For a boldface pointclass Γ, “Det(Γ)” abbreviates the statement: “for
every A ∈ Γ, G(A) is determined.”

So the Gale-Stewart theorem says Det(open) and Det(closed), and Martin’s Theorem
4.9 says Det(B). On the other hand, Theorem 3.9 says ¬Det(P(NN)).

It turns out that if we focus on pointclasses Γ that extend the Borel sets, but are still
below P(NN), then typically the statement Det(Γ) is independent of the basic axioms

2The name comes from the fact that such classes were traditionally denoted by boldface letters.
Although this funny blend of syntax and semantics might theoretically lead to problems, in practice
this does not occur, because it is always clear from context which Γ one has in mind.

28



of set theory, i.e., it is not possible to prove or refute the statement based on the axioms
alone. Nevertheless, as long as Det(Γ) is not outright contradictory, we can take it as
an axiom and look at its consequences.

4.4 Axiom of Determinacy and the Axiom of Choice

In this section presents a “meta-mathematical” reflection concerning determinacy and
the Axiom of Choice AC. It is of no direct relevance for the rest of our course, but still
represents an interesting point of view.

Mycielski and Steinhaus [MS62] pondered on the determinacy of all infinite games
and proposed the following axiom:

Definition 4.12. The Axiom of Determinacy (abbreviated by AD) is the statement

All infinite games are determined.

Of course, Mycielski and Steinhaus were aware of Theorem 3.9, but thought that AD
provided an interesting alternative view to mathematics. Formally, this mathematics is
encoded in the axiomatic theory ZF+AD, i.e., Zermelo-Fraenkel set theory, without the
Axiom of Choice, together with the Axiom of Determinacy. As we will see in Part II,
determinacy has many desirable consequences in the fields of analysis and topology, and
mathematics in which AC has been replaced by AD implies, in particular, that all those
consequences hold, and typical pathological examples of sets with bad behavior do not
exist.

The immediate worry of a mathematician is that, if we banish AC altogether, many
familiar facts may not hold any more (for example, to prove that a countable union
of countable sets is countable requires Choice). Fortunately, AD itself implies a weak
version of AC.

Definition 4.13. The Axiom of Countable Choices over X , denoted by ACctbl(X ), is
the following statement:

Every countable collection {Xn | n ∈ N} of
non-empty subsets Xi ⊆ X has a choice function.

Lemma 4.14. AD implies ACctbl(NN).

Using standard coding arguments, it is easy to replace NN in the above statement by
R, P(N), 2N etc.

Proof. Let {Xn | n ∈ N} be a collection of non-empty subsets of NN. Consider the
following infinite game: Players I and II choose xi and yi as usual; let y := 〈y0, y1, y2, . . . 〉
be the sequence of II’s moves; Player II wins iff y ∈ Xn. Formally, this game is given by
the pay-off set

A := {z ∈ NN | (z)odd /∈ Xz(0)},

where (z)odd is defined by (z)odd(n) = z(2n+1). Note that only the first move of Player
I matter for the game—his other moves are irrelevant.

By AD this game is determined. Assume first that I has a winning strategy σ in G(A).
Let n := σ(〈〉) be the first move. No matter which sequence y ∈ NN Player II will play, I
will win the game, implying that y /∈ Xn. But II can play anything, so this means that
Xn = ∅. But we have assumed that this was not the case.
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Therefore, Player II must have a winning strategy τ . But then, define f as follows:
for any n, let f(n) be the sequence of II’s moves, played according to τ , if I plays the
sequence 〈n, 0, 0, 0, . . . 〉. Since τ is a winning strategy, f(n) is an element of Xn. This
holds for every n, so f is a choice function for {Xn | n ∈ N}.

This countable choice principle is sufficient for many mathematical results (e.g., the
countable union of countable sets is countable), although obviously not for “there exists
a well-order of NN”.

We end Part I by mentioning some meta-mathematical considerations (without too
many details, and assuming some knowledge of abstract set theory on the reader’s part)
relating determinacy with large cardinals. In set theory, it has become customary (since
the latter half of the 20th century) to consider additional mathematical axioms, postu-
lating the existence of cardinals with very strong combinatorial properties. The existence
of such cardinals cannot be proved from the standard set theory axioms ZFC, however,
their introduction is seen as a natural generalization of the principles leading to math-
ematical axioms. The process is similar to postulating that infinite sets exist, although
this does not follow from the other set theoretic axioms. More about large cardinals can
be found in [Kan03].

Following the introduction of AD and the concept of infinite games in abstract math-
ematics, a prominent research programme among set theorists became the following:
prove determinacy for larger pointclasses Γ assuming large cardinals. For example:

Theorem 4.15 (Tony Martin [Mar70]). If there exists a measurable cardinal then G(A)
is determined for all analytic A.

Further progress followed from the pivotal work of Martin, Steel and Woodin [MS89].

Theorem 4.16 (Martin-Steel-Woodin).

1. If there exist n Woodin cardinals and a measurable cardinal above them, then G(A)
is determined for every Π1

n+1 set A.

2. If there are infinitely many Woodin cardinals, then G(A) is determined for every
projective A.

3. If there are infinitely many Woodin cardinals and a measurable above them, then
there exists a class of sets, called L(R), which satisfies ZF + AD (i.e., all the set-
theoretic axioms without the Axiom of Choice, but with the Axiom of Determinacy).

The third part, in particular, implies that the Axiom of Determinacy is, in fact,
consistent to the extent that it does not contradict AC, i.e., it holds in the natural model
of sets where the Axiom of Choice fails (L(R) can be seen as the “constructive” or
“definable” component of the mathematical universe).

We shall let these considerations rest, and in Part II look at the various interesting
consequences of determinacy of infinite games.
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4.5 Exercises

1. Prove that the metric d defined in Section 4.1 satisfies the triangle inequality:
d(x, z) ≤ d(x, y) + d(y, z).

2. Prove that the Baire space is Hausdorff, i.e., that for any two x 6= y there are two
disjoint open neighbourhoods of x and y.

3. A topological space is called totally separated if for every two x 6= y there are open
sets U and V such that x ∈ U , y ∈ V and U ∪ V equals the whole space. Prove
that the Baire space is totally separated.

4. Prove the statements in Fact 4.3 and Fact 4.5.

5. Give a detailed proof of Lemma 4.7 and Lemma 4.8.

6.∗ Consider the modification of infinite games, where Players I and II choose not
natural numbers at each stage, but objects from some set X. Let ADX be the
postulate that such games are determined, and let ADeverything be the postulate
∀X (AD(X)). Show that, based on ZF alone (i.e., without Choice), ADeverything is
false.

Hint: first prove that ADeverything implies full AC, by a similar argument as in
Lemma 4.14.

Remark: in fact, already the statement AD(ω1), where ω1 denotes the first un-
countable ordinal, is false based on ZF alone.
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Part II

Applications of infinite games to
analysis, topology and set theory

5 Introduction

We have now arrived at the stage promised in the introduction, namely where we can
construct and use infinite games as tools in the study of various mathematical objects.
We will be interested in various problems related to the study of the continuum. By the
continuum we will usually mean the Baire space NN with the standard topology defined
in Section 4.1, but most results (with the exception of those in Section 9) can easily be
adapted to work for R or Rn. When we treat the case of Lebesgue measure, we will
explicitly work with R.

In each situation, we are going to define a specific infinite game G(A), and show
that if G(A) is determined then A satisfies some desirable property (e.g., is Lebesgue
measurable). Such results can be viewed in one of two ways:

• View 1: Assuming ZF + AD, all sets A satisfy the desirable property (e.g., are
Lebesgue measurable), or

• View 2: Assuming only Det(Γ) for a fixed boldface pointclass Γ, all sets A in Γ
have this desirable property (e.g., are Lebesgue measurable).

Proving the first result is easier technically, but is problematic because of the con-
tradiction with the Axiom of Choice. We will usually focus on the second point of view,
however, this will require that we check whether the coding we use in the games pre-
serves membership in Γ, which requires a little extra work (but usually not much). In
this short section we explain how this is done.

The point is that the games we need are not exactly the infinite games that fall
under Definition 3.1. For example, the games may require the players to play other
mathematical objects than natural numbers, and the winning condition may be rather
complicated. To deal with this problem we must introduce the technique of continuous
coding which allows us to treat complex rules as standard games falling under Definition
3.1. As motivation let us consider the following example (to which we will return in
section 7.2 in more detail):

Definition 5.1. Let A ⊆ NN be a set, and consider the following game, called the
Banach-Mazur game and denoted by G∗∗(A): Players I and II alternate in taking turns,
but instead of natural numbers, they play non-empty sequences of natural numbers
si, ti ∈ N∗:

I: s0 s1 . . .
II: t0 t1 . . .

Then let z := s0
_t0

_s1
_t1

_ . . . and say that Player I wins if and only if z ∈ A.
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This game, at least on first sight, does not appear to be an infinite game according
to our definition. However, as you may recall from our treatment of chess in the first
chapter, the same was true there as well. What we did in order to formalize various
games in a uniform way was to code the positions, moves etc. of the game as natural
numbers. Clearly the same can be done here, too: since N∗ is countable, we can fix a
bijection ϕ : N −→ N∗ \ {〈〉} and formulate the Banach-Mazur game as a game with
natural numbers. But then, we must change the pay-off set: if A was the pay-off set of
the Banach-Mazur game, let

A∗∗ := {z ∈ NN | ϕ(z(0))_ϕ(z(1))_ϕ(z(2))_ · · · ∈ A}

It is easy to see that Player I wins G∗∗(A) if and only if he wins G(A∗∗), and the
same holds for Player II. Hence the two games are equivalent, and we have succeeded in
formalizing the Banach-Mazur game as a game on natural numbers as in Definition 3.1.

For reasons of legibility, it will be much more convenient to talk about such games as
if the moves are really some other objects, rather than their codes by natural numbers.
For example, if σ is a strategy in the Banach-Mazur game, we will assume that σ is
a function which takes 〈s0, t0, . . . , sn, tn〉 as parameters, rather then the coded version〈
ϕ−1(s0), ϕ−1(t0), . . . , ϕ−1(sn), ϕ−1(tn)

〉
.

This is sufficient if we want to assume the Axiom of Determinacy: since all games
are determined, in particular G(A∗∗) is, and therefore, G∗∗(A) is. But if we only assume
Det(Γ) for some pointclass Γ, and we have a set A ∈ Γ, we can only conclude that
G∗∗(A) is determined if we can prove that A∗∗ ∈ Γ.

But now, recall that our pointclass Γ was not just any collection of sets, but one
closed under continuous pre-images and intersections with closed sets. In the example
above, we can use the following lemma.

Lemma 5.2. The function f : NN −→ NN given by

f(z) := ϕ(z(0))_ϕ(z(1))_ϕ(z(2))_ . . .

is continuous.

Proof. Recalling Fact 4.5, fix z and let s C f(z). Let n be least such that

s C ϕ(z(0))_ . . ._ϕ(z(n)).

Let t := 〈z(0), z(1), . . . , z(n)〉 C z. Now, for any other y with t C y we have

f(y) = ϕ(z(0))_ . . ._ϕ(z(n))_ϕ(y(n+ 1))_ . . .

Therefore in any case s C f(y) holds, completing the proof.

Since A∗∗ = f−1[A] and Γ is closed under continuous preimages, A ∈ Γ implies that
also A∗∗ ∈ Γ. In general, we will usually have a situation similar to the one above, and
we will need a combination of continuous functions and closed sets in order to reduce
a complex game to a standard game. In a few cases we may need additional closure
properties of Γ (this will be made explicit).

Each of the following sections can be read independently, since in each one we study
different properties. The sections are ordered (roughly) in order of increasing sophisti-
cation of the game-theoretic arguments involved.

33



6 The perfect set property

6.1 Trees

When studying the Baire space, it is convenient to view closed sets as sets of infinite
branches through trees. The idea is that since infinite sequences x ∈ NN can be finitely
approximated by their initial segments s C x, a set A ⊆ NN can be approximated by the
set of all initial segments of all its members. Although x is completely determined by the
set of all its initial segments {s ∈ N∗ | s C x}, this does not apply to subsets of NN. One

simple reason is that there are 2(2
ℵ0 ) possible subsets of NN whereas there are only 2ℵ0

possible sets of finite sequences (because N∗ is countable). Hence, the transition from
A ⊆ NN to the set of finite approximations of all its members can, in general, involve
loss of information. But we will see that this is not the case for closed A, and that in
fact there is a one-to-one correspondence between trees and closed sets.

Definition 6.1. A tree T is any collection of finite sequences closed under initial seg-
ments, i.e., T ⊆ N∗ such that if t ∈ T and s C t then s ∈ T .

It is easy to see why such objects are called “trees”: the finite sequences are like
nodes that can branch off in different directions, with the infinite sequences forming
branches through the trees.

Definition 6.2. Let T be a tree.

1. A t ∈ T is called a node of T . The successors of t are all nodes s ∈ T such that
t C s and |s| = |t|+ 1.

2. A node t ∈ T is called terminal if it has no successors.

3. A node t ∈ T is called splitting if it has more than one successor, and non-splitting
if it has exactly one successor.

Definition 6.3. For a tree T , a branch through T is any x ∈ NN such that ∀n(x�n ∈ T ).
The set of branches through T is denoted by [T ].

Lemma 6.4.

1. For any tree T , [T ] is a closed set.

2. For any closed set C, there is a tree TC such that C = [TC ].

Proof.

1. Pick any convergent sequence {xn}n∈N in [T ] and let x be its limit point. Then
for every s C x, there is N such that ∀n ≥ N (s C xn). Since xn ∈ [T ] for all such
n, by definition we have s ∈ T . Since this holds for all s C x, again by definition
x ∈ [T ]. So [T ] is closed.

2. Let TC := {x�n | x ∈ C, n ∈ N}. Clearly, if x ∈ C then by definition x ∈ [TC ].
Conversely, if x /∈ C then, since the complement of C is open, there is s C x such
that O(s) ∩ C = ∅. But then, no infinite extension y of s is in C, so s cannot be
a branch through TC by definition. Therefore x /∈ [TC ].

The above proof actually gives an explicit one-to-one correspondence between closed
sets and trees, given by C 7→ TC one way and T 7→ [T ] in the other. In fact, it is not
hard to see that the operation A 7→ [T (A)] is the topological closure of the set A.
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6.2 Perfect sets

The questions in this section are motivated by an early attempt of Georg Cantor to solve
the Continuum Hypothesis.

Definition 6.5. A tree T is called a perfect tree if every node t ∈ T has at least two
incompatible extensions in T , i.e., ∃s1, s2 ∈ T such that t C s1 and t C s2 and s1⊥s2.
A closed set C is called a perfect set if it is the set of branches [T ] for a perfect tree T .

Perfect sets also have a topological characterization: recall that for a set X, x ∈ X
is called an isolated point of X if there is an open neighbourhood O of x such that
O ∩ C = {x}.

Lemma 6.6. A closed set C is perfect if and only if it contains no isolated points.

Proof. Exercise 7.

Lemma 6.7. If T is a perfect tree then [T ] has the cardinality of the continuum 2ℵ0 .

Proof. Let 2N and 2∗ denote the set of all infinite, respectively finite, sequences of 0’s
and 1’s. We know that |2N| = 2ℵ0 . By induction, define a function ϕ from 2∗ to the
splitting nodes of T :

• ϕ(〈〉) := least splitting node of T ,

• If ϕ(s) has been defined for s ∈ 2∗, then ϕ(s) is a splitting node of T , hence there
are different n and m such that ϕ(s)_ 〈n〉 and ϕ(s)_ 〈m〉 are both in T . Now let
ϕ(s_ 〈0〉) be the least splitting node of T extending ϕ(s)_ 〈n〉 and ϕ(s_ 〈1〉) be
the least splitting node of T extending ϕ(s)_ 〈m〉.

We can now lift the function ϕ to ϕ̂ : 2N −→ [T ] by setting

ϕ̂(x) := the unique z ∈ [T ] such that ∀s C x (ϕ(s) C z)

It only remains to verify that ϕ̂ is injective. But if x, y ∈ 2N and x 6= y then there
is a least n such that x�n 6= y�n. But ϕ was inductively defined in such a way that
ϕ(x�n) 6= ϕ(y�n). Since ϕ(x�n) C ϕ̂(x) and ϕ(t�n) C ϕ̂(y), it follows that ϕ̂(x) 6= ϕ̂(y).

Therefore there is an injection from 2N to [T ] and hence [T ] has cardinality 2ℵ0 .

This theorem is much more intuitive then may first seem. It simply says that if a set
contains a “copy” of the full binary tree, then it must have the cardinality of the full
binary tree, namely 2ℵ0 .

Now recall that the Continuum Hypothesis is the statement that every uncountable
set has cardinality 2ℵ0 . In Cantor’s time, one of the methods for proving this hypothesis
that mathematicians considered went along the following lines of reasoning: if a subset
of the reals, or of NN, is uncountable, then there must be an explicit reason for it to be
so. The only reason that seems explicit is that the set would contain a copy of the full
binary tree, i.e., a perfect set. From this, the following dichotomy can be deduced (as
usual, we present it in the setting of NN but analogous results hold for the real numbers).

Definition 6.8. A set A ⊆ NN has the perfect set property, abbreviated by PSP, if it is
either countable or contains a perfect set (i.e., [T ] ⊆ A for some perfect tree T ).

35



The ideas was that, if every set satisfied the perfect set property, then the Continuum
Hypothesis would hold (at least, among subsets of the real numbers). The perfect set
property is easily falsified by a diagonal construction using the Axiom of Choice, similarly
to our proof of Theorem 3.9 (see also Exercise 8). However, in this section we will show
that it is reasonable for PSP to hold for sets in some limited pointclass, and the way we
do that is by showing that PSP follows from determinacy.

6.3 The ∗-game

The contents that follow are due to Morton Davis [Dav64], although we reformulate it
in the context of NN instead of 2N which was used by Davis.

Definition 6.9. Let A ⊆ NN be a set. The game G∗(A) is played as follows:

• Player I picks non-empty sequences of natural numbers, and Player II plays natural
numbers.

I : s0 s1 s2 . . .
II : n1 n2 . . .

• Player I wins G∗(A) if and only if

1. ∀i ≥ 1: si(0) 6= ni, and

2. x := s0
_s1

_s2
_ · · · ∈ A.

In this game, the roles of I and II are not symmetric. The intuition is that Player I
attempts, in the limit, to form an infinite sequence in A. Meanwhile, Player II chooses
numbers ni such that, in the next move, I may not play any sequence si starting with
ni (but has full freedom to do anything else). I wins the game if he can overcome the
challenges set by II and produce an infinite sequence in A. II wins if she can choose
numbers in such a way as to prevent I from reaching his objective.

Before studying the consequences of the determinacy of G∗(A) we must show that
this game can be coded into a standard game, with moves in N. Fix a bijection ϕ :
N −→ (N∗ \ 〈〉). Then the ∗-game can be reformulated as a standard game with the
pay-off set given by

A∗ = {z ∈ NN | ∀n ≥ 1 (ϕ(z(2n))(0) 6= z(2n− 1))

∧ ϕ(z(0))_ϕ(z(2))_ϕ(z(4))_ · · · ∈ A}

Lemma 6.10. The function f : NN −→ NN given by f(z) := ϕ(z(0))_ϕ(z(2))_ϕ(z(4))_ . . .
is continuous.

Proof. Similar to Lemma 5.2.

Lemma 6.11. The set C := {z ∈ NN | ∀n ≥ 1 (ϕ(z(2n))(0) 6= z(2n− 1))} is closed.

Proof. C =
⋂
n≥1 Cn where

Cn := {z | ϕ(z(2n))(0) 6= z(2n− 1)}

so it remains to show that each Cn is closed. But we can write Cn = [Tn] where
Tn := {t ∈ N∗ | if |t| > 2n then ϕ(t(2n))(0) 6= t(2n− 1)}.
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Now A∗ = C ∩ f−1[A], and since Γ is closed under continuous pre-images and
intersections with closed sets, it follows that whenever A ∈ Γ, A∗ ∈ Γ.

Theorem 6.12 (Morton Davis, 1964). Let A ⊆ NN be a set.

1. If Player I has a winning strategy in G∗(A) then A contains a perfect set.

2. If Player II has a winning strategy in G∗(A) then A is countable.

Proof.

1. Let σ be a winning strategy for Player I in the game G∗(A). Although we are not
talking about standard games, we can still use the notation σ ∗ y for an infinite
run of the game in which II plays y and I according to σ, and similarly σ ∗ t for
a finite position of the game. Let Plays∗(σ) := {σ ∗ y | y ∈ NN} be as before and
additionally let

Tσ := {s ∈ N∗ | s C (σ ∗ t) for some t}

be the tree of the closed set Plays∗(σ). Since σ is winning for I, clearly Plays∗(σ) ⊆
A. So it remains to show that Tσ is a perfect tree.

Pick any t ∈ Tσ and consider the least move i such that t C s0_ . . ._si. Now II
can play ni+1 in her next move, after which I, assuming he follows σ, must play
an si+1 such that si+1(0) 6= ni+1. Let mi+1 := si+1(0). Instead of playing ni+1,
Player II could also have played mi+1 in which case I would have been forced to
play a ti+1 such that ti+1(0) 6= mi+1. But then ti+1 6= si+1, and both the sequence
s0
_ . . ._si

_ti+1 and the sequence s0
_ . . ._si

_si+1 are incompatible extensions
of t according to σ, and hence are members of Tσ. So Tσ is perfect.

2. Now fix a winning strategy τ for II. Suppose p is a partial play according to τ , and
such that it is Player I’s turn to move, i.e., p = 〈s0, n1, s1, . . . , si−1, ni〉. Then we
write p∗ := s0

_ . . ._si−1. For such p and x ∈ NN we say:

• p is compatible with x if there exists an si such that si(0) 6= ni and p∗_si C x.
Note that this holds if and only if p∗ C x and ni (II’s last move) doesn’t “lie
on x”. Intuitively, this simply says that at position p, Player I still has a
chance to produce x as the infinite play.

• p rejects x if it is compatible with x and maximally so, i.e., if for all si with
si(0) 6= ni, we have p_ 〈si, τ(p_ 〈si〉)〉 is not compatible with x any longer.
In other words, at position p Player I still has a chance to extend the game
in the direction of x, but for just one more move, because, no matter which
si he plays, Player II will reply with ni+1 according to her strategy τ , after
which I will not have a chance to produce x any more.

Claim 1. For every x ∈ A, there is a p which rejects it.

Proof. Fix an x ∈ A and towards contradiction, suppose there is no p which
rejects it. Then at every stage of the game, Player I can play an si such that
s0
_ . . ._si C x and such that Player II’s strategy τ can do nothing to stop him.

That means there is a sequence y played by I such that y∗τ = x ∈ A, contradicting
the fact that τ is a winning strategy for II. � (Claim 1)
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Claim 2. Every p rejects at most one x.

Proof. Suppose p rejects x and y and x 6= y. By definition, p is compatible with
both x and y, so Player I can play some si with si(0) 6= ni and p∗_si C x and
p∗_si C y. But then, he can also play si to be maximal in this sense, i.e., such
that any further extension p∗_si

_ 〈n〉 cannot be an initial segment of both x and
y (this is always possible since there is an n such that x(n) 6= y(n)).

Then consider ni+1 := τ(p_ 〈si〉). Clearly ni+1 cannot lie on both x and y, so
p_ 〈si, ni+1〉 can still be extended by Player I to be compatible with either x or
y. Therefore, p does not reject both x and y. � (Claim 2)

If we now define Kp := {x ∈ NN | p rejects x} we see that by Claim 1, A ⊆
⋃
pKp,

by Claim 2 each Kp is a singleton, and moreover there are only countably many
p’s. Hence A is contained in a countable union of singletons, so it is countable.

Corollary 6.13. Det(Γ) implies that all sets in Γ have the perfect set property.

Proof. Let A be a set in Γ. Since A∗ is also in Γ, G∗(A) = G(A∗) is determined. If
Player I has a winning strategy in G∗(A) then A contains a perfect tree, and if Player
II has a winning strategy, then A is countable.

6.4 Exercises

1. For x ∈ NN let A≤x := {y ∈ NN | ∀n (y(n) ≤ x(n))} and T≤x := {s ∈ N∗ |
∀n (s(n) ≤ x(n))}. Show that T≤x is a tree, that [T≤x] = A, and conclude that
A≤x is closed.

2. Repeat the previous exercise for the sets A≥x and T≥x defined analogously but
with “≤” replaced by “≥”.

3. Prove that for any n,m ∈ N, the set An 7→m := {x ∈ NN | x(n) = m} is clopen.

4. Let Cn be a closed set for every n. Show that the set C := {x ∈ NN | ∀n (x ∈ Cn)}
is closed. Come up with an example showing that this does not hold for the set
A := {x ∈ NN | ∃n (x ∈ Cn)}.

5. Conclude from Exercises 8 and 9 (or prove directly) that for infinite sequences
〈n0, n1, . . . 〉 and 〈m0,m1, . . . 〉 the set A~n 7→~m := {x ∈ NN | ∀i (x(ni) = mi)} is
closed.

6. A tree is called pruned if every node has a successor, i.e., ∀s ∈ T ∃t ∈ T such that
s C t. Show that every tree T can be turned into a pruned tree pr(T ) in such a
way that [pr(T )] = [T ].

7. Prove Lemma 6.6.

8. Use AC to show directly that there is a set that does not satisfy the Perfect Set
Property (hint: use Theorem 3.9).
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9. ∗ A set K in a topological space is called compact if every infinite cover of K by
open sets has a finite subcover, i.e., if for every J and K ⊆

⋃
{Oj | j ∈ J} with

each Oj open, there exists a finite subset I ⊆ J such that K ⊆
⋃
{Oj | j ∈ I}.

Show that in the Baire space, a closed set K is compact if and only if in the
corresponding tree TK , every node is finitely splitting.
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7 Baire property and Lebesgue measure

7.1 Lebesgue measure

Here we will focus on the actual real number line R, and assume some familiarity with
standard measure theory. The standard Lebesgue measure on R will be denoted by µ.
Also, we will assume here that Γ is, additionally, closed under finite unions, intersections
and complements, and contains the Fσ sets (the ∆1

n sets, projective sets etc. satisfy this
property). Notice that NN is homeomorphic to R \ Q, so any pointclass Γ generates a
pointclass on R \Q, and we can also extend it to R by stipulating for A ⊆ R that A ∈ Γ
iff A \Q ∈ Γ.

The result of this section was first proved by Mycielski-Świerczkowski [MŚ64], but
we present a proof due to Harrington. We will define the covering game Gµ, for which
we first need to fix some setup. Note that it is sufficient to prove that every subset of
[0, 1] in Γ is measurable.

Definition 7.1.

1. Fix an enumeration {In | n ∈ N} of all possible finite unions of open intervals in
[0, 1] with rational endpoints (e.g., In is of the form (q0, q1) ∪ · · · ∪ (qk, qk+1) for
some k, qi ∈ Q, etc.) This is possible since Q is countable.

2. For x ∈ 2N, let a : 2N −→ [0, 1] be the function given by

a(x) :=

∞∑
n=0

x(n)

2n+1

It is not hard to see that a, as a function from the Baire space to [0, 1], is continuous
and that its range is all of [0, 1] (but a is not injective, e.g., both 〈1, 0, 0, 0, . . . 〉 and
〈0, 1, 1, 1, . . . 〉 map into 1

2 —think of x as the binary expansion of a(x)).
For every ε > 0, we define a game Gµ(A, ε).

Definition 7.2. Let A be a subset of [0, 1] and ε > 0. The game Gµ(A, ε) is defined as
follows:

• At each turn, Player I picks 0 or 1, and Player II picks natural numbers.

I : x0 x1 x2 . . .
II : y0 y1 y2

• At every move n, Player II must make sure that

µ(Iyn) <
ε

22(n+1)
,

(otherwise she loses).

• Player I wins iff a(x) ∈ A \
⋃∞
n=0 Iyn .
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So the idea here is that Player I attempts to play a real number in A ⊆ [0, 1],
essentially by using the infinite binary expansion of that real, while Player II attempts
to “cover” that real with a countable union of the In’s, but of an increasingly smaller
measure.

Showing that this game can be formulated as a game within the same pointclass is
a bit more involved.

Lemma 7.3. Given A in Γ and ε, there exists a set Aµ,ε ⊆ NN which is in Γ and such
that Gµ(A, ε) = G(Aµ,ε).

Proof. First of all, clearly the functions f(z)(n) := z(2n) and g(z)(n) := z(2n + 1) are
continuous. Then, if z is the result of the game in the standard sense, Player I should
win Gµ,ε(A) iff

1. ∀n(f(z)(n) ∈ {0, 1}),

2. a(f(z)) ∈ A, and

3. a(f(z)) /∈
⋃∞
n=1 Ig(z)(n),

or if

4. ∃n such that µ(Ig(z)(n)) ≥ ε
22(n+1)

So define the following sets:

1. C1 := {z | ∀n(z(n) ∈ {0, 1})},

2. C2 := {(a, y) ∈ R× NN | ∀n(a /∈ Iy(n))},

3. C3 := {z | ∃n(µ[Iz(n)] ≥ ε
22(n+1) )}.

And let

Aµ,ε :=
(
f−1[C1] ∩ (a ◦ f)−1[A] ∩ ((a ◦ f)× g)−1[C2]

)
∪ g−1[C3]

Clearly Gµ(A, ε) = G(Aµ,ε). Using reasoning as in Exercise 6.4 (1)–(5), it is easy to see
that C1 is closed and C3 is open. Concerning C2, let’s write the complement of C2 in
the following form

(R× NN) \ C2 =

∞⋃
n=0

{(a, y) | a ∈ Iy(n)}

=

∞⋃
n=0

{(a, y) | ∃m (a ∈ Im ∧ y(n) = m)}

=

∞⋃
n=0

∞⋃
m=0

{(a, y) | a ∈ Im ∧ y(n) = m}

=

∞⋃
n=0

∞⋃
m=0

Im × {y | y(n) = m}

Since the Im are finite unions of open intervals, they are all open; also the {y | y(n) = m}
are open by Exercise 6.4 (3). So the product of these two sets is open in the product
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topology of R× NN, and hence the countable union is open. Therefore the complement
of C2 is open, hence C2 is closed.

Now all the functions involved are continuous and it is easy to see that Aµ,ε ∈ Γ (recall
that we assumed Γ to be closed under finite unions and intersections).

Now let us return to the main result.

Theorem 7.4. Let A ⊆ NN and ε be given. Then

1. If Player I has a winning strategy in Gµ(A, ε) then there is a measurable set Z
with µ(Z) > 0 such that Z ⊆ A (i.e., the inner measure of A is > 0).

2. If Player II has a winning strategy in Gµ(A, ε) then there is an open O such that
A ⊆ O and µ(O) < ε (i.e., the outer measure of A is < ε).

Proof.

1. Let σ be a winning strategy for I. It is clear that the mapping y 7→ σ ∗ y is
continuous. But then, also the mapping y 7→ a(f(σ ∗ y)) is continuous (where f is
defined as in Lemma 7.3). Let Z := {a(f(σ ∗ y)) | y ∈ NN}. This is an analytic
set (continuous image of a closed set) which is well-known to be measurable (by
a classical result of Suslin from 1917). As we assumed σ to be winning, Z ⊆ A.
But if µ(Z) = 0 then (again by standard measure-theory) there exists a cover of
Z by a sequence of sets {Iyn | n ∈ N} satisfying ∀n (µ(Iyn) < ε

22(n+1) ). Then if
II plays the sequence y = 〈y0, y1, . . . 〉, we will get a(f(σ ∗ y)) ∈ Z ⊆

⋃∞
n=0 Iyn ,

contradicting that σ is winning for I.

2. Now suppose II has a winning strategy τ . For each s ∈ 2∗ of length n, define
Is := I(s∗ρ)(2n−1), i.e., Is is the Iyn−1 where yn−1 is the last move of the game in
which I played s and II used τ . As τ is winning for II, for every a ∈ A and every
x ∈ 2N such that a(x) = a, there must be some n such that a ∈ Ix�n. In other
words, a ∈

⋃
{Is | s C x} where x is such that a(x) = a. Therefore, in particular,

A ⊆
⋃
s∈2N

Is =

∞⋃
n=1

⋃
s∈{0,1}n

Is.

Now notice that, since τ was winning, for every s of length n ≥ 1, µ(Is) < ε/22n.
Therefore

µ

 ⋃
s∈{0,1}n

Is

 <
ε

22n
· 2n =

ε

2n
.

It follows that

µ

( ⋃
s∈2N

Is

)
<

∞∑
n=1

ε

2n
= ε.

Therefore, indeed, A is contained in an open set of measure < ε.

Now it only remains to use the above dichotomy to show that it implies that every
set is measurable.
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Corollary 7.5. Let X ⊆ [0, 1] be any set in Γ and assume Det(Γ). Then X is measur-
able.

Proof. Let δ be the outer measure of X. Then there is a Gδ set B such that X ⊆ B
and µ(B) = δ. Now consider the games Gµ(B \X, ε), for all ε. Notice that our closeure
properties on Γ guarantee thatX\B ∈ Γ. By Theorem 7.4 each such game is determined.
But if, for at least one ε > 0, I would have a winning strategy, then there would exist
a measurable set Z ⊆ B \ X of positive measure, implying that X is contained in a
set B \ Z of measure strictly less than δ, thus contradicting that the outer measure of
X was δ. Therefore, by determinacy, II must have a winning strategy in every game
Gµ(B \X, ε) for every ε > 0. But that implies that, for every ε, B \X can be covered
by an open set of measure < ε, therefore B \X itself has measure 0. Since X is equal
to a Gδ set modulo a measure-zero set, X itself must be measurable.

7.2 Baire property

Next, we consider a well-known topological property, frequently seen as a counterpart
to Lebesgue-measurability. The game used in this context is the Banach-Mazur game
from Definition 5.1.

Recall the following topological definitions:

Definition 7.6. Let X ⊆ NN. We say that

1. X is nowhere dense if every basic open O(t) contains a basic open O(s) ⊆ O(t)
such that O(s) ∩X = ∅,

2. X is meager if it is the union of countably many nowhere dense sets.

3. X has the Baire property if it is equal to an open set modulo meager, i.e., if there
is an open set O such that (X \O) ∪ (O \X) is meager.

Just as with the perfect set property, it is possible to show (using the Axiom of
Choice) that there are sets without the Baire property. We will prove that it follows
from determinacy (for boldface pointclasses Γ).

So, let G∗∗(A) be the Banach-Mazur game from Definition 5.1; recall that we already
proved that the coding involved in the game is continuous. Originally, this theorem is
due to Banach and Mazur; it can be found in [Oxt57].

Theorem 7.7. Let A ⊆ NN be a set and G∗∗(A) the Banach-Mazur game.

1. If Player II has a winning strategy in G∗∗(A) then A is meager.

2. If Player I has a winning strategy in G∗∗(A) then O(s) \ A is meager for some
basic open O(s).

Proof.

1. This part of the proof is similar to the proof with the ∗-game in the previous section.
Let τ be a winning strategy of Player II. For a position p := 〈s0, t0, . . . , sn, tn〉 write
p∗ := s0

_t0
_ . . ._sn

_tn. For any position p and x ∈ NN we say that

• p is compatible with x if p∗ C x.
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• p rejects x if it is compatible and maximally so, i.e., if for any sn+1, the
next position according to τ , i.e., the position p_ 〈sn+1, τ(p_ 〈sn+1〉)〉 is not
compatible with x.

Claim 1. For every x ∈ A, there is a p which rejects it.

Proof. Just as in the proof of Theorem 6.12, if there were no p which rejected x
then there is a sequence y of moves by Player I such that x = y∗τ ∈ A contradicting
the assumption that τ is winning for Player II. � (Claim 1)

Claim 2. For every p, the set Fp := {x | p rejects x} is nowhere dense.

Proof. Let O(s) be any basic open set. If p∗ 6C s then we can extend s to some
t such that any x ∈ O(t) is incompatible with p∗, and hence not in Fp, i.e.,
O(t)∩ Fp = ∅. So the only interesting case is if p∗ C s. Now we use the following
trick: suppose p = 〈s0, . . . , tn〉. Let sn+1 be the sequence such that p∗_sn+1 = s.
Now let tn+1 be τ ’s answer, i.e., let tn+1 := τ(p_ 〈sn+1〉). Then let t := s_tn+1.
It is clear that s C t and hence O(t) ⊆ O(s). We claim that O(t) ∩ Fp = ∅ which
is exactly what we need.

Let x ∈ O(t), i.e., t C x. But if we look at the definition of rejection, it is clear
that p cannot reject x, because for sn+1 Player II’s response is tn+1 and the play
p∗_ 〈sn+1, tn+1〉 = t is compatible with x. Thus x /∈ Fp. � (Claim 2)

Now the rest follows: by Claim 1, A ⊆
⋃
p Fp which, by Claim 2, is a countable

union of nowhere dense sets. Therefore A is meager.

2. Now we assume that Player I has a winning strategy σ in G∗∗(A). Let s be I’s
first move according to the winning strategy, i.e., s := σ(〈〉). Then we claim:

Claim 3. Player II has a winning strategy in the game G∗∗(O(s) \A)

Proof. Here we shall see the first instance of how a player can translate an oppo-
nent’s winning strategy into his/her own. We will describe this strategy informally:

Let s0 be I’s first move in the game G∗∗(O(s) \A).

• Case 1. s 6C s0. Then play any t0 such that s0
_t0 is incompatible with s.

After that, play anything whatsoever. It is clear that the result of this game
is some real x /∈ O(s), hence also x /∈ O(s) \A, and therefore is a win for II.

• Case 2. s C s0. Then let s′0 be such that s_s′0 = s0. Now Player II does
the following trick: to determine her strategy she “plays another game on the
side”, a so-called auxiliary game. This auxiliary game is the original game
G∗∗(A) in which Player I plays according to his winning strategy σ. Player
II will determine her moves based on the moves of Player I in the auxiliary
game.

The first move in the auxiliary game is s := σ(〈〉). Then Player II plays s′0 as
the next move of the auxiliary game. To that, in the auxiliary game Player
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I responds by playing t0 := σ(〈s, s′0〉). Now Player II switches back to the
“real” game, and copies that t0 as her first response to I’s “real” move, s0.

Next, in the “real” game she observes an s1 being played by Player I. She
then copies it as her next move in the auxiliary game, in which I responds
according to σ with t1 := σ(〈s, s′0, t0, s1〉). II copies t1 on to the real game,
and so it goes on. You can observe this in Figure 2, where the first game
represents the real game and the second the auxiliary one:

I: s0 s1 . . .
II: t0 t1

I: s = σ(〈〉) t0 = σ(〈s, s′0〉) t1 = σ(〈s, s′0, t0, s1〉)
II: s′0 s1 . . .

Figure 2: The “real” and “auxiliary” games

In the final play of the real game, the infinite play

x := s0
_t0

_s1
_t1

_ . . .

is produced. But clearly x = s_s′0
_t0

_s1
_t1

_ . . . and that was a play in
the auxiliary game G∗∗(A) in which Player I used his winning strategy σ.
That means that x ∈ A. Therefore in the real game, x /∈ O(s) \ A which
means that the strategy which Player II followed was winning for her. And
that completes the proof of Claim 3. � (Claim 3)

Now it follows directly from part 1 of the theorem that O(s) \A is meager, which
is exactly what we had to show.

We are now close to the final result, but not done yet. What we have proven is that
for boldface pointclasses Γ, if Det(Γ) holds then for every A ∈ Γ, either A is meager or
O(s) \A is meager for some basic open O(s), which is a kind of “weak” Baire property.
So it only remains to prove the following lemma:

Lemma 7.8. Let Γ be a boldface pointclass. If for every A ∈ Γ, either A is meager or
O(s) \A is meager for some O(s), then every A in Γ satisfies the Baire property.

Proof. Pick A ∈ Γ. If A is meager we are done because A is equal to the open set ∅
modulo a meager set, hence has the Baire property. Otherwise, let

O :=
⋃
{O(s) | O(s) \A is meager }

This is an open set, and by definition O \ A is a countable union of meager sets, hence
it is meager. It remains to show that A \O is also meager. But since Γ is closed under
intersections with closed sets, A \O ∈ Γ. So if it is not meager, then there is O(s) such
that O(s) \ (A \O) is meager. That implies

1. O(s) \A is meager, and

2. O(s) ∩O is meager.
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But the first statement implies, by definition, that O(s) ⊆ O. Then the second statement
states that O(s) is meager, and we know that that is false in the Baire space. So we
conclude that A \O is meager and so A has the Baire property.

Corollary 7.9. Det(Γ) implies that every set in Γ has the Baire property.
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8 Flip sets

In this section we investigate another non-constructive object, the so-called “flip sets”.
For the time being we focus on the space 2N of all infinite sequences of 0’s and 1’s, rather
than the Baire space. As 2N is a closed subspace of NN, it is also a topological space
with the subspace topology inherited from NN, and the topology behaves exactly the
same way (basic open sets are O(t) := {x ∈ 2N | t C x}).

Definition 8.1. An X ⊆ 2N is called a flip set if for all x, y ∈ 2N, if x and y differ by
exactly one digit, i.e., ∃!n(x(n) 6= y(n)), then

x ∈ X ⇐⇒ y /∈ X

Flip sets can be visualized by imagining an infinite sequence of light-switches such
that flipping each switch turns the light on or off (in X or not in X). It is clear that if
x and y differ by an even number of digits then x ∈ X ⇐⇒ y ∈ X whereas if they differ
by an odd number then x ∈ X ⇐⇒ y /∈ X. If x and y differ by an infinite number of
digits, we do not know what happens. Flip sets are also called infinitary XOR gates or
infinitary XOR functions in computer science.

Although this gives us a nice description of flip sets, it is not clear whether such sets
exist.

Lemma 8.2. Assuming AC, flip sets exist.

Proof. Let ∼ be the equivalent relation on 2N such that x ∼ y iff {n | x(n) 6= y(n)} is
finite. For each equivalence class [x]∼, let s[x]∼ be some fixed element from that class.
Now define

x ∈ X ⇐⇒ |{n | x(n) 6= s[x]∼(n)}| is even.

This is a flip set: any x, y which differ by exactly one digit must be in the same equiva-
lence class, hence s[x]∼ = s[y]∼ . But then, clearly exactly one of x, y must be in X.

Note: this particular proof comes from [KN12].
Although flip sets exist assuming AC, they can be considered pathological objects.

We will show that Det(Γ) implies that there are no flip sets in Γ (and ZF + AD implies
that there are no flip sets at all).

We consider a version of the Banach-Mazur game which is exactly as in Definition
5.1 but with I and II playing non-empty sequences of 0’s and 1’s. For a set X ⊆ 2N, we
denote the game by the same symbol G∗∗(X). The fact that this can be coded using
a continuous function is analogous to the previous case and we leave the details to the
reader.

The way to prove that Det(Γ) implies that there are no flip sets in Γ is not by a
direct application of determinacy, but rather by a sequence of Lemmas which, assuming
a flip set exists in Γ, lead to absurdity.

Lemma 8.3. Let X be a flip set.

1. If I has a winning strategy in G∗∗(X) then he also has a winning strategy in
G∗∗(2N \X).

2. If II has a winning strategy in G∗∗(X) then she also has a winning strategy in
G∗∗(2N \X).
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Proof. For 1, assume σ is a winning strategy for Player I in G∗∗(X) then let σ′ be as
follows:

• The first move σ′(〈〉) is any sequence of the same length as σ(〈〉) and differs from
it by exactly one digit.

• The next moves are played according to σ, pretending that the first move was
σ(〈〉) and not σ′(〈〉).

It is clear that for any sequence y of II’s moves, σ∗y and σ′∗y differ by exactly one digit.
Since σ ∗ y ∈ X and X is a flip set, σ′ ∗ y /∈ X, hence σ′ is winning for I in G∗∗(2N \X).

Part 2 is analogous (Player II changes exactly one digit of her first move t0).

Lemma 8.4. Let X be a flip set. If II has a winning strategy in G∗∗(X) then I has a
winning strategy in the game G∗∗(2N \X).

Proof. Let τ be II’s winning strategy in G∗∗(X). We informally describe Player I’s
strategy in G∗∗(2N \X): first he plays an arbitrary s. Player II will answer with some
t. Now I starts playing an auxiliary version of G∗∗(X) on the side, in which II uses τ .
There he plays s_t, and let s0 be τ ’s answer in the auxiliary game. He copies s0 as the
next move in the real game. Player II will answer with some t0. I copies t0 on to the
auxiliary game, etc.

G∗∗(2N \X) :
I: s s0 s1

II: t t0 . . .

G∗∗(X) :
I: s_t t0 t1

II: s0 s1 . . .

Now if x = s_t_s0
_t0

_ . . . is the result of the game, it is the same as the result of
the auxiliary game which was played according to τ . As τ was winning, it follows that
x /∈ X and hence the strategy we just defined is winning for I in G∗∗(2N \X).

Lemma 8.5. Let X be a flip set. If I has a winning strategy in G∗∗(X) then II has a
winning strategy in G∗∗(2N \X).

Proof. This is slightly more involved because of the order of moves. Let σ be winning
for I in G∗∗(X). Player II will, again, play two games: the main one G∗∗(2N \X), and
an auxiliary G∗∗(X), using σ. Let Player I’s first move in the real game be s0. Let
s := σ(〈〉) be I’s first move in the auxiliary game. First, consider the case

• |s0| < |s|.

Then in the real game, let II play t0 such that |s0_t0| = |s| and s0
_t0 differs from s

on an even number of digits. Clearly II can always find such t0. Then let s1 be I’s next
move in the real game. Player II copies it to the auxiliary game, in which I replies with
some t1, which II copies on to the real game, etc.

G∗∗(2N \X) :
I: s0 s1 s2

II: t0 t1 . . .

G∗∗(X) :
I: s t1 . . .

II: s1 s2
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Let x := s0
_t0

_s1
_t1

_ . . . be the result of the main game, and y := s_s1
_t1

_ . . .
the result of the auxiliary game. Then y ∈ X, and since by construction x and y differ
by an even number of digits and X is a flip set, x ∈ X follows, i.e., the strategy we
described is winning for II in G∗∗(2N \X).

Now consider the case that

• |s| ≤ |s0|

This time Player II first plays any t in the auxiliary game such that |s_t| > |s0|, and
finds t′ to be Player I’s reply in the auxiliary game. Now clearly |s_t_t′| > |s0| and
she can play a t0 in the real game such that |s0_t0| = |s_t_t′| and s0

_t0 and s_t_t′

differ on an even number of digits. After that she proceeds as before, i.e., if s1 is the
next move of I in the real game, she copies it into the auxiliary game, etc.

G∗∗(2N \X) :
I: s0 s1 s2

II: t0 t1 . . .

G∗∗(X) :
I: s t′ t1 . . .

II: t s1 s2

Now x = s0
_t0

_s1
_t1

_ . . . and y = s_t_t′_s1
_t1

_ . . . differ by an even number of
digits so the result follows.

Theorem 8.6. If Det(Γ) then there are no flip sets in Γ.

Proof. Suppose, towards contradiction, that there exists a flip set X ∈ Γ. Then

• I has a winning strategy in G∗∗(X)

=⇒ I has a winning strategy in G∗∗(2N \X)

=⇒ II has a winning strategy in G∗∗(X).

• II has a winning strategy in G∗∗(X)

=⇒ II has a winning strategy in G∗∗(2N \X)

=⇒ I has a winning strategy in G∗∗(X).

Both situations are clearly absurd, from which we conclude that there cannot be a flip
set in Γ.
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9 Wadge reducibility

9.1 Wadge game

Our last application of infinite games relates to Wadge reducibility, a large area of
research of which we will only present a small part. The study of it started with the
work of William Wadge (pronounced “wage”) [Wad83].

Since we will deal with complements of sets a lot in this section, it will be convenient
to use the notation A := NN \A.

Definition 9.1. Let A,B ⊆ NN. We say that A is Wadge reducible to B, notation
A ≤W B, if there is a continuous function f : NN −→ NN such that for all x:

x ∈ A ⇐⇒ f(x) ∈ B

Clearly, A ≤W B iff A ≤W B, and it is not hard to see that ≤W is a pre-order
(reflexive and transitive, but in general not antisymmetric). As is usual practice with
pre-orders, we say that A is Wadge equivalent to B, denoted by A ≡W B, if A ≤W B and
B ≤W A. Let [A]W denote the equivalence class of A for every A, and lift the relation
onto equivalence classes by [A]W ≤W [B]W iff A ≤W B. The equivalence classes [A]W
are called Wadge degrees and the relation ≤W on the Wadge degrees is a partial order.
As usual, the strict Wadge ordering is defined by

A <W B iff A ≤W B and B 6≤W A.

The theory of Wadge reducibility has many applications, ranging from analysis and
topology to computer science. We should, however, note that the theory as presented
in this section does not directly generalize to connected spaces such as R and Rn (see
[Ike10, Chapter 5]).

We will analyse the corresponding theory under determinacy assumptions, which
entail a very interesting and rich structure of the Wadge degrees. In this section, we will
also assume that Γ is closed under finite intersections and complements.

Definition 9.2. Let A,B be sets. The Wadge game GW (A,B) is played as follows:
Players I and II choose natural numbers:

I: x0 x1 . . .
II: y0 y1 . . .

If x = 〈x0, x1, . . . 〉 and y = 〈y0, y1, . . . 〉, then Player II wins GW (A,B) if and only if

x ∈ A ⇐⇒ y ∈ B

To see that this game can be coded by a pay-off set in the same pointclass, consider
the two functions f and g defined by

• f(x)(n) := x(2n) and

• g(x)(n) := x(2n+ 1).

50



It is straightforward to verify that f and g are continuous. Now note that if z is the
outcome of the Wadge game, then Player I wins GW (A,B) if and only if f(z) ∈ A ⇐⇒
g(z) /∈ B. From this it follows that GW (A,B) is equivalent to the game

G((f−1[A] \ g−1[B]) ∪ (g−1[A] \ f−1[B]))

and by our closure assumptions on Γ, this set is also in Γ, so our coding is adequate.
The main result is the following theorem due to William Wadge.

Theorem 9.3 (Wadge, 1972). Let A,B ⊆ NN.

1. If Player II has a winning strategy in GW (A,B) then A ≤W B.

2. If Player I has a winning strategy in GW (A,B) then B ≤W A.

Proof. Let τ be a winning strategy of II. For every x played by Player I, by definition of
the winning condition, x ∈ A ⇐⇒ g(x ∗ τ) ∈ B. But it is easy to see that the function
mapping x to x ∗ τ is continuous. Similarly, g is continuous, and so the composition of
these two functions is a continuous reduction from A to B, so A ≤W B.

Analogously, if σ is a winning strategy of I then for every y we have f(σ ∗ y) ∈ A ⇐⇒
y /∈ B, so again we have a continuous reduction from B to A, or equivalently from B to
A.

Therefore, if we limit our attention to sets in Γ and assume Det(Γ), the Wadge order
satisfies the property that for all A,B, either A ≤W B or B ≤W A. This immediately
has many implications for the order.

Corollary 9.4. If A <W B then

1. A ≤W B,

2. B 6≤W A.

Proof. For 1, suppose A 6≤W B. Then by Theorem 9.3 we have B ≤W A, and so
B ≤W A, contradicting A <W B.

For 2, suppose B ≤W A. Then we have B ≤W A ≤W B ≤W A, where the second
inequality is because of A ≤W B and the third one by the assumption that B ≤W A.
This again contradicts A <W B.

A set A, or its corresponding Wadge degree [A]W , is called self-dual if A ≡W A.

Corollary 9.5. If A is self-dual, then for any B, either B ≤W A or A ≤W B.

Proof. If A 6≤W B then B ≤ A ≤W A.

9.2 Martin-Monk Theorem

We end this section, and with it our course, with the proof of the Martin-Monk Theorem,
illustrating the standard level of argumentation that can be applied to infinite games.

Theorem 9.6 (Martin-Monk). If Det(Γ) then the relation <W restricted to sets in Γ
is well-founded.
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Proof. We must show that there are no infinite descending <W -chains of sets in Γ. So,
towards contradiction, suppose that {An | n ∈ N} is an infinite collection of sets in Γ
which forms an infinite descending <W -chain:

· · · <W A3 <W A2 <W A1 <W A0

Since for each n, An+1 <W An, by Corollary 9.4, both An 6≤W An+1 and An 6≤W
An+1. Therefore by Theorem 9.3 Player II cannot have a winning strategy in the games
GW (An, An+1) and GW (An, An+1). By determinacy, Player I must then have winning
strategies in both games. We will call these strategies σ0

n and σ1
n, respectively.

We now introduce the following abbreviation:

G0
n := GW (An, An+1)

G1
n := GW (An, An+1)

Now to any infinite sequence of 0’s and 1’s, i.e., any x ∈ 2N, we can associate an infinite
sequence of Wadge games 〈

G
x(0)
0 , G

x(1)
1 , G

x(2)
2 , . . .

〉
played according to I’s winning strategies〈

σ
x(0)
0 , σ

x(1)
1 , σ

x(2)
2 , . . .

〉
.

Now we fix some particular x ∈ 2N, and Player II is going to play all these infinite Wadge
games simultaneously (as a kind of “simultaneous exhibition”, against infinitely many

“Players I”). In each game G
x(n)
n Player I follows his winning strategy σ

x(n)
n , whereas

Player II copies I’s moves from the next game G
x(n+1)
n+1 . To make this possible, she follows

the following diagonal procedure:

• In the first game G
x(0)
0 , let ax0(0) be the first move of Player I, according to σ

x(0)
0 .

The superscript x refers to the infinite sequence we fixed at the start and the
subscript 0 refers to the 0-th game.

• To play the next move in the first game, Player II needs information from the

second game. Let ax1(0) be Player I’s first move in the game G
x(1)
1 , according to

σ
x(1)
1 . Player II copies that move on to the first game.

• Next, Player I plays ax0(1) in the first game. To reply to that, Player II needs
information from the second game. There, ax1(0) has been played, and Player II
would like to copy information from the next game.

• So let ax2(0) be Player I’s first move in the game G
x(2)
2 , according to σ

x(2)
2 . Player

II copies that on to the second game. Now ax1(1) is I’s next move in the second
game, which Player II copies on to the first game.

• Etc.
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G
x(0)
0 I: ax0(0) ax0(1) ax0(2) . . . · · · −→ ax0

II: ax1(0) ax1(1) . . . · · · −→ ax1

G
x(1)
1 I: ax1(0)

;C�����
�����

ax1(1)

9A|||||
|||||

. . . · · · −→ ax1

II: ax2(0) . . . · · · −→ ax2

G
x(2)
2 I: ax2(0)

;C�����
�����

. . . · · · −→ ax2

II: . . . · · · −→ ax3

G
x(3)
3 I: . . . · · · −→ ax3

II: · · · −→ ax4

Figure 3: The Martin-Monk theorem: a “simulteneous exhibition” of Player II against
infinitely many opponents, in infinitely many games.

All of this is best represented in Figure 3:

Using this procedure the two players are able to fill in the entire table. For each game

G
x(n)
n let axn be the outcome of Player I’s moves, and axn+1 be the outcome of Player II’s

moves. Note that the same infinite sequence axn+1 is also the result of I’s moves in the

next game, G
x(n+1)
n+1 .

Since each game is won by Player I, the definition of the Wadge game implies that for
each n:

x(n) = 0 =⇒ (axn ∈ An ↔ axn+1 /∈ An+1)
x(n) = 1 =⇒ (axn ∈ An ↔ axn+1 ∈ An+1)

(∗)

Now we compare the procedure described above for different x, y ∈ 2N.

Claim 1. If ∀m ≥ n (x(m) = y(m)) then ∀m ≥ n (axm = aym).

Proof. Simply note that the values of axm and aym depend only on games G
x(m′)
m′ and

G
y(m′)
m′ for m′ ≥ m. Therefore, if x(m′) and y(m′) are identical, so are the corresponding

games and so are axm and aym. � (Claim 1)

Claim 2. Let n be such that x(n) 6= y(n) but ∀m > n (x(m) = y(m)). Then axn ∈
An ↔ ayn /∈ An.

Proof.

• Case 1: x(n) = 0 and y(n) = 1. By condition (∗) above it follows that

axn ∈ An ↔ axn+1 /∈ An+1

ayn ∈ An ↔ ayn+1 ∈ An+1.
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Since by Claim 1, axn+1 = ayn+1, it follows that

axn ∈ An ↔ axn+1 /∈ An+1 ↔ ayn+1 /∈ An+1 ↔ ayn /∈ An.

• Case 2: x(n) = 1 and y(n) = 0. Now (∗) implies that

axn ∈ An ↔ axn+1 ∈ An+1

ayn ∈ An ↔ ayn+1 /∈ An+1.

Again by Claim 1 it follows that

axn ∈ An ↔ axn+1 ∈ An+1 ↔ ayn+1 ∈ An+1 ↔ ayn /∈ An.

� (Claim 2)

Claim 3. Let x and y be such that there is a unique n with x(n) 6= y(n). Then
ax0 ∈ A0 ↔ ay0 /∈ A0.

Proof. By Claim 2 we know that axn ∈ An ↔ ayn /∈ An. Since x(n − 1) = y(n − 1) we
again have two cases:

• Case 1: x(n− 1) = y(n− 1) = 0. Then by (∗)

axn−1 ∈ An−1 ↔ axn /∈ An
ayn−1 ∈ An−1 ↔ ayn /∈ An

and therefore axn−1 ∈ An−1 ↔ ayn−1 /∈ An−1.

• Case 2: x(n− 1) = y(n− 1) = 1. Then by (∗) we have

axn−1 ∈ An−1 ↔ axn ∈ An
ayn−1 ∈ An−1 ↔ ayn ∈ An

and therefore again axn−1 ∈ An−1 ↔ ayn−1 /∈ An−1.

Now we go to the (n − 2)-th level. Since again x(n − 2) = y(n − 2) we get, by an
application of (∗), that axn−2 ∈ An−2 ↔ ayn−2 /∈ An−2. We go on like this until we reach
the 0-th level, in which case we get ax0 ∈ A0 ↔ ay0 /∈ A0, as required. � (Claim 3)

Now define
X := {x ∈ 2N | ax0 ∈ A0}

It is not hard to see that the map x 7−→ ax0 is continuous: if we fix the first n values of

ax0 , we see that they only depend on the first n games {Gx(i)i | i ≤ n}. Therefore X is
the continuous pre-image of A0 and therefore X ∈ Γ. But now Claim 3 says that X is
a flip set, contradicting Theorem 8.6.

9.3 Exercises

1. (a) Show that for any set A /∈ {∅,NN}, we have both ∅ <W A and NN <W A.

(b) Show that ∅ 6≤W NN and NN 6≤W ∅. Conclude that [∅]W = {∅} and
[NN]W = {NN}.

(c) If (P,≤) is a partial order, then a subset A ⊆ P is called an antichain if
∀p, q ∈ A (p 6≤ q ∧ q 6≤ p). Show that in the partial order (Γ,≤W ), assuming
Det(Γ), antichains have size at most 2.
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