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Introduction

Game theory

Game theory is an extremely diverse subject, with applications in

Mathematics

Economics

Social sciences

Computer science

Logic

Psychology

etc.
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Introduction

What we will focus on

We focus on games in the most idealized sense.

Part I. Early history of game theory (Zermelo, König, Kalmár) and
infinite games (Gale-Stewart, Martin).

Finite games
Finite-unbounded games
Infinite games

Part II. Applications of games in analysis, topology and set theory.

We will see a gradual Paradigm shift:

Use mathematical Use (infinite) games
objects to study =⇒ to study mathe-
games matical objects
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Introduction

Which type of games?

When we say “game” we will always mean

Two-player, perfect information, zero sum game

There are two players, Player I and Player II. Player I starts by making
a move, then II makes a move, then I again, etc.

At each stage of the game, both players have full knowledge of the
game.

Player I wins iff Player II loses and vice versa.
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Introduction

Games we want to model
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Introduction

Games we do not want to model

We will not consider games with:

An element of chance
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Introduction

Games we do not want to model

Specifically we will not consider games with:

Moves taken simultaneously
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Introduction

Games we do not want to model

Specifically we will not consider games with:

Players possessing information of which others are unaware
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Introduction

Length of the game

How long does the game last?

1 Finite game: there is a pre-determined N, such that any game lasts
at most N moves.

2 Finite-unbounded game: the outcome of the game is decided at a
finite stage, but when this happens is not pre-determined.

3 Infinite game: the game goes on forever, and the outcome is only
decided “at the limit”.
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Part I Finite games

Part I

1. Finite games
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Part I Finite games

Chess

The most well-known of all games of this kind —Zermelo

Chess is a two-player, perfect information game.

Is it zero-sum? Let’s just say: a draw is a win by Black.

Is it finite? Yes, assuming the threefold repetition rule. There are 64
squares, 32 pieces, so at most 6433 unique positions. So chess ends
after 3 · 6433 moves.
(We could easily find a much lower estimate, but we don’t care).
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Part I Finite games

Coding chess

Assign a unique natural number ≤ 6433 to each position of chess.

White:

x0 x1 x2 . . .

Black:

y0 y1 y2

Each game has length n for some n ≤ 3 · 6433. Let LEGAL be the set of
those sequences which correspond to a sequence of legal moves according
to the rules of chess. Let WIN ⊆ LEGAL be those sequences that end on a
win by White.

Then “chess” is completely determined by the two sets LEGAL and WIN.
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Part I Finite games

General finite game

Definition (Two-person, perfect-information, zero-sum, finite game)

Let N be a natural number (the length of the game), let A ⊆ N2N . The
game GN(A) is played as follows:

Players I and II take turns picking one natural number at each step of
the game.

I: x0 x1 . . . xN−1

II: y0 y1 . . . yN−1

The sequence s := 〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 is called a play of
the game GN(A).

Player I wins the game GN(A) iff s ∈ A, otherwise Player II wins.

A = pay-off set for Player I; N2N \ A = pay-off set for Player II.
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Part I Finite games

More on the definition

Notice two conceptual changes:

1 A game has to last exactly N moves, not ≤ N moves.

2 There is no mention of legal or illegal moves.

This is for technical reasons and does not restrict the class of games.

1 After a game ends, assume the rest are 0’s.

2 Any move can be made, but any player who makes an illegal move
immediately loses.

This information can be encoded in one set A.

Note: the number of possible options at each move can be infinite!
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Part I Finite games

Strategies

Definition (Strategy)

A strategy for Player I is a function σ :
⋃

n<N N2n −→ N.

A strategy for Player II is a function τ :
⋃

n<N N2n+1 −→ N.

Definition

If t = 〈y0, . . . , yN−1〉 then σ ∗ t is the play of the game GN(A) in
which I plays according to σ and II plays t.

If s = 〈x0, . . . , xN−1〉 then s ∗ τ is the play of the game GN(A) in
which II plays according to τ and I plays s.
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Part I Finite games

Example

Example: a play of GN(A) where I uses σ and II plays t := 〈y0, . . . , yN−1〉.

I:

x0 := σ(〈〉) x1 := σ(〈x0, y0〉) x2 := σ(〈x0, y0, x1, y1〉)

II:

y0 y1 . . .

The result of this game is denoted by σ ∗ t.
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Part I Finite games

Winning strategies

Definition (Winning strategy)

A strategy σ is winning for Player I iff ∀t ∈ NN (σ ∗ t ∈ A).

A strategy τ is winning for Player II iff ∀s ∈ NN (s ∗ τ /∈ A).

Obviously, I and II cannot both have winning strategies.

Definition (Determinacy)

The game GN(A) is determined iff either Player I or Player II has a
winning strategy.
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Part I Finite games

Back to real chess

What about the draw in actual chess?

Define two games:

“White-chess” = draw is a win by White.

“Black-chess” = draw is a win by Black.

Both games are determined, so:

White wins
White-chess

Black wins
White-chess

White wins
Black-chess

White wins
chess

Impossible

Black wins
Black-chess

Draw Black wins
chess
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Part I Finite games

Back to real chess

Corollary

In Chess, either White has a winning strategy or Black has a winning
strategy or both White and Black have “drawing strategies”

Of course, this is a purely theoretical result, and only tells us that one of
the above must exist. It does not tell us which one it is.
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Part I Finite-unbounded games

2. Finite-unbounded games
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Part I Finite-unbounded games

Unbounded chess

Consider again chess, but without the threefold repetition rule.

Such a game can remain forever undecided (e.g. perpetual check).

Notice that this is conceptually different from a draw (which is decided at
some finite stage).

Potential problems in formalizing:

We cannot extend all games to some fixed length N.

We must specify when a game has been completed.
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Part I Finite-unbounded games

General finite-unbounded games

Notation: N∗ :=
⋃

n Nn (finite sequences of natural numbers).

Definition (Two-person, perfect-information, zero sum, finite-unbounded game )

Let AI and AII be disjoint subsets of N∗. The game G<∞(AI,AII) is played
as follows:

Players I and II take turns picking numbers at each step.

I: x0 x1 x2 . . .

II: y0 y1 y2 . . .

Player I wins G<∞(AI,AII) iff for some n, 〈x0, y0, . . . , xn, yn〉 ∈ AI and
Player II wins G<∞(AI,AII) iff for some n, 〈x0, y0, . . . , xn, yn〉 ∈ AII.

The game is undecided iff 〈x0, y0, . . . , xn, yn〉 /∈ AI ∪ AII for any
n ∈ N.

AI = pay-off set for Player I, AII = pay-off set for Player II.
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Part I Finite-unbounded games

Strategies

Definition (Strategy)

A strategy for Player I is a function σ : {s ∈ N∗ | |s| is even } −→ N.

A strategy for Player II is a function τ : {s ∈ N∗ | |s| is odd } −→ N.

For s, t ∈ N∗, σ ∗ t and s ∗ τ are defined as before.

However, now each Player can have two goals in mind:

1 Win the game, or

2 Prolong the game ad infinitum.

So here we are dealing with two distinct concepts: a winning strategy
and a non-losing strategy.

“Perpetual check” in chess = non-losing but not winning strategy.
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Part I Finite-unbounded games

Winning/non-losing strategies

Notation:

NN = {f : N→ N} (infinite cartesian product of copies of N).

For x ∈ NN and n ∈ N, x�n := initial segment of x of length n.

Also, assume (for technical reasons) that AI and AII are closed under end-extension.

Definition (Non-losing strategy)

Let G<∞(AI,AII) be a finite-unbounded game.

1 A strategy ∂ is non-losing for Player I iff ∀t ∈ N∗ (σ ∗ t /∈ AII).

2 A strategy ρ is non-losing for Player II iff ∀s ∈ N∗ (s ∗ ρ /∈ AI).

Definition (Winning strategy)

1 A strategy σ is winning for Player I iff ∀y ∈ NN ∃n ((σ ∗ (y�n)) ∈ AI).

2 A strategy τ is winning for Player II iff ∀x ∈ NN ∃n (((x�n)∗ τ) ∈ AII).
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Part I Finite-unbounded games

Determinacy

What does determinacy mean in the finite-unbounded context?

Definition (Determinacy)

A game G<∞(AI,AII) is determined if either I has a winning strategy, or
II has a winning strategy, or both I and II have non-losing strategies (in
which case the game will remain undecided ad infinitum).

Theorem (Zermelo-König-Kalmár? Gale-Stewart?)

Finite-unbounded games are determined.
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Part I Finite-unbounded games

Towards the proof...

Actually, we prove a stronger result:

Lemma

Let G<∞(AI,AII) be a finite-unbounded game.

1 If I does not have a winning strategy, then II has a non-losing strategy.

2 If II does not have a winning strategy, then I has a non-losing strategy.

Before proving the lemma, a question: suppose I does not have a winning
strategy in G<∞(AI,AII). Will this always remain the case? I.e., will I
never have a winning strategy at any stage of the game?
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Part I Finite-unbounded games

Towards the proof... (continued)

After all, Player II might make a mistake, so that Player I will obtain a
winning strategy due to the mistake II made.

But what if II follows the strategy “make no mistakes”?

This is exactly what we need!

Definition

If G<∞(AI,AII) is a finite-unbounded game and s ∈ N2n, then
G<∞(AI,AII; s) denotes the game starting with position s, i.e., assuming
that the first n moves are given by s.

Formally, G<∞(AI,AII; s) = G<∞(AI/s,AII/s) where

AI/s := {t ∈ N∗ | s_t ∈ AI}

AII/s := {t ∈ N∗ | s_t ∈ AII}
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Part I Finite-unbounded games

Proof

Lemma

Let G<∞(AI,AII) be a finite-unbounded game.

1 If I does not have a winning strategy, then II has a non-losing strategy.

2 If II does not have a winning strategy, then I has a non-losing strategy.

Proof. We only prove 1. Suppose I has no w.s. We will define ρ such that
for any s ∈ N∗, I does not have a w.s. in G<∞(AI,AII; s ∗ ρ), by induction
on the length of s.

Initial case is s = 〈〉, by assumption.

Suppose ρ is defined on all s of length ≤ n and I does not have a w.s. in
G<∞(AI,AII; s ∗ ρ). Fix s with |s| = n.

Claim.

∀x0 ∃y0 such that I does not have a w.s. in G<∞(AI,AII; (s ∗ ρ)_ 〈x0, y0〉).
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Part I Finite-unbounded games

Proof (continued)

Claim.

∀x0 ∃y0 such that I does not have a w.s. in G<∞(AI,AII; (s ∗ ρ)_ 〈x0, y0〉).

Proof of Claim.

Otherwise, ∃x0 such that ∀y0 I has a w.s., say σx0,y0 , in
G<∞(AI,AII; (s ∗ ρ)_ 〈x0, y0〉). But then I already had a w.s. in
G<∞(AI,AII; s ∗ ρ), namely:

“play x0, and for any y0 which II plays,
continue playing according to strategy σx0,y0”.

This contradicts the I.H.
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Part I Finite-unbounded games

Proof (continued)

Now extend ρ by defining, for every x0, ρ((s ∗ ρ)_ 〈x0〉) := y0, for the y0

given by the Claim. So ρ is defined on sequences of length n + 1 and
satisfies I.H.

Remains to prove: ρ is non-losing.

But if not, then s ∗ ρ ∈ AI for some s ∈ N∗. So I has a w.s. in
G<∞(AI,AII; (s ∗ ρ)), namely the trivial (empty) strategy—contradiction!

Corollary (Zermelo-König-Kalmár? Gale-Stewart?)

Finite-unbounded games are determined.
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Part I Finite-unbounded games

Upper bound on number of moves

Question (Zermelo, 1912). Assuming a player has a w.s., is there one
(uniform) N ∈ N such that this player can win in at most N moves,
regardless of the moves of the opponent?
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Part I Finite-unbounded games

Upper bound on number of moves

Question (Zermelo, 1912). Assuming a player has a w.s., is there one
(uniform) N ∈ N such that this player can win in at most N moves,
regardless of the moves of the opponent?

Theorem (Zermelo/König)

Assume I has a w.s. σ in G<∞(AI,AII). Assume that, at each stage, there
are at most finitely many legal moves II can make. Then there is N ∈ N
such that I wins in at most N moves. Similarly for Player II.

History: This was claimed by Zermelo, but the proof contained a gap
which König filled by introducing the now well-known König’s Lemma:
“every finitely branching tree with infinitely many nodes contains an
infinite path”.
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Part I Finite-unbounded games

Proof

Proof.

Let σ be a fixed w.s., and assume, towards contradiction, that the claim is false. Let T

be the tree of all finite sequences t ∈ N∗ such that σ ∗ t /∈ AI, ordered by end-extension.〈
y ′0, y

′′′
1

〉
. . .〈

y ′0
〉 ffffffff

XXXXXXXX . . .〈
y ′0, y

′′
1

〉
. . .

〈〉

kkkkkkkkkkkk

SSSSSSSSSSSS . . . 〈
y0, y ′1

〉
. . .

〈y0〉
ffffffff

YYYYYYYY . . .

〈y0, y1〉 . . .

Since II has finitely many options, the tree is finitely branching. Since for every N, I
does not win in at most N moves, the tree has infinitely many nodes. By König’s
Lemma, it has an infinite branch, which generates y := 〈y0, y1, y2, . . . 〉 ∈ NN.

But then, σ ∗ (y�n) is not in AI for any n ∈ N! So σ is not a winning strategy.
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Part I Infinite games

3. Infinite games
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Part I Infinite games

Motivation

The finite-unbounded formalism was somewhat clumsy, because we needed
infinite sequences x ∈ NN to formulate winning strategies correctly, yet we
insisted on games being decided at a finite stage.

What for?

Definition (Two-person, perfect-information, zero-sum, infinite game)

Let A ⊆ NN. The game G (A) is played as follows:

Players I and II take turns picking numbers at each step.

I: x0 x1 x2 . . .

II: y0 y1 y2 . . .

Let z := 〈x0, y0, x1, y1, x2, y2, . . . 〉 ∈ NN be the play of the game
G (A). Player I wins if and only if z ∈ A, otherwise II wins.

A = pay-off set for Player I; NN \ A = pay-off set for Player I.
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Part I Infinite games

Strategies

Definition (Strategy)

A strategy for Player I is a function σ : {s ∈ N∗ | |s| is even } −→ N.
A strategy for Player II is a function τ : {s ∈ N∗ | |s| is odd } −→ N.

For y ∈ NN, σ ∗ y is the infinite play of the game where I follows σ
and II plays y ∈ NN. Likewise for x ∗ τ .

Definition (Winning strategy)

A strategy σ is winning for Player I iff ∀y ∈ NN (σ ∗ x ∈ A).

A strategy τ is winning for Player II iff ∀x ∈ NN (x ∗ τ /∈ A).
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Part I Infinite games

Examples

We have seen examples of finite games (chess, checkers, etc.) and
finite-unbounded games (chess without the threefold repetition rule, games
on infinite boards etc.) What is an interesting example of an infinite game?

I: x0 x1 x2 . . .
II: y0 y1 y2 . . .

Player I wins iff infinitely many 5’s have been played.

Player I wins iff
∑∞

i=0

(
1

xi +1 + 1
yi +1

)
<∞.

Same as above, but with the additional condition that II must play a
bigger number than I’s previous move.
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Part I Infinite games

Some cardinality arguments

Lemma

If A is countable then II has a winning strategy in G (A).

Proof.

Let {a0, a1, a2, . . . } enumerate A. Let τ be the strategy “at your i-th
move, play ai (2i + 1) + 1”. Let z := x ∗ τ for some x . By construction, for
each i , z(2i + 1) 6= ai (2i + 1). Hence, for each i , z 6= ai .
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Part I Infinite games

More cardinality arguments

Lemma

If |A| < 2ℵ0 then I cannot have a winning strategy in G (A).

Proof.

Assume that σ is winning for I. Then {σ ∗ y | y ∈ NN} ⊆ A. But it is easy
to see that if y 6= y ′ then also σ ∗ y 6= σ ∗ y ′, so there is an injection from
NN to {σ ∗ y | y ∈ NN}.

This is only relevant if CH is false (otherwise it follows from the previous
lemma).
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Part I Infinite games

Determinacy

Definition (Determinacy)

The game G (A) is determined iff either Player I or Player II has a winning
strategy.

Theorem (Mycielski-Steinhaus)

Assuming AC, there exists an A ⊆ NN such that G (A) is not determined.
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Part I Infinite games

Towards the proof

The proof is by induction on ordinals < 2ℵ0 .

Lemma

Assuming AC, for every set X there exists a well-ordered set (I ,≤), such
that

1 |I | = |X |, and

2 ∀α ∈ I , |{β ∈ I | β < α}| < |I | = |X |.
I is called the index set for X .

Proof.

If you are familiar with transfinite ordinals: take I := κ, where κ = |X |,
i.e., κ is the smallest ordinal in bijection with X .
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Part I Infinite games

Proof

Proof of theorem. First, notice that a strategy is a function from N∗ to
N and N∗ is countable. So there are 2ℵ0 strategies. Use I with |I | = 2ℵ0 to
enumerate the strategies of I and II:

{σα | α ∈ I}

{τα | α ∈ I}

For each α ∈ I , let

Plays(σα) := {σα ∗ y | y ∈ NN}

Plays(τα) := {x ∗ τα | x ∈ NN}

We will produce two disjoint subsets of NN: A = {aα | α ∈ I} and
B = {bα | α ∈ I}, by induction on α ∈ I .
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Part I Infinite games

Proof (continued)

At stage α, suppose that for all β < α, aβ and bβ have already been
chosen. We will chose aα and bα.

Since {bβ | β < α} is in bijection with {β ∈ I | β < α}, it has cardinality
< 2ℵ0 . But as we saw, |Plays(τα)| = 2ℵ0 . Hence, there is at least one
element in Plays(τα) \ {bβ | β < α}, so pick some aα from there.

Do the same for {aβ | β < α} ∪ {aα}. This also has cardinality < 2ℵ0 so
we can pick bα in Plays(σα) \ ({aβ | β < α} ∪ {aα}).

By construction, A ∩ B = ∅.
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Part I Infinite games

Proof (continued)

Claim

G (A) is not determined.

Proof.

Let σ be any strategy for I. Then this must be a σα for some α. But at
“stage α” of the inductive procedure, we explicitly picked bα ∈ Plays(σα).
But bα /∈ A, so σα cannot be winning.

Similarly, if τ is a strategy for II then τ = τα for some α. Then
aα ∈ Plays(τα), so again τα cannot be winning.

By a similar argument G (B) is not determined either.
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Part I Infinite games

Complexity of A ⊆ NN

This proof was non-constructive, i.e., the set A produced has no
definition.

The most convenient way to measure “complexity” of subsets of NN is
topology.
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Part I Infinite games

Topology on the Baire space

Notation: s � x means “s is an initial segment of x”.

Definition

1 For every s ∈ N∗, let O(s) := {x ∈ NN | s � x}.
2 The standard topology on NN is generated by {O(s) | s ∈ N∗}. The

corresponding space is called Baire space.

Equivalently: use the product topology generated by N with the discrete
topology.

Equivalently: use the metric defined by

d(x , y) :=

{
0 if x = y
1/2n where n is least s.t. x(n) 6= y(n)
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Part I Infinite games

Some properties of this topology

Some properties:

NN is a Polish space (second-countable, completely metrizable).

NN is Hausdorff; in fact it is totally separated
(∀x 6= y there are open U,V such that x ∈ U, y ∈ V and U ∩ V = NN.)

NN is zero-dimensional (basic open sets are clopen).

NN is homeomorphic to R \Q.

Set theorists typically prefer working with NN instead of R (in fact we call
elements of NN real numbers).
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Part I Infinite games

Gale-Stewart Theorem

Theorem (Gale-Stewart)

If A ⊆ NN is open or closed then G (A) is determined.

The proof is a re-statement of the determinacy of finite-unbounded games.

Proof: Suppose A is open and I has no w.s. Then, as we did before,
construct a strategy ρ for II such that I still has no w.s. in the game
G (A; (s ∗ ρ)) for any s ∈ N∗. But now ρ must be winning, because, if not,
then there is some y such that ρ ∗ y ∈ A. But since A is open, there is a
basic open set O(s) ⊆ A such that ρ ∗ y ∈ O(s). But this means
s � (ρ ∗ y), so I does have a w.s. (the trivial strategy) in G (A; s):
contradiction.
Similar argument for closed A.
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Part I Infinite games

Finite-unbounded vs. open/closed

In fact, there is a precise correspondence between finite-unbounded
games G<∞(AI,AII) and infinite games G (A) with open pay-off sets A.

If G<∞(AI,AII) is given, let

ÃI :=
⋃
{O(s) | s ∈ AI}

ÃII :=
⋃
{O(s) | s ∈ AII}

G (ÃI) means undecided = win for II.
G (NN \ ÃII) means undecided = win for I.

(recall “White-chess” and “Black-chess” in the finite context).

Conversely, if A is open we can define AI := {s | O(s) ⊆ A} and
AII := {s | O(s) ∩ A = ∅}.
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Part I Infinite games

Beyond open and closed

Gale-Stewart, 1953. G (A) is determined for open and closed A.

Philip Wolfe, 1955: G (A) is determined for Fσ and Gδ sets A.

Morton Davis, 1964: G (A) is determined for Fσδ and Gδσ sets A.

Tony Martin, 1975: G (A) is determined for Borel sets A.
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Part I Infinite games

Borel determinacy

Unfortunately, it is beyond the scope of this course to prove Borel
determinacy.

If you want to read the proof, I recommend
this book (pages 140–146).

Some ideas involved in the proof:

“Unravel” complex game to one with
lower complexity.

Iterate until you reach open/closed
pay-off set.

The unraveling involves games with
moves not in N but in P(N),
P(P(N)), P(P(P(N))) and so on
(iterations of the power set all the
way until ω1).
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Part I Infinite games

Donald A. Martin (UCLA)
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Part I Infinite games

Beyond Borel

Of course, you can go further: analytic sets, coanalytic sets . . . projective
sets (recursively obtained from Borel sets using projections
(Suslin-operation) and complements).

For classes of sets beyond Borel, determinacy postulates are independent
of ZFC, i.e., they can consistently be true and false.

In set theory, it is particularly popular to look at large cardinal axioms
(postulating the existence of “very large” objects, whose existence cannot
be proved from ZFC but is thought an intuitively “natural” extension of
ZFC).
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Part I Infinite games

Large cardinal axioms

Stronger axioms imply that larger classes are determined:

Tony Martin, 1970: if there exists a measurable cardinal then G (A)
is determined for analytic A.

1975–1989: some other results . . .

Martin-Steel, 1989: if there exist n Woodin cardinals and a
measurable cardinal above them, then G (A) is determined for every
Π1

n+1 set A.

Martin-Steel, 1989: If there are infinitely many Woodin cardinals,
then G (A) is determined for every projective A.
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Part I Infinite games

Even further?

Already in 1962, Mycielski and Steinhaus proposed the Axiom of
Determinacy

AD : All games G (A) are determined.

Were they crazy? In fact, the title of their paper was

On a mathematical axiom contradicting the axiom of choice.

AD is consistent with ZF (without choice), so we can use the theory
ZF + AD instead of ZFC.
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Part I Infinite games

More on the Axiom of Determinacy

Why is AD so interesting? Because it implies many regularity properties
for subsets of R. For example, AD⇒ all sets are Lebesgue-measurable,
have the Baire Property and the Perfect Set Property.

However, AD can be seen in two ways:

1 ZF + AD is an alternative mathematical theory, competing with ZFC,
or

2 to say that something follows from ZF + AD is just une façon de
parler for things that hold in the definable/constructive fragment of
mathematics.
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Part I Infinite games

What’s next?

In Part II, we will look at consequences of determinacy. All the results
will have the following structure: given a desirable property of sets (e.g.
Lebesgue-measurability), construct a special game G ′(A), and prove that
if G ′(A) is determined then all sets A satisfy the desired property (e.g. are
Lebesgue-measurable). Typically, the moves of G ′(A) are not natural
numbers, but some other objects that can be coded by natural numbers.

In the context of AD, the above immediately implies that all sets A satisfy
the desired property. In terms of ZFC, such a statement is meaningless.

However, these results can also be seen as postulating something about a
limited class of sets. If Γ is a collection of subsets of NN (or the real
numbers), satisfying certain closure properties (e.g., closed under
continuous pre-images), then the determinacy of all sets in Γ implies
that all sets in Γ satisfy the desired property.
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End of Part I
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