Mini-lecture on Gödel's Constructible Universe

January Project 2025 Forcing and Independence Proofs

Yurii Khomskii

Reflection Theorems

Let ZFC^{*} be any sufficiently large finite fragment of the ZFC-axioms. Then:

• Reflection #1. For any a there is a set model M such that $a \subseteq M$, $M \models \mathsf{ZFC}^*$ and $|M| = \max(\aleph_0, |a|)$.

(However: M is generally not transitive.)

• Reflection #2. For any a there is a set model M such that $a \subseteq M$, $M \models \mathsf{ZFC}^*$ and M is transitive. LM = V_d is possible

(However: |M| may be very large.)

• Reflection #3. For any transitive set a there is a set model M such that $a \subseteq M$, $M \models \mathsf{ZFC}^*$, M is transitive and $|M| = \max(\aleph_0, |a|)$.

$$\underline{\mathbf{F}}_{20}: \quad \mathbf{a} = \left\{ \vartheta_{20} \right\}$$

Definable => in FOL, lay. of net theory

Definition

• A subset $Y \subseteq X$ is definable over X if there is a formula φ and parameters $a_1 \dots a_n \in X$ such that

$$Y = \{ y \in X \mid X \models \varphi(y, a_1 \dots a_n) \}.$$

• $Def(X) = \{Y \subseteq X \mid Y \text{ is definable over } X\}.$

Definition

• $L_0 := \emptyset$.

•
$$L_{\alpha+1} := \operatorname{Def}(L_{\alpha}).$$

•
$$L_{\lambda} := \bigcup_{\alpha < \lambda} L_{\alpha} \text{ (for } \lambda \text{ limit)}$$

$$\mathbf{L} := \bigcup_{\alpha \in \mathrm{Ord}} L_{\alpha}$$

•
$$L_{0} = V_{0} = \phi$$

• $L_{n} = V_{n}$ for $n < \omega$ (because fin. set are definite)
• $L_{w} = V_{w}$
• $L_{w+1} \stackrel{?}{=} V_{w+1}$
• $L_{w+1} \stackrel{?}{=} V_{w+1}$
• $L_{w+1} = V_{w+1} = 2^{N_{0}}$
• $L_{w+1} = X_{0}$, because there are only offy many
formulas
 $N_{w+2} = 2^{\binom{2^{N_{0}}}{2}}$ while $|L_{w+2}| = N_{0}$

Lemma: For x>w, |Lx| = |x|. <u>Proaf</u>: Juduction + (Def(x)) = |x| if x infinite. <u>Facts:</u> Ly is transitive

Define: xel => pl(x) := least & s.l. xe Latt.

 Theorem

 $L \models ZF$

• Power Set: let
$$x \in L_{3}$$
 so $x \in L_{d}$.
Need to find $y \in L$ st.
 $L \models y = P(x)$
 $L \models \forall z (z \in y \iff z \in x)$)
For even $z \in x$, if $z \in L$ then (of
 $a_{2} := p_{L}(z)$ $(a_{2} \times a)$
Let $\beta := p_{2}(z)$ $(a_{2} \times a)$
Let $\beta := p_{2} f a_{2} | z \in x$ and $z \in L_{j}^{2}$
 $P(x) := \int z | z \leq x \land z \in L_{j}^{2} = P(x) \land L \in L_{j}^{2}$
Then : use Comprehension in L.

• For Comprehension: you need Reflection to shift
from "
$$L \models \varphi$$
" to " $L_S \not\models \varphi$ ".

••••

•

 $\mathbf{L} \models \mathsf{AC}$ (without assuming AC)

Proof: Juductively. Assume La is wellowlered by
$$<_{\alpha}$$
. It follows $L_{\alpha}^{<\omega}$ are wellowdered by $\varrho_{\gamma} = \frac{lex}{d}$.

Nous: défine < x+1 on La+1:

• Given
$$x, y \in L_{d+1}$$
:
(a) If $x, y \in L_d \Rightarrow (x <_{d+1} y \Leftrightarrow x <_{d} y)$
(c) If $x \in L_d$, $y \in L_{d+1} \setminus L_d \Rightarrow x <_{d+1} y$
(3) If $x, y \in L_{d+1} \setminus L_d \Rightarrow$
Definable by some $q_1 \neq q_2$ and $q_1 = q_1 \in L_d$.

× the smallest [g] and
x is def- by
$$\varphi(..., q_{1...}, q_{n})$$

is the smallest [4] and

 $X = \left\{ z \mid L_{\alpha} \models \varphi \left(z_{1} a_{1} \dots a_{n} \right) \right\}$ $\gamma = \{z \mid L_{\alpha} \neq \psi(z, B_1, \dots, B_k)\}$ $\langle r \varphi^{1}, q, ..., q_{u} \rangle$ < "4", Bi Bu> which comes first? $L_{\alpha+1}$

Theorem

 ${\bf L}$ is absolute for transitive models.

More specifically, the function $\alpha\mapsto L_\alpha$ is absolute for transitive models.

Corollary: For any transition M, (HFZF*)

$$x \in M \iff L_x \in M$$

Proof: Sketchy: First-order.logic ($u \neq q$)
is defined by recursion
using basic operation;
 \Rightarrow absolute.
 $L_x := defined by recursion using
 $Def(x) \Rightarrow obsolute.$
Chech: $Def(x)^M = Def(x)$
:
B$

Definition

The statement " $\forall x \exists \alpha \in Ord \ (x \in L_{\alpha})$ " is called the Axiom of Constructiblity, and usually abbreviated by

 $\mathbf{V} = \mathbf{L}.$

Corollary 1

$\mathbf{L} \models (\mathbf{V} = \mathbf{L})$

Corollary 2

If M is any transitive class model of ZF^{\bigstar} with $\mathrm{Ord} \subseteq \mathbf{M}$, then $\mathbf{L} \subseteq \mathbf{M}$.

Corollary 3

If M is any transitive class model of ZF + V = L with $Ord \subseteq M$, then L = M.

NB: ZF* has to be enough to prove

absoluteurss of La's.

Definition

If M is a transitive set model, then the height of M, denoted by o(M), is defined as the least ordinal not in M (alternatively, $o(M) := \text{Ord} \cap M$).

Corollary 4 $L_{\delta} \models (\mathbf{V} = \mathbf{L})$ for all limit δ .

Corollary 5

If M is any set model of ZF with height δ , then $L_{\delta} \subseteq M$.

$$\alpha \in M \Rightarrow \alpha < \delta \Rightarrow L_{\alpha} \in M$$

 $L_{\delta} = \bigcup_{\alpha < \delta} L_{\alpha} \in M$

Corollary 6

If M is any set model of ZF + V = L with height δ , then $M = L_{\delta}$.

$$M \models (V=L)$$

$$M \models \forall x \exists x \times eL_{x}$$

$$\forall x \in M \quad \exists x \in O.d \cap M \quad (x \in L_{x})^{M}$$

$$\forall x \in M \quad \exists x < \delta \quad (x \in L_{x})$$

$$S \quad x \in M \quad \Rightarrow \quad x \in \bigcup_{x < \delta} L_{x} = L_{\delta} \quad S_{s} \quad M \in L_{\delta}.$$

Only $M \neq ZF + (V=L)$ are LS'Swhere S = O(M) Condensation Lemma

Suppose $\mathbf{V} = \mathbf{L}$. Any $x \subseteq \omega$ is contained in L_{ω_1} .

More generally, any $x\subseteq \kappa$ is contained in $L_{\kappa^+}.$

Proof: Let
$$x \in w$$
 and let
 $\alpha = w \circ \xi x \xi$ (to wake if
 $travsitie$)
By Reflection #3: thore
 $\beta M \notin zF^* + V = L$, s.t.
 $a \in M$
 $|M| = m \circ x (|a|, n'o) = N =$
 $M = travsitie$

But then:
$$M = LS$$
, for $S = O(M)$.
What's $O(M) < \omega_1$ (a countable ordinal)
 $(O(M) = M \circ O \circ d$ and $|M| = \omega$)

So
$$\varepsilon < \omega_1$$
.
So $\alpha \in L_{\varepsilon} \subseteq L_{\omega_1}$.
So $\times \in L_{\omega_1}$.

$\begin{array}{c} \mathsf{Corollary} \\ \mathbf{L} \models \mathsf{GCH} \end{array}$

_

Proof: Assume V=L.
Since any
$$x \in K$$
 is in L_{k+} , so
 $P(w) \in L_{k+}$
 $2^{K} = |P(k)| \leq |L_{k+}| = |k+| = k^{+} \leq 2^{K}$