Hausaufgaben 8. Woche

Abgabe: 06.06.2016, bis 12:15

1. Schreiben Sie den P-Namen 3 vollständig.

[1 Punkte]

- 2. Seien $\sigma, \tau \in M^{\mathbb{P}}$ und G ein \mathbb{P} -generisches Filter über M. Zeigen Sie: $(\sigma \cup \tau)_G = \sigma_G \cup \tau_G$. [2 Punkte]
- 3. Sei $\mathbb P$ nicht-atomar, und sei M ein abzählbares, transitives Modell. Beweisen Sie:

 $|\{G:G \text{ ist ein } \mathbb{P}\text{-generisches Filter "uber } M\}| = 2^{\aleph_0}.$ [3 Punkte]

4. Sei $\mathbb{P} = \mathsf{Fn}(\omega, \omega)$, M ein abzählbares, transitives Modell mit $\mathbb{P} \in M$, und G \mathbb{P} -generisch über M. Sei weiterhin $f_G = \bigcup G$. Zeigen Sie direkt, dass $f_G \in M[G]$, indem Sie einen konkreten \mathbb{P} -namen für f_G konstruieren. [4 Punkte]

 $\mathit{Hinweis:}\ \mathrm{Sei}\ \Phi = \{\left\langle\left\langle n,m\right\rangle^{\vee},p\right\rangle : p\in\mathbb{P}\ \mathrm{und}\ \ldots\}.$ Hier steht " $\left\langle n,m\right\rangle^{\vee}$ " für den kanonischen Namen für $\left\langle n,m\right\rangle$ (als Menge in M).