Hausaufgaben 6. Woche

Abgabe: 23.05.2016, bis 12:15

- 1. Beweisen Sie die folgende Behauptungen:
 - (a) Sei M ein elementares Submodell von N, also $(M, \in) \leq (N, \in)$. Sei $c \in N$ ein Element, welches in N eindeutig definiert ist: das heisst, es gibt eine Aussage $\phi(x)$, so dass:

$$N \models \forall x (\phi(x) \iff x = c).$$

Dann ist $c \in M$. [2 Punkte]

- (b) Wenn $M \preceq H_{\omega_2}$, dann $\omega_1 \in M$. [0.5 Punkt]
- (c) Wenn $M \preceq H_{\aleph_{\omega}}$, dann $\omega_n \in M$ für jedes $n \in \omega$. [0.5 Punkt]
- (d) Wenn $M \preceq V_{\omega}$, dann $M = V_{\omega}$. [3 Punkte]

Hinweis: Beweisen Sie per \in -Induktion, dass alle $x \in V_{\omega}$ in V_{ω} definiert sind (im Sinne von (a)).

2. Zeigen Sie: wenn $M \preceq H_{\omega_1}$ dann ist M transitiv. [4 Punkte]

Hinweis: Sei $X \in M$. Dann gibt es in H_{ω_1} eine surjektieve Abbildung $f : \omega \to X$. Benutzen Sie Elementarität, um eine solche Abbildung in M zu finden.

3. (BONUS) Der Reflexionssatz zeigt, dass jede endliche Teilmenge $\Gamma \subseteq \mathsf{ZFC}$ ein Mengenmodell hat. Wir wissen aber, dass wir in ZFC nicht beweisen können, dass es ein Mengenmodell für ganz ZFC gibt. Warum widerspricht das nicht dem Kompaktheitssatz der Prädikatenlogik? [2 Bonuspunkte]