Hausaufgaben 2. Woche

Abgabe: 18.04.2016, bis 12:15

- 1. Eine Aussage heisst Σ_1 , wenn sie die Form $\exists x_0 \dots \exists x_k \ \theta$ hat, wo θ eine Δ_0 -Aussage ist. Eine Aussage heisst Π_1 , wenn sie die Form $\forall x_0 \dots \forall x_k \ \theta$ hat, wo θ eine Δ_0 -Aussage ist.
 - Sei M ein transitives Modell. Zeigen Sie, dass für alle Σ_1 -Aussagen ϕ gilt: wenn $M \models \phi$ dann ϕ , und für alle Π_1 -Aussagen ψ gilt: wenn ψ dann $M \models \psi$. [2 Punkte]
- 2. In der Vorlesung haben wir die Relativierung ϕ^M definiert. Dabei wird nur der "Träger" des Klassen-Modells verändert, die Epsilon-beziehung \in bleibt aber gleich.

Sei M nun eine Klasse und E eine (Klassen)-Relation auf M. Dann ist $\phi^{(M,E)}$ die Aussage, die aus ϕ entsteht, wenn " $\forall x$ " und " $\exists x$ ", wie zuvor, durch " $\forall x \in M$ " bzw. " $\exists x \in M$ " ersetzt werden, und überdies auch jedes " \in " durch "E" ersetzt wird.

- (a) Geben Sie eine formale rekursive Definition von $\phi^{(M,E)}$. [1 Punkt
- (b) Was bedeutet formal die Aussage "in ZFC kann bewiesen werden, dass (M, E) ein Modell von T ist"? [1 Punkt]
- 3. Sei nun F eine bijektive (Klassen)-funktion von V nach V. Definieren wir E auf $V \times V$ indem wir setzen: $xEy :\Leftrightarrow x \in F(y)$. ZFC^- steht für ZFC ohne Fundierungsaxiom.
 - (a) Wir behaupten, dass (V, E) ein Modell von ZFC^- ist. Wählen Sie zwei beliebige ZFC^- -Axiome aus, und beweisen Sie, dass (V, E) diese erfüllt (in ZFC). [4 Punkte]
 - (b) Benutzen Sie die obere Behauptung, um zu zeigen, dass

$$Con(ZFC) \rightarrow Con(ZFC^{-} + \exists x (x = \{x\}))$$

[Hinweis: F(0) := 1, F(1) := 0]. [2 Punkte]