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Introduction

Model theory is a branch of mathematical logic where we study mathemat-
ical structures by considering the first-order sentences true in those struc-
tures and the sets definable by first-order formulas. Traditionally there have
been two principal themes in the subject:

• starting with a concrete mathematical structure, such as the field of real
numbers, and using model-theoretic techniques to obtain new information
about the structure and the sets definable in the structure;

• looking at theories that have some interesting property and proving
general structure theorems about their models.

A good example of the first theme is Tarski’s work on the field of real
numbers. Tarski showed that the theory of the real field is decidable. This
is a sharp contrast to Gödel’s Incompleteness Theorem, which showed that
the theory of the seemingly simpler ring of integers is undecidable. For his
proof, Tarski developed the method of quantifier elimination which can be
used to show that all subsets of Rn definable in the real field are geomet-
rically well-behaved. More recently, Wilkie [103] extended these ideas to
prove that sets definable in the real exponential field are also well-behaved.

The second theme is illustrated by Morley’s Categoricity Theorem, which
says that if T is a theory in a countable language and there is an uncount-
able cardinal κ such that, up to isomorphism, T has a unique model of
cardinality κ, then T has a unique model of cardinality λ for every un-
countable κ. This line has been extended by Shelah [92], who has developed
deep general classification results.

For some time, these two themes seemed like opposing directions in the
subject, but over the last decade or so we have come to realize that there
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are fascinating connections between these two lines. Classical mathematical
structures, such as groups and fields, arise in surprising ways when we study
general classification problems, and ideas developed in abstract settings
have surprising applications to concrete mathematical structures. The most
striking example of this synthesis is Hrushovski’s [43] application of very
general model-theoretic methods to prove the Mordell–Lang Conjecture for
function fields.

My goal was to write an introductory text in model theory that, in ad-
dition to developing the basic material, illustrates the abstract and applied
directions of the subject and the interaction of these two programs.

Chapter 1 begins with the basic definitions and examples of languages,
structures, and theories. Most of this chapter is routine, but, because study-
ing definability and interpretability is one of the main themes of the subject,
I have included some nontrivial examples. Section 1.3 ends with a quick in-
troduction to Meq. This is a rather technical idea that will not be needed
until Chapter 6 and can be omitted on first reading.

The first results of the subject, the Compactness Theorem and the
Löwenheim–Skolem Theorem, are introduced in Chapter 2. In Section 2.2
we show that even these basic results have interesting mathematical con-
sequences by proving the decidability of the theory of the complex field.
Section 2.4 discusses the back-and-forth method beginning with Cantor’s
analysis of countable dense linear orders and moving on to Ehrenfeucht–
Fräıssé Games and Scott’s result that countable structures are determined
up to isomorphism by a single infinitary sentence.

Chapter 3 shows how the ideas from Chapter 2 can be used to develop
a model-theoretic test for quantifier elimination. We then prove quantifier
elimination for the fields of real and complex numbers and use these results
to study definable sets.

Chapters 4 and 5 are devoted to the main model-building tools of clas-
sical model theory. We begin by introducing types and then study struc-
tures built by either realizing or omitting types. In particular, we study
prime, saturated, and homogeneous models. In Section 4.3, we show that
even these abstract constructions have algebraic applications by giving a
new quantifier elimination criterion and applying it to differentially closed
fields. The methods of Sections 4.2 and 4.3 are used to study countable
models in Section 4.4, where we examine ℵ0-categorical theories and prove
Morley’s result on the number of countable models. The first two sections
of Chapter 5 are devoted to basic results on indiscernibles. We then illus-
trate the usefulness of indiscernibles with two important applications—a
special case of Shelah’s Many-Models Theorem in Section 5.3 and the Paris–
Harrington independence result in Section 5.4. Indiscernibles also later play
an important role in Section 6.5.

Chapter 6 begins with a proof of Morley’s Categoricity Theorem in the
spirit of Baldwin and Lachlan. The Categoricity Theorem can be thought
of as the beginning of modern model theory and the rest of the book is
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devoted to giving the flavor of the subject. I have made a conscious ped-
agogical choice to focus on ω-stable theories and avoid the generality of
stability, superstability, or simplicity. In this context, forking has a con-
crete explanation in terms of Morley rank. One can quickly develop some
general tools and then move on to see their applications. Sections 6.2 and
6.3 are rather technical developments of the machinery of Morley rank and
the basic results on forking and independence. These ideas are applied in
Sections 6.4 and 6.5 to study prime model extensions and saturated models
of ω-stable theories.

Chapters 7 and 8 are intended to give a quick but, I hope, seductive
glimpse at some current directions in the subject. It is often interesting
to study algebraic objects with additional model-theoretic hypotheses. In
Chapter 7 we study ω-stable groups and show that they share many prop-
erties with algebraic groups over algebraically closed fields. We also include
Hrushovski’s theorem about recovering a group from a generically associa-
tive operation which is a generalization of Weil’s theorem on group chunks.
Chapter 8 begins with a seemingly abstract discussion of the combinatorial
geometry of algebraic closure on strongly minimal sets, but we see in Sec-
tion 8.3 that this geometry has a great deal of influence on what algebraic
objects are interpretable in a structure. We conclude with an outline of
Hrushovski’s proof of the Mordell–Lang Conjecture in one special case.

Because I was trying to write an introductory text rather than an en-
cyclopedic treatment, I have had to make a number of ruthless decisions
about what to include and what to omit. Some interesting topics, such as
ultraproducts, recursive saturation, and models of arithmetic, are relegated
to the exercises. Others, such as modules, the p-adic field, or finite model
theory, are omitted entirely. I have also frequently chosen to present the-
orems in special cases when, in fact, we know much more general results.
Not everyone would agree with these choices.

The Reader
While writing this book I had in mind three types of readers:

• graduate students considering doing research in model theory;
• graduate students in logic outside of model theory;
• mathematicians in areas outside of logic where model theory has had

interesting applications.
For the graduate student in model theory, this book should provide a firm

foundation in the basic results of the subject while whetting the appetite
for further exploration. My hope is that the applications given in Chapters
7 and 8 will excite students and lead them to read the advanced texts [7],
[18], [76], and [86] written by my friends.

The graduate student in logic outside of model theory should, in addition
to learning the basics, get an idea of some of the main directions of the
modern subject. I have also included a number of special topics that I
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think every logician should see at some point, namely the random graph,
Ehrenfeucht–Fräıssé Games, Scott’s Isomorphism Theorem, Morley’s result
on the number of countable models, Shelah’s Many-Models Theorem, and
the Paris–Harrington Theorem.

For the mathematician interested in applications, I have tried to illus-
trate several of the ways that model theory can be a useful tool in analyzing
classical mathematical structures. In Chapter 3, we develop the method of
quantifier elimination and show how it can be used to prove results about
algebraically closed fields and real closed fields. One of the areas where
model-theoretic ideas have had the most fruitful impact is differential al-
gebra. In Chapter 4, we introduce differentially closed fields. Differentially
closed fields are very interesting ω-stable structures. Chapters 6, 7, and 8
contain a number of illustrations of the impact of stability-theoretic ideas
on differential algebra. In particular, in Section 7.4 we give Poizat’s proof of
Kolchin’s theorem on differential Galois groups of strongly normal exten-
sions. In Chapter 7, we look at classical mathematical objects—groups—
under additional model-theoretic assumptions—ω-stability. We also use
these ideas to give more information about algebraically closed fields. In
Section 8.3, we give an idea of how ideas from geometric model theory can
be used to answer questions in Diophantine geometry.

Prerequisites
Chapter 1 begins with the basic definitions of languages and structures.
Although a mathematically sophisticated reader with little background in
mathematical logic should be able to read this book, I expect that most
readers will have seen this material before. The ideal reader will have
already taken one graduate or undergraduate course in logic and be ac-
quainted with mathematical structures, formal proofs, Gödel’s Complete-
ness and Incompleteness Theorems, and the basics about computability.
Shoenfield’s Mathematical Logic [94] or Ebbinghaus, Flum, and Thomas’
Mathematical Logic [31] are good references.

I will assume that the reader has some familiarity with very basic set
theory, including Zorn’s Lemma, ordinals, and cardinals. Appendix A sum-
marizes all of this material. More sophisticated ideas from combinatorial
set theory are needed in Chapter 5 but are developed completely in the
text.

Many of the applications and examples that we will investigate come from
algebra. The ideal reader will have had a year-long graduate algebra course
and be comfortable with the basics about groups, commutative rings, and
fields. Because I suspect that many readers will not have encountered the
algebra of formally real fields that is essential in Section 3.3, I have included
this material in Appendix B. Lang’s Algebra [58] is a good reference for most
of the material we will need. Ideally the reader will have also seen some
elementary algebraic geometry, but we introduce this material as needed.
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Using This Book as a Text
I suspect that in most courses where this book is used as a text, the students
will have already seen most of the material in Sections 1.1, 1.2, and 2.1. A
reasonable one-semester course would cover Sections 2.2, 2.3, the beginning
of 2.4, 3.1, 3.2, 4.1–4.3, the beginning of 4.4, 5.1, 5.2, and 6.1. In a year-
long course, one has the luxury of picking and choosing extra topics from
the remaining text. My own choices would certainly include Sections 3.3,
6.2–6.4, 7.1, and 7.2.

Exercises and Remarks
Each chapter ends with a section of exercises and remarks. The exercises
range from quite easy to quite challenging. Some of the exercises develop
important ideas that I would have included in a longer text. I have left
some important results as exercises because I think students will benefit
by working them out. Occasionally, I refer to a result or example from the
exercises later in the text. Some exercises will require more comfort with
algebra, computability, or set theory than I assume in the rest of the book.
I mark those exercises with a dagger.†

The Remarks sections have two purposes. I make some historical remarks
and attributions. With a few exceptions, I tend to give references to sec-
ondary sources with good presentations rather than the original source. I
also use the Remarks section to describe further results and give suggestions
for further reading.

Notation
Most of my notation is standard. I use A ⊆ B to mean that A is a subset
of B, and A ⊂ B means A is a proper subset (i.e., A ⊆ B but A �= B).

If A is a set,

A<ω =
∞⋃

n=1

An

is the set of all finite sequences from A. I write a to indicate a finite sequence
(a1, . . . , an). When I write a ∈ A, I really mean a ∈ A<ω.

If A is a set, then |A| is the cardinality of A. The power set of A is
P(A) = {X : X ⊆ A}.

In displays, I sometimes use ⇐, ⇒ as abbreviations for “implies” and ⇔
as an abbreviation for “if and only if”.
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1
Structures and Theories

1.1 Languages and Structures

In mathematical logic, we use first-order languages to describe mathe-
matical structures. Intuitively, a structure is a set that we wish to study
equipped with a collection of distinguished functions, relations, and ele-
ments. We then choose a language where we can talk about the distin-
guished functions, relations, and elements and nothing more. For example,
when we study the ordered field of real numbers with the exponential func-
tion, we study the structure (R, +, ·, exp, <, 0, 1), where the underlying set
is the set of real numbers, and we distinguish the binary functions addition
and multiplication, the unary function x 	→ ex, the binary order relation,
and the real numbers 0 and 1. To describe this structure, we would use a lan-
guage where we have symbols for +, ·, exp, <, 0, 1 and can write statements
such as ∀x∀y exp(x)·exp(y) = exp(x+y) and ∀x (x > 0 → ∃y exp(y) = x).
We interpret these statements as the assertions “exey = ex+y for all x and
y” and “for all positive x, there is a y such that ey = x.”

For another example, we might consider the structure (N, +, 0, 1) of the
natural numbers with addition and distinguished elements 0 and 1. The
natural language for studying this structure is the language where we have
a binary function symbol for addition and constant symbols for 0 and 1.
We would write sentences such as ∀x∃y (x = y +y ∨ x = y +y +1), which
we interpret as the assertion that “every number is either even or 1 plus
an even number.”
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Definition 1.1.1 A language L is given by specifying the following data:
i) a set of function symbols F and positive integers nf for each f ∈ F ;
ii) a set of relation symbols R and positive integers nR for each R ∈ R;
iii) a set of constant symbols C.

The numbers nf and nR tell us that f is a function of nf variables and
R is an nR-ary relation.

Any or all of the sets F , R, and C may be empty. Examples of languages
include:

i) the language of rings Lr = {+,−, ·, 0, 1}, where +,− and · are binary
function symbols and 0 and 1 are constants;

ii) the language of ordered rings Lor = Lr ∪ {<}, where < is a binary
relation symbol;

iii) the language of pure sets L = ∅;
iv) the language of graphs is L = {R} where R is a binary relation

symbol.

Next, we describe the structures where L is the appropriate language.

Definition 1.1.2 An L-structure M is given by the following data:
i) a nonempty set M called the universe, domain, or underlying set of

M;
ii) a function fM : Mnf → M for each f ∈ F ;
iii) a set RM ⊆ MnR for each R ∈ R;
iv) an element cM ∈ M for each c ∈ C.

We refer to fM, RM, and cM as the interpretations of the symbols f ,
R, and c. We often write the structure as M = (M,fM, RM, cM : f ∈
F , R ∈ R, and c ∈ C). We will use the notation A, B, M, N, . . . to refer to
the underlying sets of the structures A,B,M,N , . . ..

For example, suppose that we are studying groups. We might use the
language Lg = {·, e}, where · is a binary function symbol and e is a constant
symbol. An Lg-structure G = (G, ·G , eG) will be a set G equipped with a
binary relation ·G and a distinguished element eG . For example, G = (R, ·, 1)
is an Lg-structure where we interpret · as multiplication and e as 1; that
is, ·G = · and eG = 1. Also, N = (N, +, 0) is an Lg-structure where ·N = +
and eG = 1. Of course, N is not a group, but it is an Lg-structure.

Usually, we will choose languages that closely correspond to the structure
that we wish to study. For example, if we want to study the real numbers
as an ordered field, we would use the language of ordered rings Lor and
give each symbol its natural interpretation.

We will study maps that preserve the interpretation of L.

Definition 1.1.3 Suppose that M and N are L-structures with universes
M and N , respectively. An L-embedding η : M → N is a one-to-one map
η : M → N that preserves the interpretation of all of the symbols of L.
More precisely:
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i) η(fM(a1, . . . , anf
)) = fN (η(a1), . . . , η(anf

)) for all f ∈ F and
a1, . . . , an ∈ M ;

ii) (a1, . . . , amR
) ∈ RM if and only if (η(a1), . . . , η(amR

)) ∈ RN for all
R ∈ R and a1, . . . , amj

∈ M ;
iii) η(cM) = cN for c ∈ C.
A bijective L-embedding is called an L-isomorphism. If M ⊆ N and the

inclusion map is an L-embedding, we say either that M is a substructure
of N or that N is an extension of M.

For example:
i) (Z,+, 0) is a substructure of (R, +, 0).
ii) If η : Z → R is the function η(x) = ex, then η is an Lg-embedding of

(Z,+, 0) into (R, ·, 1).
The cardinality of M is |M |, the cardinality of the universe of M. If

η : M → N is an embedding then the cardinality of N is at least the
cardinality of M.

We use the language L to create formulas describing properties of L-
structures. Formulas will be strings of symbols built using the symbols of L,
variable symbols v1, v2, . . ., the equality symbol =, the Boolean connectives
∧, ∨, and ¬, which we read as “and,” “or,” and “not”, the quantifiers ∃
and ∀, which we read as “there exists” and “for all”, and parentheses ( , ).

Definition 1.1.4 The set of L-terms is the smallest set T such that
i) c ∈ T for each constant symbol c ∈ C,
ii) each variable symbol vi ∈ T for i = 1, 2, . . ., and
iii) if t1, . . . , tnf

∈ T and f ∈ F , then f(t1, . . . , tnf
) ∈ T .

For example, ·(v1,−(v3, 1)), ·(+(v1, v2),+(v3, 1)) and +(1,+(1,+(1, 1)))
are Lr-terms. For simplicity, we will usually write these terms in the more
standard notation v1(v3 − 1), (v1 + v2)(v3 + 1), and 1 + (1 + (1 + 1)) when
no confusion arises. In the Lr-structure (Z,+, ·, 0, 1), we think of the term
1 + (1 + (1 + 1)) as a name for the element 4, while (v1 + v2)(v3 + 1) is a
name for the function (x, y, z) 	→ (x + y)(z + 1). This can be done in any
L-structure.

Suppose that M is an L-structure and that t is a term built using
variables from v = (vi1 , . . . , vim

). We want to interpret t as a function
tM : Mm → M . For s a subterm of t and a = (ai1 , . . . , aim

) ∈ M , we
inductively define sM(a) as follows.

i) If s is a constant symbol c, then sM(a) = cM.
ii) If s is the variable vij

, then sM(a) = aij
.

iii) If s is the term f(t1, . . . , tnf
), where f is a function symbol of L and

t1, . . . , tnf
are terms, then sM(a) = fM(tM1 (a), . . . , tMnf

(a)).
The function tM is defined by a 	→ tM(a).
For example, let L = {f, g, c}, where f is a unary function sym-

bol, g is a binary function symbol, and c is a constant symbol. We
will consider the L-terms t1 = g(v1, c), t2 = f(g(c, f(v1))), and t3 =
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g(f(g(v1, v2)), g(v1, f(v2))). Let M be the L-structure (R, exp, +, 1); that
is, fM = exp, gM = +, and cM = 1.

Then
tM1 (a1) = a1 + 1,

tM2 (a1) = e1+ea1
, and

tM3 (a1, a2) = ea1+a2 + (a1 + ea2).

We are now ready to define L-formulas.

Definition 1.1.5 We say that φ is an atomic L-formula if φ is either
i) t1 = t2, where t1 and t2 are terms, or
ii) R(t1, . . . , tnR

), where R ∈ R and t1, . . . , tnR
are terms.

The set of L-formulas is the smallest set W containing the atomic for-
mulas such that

i) if φ is in W, then ¬φ is in W,
ii) if φ and ψ are in W , then (φ ∧ ψ) and (φ ∨ ψ) are in W, and
iii) if φ is in W, then ∃vi φ and ∀vi φ are in W.

Here are three examples of Lor-formulas.
• v1 = 0 ∨ v1 > 0.
• ∃v2 v2 · v2 = v1.
• ∀v1 (v1 = 0 ∨ ∃v2 v2 · v1 = 1).
Intuitively, the first formula asserts that v1 ≥ 0, the second asserts that

v1 is a square, and the third asserts that every nonzero element has a
multiplicative inverse. We would like to define what it means for a formula
to be true in a structure, but these examples already show one difficulty.
While in any Lor-structure the third formula will either be true or false,
the first two formulas express a property that may or may not be true of
particular elements of the structure. In the Lor-structure (Z,+,−, ·, <, 0, 1),
the second formula would be true of 9 but false of 8.

We say that a variable v occurs freely in a formula φ if it is not inside a
∃v or ∀v quantifier; otherwise, we say that it is bound.1 For example v1 is
free in the first two formulas and bound in the third, whereas v2 is bound
in both formulas. We call a formula a sentence if it has no free variables.

Let M be an L-structure. We will see that each L-sentence is either true
or false in M. On the other hand, if φ is a formula with free variables

1To simplify some bookkeeping we will tacitly restrict our attention to formulas where
in each subformula no variable vi has both free and bound occurrences. For example we
will not consider formulas such as (v1 > 0∨∃v1 v1 ·v1 = v2), because this formula could
be replaced by the clearer formula v1 > 0 ∨ ∃v3 v3 · v3 = v2 with the same meaning.
There are some areas of mathematical logic where one wants to be frugal with variables,
but we will not consider such issues here. See [94] for a definition of satisfaction for
arbitrary formulas.
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v1, . . . , vn, we will think of φ as expressing a property of elements of Mn.
We often write φ(v1, . . . , vn) to make explicit the free variables in φ. We
must define what it means for φ(v1, . . . , vn) to hold of (a1, . . . , an) ∈ Mn.

Definition 1.1.6 Let φ be a formula with free variables from v =
(vi1 , . . . , vim

), and let a = (ai1 , . . . , aim
) ∈ Mm. We inductively define

M |= φ(a) as follows.
i) If φ is t1 = t2, then M |= φ(a) if tM1 (a) = tM2 (a).
ii) If φ is R(t1, . . . , tnR

), then M |= φ(a) if (tM1 (a), . . . , tMnR
(a)) ∈ RM.

iii) If φ is ¬ψ, then M |= φ(a) if M �|= ψ(a).
iv) If φ is (ψ ∧ θ), then M |= φ(a) if M |= ψ(a) and M |= θ(a).
v) If φ is (ψ ∨ θ), then M |= φ(a) if M |= ψ(a) or M |= θ(a).
vi) If φ is ∃vjψ(v, vj), then M |= φ(a) if there is b ∈ M such that

M |= ψ(a, b).
vii) If φ is ∀vjψ(v, vj), then M |= φ(a) if M |= ψ(a, b) for all b ∈ M .

If M |= φ(a) we say that M satisfies φ(a) or φ(a) is true in M.

Remarks 1.1.7 • There are a number of useful abbreviations that we will
use: φ → ψ is an abbreviation for ¬φ∨ψ, and φ ↔ ψ is an abbreviation for
(φ → ψ)∧(ψ → φ). In fact, we did not really need to include the symbols ∨
and ∀. We could have considered φ∨ψ as an abbreviation for ¬(¬φ∧¬ψ) and
∀vφ as an abbreviation for ¬(∃v¬φ). Viewing these as abbreviations will
be an advantage when we are proving theorems by induction on formulas
because it eliminates the ∨ and ∀ cases.

We also will use the abbreviations
n∧

i=1

ψi and
n∨

i=1

ψi for ψ1 ∧ . . .∧ψn and

ψ1 ∨ . . . ∨ ψn, respectively.
• In addition to v1, v2, . . . , we will use w, x, y, z, ... as variable symbols.
• It is important to note that the quantifiers ∃ and ∀ range only over ele-

ments of the model. For example the statement that an ordering is complete
(i.e., every bounded subset has a least upper bound) cannot be expressed
as a formula because we cannot quantify over subsets. The fact that we
are limited to quantification over elements of the structure is what makes
it “first-order” logic.

When proving results about satisfaction in models, we often must do
an induction on the construction of formulas. The next proposition asserts
that if a formula without quantifiers is true in some structure, then it is true
in every extension. It is proved by induction on quantifier-free formulas.

Proposition 1.1.8 Suppose that M is a substructure of N , a ∈ M , and
φ(v) is a quantifier-free formula. Then, M |= φ(a) if and only if N |= φ(a).

Proof
Claim If t(v) is a term and b ∈ M , then tM(b) = tN (b). This is proved
by induction on terms.
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If t is the constant symbol c, then cM = cN .
If t is the variable vi, then tM(b) = bi = tN (b).
Suppose that t = f(t1, . . . , tn), where f is an n-ary function symbol,

t1, . . . , tn are terms, and tMi (b) = tNi (b) for i = 1, . . . , n. Because M ⊆ N ,
fM = fN |Mn. Thus,

tM(b) = fM(tM1 (b), . . . , tMn (b))
= fN (tM1 (b), . . . , tMn (b))
= fN (tN1 (b), . . . , tNn (b))
= tN (b).

We now prove the proposition by induction on formulas.
If φ is t1 = t2, then

M |= φ(a) ⇔ tM1 (a) = tM2 (a) ⇔ tN1 (a) = tN2 (a) ⇔ N |= φ(a).

If φ is R(t1, . . . , tn), where R is an n-ary relation symbol, then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM

⇔ (tM1 (a), . . . , tMn (a)) ∈ RN

⇔ (tN1 (a), . . . , tNn (a)) ∈ RN

⇔ N |= φ(a).

Thus, the proposition is true for all atomic formulas.
Suppose that the proposition is true for ψ and that φ is ¬ψ. Then,

M |= ¬φ(a) ⇔ M �|= ψ(a) ⇔ N �|= ψ(a) ⇔ N |= φ(a).

Finally, suppose that the proposition is true for ψ0 and ψ1 and that φ is
ψ0 ∧ ψ1. Then,

M |= φ(a) ⇔ M |= ψ0(a) and M |= ψ1(a)
⇔ N |= ψ0(a) and M |= ψ1(a)
⇔ N |= φ(a).

We have shown that the proposition holds for all atomic formulas and
that if it holds for φ and ψ, then it also holds for ¬φ and φ ∧ ψ. Because
the set of quantifier-free formulas is the smallest set of formulas contain-
ing the atomic formulas and closed under negation and conjunction, the
proposition is true for all quantifier-free formulas.

Elementary Equivalence and Isomorphism
We next consider structures that satisfy the same sentences.
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Definition 1.1.9 We say that two L-structures M and N are elementarily
equivalent and write M ≡ N if

M |= φ if and only if N |= φ

for all L-sentences φ.

We let Th(M), the full theory of M, be the set of L-sentences φ such
that M |= φ. It is easy to see that M ≡ N if and only if Th(M)= Th(N ).
Our next result shows that Th(M) is an isomorphism invariant of M. The
proof uses the important technique of “induction on formulas.”

Theorem 1.1.10 Suppose that j : M → N is an isomorphism. Then,
M ≡ N .

Proof We show by induction on formulas that M |= φ(a1, . . . , an) if and
only if N |= φ(j(a1), . . . , j(an)) for all formulas φ.

We first must show that terms behave well.
Claim Suppose that t is a term and the free variables in t are from v =
(v1, . . . , vn). For a = (a1, . . . , an) ∈ M , we let j(a) denote (j(a1), . . . , j(an)).
Then j(tM(a)) = tN (j(a)).

We prove this by induction on terms.
i) If t = c, then j(tM(a)) = j(cM) = cN = tN (j(a)).
ii) If t = vi, then j(tM(a)) = j(ai) = tN (j(ai)).
iii) If t = f(t1, . . . , tm), then

j(tM(a)) = j(fM(tM1 (a), . . . , tMm (a)))
= fN (j(tM1 (a)), . . . , j(tMm (a)))
= fN (tN1 (j(a)), . . . , tNm(j(a)))
= tN (j(a)).

We proceed by induction on formulas.
i) If φ(v) is t1 = t2, then

M |= φ(a) ⇔ tM1 (a) = tM2 (a)
⇔ j(tM1 (a)) = j(tM2 (a)) because j is injective
⇔ tN1 (j(a)) = tN2 (j(a))
⇔ N |= φ(j(a)).

ii) If φ(v) is R(t1, . . . , tn), then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM

⇔ (j(tM1 (a)), . . . , j(tMn (a))) ∈ RN

⇔ (tN1 (j(a)), . . . , tNn (j(a))) ∈ RN

⇔ N |= φ(j(a)).
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iii) If φ is ¬ψ, then by induction

M |= φ(a) ⇔ M �|= ψ(a) ⇔ N �|= ψ(j(a)) ⇔ N |= φ(j(a)).

iv) If φ is ψ ∧ θ, then

M |= φ(a) ⇔ M |= ψ(a) and M |= θ(a)
⇔ N |= ψ(j(a)) and N |= θ(j(a)) ⇔ N |= φ(j(a)).

v) If φ(v) is ∃w ψ(v, w), then

M |= φ(a) ⇔ M |= ψ(a, b) for some b ∈ M

⇔ N |= ψ(j(a), c) for some c ∈ Nbecause j is onto
⇔ N |= φ(j(a)).

1.2 Theories

Let L be a language. An L-theory T is simply a set of L-sentences. We say
that M is a model of T and write M |= T if M |= φ for all sentences φ ∈ T .

The set T = {∀x x = 0,∃x x �= 0} is a theory. Because the two sentences
in T are contradictory, there are no models of T . We say that a theory is
satisfiable if it has a model.

We say that a class of L-structures K is an elementary class if there is
an L-theory T such that K = {M : M |= T}.

One way to get a theory is to take Th(M), the full theory of an L-
structure M. In this case, the elementary class of models of Th(M) is
exactly the class of L-structures elementarily equivalent to M. More typi-
cally, we have a class of structures in mind and try to write a set of prop-
erties T describing these structures. We call these sentences axioms for the
elementary class.

We give a few basic examples of theories and elementary classes that we
will return to frequently.

Example 1.2.1 Infinite Sets

Let L = ∅.
Consider the L-theory where we have, for each n, the sentence φn given

by
∃x1∃x2 . . .∃xn

∧
i<j≤n

xi �= xj .

The sentence φn asserts that there are at least n distinct elements, and an
L-structure M with universe M is a model of T if and only if M is infinite.
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Example 1.2.2 Linear Orders

Let L = {<}, where < is a binary relation symbol. The class of linear
orders is axiomatized by the L-sentences

∀x ¬(x < x),
∀x∀y∀z ((x < y ∧ y < z) → x < z),
∀x∀y (x < y ∨ x = y ∨ y < x).

There are a number of interesting extensions of the theory of linear or-
ders. For example, we could add the sentence

∀x∀y (x < y → ∃z (x < z ∧ z < y))

to get the theory of dense linear orders, or we could instead add the sentence

∀x∃y (x < y ∧ ∀z(x < z → (z = y ∨ y < z)))

to get the theory of linear orders where every element has a unique succes-
sor. We could also add sentences that either assert or deny the existence of
top or bottom elements.

Example 1.2.3 Equivalence Relations

Let L = {E}, where E is a binary relation symbol. The theory of equiva-
lence relations is given by the sentences

∀x E(x, x),
∀x∀y(E(x, y) → E(y, x)),
∀x∀y∀z((E(x, y) ∧ E(y, z)) → E(x, z)).

If we added the sentence

∀x∃y(x �= y ∧ E(x, y) ∧ ∀z (E(x, z) → (z = x ∨ z = y)))

we would have the theory of equivalence relations where every equivalence
class has exactly two elements. If instead we added the sentence

∃x∃y(¬E(x, y) ∧ ∀z(E(x, z) ∨ E(y, z)))

and the infinitely many sentences

∀x∃x1∃x2 . . .∃xn

⎛⎝ ∧
i<j≤n

xi �= xj ∧
n∧

i=1

E(x, xi)

⎞⎠
we would axiomatize the class of equivalence relations with exactly two
classes, both of which are infinite.
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Example 1.2.4 Graphs

Let L = {R} where R is a binary relation. We restrict our attention to
irreflexive graphs. These are axiomatized by the two sentences

∀x ¬R(x, x),
∀x∀y (R(x, y) → R(y, x)).

Example 1.2.5 Groups

Let L = {·, e}, where · is a binary function symbol and e is a constant sym-
bol. We will write x·y rather than ·(x, y). The class of groups is axiomatized
by

∀x e · x = x · e = x,
∀x∀y∀z x · (y · z) = (x · y) · z,
∀x∃y x · y = y · x = e.

We could also axiomatize the class of Abelian groups by adding ∀x∀y x·y =
y · x.

Let φn(x) be the L-formula

x · x · · ·x︸ ︷︷ ︸
n−times

= e;

which asserts that nx = e.
We could axiomatize the class of torsion-free groups by adding {∀x (x =

e ∨ ¬φn(x)) : n ≥ 2} to the axioms for groups. Alternatively, we could
axiomatize the class of groups where every element has order at most N
by adding to the axioms for groups the sentence

∀x
∨

n≤N

φn(x).

Note that the same idea will not work to axiomatize the class of torsion
groups because the corresponding sentence would be infinitely long. In the
next chapter, we will see that the class of torsion groups is not elementary.

Let ψn(x, y) be the formula

x · x · · ·x︸ ︷︷ ︸
n−times

= y;

which asserts that xn = y. We can axiomatize the class of divisible groups
by adding the axioms {∀y∃x ψn(x, y) : n ≥ 2}.

It will often be useful to deal with additive groups instead of multiplica-
tive groups. The class of additive groups is the collection structures in the
language L = {+, 0}, axiomatized as above replacing · by + and e by 0.
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Example 1.2.6 Ordered Abelian Groups

Let L = {+, <, 0}, where + is a binary function symbol, < is a binary
relation symbol, and 0 is a constant symbol. The axioms for ordered groups
are

the axioms for additive groups,
the axioms for linear orders, and
∀x∀y∀z(x < y → x + z < y + z).

Example 1.2.7 Left R-modules

Let R be a ring with multiplicative identity 1. Let L = {+, 0}∪{r : r ∈ R}
where + is a binary function symbol, 0 is a constant, and r is a unary
function symbol for r ∈ R. In an R-module, we will interpret r as scalar
multiplication by R. The axioms for left R-modules are

the axioms for additive commutative groups,
∀x r(x + y) = r(x) + r(y) for each r ∈ R,
∀x (r + s)(x) = r(x) + s(x) for each r, s ∈ R,
∀x r(s(x)) = rs(x) for r, s ∈ R,
∀x 1(x) = x.

Example 1.2.8 Rings and Fields

Let Lr be the language of rings {+,−, ·, 0, 1}, where +, −, and · are binary
function symbols and 0 and 1 are constants. The axioms for rings are given
by

the axioms for additive commutative groups,
∀x∀y∀z (x − y = z ↔ x = y + z),
∀x x · 0 = 0,
∀x∀y∀z (x · (y · z) = (x · y) · z),
∀x x · 1 = 1 · x = x,
∀x∀y∀z x · (y + z) = (x · y) + (x · z),
∀x∀y∀z (x + y) · z = (x · z) + (y · z).

The second axiom is only necessary because we include − in the language
(this will be useful later). We axiomatize the class of fields by adding the
axioms

∀x∀y x · y = y · x,
∀x (x �= 0 → ∃y x · y = 1).

We axiomatize the class of algebraically closed fields by adding to the
field axioms the sentences

∀a0 . . .∀an−1∃x xn +
n−1∑
i=0

aix
i = 0

for n = 1, 2, . . .. Let ACF be the axioms for algebraically closed fields.



18 1. Structures and Theories

Let ψp be the Lr-sentence ∀x x + . . . + x︸ ︷︷ ︸
p−times

= 0, which asserts that a field

has characteristic p. For p > 0 a prime, let ACFp = ACF ∪{ψp} and
ACF0 = ACF ∪{¬ψp : p > 0}, be the theories of algebraically closed fields
of characteristic p and characteristic zero, respectively.

Example 1.2.9 Ordered Fields

Let Lor = Lr∪{<}. The class of ordered fields is axiomatized by the axioms
for fields,

the axioms for linear orders,
∀x∀y∀z (x < y → x + z < y + z),
∀x∀y∀z ((x < y ∧ z > 0) → x · z < y · z).

Example 1.2.10 Differential Fields

Let L = Lr ∪ {δ}, where δ is a unary function symbol. The class of differ-
ential fields is axiomatized by

the axioms of fields,
∀x∀y δ(x + y) = δ(x) + δ(y),
∀x∀y δ(x · y) = x · δ(y) + y · δ(x).

Example 1.2.11 Peano Arithmetic

Let L = {+, ·, s, 0}, where + and · are binary functions, s is a unary
function, and 0 is a constant. We think of s as the successor function
x 	→ x + 1. The Peano axioms for arithmetic are the sentences

∀x s(x) �= 0,
∀x (x �= 0 → ∃y s(y) = x),
∀x x + 0 = x,
∀x ∀y x + (s(y)) = s(x + y),
∀x x · 0 = 0,
∀x∀y x · s(y) = (x · y) + x,

and the axioms Ind(φ) for each formula φ(v, w), where Ind(φ) is the sen-
tence

∀w [(φ(0, w) ∧ ∀v (φ(v,w) → φ(s(v), w))) → ∀x φ(x,w)].
The axiom Ind(φ) formalizes an instance of induction. It asserts that if

a ∈ M , X = {m ∈ M : M |= φ(m,a)}, 0 ∈ X, and s(m) ∈ X whenever
m ∈ X, then X = M .

Logical Consequence

Definition 1.2.12 Let T be an L-theory and φ an L-sentence. We say
that φ is a logical consequence of T and write T |= φ if M |= φ whenever
M |= T .

We give two examples.
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Proposition 1.2.13 a) Let L = {+, <, 0} and let T be the theory of or-
dered Abelian groups. Then, ∀x(x �= 0 → x+x �= 0) is a logical consequence
of T .

b) Let T be the theory of groups where every element has order 2. Then,
T �|= ∃x1∃x2∃x3(x1 �= x2 ∧ x2 �= x3 ∧ xa1 �= x3).

Proof
a) Suppose that M = (M, +, <, 0) is an ordered Abelian group. Let

a ∈ M \ {0}. We must show that a + a �= 0. Because (M,<) is a linear
order a < 0 or 0 < a. If a < 0, then a + a < 0 + a = a < 0. Because
¬(0 < 0), a + a �= 0. If 0 < a, then 0 < a = 0 + a < a + a and again
a + a �= 0.

b) Clearly, Z/2Z |= T ∧ ¬∃x1∃x2∃x3(x1 �= x2 ∧ x2 �= x3 ∧ x1 �= x3).

In general, to show that T |= φ, we give an informal mathematical proof
as above that M |= φ whenever M |= T . To show that T �|= φ, we usually
construct a counterexample.

1.3 Definable Sets and Interpretability

Definable Sets

Definition 1.3.1 Let M = (M, . . .) be an L-structure. We say that X ⊆
Mn is definable if and only if there is an L-formula φ(v1, . . . , vn, w1, . . . , wm)
and b ∈ Mm such that X = {a ∈ Mn : M |= φ(a, b)}. We say that φ(v, b)
defines X. We say that X is A-definable or definable over A if there is a
formula ψ(v, w1, . . . , wl) and b ∈ Al such that ψ(v, b) defines X.

We give a number of examples using Lr, the language of rings.
• Let M = (R, +,−, ·, 0, 1) be a ring. Let p(X) ∈ R[X]. Then,

Y = {x ∈ R : p(x) = 0} is definable. Suppose thatp(X) =
m∑

i=0

aiX
i.

Let φ(v, w0, . . . , wn) be the formula

wn · v · · · v︸ ︷︷ ︸
n−times

+ . . . + w1 · v + w0 = 0

(in the future, when no confusion arises, we will abbreviate such a formula
as “wnvn + . . . + w1v + w0 = 0”). Then, φ(v, a0, . . . , an) defines Y . Indeed,
Y is A-definable for any A ⊇ {a0, . . . , an}.

• Let M = (R, +,−, ·, 0, 1) be the field of real numbers. Let φ(x, y) be
the formula

∃z(z �= 0 ∧ y = x + z2).

Because a < b if and only if M |= φ(a, b), the ordering is ∅-definable.
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• Let M = (Z,+,−, ·, 0, 1) be the ring of integers. Let X = {(m, n) ∈
Z2 : m < n}. Then, X is definable (indeed ∅-definable). By Lagrange’s
Theorem, every nonnegative integer is the sum of four squares. Thus, if we
let φ(x, y) be the formula

∃z1∃z2∃z3∃z4(z1 �= 0 ∧ y = x + z2
1 + z2

2 + z2
3 + z2

4),

then X = {(m, n) ∈ Z2 : M |= φ(m, n)}.
• Let F be a field and M = (F [X],+,−, ·, 0, 1) be the ring of polynomials

over F . Then F is definable in M. Indeed, F is the set of units of F [X]
and is defined by the formula x = 0 ∨ ∃y xy = 1.

• Let M = (C(X),+,−, ·, 0, 1) be the field of complex rational functions
in one variable. We claim that C is defined in C(X) by the formula

∃x∃y y2 = v ∧ x3 + 1 = v.

For any z ∈ C we can find x and y such that y2 = x3 + 1 = z. Suppose
that h is a nonconstant rational function and that there are nonconstant
rational functions f and g such that h = g2 = f3 +1. Then t 	→ (f(t), g(t))
is a nonconstant rational function from an open subset of C into the curve
E given by the equation y2 = x3 + 1. But E is an elliptic curve and it is
known (see for example [95]) that there are no such functions.

A similar argument shows that C is the set of rational functions f such
that f and f + 1 are both fourth powers. These ideas generalize to show
that C is definable in any finite algebraic extension of C(X).

• Let M = (Qp,+,−, ·, 0, 1) be the field of p-adic numbers. Then Zp the
ring of p-adic integers is definable. Suppose p �= 2 (we leave Q2 for Exercise
1.4.13) and φ(x) is the formula ∃y y2 = px2 +1. We claim that φ(x) defines
Zp.

First, suppose that y2 = pa2 + 1. Let v denote the p-adic valuation.
Because v(pa2) = 2v(a) + 1, if v(a) < 0, then v(pa2) is an odd negative
integer and v(y2) = v(pa2+1) = v(pa2). On the other hand, v(y2) = 2v(y),
an even integer. Thus, if M |= φ(a), then v(a) ≥ 0 so a ∈ Zp.

On the other hand, suppose that a ∈ Zp. Let F (X) = X2 − (pa2 + 1).
Let F be the reduction of F mod p. Because v(a) ≥ 0, v(pa) > 0 and
F (X) = X2 − 1 and F

′
= 2X. Thus, F (1) = 0 and F

′
(1) �= 0 so, by

Hensel’s Lemma, there is b ∈ Zp such that F (b) = 0. Hence M |= φ(a).
• Let M = (Q,+,−, ·, 0, 1) be the field of rational numbers. Let φ(x, y, z)

be the formula
∃a∃b∃c xyz2 + 2 = a2 + xy2 − yc2

and let ψ(x) be the formula

∀y∀z ([φ(y, z, 0) ∧ (∀w(φ(y, z, w) → φ(y, z, w + 1)))] → φ(y, z, x)).

A remarkable result of Julia Robinson (see [34]) shows that ψ(x) defines
the integers in Q.
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• Consider the natural numbers N as an L = {+, ·, 0, 1} structure.
The definable sets are quite complex. For example, there is an L-formula
T (e, x, s) such that N |= T (e, x, s) if and only if the Turing machine with
program coded by e halts on input x in at most s steps (see, for example,
[51]). Thus, the Turing machine with program e halts on input x if and
only if N |= ∃s T (e, x, s), so the set of halting computations is definable. It
is well known that this set is not computable (see, for example, [94]). This
leads to an interesting conclusion.

Proposition 1.3.2 The full L-theory of the natural numbers is undecid-
able (i.e., there is no algorithm that when given an L-sentence ψ as input
will always halt answering “yes” if N |= ψ and “no” if N |= ¬ψ).

Proof For each e and x, let φe,x be the L-sentence

∃s T (1 + . . . + 1︸ ︷︷ ︸
e−times

, 1 + . . . + 1︸ ︷︷ ︸
x−times

, s).

If there were such an algorithm we could decide whether the program coded
by e halts on input x by asking whether N |= φe,x.

Recursively enumerable sets have simple mathematical definitions. By
the Matijasevič–Robinson–Davis–Putnam solution to Hilbert’s 10th Prob-
lem (see [24]).

for any recursively enumerable set A ⊆ Nn there is a polynomial
p(X1, . . . , Xn, Y1, . . . , Ym) ∈ Z[X, Y ] such that

A = {x ∈ Nn : N |= ∃y1 . . .∃ym p(x, y) = 0}.

The following example will be useful later.

Lemma 1.3.3 Let Lr be the language of ordered rings and (R, +,−, ·,
<, 0, 1) be the ordered field of real numbers. Suppose that X ⊆ Rn is A-
definable. Then, the topological closure of X is also A-definable.

Proof Let φ(v1, . . . , vn, a) define X. Let ψ(v1, . . . , vn, w) be the formula

∀ε

[
ε > 0 → ∃y1, . . . , yn (φ(y, w) ∧

n∑
i=1

(xi − yi)2 < ε)

]
.

Then, b is in the closure of X if and only if M |= φ(b, a).

We can give a more concrete characterization of the definable sets.

Proposition 1.3.4 Let M be an L-structure. Suppose that Dn is a collec-
tion of subsets of Mn for all n ≥ 1 and D = (Dn : n ≥ 1) is the smallest
collection such that:

i) Mn ∈ Dn;
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ii) for all n-ary function symbols f of L, the graph of fM is in Dn+1;
iii) for all n-ary relation symbols R of L, RM ∈ Dn;
iv) for all i, j ≤ n, {(x1, . . . , xn) ∈ Mn : xi = xj} ∈ Dn;
v) if X ∈ Dn, then M × X ∈ Dn+1;
vi) each Dn is closed under complement, union, and intersection;
vii) if X ∈ Dn+1 and π : Mn+1 → Mn is the projection map

(x1, . . . , xn+1) 	→ (x1, . . . , xn), then π(X) ∈ Dn;
viii) if X ∈ Dn+m and b ∈ Mm, then {a ∈ Mn : (a, b) ∈ X} ∈ Dn.

Then, X ⊆ Mn is definable if and only if X ∈ Dn.

Proof We first show that the definable sets satisfy the closure properties
i)–viii). Because D is the smallest collection with these closure properties,
every X ∈ Dn is definable.

i) Mn is definable by v1 = v1.
ii) The graph of fM is definable by f(x1, . . . , xnf

) = y.
iii) The relation RM is defined by R.
iv) The set {x ∈ Mn : xi = xj} is defined by vi = vj .
v) If X ⊆ Mn is defined by φ(v1, . . . , vn, a), then M × X is defined by

φ(v2, . . . , vn+1, a).
vi) If X ⊆ Mn is defined by φ(v, a) and Y ⊆ Mn is defined by ψ(v, b),

then M \X is defined by ¬φ(v, a), X ∩Y is defined by φ(v, a)∧ψ(v, b) and
X ∪ Y is defined by φ(v, a) ∨ ψ(v, b).

vii) If X ⊆ Mn+1 is defined by φ(v1, . . . , vn+1, a), then π(X) is defined
by ∃vn+1 φ(v, a).

viii) If X ⊂ Mn+m is defined by φ(v1, . . . , vn+m, c) and b ∈ Mm, then
{a ∈ Mn : (a, b) ∈ X} is defined by φ(v1, . . . , vn, b, c).

Thus, if X ∈ Dn, then X is definable.
Next we show that if X ⊆ Mn is definable, then X ∈ Dn. We first show

by induction that if t(v1, . . . , vn) is a term, then {(x, y) ∈ Mn+1 : tM(x) =
y} ∈ Dn+1.

If t is a constant term c, then we must show that {(x, cM) : x ∈ Mn} ∈
Dn+1. By iv) and viii), {cM} ∈ D1. Thus, by n applications of v), {(x, cM) :
x ∈ Mn} ∈ Dn+1.

If t is vi, then we must show that {(x, xi) : x ∈ Mn} ∈ Dn+1, but this
follows easily from i) and iv).

Suppose that t = f(t1, . . . , tm). By induction we suppose that Gi ∈ Dni
,

where Gi is the graph of tMi : Mn → M . Let G ∈ Dm+1 be the graph of
fM. Then, the graph of tM is{

(x, y) : ∃z1 . . .∃zm

(
m∧

i=1

(x, zi) ∈ Gi ∧ (z, y) ∈ G

)}
.

Using the closure properties of D, we see this is in Dn+1.
We now proceed by induction on formulas to show that every ∅-definable

X ⊆ Mn is in Dn.
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Let φ be t1 = t2. Then {x ∈ Mn : tM1 (x) = tM2 (x)}={x ∈ Mn :
∃y∃z (tM1 (x) = y ∧ tM2 (x) = z ∧ y = z)} ∈ Dn.

Let φ be R(t1, . . . , tm). Then {x ∈ Mn : M |= φ(x)} ={
x ∈ Mn : ∃z1 . . .∃zm

m∧
i=1

tMi (x) = zi ∧ z ∈ RM
}

.

Thus, all sets defined over ∅ by atomic formulas are in D. Because D is
closed under Boolean combinations and projections, all ∅-definable sets are
in D. Property viii) ensures that all definable sets are in D.

How do we show that X ⊂ Mn is not definable? The following proposi-
tion will often be useful.

Proposition 1.3.5 Let M be an L-structure. If X ⊂ Mn is A-definable,
then every L-automorphism of M that fixes A pointwise fixes X setwise
(that is, if σ is an automorphism of M and σ(a) = a for all a ∈ A, then
σ(X) = X).

Proof Let ψ(v, a) be the L-formula defining X where a ∈ A. Let σ be an
automorphism of M with σ(a) = a, and let b ∈ Mn.

In the proof of Theorem 1.1.10, we showed that if j : M → N is an
isomorphism, then M |= φ(a) if and only if N |= φ(j(a)). Thus

M |= ψ(b, a) ↔ M |= (σ(b), σ(a)) ⇔ M |= (σ(b), a).

In other words, b ∈ X if and only if σ(b) ∈ X as desired.

We give a sample application.

Corollary 1.3.6 The set of real numbers is not definable in the field of
complex numbers.

Proof If R were definable, then it would be definable over a finite A ⊂ C.
Let r, s ∈ C be algebraically independent over A with r ∈ R and s �∈ R.
There is an automorphism σ of C such that σ|A is the identity and σ(r) = s.
Thus, σ(R) �= R and R is not definable over A.

This proof worked because C has many automorphisms. The situation
is much different for R. Any automorphism of the real field must fix the
rational numbers. Because the ordering is definable it must be preserved by
any automorphism. Because the rationals are dense in R, the only automor-
phism of the real field is the identity. Most subsets of R are undefinable
(there are 22ℵ0 subsets of R and only 2ℵ0 possible definitions), but we
cannot use Proposition 1.3.5 to show any particular set is undefinable. In
Proposition 4.3.25 we show that the converse to Proposition 1.3.5 holds for
sufficiently rich models.
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Interpretability
It is often very useful to study the structures that can be defined inside a
given structure. For example, let K be a field and G be GL2(K), the group
of invertible 2×2 matrices over K. Let X = {(a, b, c, d) ∈ K4 : ad−bc �= 0}.
Let f : X2 → X by

f((a1, b1, c1, d1), (a2, b2, c2, d2)) =
(a1a2 + b1c2, a1b2 + b1d2, c1a2 + d1c2, c1b2 + d1d2).

Clearly, X and f are definable in (K, +, ·) and the set X with the operation
f is isomorphic to GL2(K), where the identity element of X is (1, 0, 0, 1).

We say that an L0-structure N is definably interpreted in an L-structure
M if and only if we can find a definable X ⊆ Mn for some n and we can
interpret the symbols of L0 as definable subsets and functions on X (where
“definable” means definable using L) so that the resulting L0-structure is
isomorphic to N .

The example above shows that (GLn(K), ·, e) is definably interpreted
in (K, +·, 0, 1). A linear algebraic group over K is a subgroup of GLn(K)
defined by polynomial equations over K. It is easy to see that any linear
algebraic group over K is definably interpreted in K.

For another example, let L = ∅ and let M be an L-structure where
|M | = ℵ0. Let L0 = {E}, where E is a binary relation. Let N = (N, E) be
the L0-structure where E is an equivalence relation with ℵ0-classes each of
size ℵ0. Let

R = {((x1, x2), (y1, y2)) ∈ M2 × M2 : x1 = y1}.

Then, N ∼= (M2, R), so N is definably interpreted in M .

Interpreting a Field in the Affine Group
We give a more interesting example. Let F be an infinite field and let G be
the group of matrices of the form(

a b
0 1

)
,

where a, b ∈ F, a �= 0. This group is isomorphic to the group of affine
transformations x 	→ ax + b, where a, b ∈ F and a �= 0.

We will show that F is definably interpreted in the group G. Let

α =
(

1 1
0 1

)
and β =

(
τ 0
0 1

)
,

where τ �= 0, 1. Let

A = {g ∈ G : gα = αg} =
{( 1 x

0 1

)
: x ∈ F

}
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and

B = {g ∈ G : gβ = βg} =
{(

x 0
0 1

)
: x �= 0

}
.

Clearly, A and B are definable using parameters α and β.
B acts on A by conjugation(

x 0
0 1

)−1( 1 y
0 1

)(
x 0
0 1

)
=
(

1 y
x

0 1

)
.

The action (a, b) 	→ b−1ab is definable. We can define the map i : A\{1} →
B by i(a) = b if and only if b−1ab = α, that is,

i

(
1 x
0 1

)
=
(

x 0
0 1

)
.

Define an operation ∗ on A by

a ∗ b =
{

i(b)a(i(b))−1 if b �= I
1 if b = I

,

where I is the identity matrix. It is now easy to see that (F, +, ·, 0, 1) is
isomorphic to (A, ·, ∗, 1, α).

Interpreting Orders in Graphs
Very complicated structures can often be interpreted in seemingly simpler
ones. For example, any structure in a countable language can be interpreted
in a graph. We give one simple example of this construction where we
interpret linear orders in graphs. Let (A, <) be a linear order. We will build
a graph GA as follows. For each a ∈ A, GA will have vertices a, xa

1 , x
a
2 , x

a
3

and contain the subgraph

a

xa
1

�
��

xa
2

�
��

xa
3

�

�

� �

No edge aside from the ones above will have any xa
i as a vertex. If a < b,

GA will have vertices ya,b
1 , ya,b

2 , and ya,b
3 and contain the subgraph

a �
��

ya,b
1 �

��
ya,b
2

�
�

�
�� b�

�

�

�

ya,b
3

�

No edge other than the ones shown will contain any vertex ya,b
i , and

GA will have no edges other than the ones we have described. Let VA =
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A ∪ {xa
1 , xa

2 , xa
3 : a ∈ A} ∪ {ya,b

1 , ya,b
2 , ya,b

3 : a, b ∈ A and a < b} and let RA

be the smallest symmetric relation containing all edges (a, xa
1), (xa

1 , x
a
2),

(xa
1 , xa

3), (xa
2 , xa

3), for a ∈ A and (a, ya,b
1 ), (ya,b

1 , ya,b
2 ), (ya,b

1 , ya,b
3 ), (ya,b

2 , b)
for a < b.

For example, if A is the three-element linear order a < b < c, then GA

is the graph

a ���ya,b
1

���
ya,b
2

�����
�

ya,b
3 b

�

�

�

�

xa
1�

��xa
2

�
�� xa

3

�

� �

xb
1�

��xb
2

�
�� xb

3

�

� �

c

xc
1�

��xc
2

�
�� xc

3

���

�

� �

yb,c
1 ���

yb,c
2
������

�
�

��

�

yb,c
3

�

�

�

ya,c
1 �

�
�

��
ya,c
2

�
�

�
�

�
�

�
��

�ya,c
3�

�

Let L = {R} where R is a binary relation. We will describe an L-theory
T of graphs such that every model of T is GA for a unique linear order A.
We begin by giving two formulas in the language of graphs that describe
the first two diagrams.

Let φ(x, u, v, w) be the formula asserting that x, u, v, w are distinct, there
are edges (x, u), (u, v), (u, w), and (v, w), and these are the only edges in-
volving vertices u, v, and w. Note that GA |= φ(a, xa

1 , x
a
2 , xa

3) for all a ∈ A.
Let ψ(x, y, u, v, w) be the formula asserting that x, y, u, v, w are distinct,

there are edges (x, u), (u, v), (u, w) and (v, y), and these are the only edges
involving vertices u, v and w. Note that GA |= φ(a, b, ya,b

1 , ya,b
2 , ya,b

3 ) when-
ever a < b in A.

We define formulas θ0(z), . . . , θ5(z) as follows:
θ0(z) is ∃u∃v∃w φ(z, u, v, w),
θ1(z) is ∃x∃v∃w φ(x, z, u, w),
θ2(z) is ∃x∃u∃w φ(x, u, z, w),
θ3(z) is ∃x∃y∃v∃w ψ(x, y, z, v, w),
θ4(z) is ∃x∃y∃u∃w ψ(x, y, u, z, w),
θ5(z) is ∃x∃y∃u∃v ψ(x, y, u, v, z).
If a, b ∈ A with a < b, then

GA |= θ0(a) ∧ θ1(xa
1) ∧ θ2(xa

2) ∧ θ2(xa
3)

and
GA |= θ3(y

a,b
1 ) ∧ θ4(y

a,b
2 ) ∧ θ5(y

a,b
3 ).

Thus, for each vertex x in GA, GA |= θi(x) for some i = 0, . . . , 5.
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Lemma 1.3.7 If (A, <) is a linear order, then for all vertices x in GA,
there is a unique i ≤ 5 such that GA |= θi(x).

Proof Let x be a vertex in GA. If x is part of a 3-cycle, then x = xa
i for

some a ∈ A. Recall that the valence of x is the number of edges with x as
a vertex. If x has valence 3, then θ1(x) is the unique formula that holds. If
x has valence 2, then θ2(x) is the unique formula that holds.

Suppose that x is not part of a 3-cycle. Then, either x is in A or x = ya,b
i ,

where a, b ∈ A, a < b, and i ≤ 3. If there is an edge (x, v) such that v is part
of a 3-cycle, then θ0(x) is the unique formula that holds. If x has valence 1,
then θ5(x). If there is an edge (x, v) such that v has valence 1, then θ3(x) is
the unique formula that holds of x. Otherwise, θ4(x) is the unique formula
that holds of x.

Let T be the L-theory with the following axioms:
i) R is symmetric and irreflexive;
ii) for all x, exactly one θi holds;
iii) if θ0(x) and θ0(y), then ¬R(x, y);
iv) if ∃u∃v∃w ψ(x, y, u, v, w), then ∀u1∀v1∀w1¬ψ(y, x, u1, v1, w1);
v) if ∃u∃v∃w ψ(x, y, u, v, w) and ∃u1∃v1∃w1ψ(y, z, u1, v1, w1), then

∃u2∃v2∃w2 ψ(x, z, u2, v2, w2);
vi) if θ0(x) and θ0(y), then either x = y or ∃u∃v∃w ψ(x, y, u, v, w) or

∃u∃v∃w ψ(y, x, u, v, w);
vii) if φ(x, u, v, w) ∧ φ(x, u′, v′, w′), then u = u′, v = v′ and w = w′;
viii) if ψ(x, y, u, v, w)∧ψ(x, y, u′, v′, w′), then u = u′, v = v′ and w = w′.
If (A, <) is a linear order, then GA |= T . Thus, every linear order can be

interpreted in a model of T .
Suppose that G |= T . Let XG = {x ∈ G : G |= θ0(x)}. Because G |= T ,

axioms iv)–vi) ensure that we can linearly order XG by x <G y if and only
if G |= ∃u∃v∃w ψ(x, y, u, v, w). Thus, we can interpret linear orders into
every model of T .

The next lemma shows that in fact (A, <) 	→ GA is a bijection between
linear orders and models of T . We leave the proof as an exercise.

Lemma 1.3.8 If (A, <) is a linear order, then (XGA
, <GA

) ∼= (A, <).
Moreover, GXG

∼= G for any G |= T .

Quotients
Often we want to do more general constructions. For example, suppose
that we have a definable group G and a definable normal subgroup H. We
might want to look at the group G/H. It is possible that G/H does not
correspond to a definable group in our structure. But it does correspond
to the cosets of a definable equivalence relation.

Definition 1.3.9 We say that an L0-structure N is interpretable in an L-
structure M if there is a definable X ⊆ Mn, a definable equivalence relation



28 1. Structures and Theories

E on X, and for each symbol of L0 we can find definable E-invariant sets
on X (where “definable” means definable in L) such that X/E with the
induced structure is isomorphic to N .

Let K be a field. Let

X =

{
(a0, . . . , an) ∈ Kn+1 :

n∨
i=0

ai �= 0

}
.

Define an equivalence relation ∼ on X by a ∼ b if and only if there is a
non-zero λ ∈ K such that λa = b. Clearly, X and ∼ are definable, and the
quotient X/ ∼ is Pn(K), projective n-space over K. Let f(X0, . . . , Xn) be
a homogeneous polynomial over K (i.e., there is a d such that f(λ(x)) =
λdf(x) for any λ and x). Let V = {x ∈ X : f(x) = 0}. Because f is
homogeneous, V is ∼-invariant. Thus, we can interpret (Pn(K), V/ ∼) in
(K, +, ·, 0, 1).

Let us show that we can interpret the ordered additive group of integers
in the field Qp. We saw above that Zp is a definable subset of Qp. Let
U = {x ∈ Zp : ∃y ∈ Zp : xy = 1} be the units of Zp. Then, (Z,+) is
isomorphic to the multiplicative group Q×

p /U . We can define the ordering
on Q×

p /U by x/U ≥ y/U ⇔ x
y

∈ Zp.

Many-sorted Structures and Meq

Quotient constructions are so useful that we often enrich our structure so
that we can deal with all quotients as elements of the structure. Although
this material will be useful in Chapters 6–8, the reader can safely skip this
material for the time being.

We need to generalize our definition of structures to include many-sorted
structures.

Let S be a set. The universe of a many-sorted structure N with sorts S
is a set N that is partitioned into disjoint sets {Ni : i ∈ S}. For each n-ary
relation symbol R, there are s1, . . . , sn ∈ S such that RN ⊂ Ns1×. . .×Nsn .
For each n-ary function symbol f , there are s0, . . . , sn such that fN :
Ns1 × . . . × Nsn → Ns0 .

Let M be an L-structure. We consider the set of sorts S = {SE : E an
∅-definable equivalence relation on Mn for some n}. In the many-sorted
structure Meq we interpret the sort SE as Mn/E for E an ∅-definable
equivalence relation on Mn. Because = is a definable equivalence relation
on M , we can identify M with the sort S=. All relations and functions
of L are relations and functions on Mk. For each ∅-definable equivalence
relation E on Mn we have in Meq an n-ary function fE : Mn → SE given
by fE(x) = x/E.

The next lemma summarizes some basic facts we will need about Meq.
We leave the proof as an exercise.
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Lemma 1.3.10 i) If X ⊆ Mn is definable in Meq, then X is definable in
M.

ii) If M ≡ N , then Meq ≡ N eq.
iii) If N is interpretable in M, then N is definably interpretable in Meq.
iv) If σ is an automorphism of Meq, then σ|M is an automorphism of

M.
v) If σ is an automorphism of M, there is σ̂ an automorphism of Meq

such that σ = σ̂|M .

1.4 Exercises and Remarks

Exercise 1.4.1 a) Suppose that φ1, . . . , φn are L-formulas and ψ is a
Boolean combination of φ1, . . . , φn. Then there is S ⊆ P({1, . . . , n}) such
that

|= ψ ⇔
∨

X∈S

⎛⎝∧
i∈X

φi ∧
∧
i�∈X

¬φi

⎞⎠ .

b) Show that every formula is equivalent to one of the form

Q1v1 . . . Qmvm ψ,

where ψ is quantifier-free and each Qi is either ∀ or ∃.

Exercise 1.4.2 a) Let L = {·, e} be the language of groups. Show that
there is a sentence φ such that M |= φ if and only if M ∼= Z/2Z × Z/2Z.

b) Let L be any finite language and let M be a finite L-structure. Show
that there is an L-sentence φ such that N |= φ if and only if N ∼= M.

Exercise 1.4.3 Let L be any countable language. Show that for any
infinite cardinal κ there are at most 2κ nonisomorphic L-structures of car-
dinality κ.

Exercise 1.4.4 Let T be an L-theory. We say that T ′ is an axiomatization
of T if M |= T if and only if M |= T ′ for any L-structure M. Suppose
that T ′ is an axiomatization of T . Show that T |= φ if and only if T ′ |= φ
for all L-sentences φ.

Exercise 1.4.5 Show that the following classes are elementary. In each
case, you should first pick an appropriate language.

a) Partial orders
b) Lattices
c) Boolean algebras
d) Integral domains
e) Trees

Exercise 1.4.6 Show that if T is an unsatisfiable, L-theory then every
L-sentence φ is a logical consequence of T .
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Exercise 1.4.7 Let φ be an L-sentence. The finite spectrum of φ is the set
{n ∈ N+ : there is M |= φ with |M | = n}, where N+ is the set of positive
natural numbers.

a) Let L = {E} where E is a binary relation, and let φ be the sentence
that asserts that E is an equivalence relation where every equivalence class
has exactly two elements. Show that the finite spectrum of φ is the set of
positive even numbers.

b) For each of the following subsets X of N+, show that X occurs as the
finite spectrum of an L-sentence for some language L:

i) {2n3m : n, m > 0};
ii) {m > 0 : m is composite} (i.e. m = ab where a �= 1 and b �= 1);
iii) {pn : p is prime and n > 0};
iv) {p : p is prime};

c)† Show that X ⊆ N+ is a finite spectrum if and only if there is a nonde-
terministic Turing machine M running in exponential time such that given
a string of n 1’s as input M halts accepting if and only if n ∈ X. [Remark:
An interesting open problem is whether the complement of a finite spec-
trum is a finite spectrum. This problem shows that it is equivalent to the
question of whether the collection of sets recognizable in nondeterministic
exponential time is closed under complement.]

Exercise 1.4.8 Let L = {+, 0}. Show that Z ⊕ Z �≡ Z.

Exercise 1.4.9 Let M be an L-structure. We say that f : Mn → Mm is
definable if the graph of f is a definable set in Mn+m.

a) Show that if f : Mn → Mm and g : Mm → M l are definable, then so
is g ◦ f .

b) Suppose that f : Mn → M is definable. Show that the image of f is
definable.

c) Suppose that f : Mn → M is definable and one-to-one. Show that
f−1 is definable.

Exercise 1.4.10 Let M be an L-structure and A ⊆ M . We say that b ∈ M
is definable over A if there is a formula φ(v,w) and a ∈ A such that

M |= φ(b, a) ∧ ∀y (φ(y, a) → y = b).

In other words, {b} is A-definable.
a) Show that x is definable over A if and only if for some n there is an

A-definable function f : Mn → M and a ∈ M such that f(a) = x.
b) Suppose that x is definable from A and σ is an automorphism of M

such that σ(a) = a for all a ∈ A. Show that σ(x) = x.
Let dcl(A) = {x ∈ M : x is definable from A}.
c) Show that dcl(dcl(A)) = A.

Exercise 1.4.11 Let M be an L-structure and A ⊆ M . We say that b ∈ M
is algebraic over A if there is an L-formula φ(v, w) and a ∈ A such that
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M |= φ(b, a) and {y ∈ M : M |= φ(y, a)} is finite. We let acl(A) = {x : x
is algebraic over A}.

a) Suppose that x ∈ acl(A). Show that there are x1, . . . , xm such that if
σ is an automorphism of M with σ(a) = a for all a ∈ A, then σ(x) = xi for
some i. In other words, there are only finitely many conjugates of x under
automorphisms of M fixing a.

b) Show that acl(acl(A)) = acl(A).
c) Show that if x ∈ acl(A), then x ∈ acl(A0) for some finite A0 ⊆ A.
d) Show that if A ⊆ B, then acl(A) ⊆ acl(B).

Exercise 1.4.12 Let K be a field and let F be a finite algebraic extension
of K. Show that the field F is interpretable in the field K. [Hint: F is a
finite-dimensional K-vector space.]

Exercise 1.4.13 † Show that the ring of 2-adic integers Z2 is definable in
the field of 2-adic numbers Q2.

Exercise 1.4.14 a) Prove Lemma 1.3.8.
b) Let T0 be a theory of linear orders. Show that there is T1 a theory of

graphs such that every model of T0 is interpretable in a model of T1, every
model of T1 interprets a model of T0, and the number of nonisomorphic
models of T0 of cardinality κ is equal to the number of nonisomorphic
models of T1 of cardinality κ for all infinite cardinals κ.

c) Find a way to interpret groups into graphs such that the analog of
Lemma 1.3.8 holds.

Exercise 1.4.15 (Expansions and Reducts) Let L1 ⊃ L. If M1 is an L1-
structure, then by ignoring the interpretations of the symbols in L1 \ L we
get an L-structure M. We call M a reduct of M1 and M1 an expansion of
M.

a) Show that if X ⊆ Mn is definable in M, then it is definable in M1.
b) Give an example showing that there may be sets definable in the

expansion that are not definable in the original structure.
c) Suppose that M1 is an expansion of M where for each symbol f or

R in L1 \ L the interpretation fM1 or RM1 is definable in M . In this case
we call M1 an expansion by definitions. For example because we can define
the ordering of R in the field language, (R, +, ·, <, 0, 1) is an expansion by
definitions of (R, +, ·, 0, 1). Show that if M1 is an expansion by definitions
of M, then every subset of Mn definable in the structure M1 is definable
in the structure M.

Exercise 1.4.16 Suppose that N is interpretable in M. Say N ∼=
(X/E, . . .), where X and E are definable in M. We say that the inter-
pretation is pure if any subset of (X/E)n definable in M is definable in N .
Show that the interpretation of the complex field C in the real field R is
not pure.

Exercise 1.4.17 Let L be a language Let L0 be the language containing
all relation symbols of L, an (n + 1)-ary relation symbol Rf for each n-ary
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function symbol of L, and a unary relation symbol Rc for each constant
symbol of L. Let M be an L-structure. Let M∗ be the L ∪ L0 expansion
of M where we interpret Rf as the graph of fM and Rc as {cM}. Let M0
be the reduct of M∗ to L0.

a) Show that X ⊆ Mn is definable in M if and only if it is definable in
M∗ if and only if it is definable in M0.

b) Show that for any L-theory T , there is an L0-theory T0 such that the
map M 	→ M0 above is a bijection between models of T and models of T0
that preserves the collection of sets definable in structures.

These results show that for many purposes we can assume that out lan-
guage is relational (i.e., has only relation symbols).

Exercise 1.4.18 Prove Lemma 1.3.10.

Exercise 1.4.19 Show that if N is interpretable in Meq, then N is de-
finably interpretable in Meq.

Remarks
Our treatment of languages, structures, and theories has been very terse.
For a more detailed and leisurely discussion, we refer the reader to [8], [94],
or [31].

If L is a finite language and T is an L-theory, then we can find a theory
T ′ of graphs such that the analog of Lemma 1.3.8 holds. There are also gen-
eralizations for countable languages. See [40] for details. Mekler [70] proved
an analogous result showing that any structure in a countable language can
be interpreted in a nilpotent group.

Exercise 1.4.7 c) is due to Bennett. The relationship between finite spec-
tra and computational complexity is discussed in Section 7.26 of [46].



2
Basic Techniques

2.1 The Compactness Theorem

Let T be an L-theory and φ an L-sentence. To show that T |= φ, we
must show that φ holds in every model of T . Checking all models of T
sounds like a daunting task, but in practice we usually show that T |= φ
by giving an informal mathematical proof that φ is true in every model of
T . One of the first great achievements of mathematical logic was giving a
rigorous definition of “proof” that completely captures the notion of “logical
consequence.”

A proof of φ from T is a finite sequence of L-formulas ψ1, . . . , ψm such
that ψm = φ and ψi ∈ T or ψi follows from ψ1, . . . , ψi−1 by a simple logical
rule for each i. We write T � φ if there is a proof of φ from T . Examples
of a “simple” logical rules are:

“from φ and ψ conclude φ ∧ ψ,” or
“from φ ∧ ψ conclude φ.”
It will not be important for our purposes to go into the details of the

proof system, but we stress the following points. (See [94], for example, for
complete details of one possible proof system.)

• Proofs are finite.
• (Soundness) If T � φ, then T |= φ.
• If T is a finite set of sentences, then there is an algorithm that, when

given a sequence of L-formulas σ and an L-sentence φ, will decide whether
σ is a proof of φ from T .
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Note that the last point does not say that there is an algorithm that will
decide if T � φ. It only says that there is an algorithm that can check each
purported proof.

We say that a language L is recursive if there is an algorithm that decides
whether a sequence of symbols is an L-formula. We say that an L-theory
T is recursive if there is an algorithm that, when given an L-sentence φ as
input, decides whether φ ∈ T .

Proposition 2.1.1 If L is a recursive language and T is a recursive L-
theory, then {φ : T � φ} is recursively enumerable; that is, there is an
algorithm, that when given φ as input will halt accepting if T � φ and not
halt if T �� φ.

Proof There is σ0, σ1, σ2, . . ., a computable listing of all finite sequences
of L-formulas. At stage i of our algorithm, we check to see whether σi is
a proof of ψ from T . This involves checking that each formula either is in
T (which we can check because T is recursive) or follows by a logical rule
from earlier formulas in the sequence σi and that the last formula is φ. If
σi is a proof of φ from T , then we halt accepting; otherwise we go on to
stage i + 1.

Remarkably, the finitistic syntactic notion of “proof” completely captures
the semantic notion of “logical consequence.”

Theorem 2.1.2 (Gödel’s Completeness Theorem) Let T be an L-
theory and φ an L-sentence, then T |= φ if and only if T � φ.

The Completeness Theorem gives a criterion for testing whether an
L-theory is satisfiable. We say that an L-theory T is inconsistent if
T � (φ ∧ ¬φ) for some sentence φ; otherwise we say that T is consistent.
Because our proof system is sound, any satisfiable theory is consistent. The
Completeness Theorem implies that the converse is true.

Corollary 2.1.3 T is consistent if and only if T is satisfiable.

Proof Suppose that T is not satisfiable. Because there are no models of
T , every model of T is a model of (φ ∧ ¬φ). Thus, T |= (φ ∧ ¬φ) and by
the Completeness Theorem T � (φ ∧ ¬φ).

This has a deceptively simple consequence.

Theorem 2.1.4 (Compactness Theorem) T is satisfiable if and only
if every finite subset of T is satisfiable.

Proof Clearly, if T is satisfiable, then every subset of T is satisfiable.
On the other hand, if T is not satisfiable, then T is inconsistent. Let σ be
a proof of a contradiction from T . Because σ is finite, only finitely many
assumptions from T are used in the proof. Thus, there is a finite T0 ⊆ T
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such that σ is a proof of a contradiction from T0. But then T0 is a finite
unsatisfiable subset of T .

Although it is a simple consequence of the Completeness Theorem and
the finite nature of proof, the Compactness Theorem is the cornerstone of
model theory. Because it will not be useful for us to understand the exact
nature of our proof system, we will not prove the Completeness Theorem.
Instead we will give a second proof of the Compactness Theorem that
does not appeal directly to the Completeness Theorem. This proof can be
adapted to prove the Completeness Theorem as well.

Henkin Constructions
We say that a theory T is finitely satisfiable if every finite subset of T is
satisfiable. We will show that every finitely satisfiable theory T is satisfiable.
To do this, we must build a model of T . The main idea of the construction
is that we will add enough constants to the language so that every element
of our model will be named by a constant symbol. The following definition
will give us sufficient conditions to construct a model from the constants.

Definition 2.1.5 We say that an L-theory T has the witness property
if whenever φ(v) is an L-formula with one free variable v, then there is a
constant symbol c ∈ L such that T |= (∃v φ(v)) → φ(c).

An L-theory T is maximal if for all φ either φ ∈ T or ¬φ ∈ T .

Our proof will frequently use the following simple lemma.

Lemma 2.1.6 Suppose T is a maximal and finitely satisfiable L-theory. If
∆ ⊆ T is finite and ∆ |= ψ, then ψ ∈ T .

Proof If ψ �∈ T , then, because T is maximal, ¬ψ ∈ T . But then ∆∪{¬ψ}
is a finite unsatisfiable subset of T , a contradiction.

Lemma 2.1.7 Suppose that T is a maximal and finitely satisfiable L-
theory with the witness property. Then, T has a model. In fact, if κ is
a cardinal and L has at most κ constant symbols, then there is M |= T
with |M| ≤ κ.

Proof Let C be the set of constant symbols of L. For c, d ∈ C, we say
c ∼ d if T |= c = d.

Claim 1 ∼ is an equivalence relation.
Clearly, c = c is in T . Suppose that c = d and d = e are in T . By Lemma

2.1.6, d = c and c = e are in T .

The universe of our model will be M = C/ ∼, the equivalence classes of
C mod ∼. Clearly, |M | ≤ κ. We let c∗ denote the equivalence class of c and
interpret c as its equivalence class, that is, cM = c∗. Next we show how to
interpret the relation and function symbols of L.
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Suppose that R is an n-ary relation symbol of L.

Claim 2 Suppose that c1, . . . , cn, d1, . . . , dn ∈ C, and ci ∼ di for i =
1, . . . , n, then, R(c) ∈ T if and only if R(d) ∈ T .

Because ci = di ∈ T for i = 1, . . . , n, by Lemma 2.1.6, if one of R(c) and
R(d) is in T , then both are in T .

We will interpret R as

RM = {(c∗
1, . . . , c

∗
n) : R(c1, . . . , cn) ∈ T}.

By Claim 2, RM is well-defined.
Suppose that f is an n-ary function symbol of L and c1, . . . , cn ∈ C.

Because ∅ |= ∃v f(c1, . . . , cn) = v and T has the witness property, by
Lemma 2.1.6, there is cn+1 ∈ C such that f(c1, . . . , cn) = cn+1 ∈ T . As
above, if di ∼ ci for i = 1, . . . , n + 1, then f(d1, . . . , dn) = dn+1 ∈ T .
Moreover, because f is a function symbol, if ei ∼ ci for i = 1, . . . n and
f(e1, . . . , en) = en+1 ∈ T , then en+1 ∼ cn+1. Thus, we get a well-defined
function fM : Mn → M by

fM(c∗
1, . . . , c

∗
n) = d∗ if and only if f(c1, . . . , cn) = d ∈ T.

This completes the description of the structure M. Before showing that
M |= T , we must show that terms behave correctly.

Claim 3 Suppose that t is a term using free variables from v1, . . . , vn. If
c1, . . . , cn, d ∈ C, then t(c1, . . . , cn) = d ∈ T if and only if tM(c∗

1, . . . , c
∗
n) =

d∗.
(⇒) We first prove, by induction on terms, that if t(c1, . . . , cn) = d ∈ T ,

then tM(c∗
1, . . . , c

∗
n) = d∗. If t is a constant symbol c, then c = d ∈ T and

cM = c∗ = d∗.
If t is the variable vi, then ci = d ∈ T and tM(c∗

1, . . . , c
∗
n) = c∗

i = d∗.
Suppose that the claim is true for t1, . . . , tm and t is f(t1, . . . , tm). Using

the witness property and Lemma 2.1.6, we can find d, d1, . . . , dn ∈ C such
that ti(c1, . . . , cn) = di ∈ T for i ≤ m and f(d1, . . . , dm) = d ∈ T . By our
induction hypothesis, tMi (c∗

1, . . . , c
∗
n) = d∗

i and fM(d∗
1, . . . , d

∗
m) = d∗. Thus

tM(c∗
1, . . . , c

∗
n) = d∗.

(⇐) Suppose, on the other hand, than tM(c∗
1, . . . , c

∗
n) = d∗. By the wit-

ness property and Lemma 2.1.6, there is e ∈ C such that t(c1, . . . , cn) =
e ∈ T . Using the (⇒) direction of the proof, tM(c∗

1, . . . , c
∗
n) = e∗. Thus,

e∗ = d∗ and e = d ∈ T . By Lemma 2.1.6, t(c1, . . . , cn) = d ∈ T .

Claim 4 For all L-formulas φ(v1, . . . , vn) and c1, . . . , cn ∈ C, M |= φ(c∗)
if and only if φ(c) ∈ T .

We prove this claim by induction on formulas.
Suppose that φ is t1 = t2. By Lemma 2.1.6 and the witness property, we

can find d1 and d2 such that t1(c) = d1 and t2(c) = d2 are in T . By Claim
3, tMi (c∗) = d∗

i for i = 1, 2. Then
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M |= φ(c∗) ⇔ d∗
1 = d∗

2

⇔ d1 = d2 ∈ T

⇔ t1(c) = t2(c) ∈ T by Lemma 2.1.6.

Suppose that φ is R(t1, . . . , tm). Because T has the witness property, by
Lemma 2.1.6 there are d1, . . . , dm ∈ C such that ti(c) = di ∈ T and, Claim
4, tMi (c∗) = d∗

i for i = 1, . . . , m. Thus,

M |= φ(c∗) ⇔ d
∗ ∈ RM

⇔ R(d) ∈ T

⇔ φ(c) ∈ T by Lemma 2.1.6.

Suppose that the claim is true for φ. If M |= ¬φ(c∗), then M �|= φ(c∗).
By the induction hypothesis, φ(c) �∈ T . Thus by maximality, ¬φ(c) ∈ T .
On the other hand, if ¬φ(c) ∈ T , then, because T is finitely satisfiable,
φ(c) �∈ T . Thus, by induction, M �|= φ(c∗) and M |= ¬φ(c∗).

Suppose that the claim is true for φ and ψ. Then

M |= (φ ∧ ψ)(c∗) ⇔ φ(c) ∈ T and ψ(c) ∈ T

⇔ (φ ∧ ψ)(c) ∈ T by Lemma 2.1.6.

Suppose that φ is ∃v ψ(v) and the claim is true for ψ. If M |= ψ(d∗, c∗),
then, by the inductive assumption, ψ(d, c) ∈ T and ∃v ψ(v, c) ∈ T , by
2.1.6. On the other hand if ∃v ψ(v, c) ∈ T , then by the witness property
and Lemma 2.1.6, ψ(d, c) ∈ T for some c. By induction, M |= ψ(d∗, c∗)
and M |= ∃v ψ(v, c∗).

This completes the induction. In particular, we have M |= T , as desired.

The following lemmas show that any finitely satisfiable theory can be
extended to a maximal finitely satisfiable theory with the witness property.

Lemma 2.1.8 Let T be a finitely satisfiable L-theory. There is a language
L∗ ⊇ L and T ∗ ⊇ T a finitely satisfiable L∗-theory such that any L∗-
theory extending T ∗ has the witness property. We can choose L∗ such that
|L∗| = |L| + ℵ0.

Proof We first show that there is a language L1 ⊇ L and a finitely
satisfiable L1-theory T1 ⊇ T such that for any L-formula φ(v) there is an
L1-constant symbol c such that T1 |= (∃v φ(v)) → φ(c). For each L-formula
φ(v), let cφ be a new constant symbol and let L1 = L ∪ {cφ : φ(v) an L-
formula}. For each L-formula φ(v), let Θφ be the L1-sentence (∃v φ(v)) →
φ(cφ). Let T1 = T ∪ {Θφ : φ(v) an L-formula}.
Claim T1 is finitely satisfiable.

Suppose that ∆ is a finite subset of T1. Then, ∆ = ∆0 ∪{Θφ1 , . . . ,Θφn},
where ∆0 is a finite subset of T . Because T is finitely satisfiable, there is
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M |= ∆0. We will make M into an L∪{cφ1 , . . . , cφn}-structure M′. Because
we will not change the interpretation of the symbols of L, we will have
M′ |= ∆0. To do this, we must show how to interpret the symbols cφi

in M′.
If M |= ∃v φ(v), choose ai some element of M such that M |= φ(ai) and
let cM′

φi
= ai. Otherwise, let cM′

φi
be any element of M. Clearly, M′ |= Θφi

for i ≤ n. Thus, T1 is finitely satisfiable.

We now iterate the construction above to build a sequence of languages
L ⊆ L1 ⊆ L2 ⊆ . . . and a sequence of finitely satisfiable Li-theories T ⊆
T1 ⊆ T2 ⊆ . . . such that if φ(v) is an Li-formula, then there is a constant
symbol c ∈ Li+1 such that Ti+1 |= (∃vφ(v)) → φ(c).

Let L∗ =
⋃

Li and T ∗ =
⋃

Ti. By construction, T ∗ has the witness
property. If ∆ is a finite subset of T ∗, then ∆ ⊆ Ti for some i. Thus, ∆ is
satisfiable and T ∗ is finitely satisfiable.

If |Li| is the number of relation, function and constant symbols in Li,
then there are at most |Li|+ℵ0 formulas in Li. Thus, by induction, |L∗| =
|L| + ℵ0.

Lemma 2.1.9 Suppose that T is a finitely satisfiable L-theory and φ is an
L-sentence, then, either T ∪ {φ} or T ∪ {¬φ} is finitely satisfiable.

Proof Suppose that T ∪{φ} is not finitely satisfiable. Then, there is a finite
∆ ⊆ T such that ∆ |= ¬φ. We claim that T ∪ {¬φ} is finitely satisfiable.
Let Σ be a finite subset of T . Because ∆∪Σ is satisfiable and ∆∪Σ |= ¬φ,
Σ ∪ {¬φ} is satisfiable. Thus, T ∪ {¬φ} is finitely satisfiable.

Corollary 2.1.10 If T is a finitely satisfiable L-theory, then there is a
maximal finitely satisfiable L-theory T ′ ⊇ T .

Proof Let I be the set of all finitely satisfiable L-theories containing T . We
partially order I by inclusion. If C ⊆ I is a chain, let TC =

⋃
{Σ : Σ ∈ C}.

If ∆ is a finite subset of TC , then there is Σ ∈ C such that ∆ ⊆ Σ, so TC is
finitely satisfiable and TC ⊇ Σ for all Σ ∈ C. Thus, every chain in I has an
upper bound, and we can apply Zorn’s Lemma (see Appendix A) to find a
T ′ ∈ I maximal with respect to the partial order. By Lemma 2.1.9, either
T ′ ∪ {φ} or T ′ ∪ {¬φ} is finitely satisfiable. Because T ′ is maximal in the
partial order, one of φ or ¬φ is in T ′. Thus, T ′ is a maximal theory.

We can now prove the following strengthening of the Compactness The-
orem.

Theorem 2.1.11 If T is a finitely satisfiable L-theory and κ is an infinite
cardinal with κ ≥ |L|, then there is a model of T of cardinality at most κ.

Proof By Lemma 2.1.8, we can find L∗ ⊇ L and T ∗ ⊇ T a finitely
satisfiable L∗-theory such that any L∗-theory extending T ∗ has the witness
property and the cardinality of L∗ is at most κ. By Corollary 2.1.10, we can
find a maximal finitely satisfiable L∗-theory T ′ ⊇ T ∗. Because T ′ has the
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witness property, Lemma 2.1.7 ensures that there is M |= T with |M | ≤ κ.

This proof of the Compactness Theorem is based on Henkin’s proof on
the Completeness Theorem. The method of constructing a model where
the universe is built from the constant symbols is referred to as a “Henkin
construction” and the theories with the witness property are sometimes
called “Henkinized”.

We conclude this section with several standard applications of the Com-
pactness Theorem. We will give a few more in the exercises.

Proposition 2.1.12 Let L be a language containing {·, e}, the language
of groups, let T be an L-theory extending the theory of groups, and let φ(v)
be an L-formula. Suppose that for all n there is Gn |= T and gn ∈ Gn with
finite order greater than n such that Gn |= φ(gn). Then, there is G |= T
and g ∈ G such that G |= φ(g) and g has infinite order. In particular, there
is no formula that defines the torsion points in all models of T .

Proof Let L∗ = L∪{c}, where c is a new constant symbol. Let T ∗ be the
L-theory

T ∪ {φ(c)} ∪ {c · c · · · c︸ ︷︷ ︸
n−times

�= e : n = 1, 2, . . .}.

If G is a model of T ∗ and g is the interpretation of c in G then G |= φ(g)
and g has infinite order. Hence, it suffices to show that T ∗ is satisfiable.

Let ∆ ⊆ T ∗ be finite. Then

∆ ⊆ T ∪ {φ(c)} ∪ {c · c · · · c︸ ︷︷ ︸
n−times

�= e : n = 1, 2, . . . , m}

for some m. View Gm as an L∗ structure by interpreting c as the element
gm. Because Gm |= T∪{φ(gm)} and gm has order greater than m, Gm |= ∆.
Thus, T ∗ is finitely satisfiable and hence, by the Compactness Theorem,
satisfiable.

Proposition 2.1.13 Let L = {·,+, <, 0, 1} and let Th(N) be the full L-
theory of the natural numbers. There is M |= Th(N) and a ∈ M such that
a is larger than every natural number.

Proof Let L∗ = L ∪ {c} where c is a new constant symbol and let

T = Th(N) ∪ {1 + 1 + . . . + 1︸ ︷︷ ︸
n−times

< c : for n = 1, 2, . . .}.

If ∆ is a finite subset of T , we can make N a model of ∆ by interpreting c
as a suitably large natural number. Thus, T is finitely satisfiable and there
is M |= T . If a ∈ M is the interpretation of c, then a is larger than every
natural number.

The next lemma is an easy consequence of the Completeness Theorem,
but it also can be deduced from the Compactness Theorem.
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Lemma 2.1.14 If T |= φ, then ∆ |= T for some finite ∆ ⊆ T .

Proof Suppose not. Let ∆ ⊆ T be finite. Because ∆ �|= φ, ∆ ∪ {¬φ} is
satisfiable. Thus, T ∪ {¬φ} is finitely satisfiable and, by the Compactness
Theorem, T �|= φ.

2.2 Complete Theories

Definition 2.2.1 An L-theory T is called complete if for any L-sentence
φ either T |= φ or T |= ¬φ.

For M an L-structure, then the full theory

Th(M) = {φ : φ is an L-sentence and M |= φ}

is a complete theory. Usually, it is difficult to determine exactly what sen-
tences are in Th(M). In many cases, the key to understanding Th(M) is
finding a simpler L-theory T such that M |= T and T is complete. In this
case, M |= φ if and only if T |= φ, because if T �|= φ, then T |= ¬φ and
M |= ¬φ.

The Compactness Theorem yields a very useful completeness test that we
will use in this section to show that several natural theories are complete.
This will have striking consequences for algebraically closed fields.

Proposition 2.2.2 Let T be an L-theory with infinite models. If κ is an
infinite cardinal and κ ≥ |L|, then there is a model of T of cardinality κ.

Proof Let L∗ = L ∪ {cα : α < κ}, where each cα is a new constant
symbol, and let T ∗ be the L∗-theory T ∪ {cα �= cβ : α, β < κ, α �= β}.
Clearly if M |= T ∗, then M is a model of T of cardinality at least κ. Thus,
by Theorem 2.1.11, it suffices to show that T ∗ is finitely satisfiable. But if
∆ ⊂ T ∗ is finite, then ∆ ⊆ T ∪ {cα �= cβ : α �= β, α, β ∈ I}, where I is a
finite subset of κ. Let M be an infinite model of T . We can interpret the
symbols {cα : α ∈ I} as |I| distinct elements of M . Because M |= ∆, T ∗ is
finitely satisfiable.

Definition 2.2.3 Let κ be an infinite cardinal and let T be a theory with
models of size κ. We say that T is κ-categorical if any two models of T of
cardinality κ are isomorphic.

Let L = {+, 0} be the language of additive groups and let T be the
L-theory of torsion-free divisible Abelian groups. The axioms of T are the
axioms for Abelian groups together with the axioms

∀x(x �= 0 → x + . . . + x︸ ︷︷ ︸
n−times

�= 0)
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and
∀y∃x x + . . . + x︸ ︷︷ ︸

n−times

= y

for n = 1, 2, . . ..

Proposition 2.2.4 The theory of torsion-free divisible Abelian groups is
κ-categorical for all κ > ℵ0.

Proof We first argue that models of T are essentially vector spaces over
the field of rational numbers Q. Clearly, if V is any vector space over Q,
then the underlying additive group of V is a model of T . On the other
hand, if G |= T , g ∈ G, and n ∈ N with n > 0, we can find h ∈ G such that
nh = g. If nk = g, then n(h − k) = 0. Because G is torsion-free there is a
unique h ∈ G such that nh = g. We call this element g/n. We can view G
as a Q-vector space under the action m

n g = m(g/n).
Two Q-vector spaces are isomorphic if and only if they have the same

dimension. Thus, models of T are determined up to isomorphism by their
dimension. If G has dimension λ, then |G| = λ + ℵ0. If κ is uncountable
and G has cardinality κ, then G has dimension κ. Thus, for κ > ℵ0 any
two models of T of cardinality κ are isomorphic.

Note that T is not ℵ0-categorical. Indeed, there are ℵ0 nonisomorphic
models corresponding to vector spaces of dimension 1, 2, 3, . . . and ℵ0.

A similar argument applies to the theory of algebraically closed fields.
Let ACFp be the theory of algebraically closed fields of characteristic p,
where p is either 0 or a prime number.

Proposition 2.2.5 ACFp is κ-categorical for all uncountable cardinals κ.

Proof Two algebraically closed fields are isomorphic if and only if they
have the same characteristic and transcendence degree (see, for example
[58] X §1). An algebraically closed field of transcendence degree λ has car-
dinality λ +ℵ0. If κ > ℵ0, an algebraically closed field of cardinality κ also
has transcendence degree κ. Thus, any two algebraically closed fields of the
same characteristic and same uncountable cardinality are isomorphic.

We give two simpler examples.

• Let L be the empty language. Then the theory of an infinite set is
κ-categorical for all cardinals κ.

• Let L = {E}, where E is a binary relation, and let T be the theory of
an equivalence relation with exactly two classes, both of which are infinite.
It is easy to see that any two countable models of T are isomorphic. On
the other hand, T is not κ-categorical for κ > ℵ0. To see this, let M0 be a
model where both classes have cardinality κ, and let M1 be a model where
one class has cardinality κ and the other has cardinality ℵ0. Clearly, M0
and M1 are not isomorphic.
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Theorem 2.2.6 (Vaught’s Test) Let T be a satisfiable theory with no
finite models that is κ-categorical for some infinite cardinal κ ≥ |L|. Then
T is complete.

Proof Suppose that T is not complete. Then there is a sentence φ such that
T �|= φ and T �|= ¬φ. Because T �|= ψ if and only if T ∪ {¬ψ} is satisfiable,
the theories T0 = T ∪{φ} and T1 = T ∪{¬φ} are satisfiable. Because T has
no finite models, both T0 and T1 have infinite models. By Proposition 2.2.2
we can find M0 and M1 of cardinality κ with Mi |= Ti. Because M0 and
M1 disagree about φ, there are not elementarily equivalent and hence, by
Theorem 1.1.10, nonisomorphic. This contradicts the κ-categoricity of T .

The assumption that T has no finite models is necessary. Suppose that
T is the {+, 0}-theory of groups, where every element has order 2. In the
exercises, we will show that T is κ-categorical for all κ ≥ ℵ0. However, T
is not complete. The sentence ∃x∃y∃z (x �= y ∧ y �= z ∧ z �= x) is false in
the two-element group but true in every other model of T .

Vaught’s test implies that all of the categorical theories discussed above
are complete. In particular, algebraically closed fields are complete. This
result of Tarski has several immediate interesting consequences.

Definition 2.2.7 We say that an L-theory T is decidable if there is an
algorithm that when given an L-sentence φ as input decides whether T |= φ.

Lemma 2.2.8 Let T be a recursive complete satisfiable theory in a recur-
sive language L. Then T is decidable.

Proof Because T is satisfiable A = {φ : T |= φ} and B = {φ : T |= ¬φ}
are disjoint. Because T is consistent A∪B is the set of all L-sentences. By
the Completeness Theorem, A = {φ : T � φ} and B = {φ : T � ¬φ}. By
Proposition 2.1.1 A and B are recursively enumerable. But any recursively
enumerable set with a recursively enumerable complement is recursive.

Informally, to decide whether φ is a logical consequence of a complete
satisfiable recursive theory T , we begin searching through possible proofs
from T until we find either a proof of φ or a proof of ¬φ. Because T is
satisfiable, we will not find proofs of both. Because T is complete, we will
eventually find a proof of one or the other.

Corollary 2.2.9 For p = 0 or p prime, ACFp is decidable. In particular,
Th(C), the first-order theory of the field of complex numbers, is decidable.

The completeness of ACFp can also be thought of as a first-order version
of the Lefschetz Principle from algebraic geometry.

Corollary 2.2.10 Let φ be a sentence in the language of rings. The fol-
lowing are equivalent.

i) φ is true in the complex numbers.
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ii) φ is true in every algebraically closed field of characteristic zero.
iii) φ is true in some algebraically closed field of characteristic zero.
iv) There are arbitrarily large primes p such that φ is true in some alge-

braically closed field of characteristic p.
v) There is an m such that for all p > m, φ is true in all algebraically

closed fields of characteristic p.

Proof The equivalence of i)–iii) is just the completeness of ACF0 and v)⇒
iv) is obvious.

For ii) ⇒ v) suppose that ACF0 |= φ. By Lemma 2.1.14, there is a finite
∆ ⊂ ACF0 such that ∆ |= φ. Thus, if we choose p large enough, then
ACFp |= ∆. Thus, ACFp |= φ for all sufficiently large primes p.

For iv) ⇒ ii) suppose ACF0 �|= φ. Because ACF0 is complete, ACF0 |=
¬φ. By the argument above, ACFp |= ¬φ for sufficiently large p; thus, iv)
fails.

Ax found the following striking application of Corollary 2.2.10.

Theorem 2.2.11 Every injective polynomial map from Cn to Cn is sur-
jective.

Proof Remarkably, the key to the proof is the simple observation that if
k is a finite field, then every injective function f : kn → kn is surjective.
From this observation it is easy to show that the same is true for F alg

p , the
algebraic closure of the p-element field.
Claim Every injective polynomial map f : (F alg

p )n → (F alg
p )n is surjective.

Suppose not. Let a ∈ F alg
p be the coefficients of f and let b ∈ (F alg

p )n

such that b is not in the range of f . Let k be the subfield of F alg
p generated

by a, b. Then f |kn is an injective but not surjective polynomial map from
kn into itself. But F alg

p =
⋃∞

n=1 Fpn is a locally finite field. Thus k is finite,
a contradiction.

Suppose that the theorem is false. Let X = (X1, . . . , Xn). Let f(X) =
(f1(X), . . . , fn(X)) be a counterexample where each fi ∈ C[X] has degree
at most d. There is an L-sentence Φn,d such that for K a field, K |= Φn,d

if and only if every injective polynomial map from Kn to Kn where each
coordinate function has degree at most d is surjective. We can quantify
over polynomials of degree at most d by quantifying over the coefficients.
For example, Φ2,2 is the sentence
∀a0,0∀a0,1∀a0,2∀a1,0∀a1,1∀a2,0∀b0,0∀b0,1∀b0,2∀b1,0∀b1,1∀b2,0[(

∀x1∀y1∀x2∀y2((
∑

ai,jx
i
1y

j
1 =

∑
ai,jx

i
2y

j
2 ∧
∑

bi,jx
i
1y

j
1 =

∑
bi,jx

i
2y

j
2) →

(x1 = x2 ∧ y1 = y2))
)
→ ∀u∀v∃x∃y

∑
ai,jx

iyj = u ∧
∑

bi,jx
iyj = v

]
.

By the claim Falg
p |= Φn,d for all primes p. By Corollary 2.2.10, C |= Φn,d,

a contradiction.



44 2. Basic Techniques

2.3 Up and Down

In Chapter 1, we looked at the category of L-structures and introduced
the notion of L-embeddings between structures. These are the maps that
preserve the relations, constants, and functions of L. Often we will want
to consider the more restrictive class of maps that preserve all first-order
properties.

Definition 2.3.1 If M and N are L-structures, then an L-embedding
j : M → N is called an elementary embedding if

M |= φ(a1, . . . , an) ⇔ N |= φ(j(a1), . . . , j(an))

for all L-formulas φ(v1, . . . , vn) and all a1, . . . , an ∈ M .
If M is a substructure of N , we say that it is an elementary substructure

and write M ≺ N if the inclusion map is elementary. We also say that N
is an elementary extension of M.

The proof of Theorem 1.1.10 shows that isomorphisms are elementary
maps.

Next we give a way to construct embeddings and elementary embeddings.

Definition 2.3.2 Suppose that M is an L-structure. Let LM be the
language where we add to L constant symbols m for each element of M .
The atomic diagram of M is {φ(m1, . . . , mn) : φ is either an atomic L-
formula or the negation of an atomic L-formula and M |= φ(m1, . . . , mn)}.
The elementary diagram of M is

{φ(m1, . . . , mn) : M |= φ(m1, . . . , mn), φ an L-formula}.

We let Diag(M) and Diagel(M) denote the atomic and elementary dia-
grams of M, respectively.

Lemma 2.3.3 i) Suppose that N is an LM -structure and N |= Diag(M);
then, viewing N as an L-structure, there is an L-embedding of M into N .

ii) If N |= Diagel(M), then there is an elementary embedding of M into
N .

Proof i) Let j : M → N by j(m) = mN ; that is, j(m) is the interpretation
of this constant symbol m in N . If m1, m2 are distinct elements of M , then
m1 �= m2 ∈ Diag(M); thus, j(m1) �= j(m2) so j is an embedding. If f is a
function symbol of L and fM(m1, . . . , mn) = mn+1, then f(m1, . . . , mn) =
mn+1 is a formula in Diag(M) and fN (j(m1), . . . , j(mn)) = j(mn+1). If
R is a relation symbol and m ∈ RM, then R(m1, . . . , mn) ∈ Diag(M) and
(j(m1), . . . , j(mn)) ∈ RN . Hence, j is an L-embedding.

ii) If N |= Diagel(M), then the map j above is elementary.

Combining these observations with the Compactness Theorem allows us
to build elementary extensions.
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Theorem 2.3.4 (Upward Löwenheim–Skolem Theorem) Let M be
an infinite L-structure and κ be an infinite cardinal κ ≥ |M| + |L|. Then,
there is N an L-structure of cardinality κ and j : M → N is elementary.

Proof Because M |= Diagel(M), Diagel(M) is satisfiable. By Theorem
2.1.11, there is N |= Diagel(M) of cardinality κ. By Lemma 2.3.3, there is
an elementary j : M → N .

The Downward Löwenheim–Skolem Theorem will give us a method for
building small elementary submodels. Its proof will use the following test
for elementary extensions due to Tarski and Vaught.

Proposition 2.3.5 (Tarski–Vaught Test) Suppose that M is a sub-
structure of N . Then, M is an elementary substructure if and only if, for
any formula φ(v, w) and a ∈ M , if there is b ∈ N such that N |= φ(b, a),
then there is c ∈ M such that N |= φ(c, a).

Proof If N is an elementary extension of M, the condition is clearly true.
To prove the converse, we must show that for all a ∈ M and all L-formulas
ψ(v)

M |= ψ(a) ⇔ N |= ψ(a).

We prove this by induction on formulas.
In Proposition 1.1.8, we showed that if φ(v) is quantifier free then M |=

φ(a) if and only if N |= φ(a). Thus, the claim is true for all atomic formulas.
If the claim is true for ψ, then

M |= ¬ψ(a) ⇔ M �|= ψ(a) ⇔ N �|= ψ(a) ⇔ N |= ¬ψ(a).

Similarly, if the claim is true for ψ and θ, then

M |= (ψ ∧ θ)(a) ⇔ M |= ψ(a) and M |= θ(a)
⇔ N |= ψ(a) and N |= θ(a)
⇔ N |= (ψ ∧ θ)(a).

Suppose that the claim is true for ψ(v, w). Let a ∈ M . If M |= ∃v ψ(v, a),
then there is b ∈ M such that M |= ψ(b, a). By our inductive assumption,
N |= ψ(b, a) and hence N |= ∃v ψ(v, a).

If, on the other hand, N |= ∃v ψ(v, a), then, by our assumptions, there
is c ∈ M such that N |= ψ(c, a). By induction, M |= ψ(c, a) and M |=
∃v ψ(v, a).

This proposition tells us that to find elementary substructures we must
be able to witness quantifiers. We now examine one systematic way of doing
that.

We say that an L-theory T has built-in Skolem functions if for all L-
formulas φ(v, w1, . . . , wn) there is a function symbol f such that T |=
∀w ((∃vφ(v, w)) → φ(f(w), w)). In other words, there are enough func-
tion symbols in the language to witness all existential statements.
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Lemma 2.3.6 Let T be an L-theory. There are L∗ ⊇ L and T ∗ ⊇ T an
L∗-theory such that T ∗ has built-in Skolem functions, and if M |= T , then
we can expand M to M∗ |= T ∗. We can choose L∗ such that |L∗| = |L|+ℵ0.

We call T ∗ a skolemization of T .

Proof Recall from Exercise 1.4.15 that to expand M we must interpret
all of the symbols in L∗ \ L to make M a model of T ∗.

We build a sequence of languages L = L0 ⊆ L1 ⊆ . . . and Li-theories Ti

such that T = T0 ⊆ T1 ⊆ . . ..
Given Li, let Li+1 = L ∪ {fφ : φ(v, w1, . . . , wn) an Li-formula, n =

1, 2, . . .}, where fφ is an n-ary function symbol. For φ(v,w) an Li-formula,
let Ψφ be the sentence

∀w ((∃v φ(v,w)) → φ(fφ(w), w))

and let Ti+1 = Ti ∪ {Ψφ : φ an Li-formula}.
Claim If M |= Ti, then we can interpret the function symbols of Li+1 \Li

so that M |= Ti+1.
Let c be some fixed element of M . If φ(v, w1, . . . , wn) is an Li-formula,

we find a function g : Mn → M such that if a ∈ Mn and Xa = {b ∈
M : M |= φ(b, a)} is nonempty, then g(a) ∈ Xa, and if Xa = ∅, then
g(a) = c (the choice in this case is irrelevant). Thus, if M |= ∃v φ(v, a),
then M |= φ(g(a), a). If we interpret fφ as g, then M |= Ψφ.

Let L∗ =
⋃

Li and T ∗ =
⋃

Ti. If φ(v, w) is an L∗-formula, then φ ∈ Li

for some i and Ψφ ∈ Ti+1 ⊆ T ∗, so T ∗ has built-in Skolem functions.
By iterating the claim, we see that for any M |= T we can interpret the
symbols of L∗ \ L to make M |= T ∗.

Because we have added one function symbol to Li+1 for each Li-formula,
|Li+1| = |Li| + ℵ0 so |L∗| has the desired cardinality.

Theorem 2.3.7 (Löwenheim–Skolem Theorem) Suppose that M is
an L-structure and X ⊆ M , there is an elementary submodel N of M
such that X ⊆ N and |N | ≤ |X| + |L| + ℵ0.

Proof By Lemma 2.3.6, we may assume that Th(M) has built in Skolem
functions. Let X0 = X. Given Xi, let Xi+1 = Xi ∪ {fM(a) : f an n-
ary function symbol, a ∈ Xn

i and n = 1, 2, . . .}. Let N =
⋃

Xi, then
N ≤ |X| + |L| + ℵ0 (see Corollary A.15).

If f is an n-ary function symbol of L and a ∈ Nn, then a ∈ Xn
i for some

i and fM(a) ∈ Xi+1 ⊆ N . Thus fM|N : Nn → N . Thus, we can interpret
f as fN = fM|Nn. If R is an n-ary relation symbol, let RN = RM ∩ Nn.
If c is a constant symbol of L, there is a Skolem function f ∈ L such that
f(x) = cM for all x ∈ M (for example, f is the Skolem function for the
formula v = c). Thus cM ∈ N . Let cN = cM. This makes N into an
L-structure N which is a substructure of M.
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If φ(v,w) is any L-formula, a, b ∈ M , and M |= φ(b, a), then M |=
φ(f(a), a) for some function symbol f of L. By construction, fM(a) ∈ N .
Thus, by Proposition 2.3.5, N ≺ M.

Lemma 2.3.3 i) has a useful application in the following preservation
theorem.

Definition 2.3.8 A universal sentence is one of the form ∀vφ(v), where φ
is quantifier-free. We say that an L-theory T has a universal axiomatization
if there is a set of universal L-sentences Γ such that M |= Γ if and only if
M |= T for all L-structures M.

Theorem 2.3.9 An L-theory T has a universal axiomatization if and only
if whenever M |= T and N is a substructure of M, then N |= T . In
other words, a theory is preserved under substructure if and only if it has
a universal axiomatization.

Proof Suppose that N ⊆ M. We showed in Proposition 1.1.8 that if
φ(v) is a quantifier-free formula and a ∈ N , then N |= φ(a) if and only if
M |= φ(a). Thus, if M |= ∀v φ(v), then so does N .

Suppose that T is preserved under substructures. Let Γ = {φ : φ is
universal and T |= φ}. Clearly, if N |= T , then N |= Γ. For the other
direction, suppose that N |= Γ. We claim that N |= T .

Claim T ∪ Diag(N ) is satisfiable.
Suppose not. Then, by the Compactness Theorem, there is a finite ∆ ⊆

Diag(N ) such that T ∪∆ is not satisfiable. Let ∆ = {ψ1, . . . , ψn}. Let c be
the new constant symbols from N used in ψ1, . . . , ψn and say ψi = φi(c),
where φi is a quantifier-free L-formula. Because the constants in c do not
occur in T , if there is a model of T ∪ {∃v

∧
φi(v)}, then by interpreting c

as witnesses to the existential formula, T ∪ ∆ would be satisfiable. Thus
T |= ∀v

∨
¬φi(v). As the latter formula is universal, ∀v

∨
¬φi(v) ∈ Γ,

contradicting N |= Γ.
By Lemma 2.3.3, there is M |= T with M ⊇ N . Because T is preserved

under substructure, N |= T and Γ is a universal axiomatization of T .

We conclude this section with one useful observation about elementary
chains.

Definition 2.3.10 Suppose that (I, <) is a linear order. Suppose that
Mi is an L-structure for i ∈ I. We say that (Mi : i ∈ I) is a chain of L-
structures if Mi ⊆ Mj for i < j. If Mi ≺ Mj for i < j, we call (Mi : i ∈ I)
an elementary chain.

If (Mi : i ∈ I) is a nonempty chain of structures, then we can define
M =

⋃
i∈I Mi, the union of the chain, as follows. The universe of M will

be M =
⋃

i∈I Mi. If c is a constant in the language, then cMi = cMj for
all i, j ∈ I. Let cM = cMi .
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Suppose that a ∈ M . Because I is linearly ordered, we can find i ∈ I
such that a ∈ Mi. If f is a function symbol of L and i < j, then fMi(a) =
fMj (a). Thus, fM =

⋃
i∈I fMi is a well-defined function. Similarly, if f is

a relation symbol of L and i < j, then a ∈ RMi if and only if a ∈ RMj .
Let RM =

⋃
i∈I RMi . It is now easy to see that Mi ⊆ M for all i ∈ I.

Proposition 2.3.11 Suppose that (I, <) is a linear order and (Mi : i ∈ I)
is an elementary chain. Then, M =

⋃
i∈I Mi is an elementary extension

of each Mi.

Proof We prove by induction on formulas that

M |= φ(a) ⇔ Mi |= φ(a)

for all i ∈ I, all formulas φ(v), and all a ∈ Mn
i .

Because Mi is a substructure of M, by Proposition 1.1.8 this is true for
all atomic φ. It is easy to see that if it is true for φ and ψ, then it is true
for ¬φ and φ ∧ ψ.

Suppose that φ is ∃v ψ(v,w) and the claim holds for ψ. If Mi |= ψ(b, a),
then so does M. Thus if Mi |= φ(a), then so does M. On the other hand if
M |= ψ(b, a), there is j ≥ i such that b ∈ Mj . By induction, Mj |= ψ(b, a),
so Mj |= φ(a). Because Mi ≺ Mj , Mi |= φ(a), as desired.

2.4 Back and Forth

The “back-and-forth” method is a style of argument that we will encounter
several times. In this section, we will examine several manifestations of the
method, starting with Cantor’s proof that any two countable dense linear
orders are isomorphic and leading up to Scott’s use of infinitary logic to
characterize isomorphism of countable models.

Dense Linear Orders
Let L = {<} and let DLO be the theory of dense linear orders without
endpoints. DLO is axiomatized by the axioms for linear orders plus the
axioms

∀x∀y (x < y → ∃z x < z < y)

and
∀x∃y∃z y < x < z.

Theorem 2.4.1 The theory DLO is ℵ0-categorical and complete.

Proof Let (A, <) and (B, <) be two countable models of DLO. Let
a0, a1, a2, . . . and b0, b1, b2, . . . be one-to-one enumerations of A and B. We
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will build a sequence of partial bijections fi : Ai → Bi where Ai ⊂ A and
Bi ⊂ B are finite such that f0 ⊆ f1 ⊆ . . . and if x, y ∈ Ai and x < y, then
fi(x) < fi(y). We call fi a partial embedding. We will build these sequences
such that A =

⋃
Ai and B =

⋃
Bi. In this case, f =

⋃
fi is the desired

isomorphism from (A, <) to (B, <).
At odd stages of the construction we will ensure that

⋃
Ai = A, and at

even stages we will ensure that
⋃

Bi = B.
stage 0: Let A0 = B0 = f0 = ∅.
stage n + 1 = 2m + 1: We will ensure that am ∈ An+1.

If am ∈ An, then let An+1 = An, Bn+1 = Bn and fn+1 = fn. Suppose
that am �∈ An. To add am to the domain of our partial embedding, we must
find b ∈ B \ Bn such that

α < am ⇔ fn(α) < b

for all α ∈ An. In other words, we must find b ∈ B, which is in the image
under fn of the cut of am in An. Exactly one of the following holds:

i) am is greater than every element of An, or
ii) am is less than every element of An, or
iii) there are α and β ∈ An such that α < β, γ ≤ α or γ ≥ β for all

γ ∈ An and α < am < β.
In case i) because Bn is finite and B |= DLO, we can find b ∈ B greater

than every element of Bn. Similarly in case ii) we can find b ∈ B less
than every element of Bn. In case iii), because fn is a partial embedding,
fn(α) < fn(β) and we can choose b ∈ B \Bn such that fn(α) < b < fn(β).
Note that

α < am ⇔ fn(α) < b

for all α ∈ An.
In any case, we let An+1 = An ∪ {am}, Bn+1 = Bn ∪ {b}, and extend fn

to fn+1 : An+1 → Bn+1 by sending am to b. This concludes stage n.
stage n + 1 = 2m + 2: We will ensure that bm ∈ Bn+1.

Again, if bm is already in Bn, then we make no changes and let An+1 =
An, Bn+1 = Bn and fn+1 = fn. Otherwise, we must find a ∈ A such that
the image of the cut of a in An is the cut of bm in Bn. This is done as in
the odd case.

Clearly, at odd stages we have ensured that
⋃

An = A and at even stages
we have ensured that

⋃
Bn = B. Because each fn is a partial embedding,

f =
⋃

fn is an isomorphism from A onto B.
Because there are no finite dense linear orders, Vaught’s test implies that

DLO is complete.

The proof of Theorem 2.4.1 is an example of a back-and-forth construc-
tion. At odd stages, we go forth trying to extend the domain, whereas at
even stages we go back trying to extend the range. We give another example
of this method.
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The Random Graph
Let L = {R}, where R is a binary relation symbol. We will consider an
L-theory containing the graph axioms ∀x ¬R(x, x) and ∀x∀y R(x, y) →
R(y, x). Let ψn be the “extension axiom”

∀x1 . . .∀xn∀y1 . . .∀yn

⎛⎝ n∧
i=1

n∧
j=1

xi �= yj → ∃z
n∧

i=1

(R(xi, z) ∧ ¬R(yi, z))

⎞⎠ .

We let T be the theory of graphs where we add {∃x∃yx �= y} ∪ {ψn :
n = 1, 2, . . .} to the graph axioms. A model of T is a graph where for any
finite disjoint sets X and Y we can find a vertex with edges going to every
vertex in X and no vertex in Y .

Theorem 2.4.2 T is satisfiable and ℵ0-categorical. In particular, T is
complete and decidable.

Proof We first build a countable model of T . Let G0 be any countable
graph.
Claim There is a graph G1 ⊃ G0 such that G1 is countable and if X and
Y are disjoint finite subsets of G0 then there is z ∈ G1 such that R(x, z)
for x ∈ X and ¬R(y, z) for y ∈ Y .

Let the vertices of G1 be the vertices of G0 plus new vertices zX for each
finite X ⊆ G0. The edges of G1 are the edges of G together with new edges
between x and zX whenever X ⊆ G0 is finite and x ∈ X. Clearly, G1 is
countable and has the desired property.

We iterate this construction to build a sequence of countable graphs
G0 ⊂ G1 ⊂ . . . such that if X and Y are disjoint finite subsets of Gi, then
there is z ∈ Gi+1 such that R(x, z) for x ∈ X and ¬R(y, z) for y ∈ Y .
Then, G =

⋃
Gn is a countable model of T .

Next we show that T is ℵ0-categorical. Let G1 and G2 be countable
models of T . Let a0, a1, . . . list G1, and let b0, b1, . . . list G2. We will build
a sequence of finite partial one-to-one maps f0 ⊆ f1 ⊆ f2 ⊆ . . . such that
for all x, y in the domain of fs,

G1 |= R(x, y) if and only if G2 |= R(fs(x), fs(y)). (∗)

Let f0 = ∅.
stage s + 1 = 2i + 1: We make sure that ai is in the domain.

If ai is in the domain of fs, let fs+1 = fs. If not, let α1, . . . , αm list
the domain of fs and let X = {j ≤ m : R(αj , ai)} and let Y = {j ≤
m : ¬R(αj , ai)}. Because G2 |= T , we can find b ∈ G2 such that G2 |=
R(fs(αj), b) for j ∈ X and G2 |= ¬R(fs(αj), b) for j ∈ Y . Let fs+1 =
fs ∪ {(ai, b)}. By choice of b and induction, fs+1 satisfies (∗).
stage s + 1 = 2i + 2: By a similar argument, we can ensure that fs+1 sat-
isfies (∗) and bi is in the image of fs+1.



2.4 Back and Forth 51

Let f =
⋃

fs. We have ensured that f maps G1 onto G2. By (∗), f is a
graph isomorphism. Thus, G1 ∼= G2 and T is ℵ0-categorical.

Because all models of T are infinite, T is complete. Because T is recur-
sively axiomatized, T is decidable.

The theory T is very interesting because it gives us insights into random
finite graphs. Let GN be the set of all graphs with vertices {1, 2, . . . , N}.
We consider a probability measure on GN where we make all graphs equally
likely. This is the same as constructing a random graph where we indepen-
dently decide whether there is an edge between i and j with probability 1

2 .
For any L-sentence φ,

pN (φ) =
|{G ∈ GN : G |= φ}|

|GN |

is the probability that a random element of GN satisfies φ.
We argue that large graphs are likely to satisfy the extension axioms.

Lemma 2.4.3 lim
N→∞

pN (ψn) = 1 for n = 1, 2, . . ..

Proof Fix n. Let G be a random graph in GN where N > 2n. Fix
x1, . . . , xn, y1, . . . , yn, z ∈ G distinct. Let q be the probability that

¬
(

n∧
i=1

(R(xi, z) ∧ ¬R(yi, z))

)
.

Then q = 1 − 2−2n. Because these probabilities are independent, the prob-
ability that

G |= ¬∃z¬
(

n∧
i=1

(R(xi, z) ∧ ¬R(yi, z))

)
is qN−2n. Let M be the number of pairs of disjoint subsets of G of size n.
Thus

pN (¬ψn) ≤ MqN−2n < N2nqN−2n.

Because q < 1,
lim

N→∞
pN (¬ψn) = lim

N→∞
N2nqN = 0,

as desired.

We can now use the fact that T is complete to get a good understanding
of the asymptotic properties of random graphs.

Theorem 2.4.4 (Zero-One Law for Graphs) For any L-sentence φ ei-
ther lim

N→∞
pN (φ) = 0 or lim

N→∞
pN (φ) = 1. Moreover, T axiomatizes

{φ : lim
N→∞

pN (φ) = 1}, the almost sure theory of graphs. The almost sure

theory of graphs is decidable and complete.
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Proof If T |= φ, then there is n such that if G is a graph and G |= ψn,
then G |= φ. Thus, pN (φ) ≥ pN (ψn) and by Lemma 2.4.3, lim

N→∞
pN (φ) = 1.

On the other hand, if T �|= φ, then, because T is complete, T |= ¬φ and
lim

N→∞
pN (¬φ) = 1 so lim

N→∞
pN (φ) = 0.

Ehrenfeucht–Fräıssé Games
The type of back-and-forth constructions we did in Theorems 2.4.1 and
2.4.2 will appear several times in the book. It is useful to recast construc-
tions as games. We will do this in a bit more generality. Let L be a language
and M = (M, . . .) and N = (N, . . .) be two L-structures with M ∩ N = ∅.
If A ⊆ M , B ⊆ N and f : A → B, we say that f is a partial embedding
if f ∪ {(cM, cN ) : c a constant of L} is a bijection preserving all relations
and functions of L.

We will define an infinite two-player game Gω(M,N ). We will call the
two players player I and player II; together they will build a partial embed-
ding f from M to N . A play of the game will consist of ω stages. At the
ith-stage, player I moves first and either plays mi ∈ M , challenging player
II to put mi into the domain of f , or ni ∈ N , challenging player II to put ni

into the range. If player I plays mi ∈ M , then player II must play ni ∈ N ,
whereas if player I plays ni ∈ M , then player II must play mi ∈ M . Player
II wins the play of the game if f = {(mi, ni) : i = 1, 2, . . .} is the graph of
a partial embedding.

A strategy for player II in Gω(M,N ) is a function τ such that if player I’s
first n moves are c1, . . . , cn, then player II’s nth move will be τ(c1, . . . , cn).
We say that player II uses the strategy τ in the play of the game if the play
looks like:

Player I Player II
c1

τ(c1)
c2

τ(c1, c2)
c3

τ(c1, c2, c3)
...

...

We say that τ is a winning strategy for player II, if for any sequence of
plays c1, c2, . . . player I makes, player II will win by following τ . We define
strategies for player I analogously.

For example, suppose that M,N |= DLO. Then, player II has a winning
strategy. Suppose that up to stage n they have built a partial embedding
g : A → B. If player I plays a ∈ M , then player II plays b ∈ N such that
the cut b makes in B is the image of the cut of a in A under g. Similarly, if
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player I plays b ∈ N , player II plays a ∈ M such that the cut of a in A is
the image under g−1 of the cut of b in B. This can be done as in the proof
of Theorem 2.4.1.

Proposition 2.4.5 If M and N are countable, then the second player has
a winning strategy in Gω(M,N ) if and only if M ∼= N .

Proof If M and N are isomorphic, then player II can win by playing
according to the isomorphism.

Suppose that player II has a winning strategy. Let m0, m1, . . . list M and
n0, n1, . . . list N . Consider a play of the game where the second player uses
the winning strategy and the first player plays m0, n0, m1, n1, m2, n2, . . ..
If f is the partial embedding built during this play of the game then the
domain of f is M and the range of f is N . Thus, f is an isomorphism.

By weakening the game, we can, for suitable languages, give a character-
ization of elementary equivalence. Fix L a finite language with no function
symbols, and let M and N be L-structures. We define a game Gn(M,N )
for n = 1, 2, . . .. The game will have n rounds. On the ith round player I
plays first and either plays ai ∈ M or bi ∈ N . On player II’s turn, if player
I played ai ∈ M , then player II must play bi ∈ N , and if player I plays
bi ∈ N , then player II must play ai ∈ M . The game stops after the nth
round. Player II wins if {(ai, bi) : i = 1, . . . , n} is the graph of a partial
embedding from M into N . We call Gn(M,N ) an Ehrenfeucht–Fräıssé
game.

Our goal is to prove the following theorem.

Theorem 2.4.6 Let L be a finite language without function symbols and
let M and N be L-structures. Then, M ≡ N if and only if the second
player has a winning strategy in Gn(M,N ) for all n.

Before proving this, we will need several lemmas.

Lemma 2.4.7 One of the players has a winning strategy in Gn(M,N ).

Proof (sketch) This follows from Zermelo’s theorem that in any two-person
finite length game of perfect information without ties one of the players has
a winning strategy (see [10] 1.7.1). It also follows from the determinacy of
closed games (see [52]). We outline the proof. Suppose that player II does
not have a winning strategy. Then, there is some move player I can make
in round one so that player II has no move available to force a win. Player
I makes that move. Now, whatever player II does, there is still a move that
if made by player I means that player II cannot force a win. Player I makes
that move and continues in this way. On the last round, there is still a
move possible so that player II has no winning move. Player I makes that
move and wins. This informally describes a winning strategy for player I
(the strategy can be summarized as “avoid losing positions”).
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We inductively define depth(φ), the quantifier depth of an L-formula φ,
as follows:

depth(φ) = 0 if and only if φ is quantifier-free;
depth(¬φ) = depth(φ);
depth(φ ∧ ψ) = depth(φ ∨ ψ) = max{depth(φ),depth(ψ)};
depth(∃v φ) = depth(φ) + 1.
We say that M ≡n N if M |= φ ⇔ N |= φ for all sentences of depth at

most n. We will show that player II has a winning strategy in Gn(M,N )
if and only if M ≡n N . We first argue that there are only finitely many
inequivalent formulas of a fixed quantifier depth.

Lemma 2.4.8 For each n and l, there is a finite list of formulas φ1, . . . , φk

of depth at most n in free variables x1, . . . , xl such that every formula of
depth at most n in free variables x1, . . . , xl is equivalent to some φi.

Proof We first prove this for quantifier-free formulas. Because L is fi-
nite and has no constant symbols, there are only finitely many atomic
L-formulas in free variables x1, . . . , xl. Let σ1, . . . , σs list all such formulas.

If φ is a Boolean combination of formulas τ1, . . . , τs, then there is S a
collection of subsets of {1, . . . , s} such that

|= φ ↔
∨

X∈S

(∧
i∈X

τi ∧
∧
i�∈X

¬τi

)
(see Exercise 1.4.1). This gives a list of 22s

formulas such that every Boolean
combination of τ1, . . . , τs is equivalent to a formula in this list. In particular,
because quantifier free formulas are Boolean combinations of atomic formu-
las, there is a finite list of depth-zero formulas such that every depth-zero
formula is equivalent to one in the list.

Because formulas of depth n + 1 are Boolean combinations of ∃vφ and
∀vφ where φ has depth at most n, the lemma follows by induction.

We can give a characterization of ≡n using Ehrenfeucht–Fräıssé games.
Theorem 2.4.6 will follow immediately.

Lemma 2.4.9 Let L be a finite language without function symbols and
M and N be L-structures. The second player has a winning strategy in
Gn(M,N ) if and only if M ≡n N .

Proof We prove this by induction on n.
Suppose that M ≡n N . Consider a play of the game where in round one

player I plays a ∈ M . (The case where player I plays b ∈ N is similar.)
We claim that there is b ∈ N such that M |= φ(a) ⇔ N |= φ(b) whenever
depth(φ) < n. Let φ0(v), . . . , φm(v) list, up to equivalence, all formulas of
depth less than n. Let X = {i ≤ m : M |= φi(a)}, and let Φ(v) be the
formula ∧

i∈X

φi(v) ∧
∧
i�∈X

¬φi(v).
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Then, depth(∃v Φ(v)) ≤ n and M |= Φ(a); thus, there is b ∈ N such that
N |= Φ(b). Player II plays b in round one.

If n = 1, the game has now concluded and a 	→ b is a partial embedding
so player II wins. Suppose that n > 1.

Let L∗ = L ∪ {c}, where c is a new constant symbol. View M and N as
L∗-structures (M, a) and (N , b) where we interpret the new constant as a
and b, respectively. Because

M |= φ(a) ⇔ N |= φ(b)

for φ(v) an L-formula with depth(φ) < n, (M, a) ≡n−1 (N , b). By induc-
tion, player II has a winning strategy in Gn−1((M, a), (N , b)). If player
I’s second play is d, player II responds as if d was player I’s first play in
Gn−1((M, a), (N , b)) and continues playing using this strategy, that is, in
round i player I has plays a, d2, . . . , di, then player II plays τ(d2, . . . , di),
where τ is his winning strategy in G((M, a), (N , b)). Let f : X → N
be the function built by this play of the game. Because τ is a winning
strategy, f∗ is partial L∗-embedding. Extend f∗ to f : X ∪ {a} → N by
f(a) = b. Because f∗ preserves L-formulas with an additional constant
denoting a in M and b in N , f is a partial L-embedding. Thus a winning
strategy for player II can be summarized as: given player I’s first play a,
find b such that (M, a) ≡n−1 (N , b) and follow the winning strategy of
Gn−1((M, a), (N , b)).

On the other hand, suppose that M �≡n N . Because formulas of depth
at most n are Boolean combinations of formulas of the form ∃v φ(v) where
depth(φ) < n, M and N must disagree about a formula of this type. With-
out loss of generality, we may assume that M |= ∃v φ(v) and N |= ∀v¬φ(v)
where depth(φ) < n. We claim that player I has a winning strategy. In
round one player I plays a ∈ M such that M |= φ(a). Suppose that
player II responds with b ∈ N . Let (M, a) and (N , b) be as above. Then
(M, a) �≡n−1 (N , b) and, by induction, player I has a winning strategy in
Gn−1((M, a), (N , b)). Player I continues playing as if just starting a game of
Gn−1((M, a), (N , b)). The function f∗ played starting at the second move
will not be a partial L∗-embedding so the whole function played is not a
partial L-embedding.

We give one application of Theorem 2.4.6. Let L = {<}. Let T be the
L-theory that asserts < is a linear order and ∀x∃y∃z (y < x < z∧∀w (w ≤
y ∨ w = x ∨ w ≥ z)). T is the theory of discrete orderings with no top or
bottom element.

Suppose that N |= T . For a, b ∈ N say aEb if b is the nth successor
or predecessor of a for some natural number n. Then, E is an equivalence
relation. Each E-class is a linear order that looks like (Z, <). If aEb, ¬(aEc),
and a < c, then b < c. Thus, the E-classes are linearly ordered and every
model of T is of the form (L × Z, <), where L is a linear order and < is
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the lexicographic order on L × Z (i.e., (a, n) < (b, m) if a < b or a = b and
n < m). Also, every linear order of this form is a model of T .

Proposition 2.4.10 The theory of discrete linear orders with no top or
bottom element is a complete theory. In particular, (Z, <) |= φ if and only
if T |= φ for all L-sentences φ.

Proof Let M be the ordered set of integers (Z, <), and let N be L × Z

with the lexicographic order where L is any linearly ordered set.
We claim that M ≡ N . We must show that player II has a winning

strategy in Gn(M,N ) for all n.
If a, b ∈ Z, we define the distance between a and b to be dist(a, b) =

|b − a|, and if x = (i, a), y = (j, b) ∈ L × Z, we define the distance to be
dist(x, y) = |b − a| if i = j and dist(a, b) = ∞ if i �= j. The problem for
player II is that player I can play elements that are infinitely far apart
in N and force player II to play elements that are finitely far apart in
M. Because player II knows how long the game will last, player II can
play elements sufficiently far apart to avoid conflicts. Player II will try to
ensure:

(∗) after m rounds of Gn(M,N ), if a1 < a2 < . . . < al are the element
of N that have been played, where l ≤ m (player I might—for no good
reason—play an element more than once, so possibly l < m) and b1 <
b2 < . . . < bl are the elements of Z that have been played, then ai 	→
bi is a partial embedding corresponding to the play of the game, and if
dist(ai, ai+1) > 3n−m, then dist(bi, bi+1) > 3n−m and if dist(ai, ai+1) ≤
3n−m then dist(ai, ai+1) = dist(bi, bi+1) for i = 1, . . . , m − 1.

By doing this, player II will win because after n rounds there will be a
partial embedding.

We argue that player II can always choose a move to preserve (∗). In
round 1, player II chooses an arbitrary element and (∗) holds. Suppose that
we have played m rounds and (∗) holds. Let a1 < . . . < al and b1 < . . . < bl

be as above. Suppose that player I plays b ∈ L×Z. There are several cases
to consider.

case 1: b < b1.
If dist(b, b1) = k < ∞, then player II plays a = a1 −k. If dist(b, b1) = ∞,

then player II plays a1 − 3n. In either case, (∗) holds.

case 2: bi < b < bi+1 and dist(bi, bi+1) ≤ 3n−m.
Then dist(ai, ai+1) = dist(bi, bi+1). Play a = ai + dist(b, bi). Then,

dist(a, ai+1) = dist(b, bi+1), as desired.

case 3: bi < b < bi+1, dist(bi, bi+1) > 3n−m, and dist(b, bi) < 3n−m−1.
In this case dist(ai, ai+1) > 3n−m. Play a = ai + dist(b, bi). Then,

dist(a, ai+1) and dist(b, bi+1) are greater than 3n−m−1, as desired.

case 4: bi < b < bi+1, dist(bi, bi+1) > 3n−m, and dist(b, bi+1) < 3n−m−1.
As in case 3, let a = ai+1 − dist(b, bi+1).



2.4 Back and Forth 57

case 5: bi < b < bi+1, dist(bi, bi+1) > 3n−m, dist(b, bi) > 3n−m−1, and
dist(b, bi+1) > 3n−m−1.

In this case, dist(ai, ai+1) is greater than 3n−m. Choose a such that
ai < a < ai+1, and dist(ai, a) and dist(a, ai+1) are both greater than
3n−m−1. If player II plays a, then (∗) holds.
case 6: b > bl.

Similar to case 1.
This explains the strategy if player I plays b ∈ L × Z. The case where

player I plays a ∈ Z is analogous and left to the reader.

Scott–Karp Analysis
We give an extension of these ideas. Let L be an arbitrary language and
M and N be L-structures. For each ordinal α, we will have a relation
(M, a) ∼α (N , b) where a ∈ Mn and b ∈ Mn and n = 0, 1, 2, . . ..

(M, a) ∼0 (N , b) if M |= φ(a) if and only if N |= φ(b) for all atomic
L-formulas φ.

For all ordinals α, (M, a) ∼α+1 (N , b) if for all c ∈ M there is d ∈ N
such that (M, a, c) ∼α (N , b, d) and for all d ∈ N there is c ∈ M such that
(M, a, c) ∼α (N , b, d).

For all limit ordinals β, (M, a) ∼β (N , b) if and only if (M, a) ∼α (N , b)
for all α < β. We will leave the following lemma for the exercises.

Lemma 2.4.11 Let L be a finite language without function symbols. If
a ∈ M l, b ∈ N l, then (M, a) ∼n (N , b) if and only if player II has a
winning strategy in Gn((M, a), (N , b)) if and only if (M, a) ≡n (N , b) for
all n = 1, 2, . . .. In particular, M ≡ N if and only if M ∼ω N .

In particular, note that even for finite languages without function sym-
bols M ∼ω N is much weaker than player II having a winning strategy in
Gω(M,N ).

We would like to prove a variant of Theorem 2.4.11 characterizing ∼α.
To do this, we must leave first-order logic for infinitary languages.

Definition 2.4.12 Let L be a language and κ be an infinite cardinal. The
formulas of the infinitary logic Lκ,ω are defined inductively as follows:

i) Every atomic L-formula is a formula of Lκ,ω.
ii) If X is a set of formulas of Lκ,ω such that all of the free variables

come from a fixed finite set and |X| < κ, then∧
φ∈X

φ and
∨

φ∈X

φ

are formulas of Lκ,ω.
iii) If φ is a formula of Lκ,ω, then so are ¬φ, ∀v φ, and ∃v φ.
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We say that φ is a formula of L∞,ω if it is an Lκ,ω-formula for some
infinite cardinal κ. When κ = ℵ1, it is traditional to write Lω1,ω. Intuitively,
Lω1,ω is the language where we allow countable conjunctions and countable
disjunctions.

As in Definition 1.1.6, we can define satisfaction for formulas of L∞,ω.
The only difference is that

∧
φ∈X

φ is true if all of the φ ∈ X are true and∨
φ∈X

φ is true if at least one of the formulas φ ∈ X is true.

If L is any first-order language and M is an L-structure we define a
sequence of L∞,ω-formulas φM

a,α(v), where a ∈ M l and α is an ordinal as
follows:

φM
a,0(v) =

∧
ψ∈X

ψ(v),

where X = {ψ : M |= ψ(a) and ψ is atomic or the negation of an atomic
L-formula}. If α is a limit ordinal, then

φM
a,α(v) =

∧
β<α

φM
a,β(v).

If α = β + 1, then

φM
a,α(v) =

∧
b∈M

∃w φM
ab,β(v, w) ∧ ∀w

∨
b∈M

φM
ab,β(v, w).

Lemma 2.4.13 Let M and N be L-structures, a ∈ M l, and b ∈ N l. Then,
(M, a) ∼α (N , b) if and only if N |= φM

a,α(b).

Proof We prove this by induction on α (see Appendix A). Because
(M, a) ∼0 (N , b) if and only if they satisfy the same atomic formulas,
the lemma holds for α = 0.

Suppose that γ is a limit ordinal and the lemma is true for all α < γ.
Then

(M, a) ∼γ (N , b) ⇔ (M, a) ∼α (N , b) for all α < γ

⇔ N |= φM
a,α(b) for all α < γ

⇔ N |= φM
a,γ(b).

Suppose that the lemma is true for α. First, suppose that N |= φM
a,α+1(b).

Let c ∈ M . Because
N |=

∧
x∈M

∃w φM
ax,α(b, w),

there is d ∈ N such that N |= φM
ac,α(b, d). By induction, (M, a, c) ∼α

(N , b, d). If d ∈ N , then because

N |= ∀w
∨

c∈M

φM
ac,α(b, w)
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there is c ∈ M such that N |= φM
ac,α(b, d) and (M, a, c) ∼α (N , b, d). Thus

(M, a) ∼α+1 (N , b).
Suppose, on the other hand, that (M, a) ∼α+1 (N , b). Suppose that

c ∈ M , then there is d ∈ N such that (M, a, c) ∼α (N , b, d) and
N |= φM

ac,α(b, d). Similarly, if d ∈ N , then there is c ∈ M such that
N |= φM

ac,α(b, d). Thus, N |= φM
a,α+1(b), as desired.

Lemma 2.4.14 For any infinite L-structure M, there is an ordinal α <
|M |+ such that if a, b ∈ M l and (M, a) ∼α (M, b), then (M, a) ∼β (M, b)
for all β. We call the least such α the Scott rank of M.

Proof Let Γα = {(a, b) : a, b ∈ M l for some l = 0, 1, . . . and (M, a) �∼α

(M, b)}. Clearly, Γα ⊆ Γβ for α < β.
Claim 1 If Γα = Γα+1, then Γα = Γβ for all β > α.

We prove this by induction on β. If β is a limit ordinal and the claim holds
for all γ < β, then it also holds for β. Suppose that the claim is true for
β > α and we want to show that it holds for β+1. Suppose that (M, a) ∼β

(M, b) and c ∈ M . Because (M, a) ∼α+1 (M, b), there is d ∈ N such
that (M, a, c) ∼α (M, b, d). By our inductive assumption, (M, a, c) ∼β

(M, b, d). Similarly, if d ∈ M , then c ∈ M such that (M, a, c) ∼β (M, b, d).
Thus, (M, a) ∼β+1 (M, b) as desired.
Claim 2 There is an ordinal α < |M |+ such that Γα = Γα+1.

Suppose not. Then, for each α < |M|+, choose (aα, bα) ∈ Γα+1 \ Γα.
Because Γα ⊆ Γβ for α < β, the function α 	→ (aα, bα) is one-to-one.
Because there are only |M | finite sequences from M this is impossible.

We conclude this section with Scott’s Isomorphism Theorem that every
countable L-structure is described up to isomorphism by a single Lω1,ω-
sentence.

Let M be an infinite L-structure of cardinality κ, and let α be the Scott
rank of M. Let ΦM be the sentence

φM
∅,α ∧

∞∧
l=0

∧
a∈M l

∀v(φM
a,α(v) → φM

a,α+1(v)).

Because all of the conjunctions and disjunctions in φM
a,β are of size κ, φM

a,β ∈
Lκ+,ω for all ordinals β < κ+. Thus ΦM is an Lκ+,ω-sentence. We call ΦM

the Scott sentence of M. If M is countable, then ΦM ∈ Lω1,ω.

Theorem 2.4.15 (Scott’s Isomorphism Theorem) Let M be a count-
able L-structure, and let ΦM ∈ Lω1,ω be the Scott sentence of M. Then,
N ∼= M if and only if N |= ΦM.

Proof Because α is the Scott rank of M, M |= ΦM. An easy induction
left to the exercises shows that if N ∼= M, then M and N model the same
L∞,ω-sentences.
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On the other hand, suppose that N models ΦM. We do a back-and-forth
argument to build a sequence of finite partial embeddings f0 ⊆ f1 ⊆ . . .
from M to N such that if a is the domain of fi, then

(M, a) ∼α (N , fi(a)). (∗)

Let m0, m1, . . . list M and n0, . . . , n1, . . . list N .
At stage 0, we let f0 = ∅. Because N |= φM

∅,α, M ∼α N and (∗) holds.
Suppose we are at stage n + 1. Let a be the domain of fn. Be-

cause (M, a) ∼α (N , f(a)), N |= φM
a,α(f(a)). Because N |= ΦM, N |=

φM
a,α+1(f(a)) and (M, a) ∼α+1 (N , f(a)).
If n + 1 = 2i + 1, we want to ensure that mi is in the domain of fn+1. If

mi is in the domain of fn, then fn = fn+1. If not, choose b ∈ N such that
(M, a, mi) ∼α (N , f(a), b) and extend fn to fn+1 by sending mi to b.

If n = 2i + 2, we want to ensure that ni is in the image of fn+1. If it is
already in the image of fn, let fn+1 = fn. Otherwise, we can find m ∈ M
such that (M, a, m) ∼α (N , f(a), ni) and extend fn to fn+1 by simply
sending m to ni.

2.5 Exercises and Remarks

Exercise 2.5.1 We say that an ordered group (G, +, <) is Archimedian
if for all x, y ∈ G with x, y > 0 there is an integer m such that |x| < m|y|.
Show that there are non-Archimedian fields elementarily equivalent to the
field of real numbers.

Exercise 2.5.2 Suppose that T has arbitrarily large finite models. Show
that T has an infinite model.

Exercise 2.5.3 Let L be the language with one binary relation symbol
<. Let T be an L-theory extending the theory of linear orders such that
T has infinite models. Show that there is M |= T and an order-preserving
embedding σ : Q → M of the rational numbers into M .

For example, if T is the full theory of the (Z, <), there is M ≡ (Z, <) in
which the rational order embeds.

Exercise 2.5.4 Show that every torsion-free Abelian group (G, +) can be
linearly ordered such that (a < b ∧ c ≤ d) → a + c < b + d. [Hint: First
show this for finitely generated groups. Then use compactness.]

Exercise 2.5.5 Let L = {E} where E is a binary relation symbol. Let
T be the L-theory of an equivalence relation with infinitely many infinite
classes.

a) Write axioms for T .
b) How many models of T are there of cardinality ℵ0? ℵ1? ℵ2? ℵω1?
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c) Is T complete?

Exercise 2.5.6 (Skolem’s Paradox) Let ZFC be the Zermelo–Frankel ax-
ioms for set theory with the Axiom of Choice. Show that there is a count-
able model M of ZFC. How do you explain the fact that M |= “there is
an uncountable set”?1

Exercise 2.5.7 (Overspill) Let M be a nonstandard model of Peano
arithmetic, φ(v, w) a formula in the language of arithmetic, and a ∈ M .
Suppose that M |= φ(n, a) for all n < ω. Then, there is an infinite c ∈ M
such that M |= φ(c, a).

Exercise 2.5.8 Suppose that M ≺ N and A ⊆ M .
a) Show that the definable (algebraic) closure of A in N is equal to the

definable (algebraic) closure of A in M. (See Exercises 1.4.10 and 1.4.11.)
Thus, algebraic closure and definable closure are preserved under elemen-
tary extension.

b) Give examples showing that this is not true if we only have M ≡ N
and M ⊆ N .

Exercise 2.5.9 Suppose that M0 ⊂ M1 ⊂ M2, M0 ≺ M2, and M1 ≺
M2. Show that M0 ≺ M1.

Exercise 2.5.10 Let T be an L-theory and T∀ be all of the universal
sentences φ such that T |= φ. Show that A |= T∀ if and only if there is
M |= T with A ⊆ M.

Exercise 2.5.11 (Amalgamation) Suppose that M0,M1 and M2 are
L-structures and ji : M0 → Mi is an elementary embedding for i = 1, 2.
Show that there is an L-structure N and elementary embeddings fi : Mi →
N such that f1 ◦ j1 = f2 ◦ j2.

Exercise 2.5.12 Show that the following are equivalent.
i) There is a universal formula ψ(v) such that T |= ∀v(φ(v) ↔ ψ(v)).
ii) If M and N are models of T with M ⊂ N , a ∈ M , and N |= φ(a),

then M |= φ(a).

Exercise 2.5.13 Let L = {s}, where s is a unary function symbol. Let
T be the L-theory that asserts that s is a bijection with no cycles (i.e.,
s(n)(x) �= x for n = 1, 2, . . .). For what cardinals κ is T κ-categorical?

Exercise 2.5.14 Let T be the theory of Abelian groups where every
element has order 2. Show that T is κ-categorical for all infinite cardinals
κ but not complete. Find T ′ ⊃ T a complete theory with the same infinite
models as T .

Exercise 2.5.15 We say that T has a ∀∃-axiomatization if it can be
axiomatized by sentences of the form ∀v1 . . .∀vn∃w1 . . .∃wm φ(v, w) where
φ is a quantifier-free formula.

1Some philosophers have found Skolem’s Paradox very interesting (see [88]).
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a) Suppose that T has a ∀∃-axiomatization, (I, <) is a linear order, and
(Mi : i ∈ I) is a chain of models of T . Show that

⋃
Mi is a model of T .

We will show that the converse also holds. Suppose that whenever (Mi :
i ∈ I) is a chain of models of T , then

⋃
Mi |= T . Let Γ = {φ : φ is a

∀∃-sentence and T |= φ}. Let M |= Γ. We will show that M |= T .
b) Show that there is N |= T such that if ψ is an ∃∀-sentence and

M |= ψ, then N |= ψ.
c) Show that there is N ′ ⊇ M with N ′ ≡ N .
d) Show that there is M′ ⊇ N ′ such that M ≺ M′.
e) Iterate the constructions from c) and d) to build a chain of structures

M = M0 ⊆ N1 ⊆ M1 ⊆ N2 . . .

such that Mi ≺ Mi+1 for i = 0, 1, . . . and each Ni ≺ Ni+1. Let M∗ =⋃
Mi =

⋃
Ni. Show that M∗ |= T and M ≺ M∗.

f) Conclude that T is ∀∃-axiomatizable.

Exercise 2.5.16 (Finitely Axiomatizable ℵ1-categorical Theory) Let L =
{U, V, E, R, s, π1, π2, π3, s1, s2, s3}, where U , V , E, and R are unary predi-
cates and s, πi, and si are unary function symbols for i = 1, 2, 3.

We consider the structure M, where M = U∪V , U = Z, V = Z3×{0, 1},
E ⊂ U is the even integers, s : U → U by s(x) = x + 1, πi : V → U by
πi(x1, x2, x3, x4) = xi, si : V → U by

si(x1, x2, x3, x4) =

⎧⎨⎩ (x1 + 1, x2, x3, x4) i = 1
(x1, x2 + 1, x3, x4) i = 2
(x1, x2, x3 + 1, x4) i = 3

,

and if D = {(x, y, z, w) ∈ V : x = y ∨ y = z ∨ z = w}, then R =
{(x, y, z, w) ∈ D : (x ≤ y ∨ y = z) ↔ w = 0}.

Let T be the following L-theory:
i) ∀x U(x) ↔ ¬V (x);
ii) E(x) → U(x);
iii) s(x) = x for x ∈ V and πi(x) = si(x) = x for x ∈ U ;
iv) πi : V → U and if x1, x2, x3 ∈ U , there are exactly two y ∈ V such

that πi(y) = xi for i = 1, 2, 3;
v) s is a bijection between E and U\E, πi(si(y)) = s(πi(y), πi(sj(y))πi(y)

for i = 1, 2, 3 and j �= i;
vi) sisj(x) = sjsi(x) for 1 ≤ i, j ≤ 3;
vii) Let D = {y ∈ V : πi(x) = πj(y) for some i �= j}. Then R(y) → y ∈ D

and for all x ∈ D there is a unique y ∈ V such that R(y) and πi(x) = πi(y)
for i = 1, 2, 3;

viii) π1(x) = π2(x) → [(R(x) ↔ R(s3(x))) ∧ (R(x) ↔ R(s1s2(x)))] for
x ∈ V ;

ix) π2(x) = π3(x) → [(R(x) ↔ R(s1(x))) ∧ (R(x) ↔ R(s2s3(x)))] for
x ∈ V ;
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x) π1(x) = π3(x) → [(R(x) ↔ (R(s2(x)) ↔ π1(x) �= s(π2(x))) ∧
(R(x) ↔ (R(s1s3(x)) ↔ π1(x) �= π2(x)))].

a) Show that M |= T .

Suppose that N |= T , x ∈ UN , and n > 0. We want to show that
sn(x) �= x. Suppose, for purposes of contradiction, that sn(x) = x.

b) Show that n is even and there is y ∈ R such that πi(y) = x for
i = 1, 2, 3.

c) Let σ = s1s3s
−1
2 and τ = s1s

−1
2 s−1

3 . Show that ¬R(σi(y)) for 1 ≤ i ≤
n
2 , R(sn

3 (y)), and R(τ
m
2 (sn

3 (y))). Use the fact that σ
n
2 = τ

n
2 sn

3 to derive a
contradiction.

d) Argue that (UN , sN |UN ) ≡ (Z, s).
e) Show that T is κ-categorical for all uncountable κ but not ℵ0-

categorical.

Exercise 2.5.17 We say that M |= T is existentially closed if whenever
N |= T , N ⊇ M, and N |= ∃v φ(v, a), where a ∈ M and φ is quantifier-free,
then M |= ∃v φ(v, a).

a) Show that if T is ∀∃-axiomatizable, then T has an existentially closed
model. Indeed, if M |= T , there is N ⊇ M existentially closed with |N | =
|M | + |L| + ℵ0.

b) Suppose that T has an infinite nonexistentially closed model. Prove
that T has a nonexistentially closed model of cardinal κ for any infinite
cardinal κ ≥ |L|. [Hint: Suppose that M ⊂ N are models of T and N
satisfies an existential formula not satisfied in M. Consider models of the
theory of N where we add a unary predicate for M .]

c) Suppose that T is κ-categorical for some infinite κ ≥ |L| and axiom-
atized by ∀∃-sentences. Prove that all models of T are existentially closed.
Conclude that every algebraically closed field is existentially closed.

Exercise 2.5.18 (Ultrafilters) Let I be a set and let P(I) = {X : X ⊂ I}
denote the power set of I. A filter on I is a collection D ⊂ P(I) such that:

i) I ∈ D, ∅ �∈ D;
ii) if A, B ∈ D, then A ∩ B ∈ D;
iii) if A ∈ D and A ⊆ B ⊆ I, then B ∈ D.

Intuitively a filter is a collection of “big” subsets of I.
a) Suppose that I = R. Show that D = {X ⊆ R : R \ X has Lebesgue

measure zero} is a filter.
b) Let κ be an infinite cardinal with κ ≤ |I|. Show that D = {X ⊆ I :

|I \ X| < κ} is a filter. If κ = ℵ0, we call D the Frechet filter.
c) Show that for x ∈ I, the principal filter D = {X ⊆ I : x ∈ X} is a

filter on I.
d) Suppose that D is a filter on I and X �∈ D. Let E = {Y ⊆ I : Z \X ⊆

Y for some Z ∈ D}. Show that E is a filter, D ⊂ E, and I \ X ∈ E.
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We say that a filter D on I is an ultrafilter if X ∈ D or I \ X ∈ D for
all X ⊆ I. We can think of an ultrafilter as a finitely additive two-valued
measure on the subsets of I.

e) Show that every principal filter is an ultrafilter.
f) Show that for all filters D on I there is an ultrafilter U on I with

D ⊆ U . [Hint: Suppose that D is a filter on I. Let I= {F ⊆ P (I) : F ⊇ D
and F is a filter}. Use Zorn’s Lemma to show that there is a maximal
element of I. Use d) to show that a maximal filter is an ultrafilter.] In
particular if D is the Frechet filter on I, then U is a nonprincipal ultrafilter.

Exercise 2.5.19 (Ultraproducts) Let L be a language and suppose that
I is an infinite set. Suppose that Mi is an L-structure for each i ∈ I. Let
D be an ultrafilter on I. We define a new structure M =

∏
Mi/D, which

we call the ultraproduct of the Mi using D. Define a relation ∼ on

X =
∏
i∈I

Mi =

{
f : I →

⋃
i∈I

Mi : f(i) ∈ Mi for all i

}
by f ∼ g if and only if {i ∈ I : f(i) = g(i)} ∈ D.

a) Show that ∼ is an equivalence relation.
The universe of M will be M = X/ ∼, the ∼ equivalence classes. We

must show how to view M as an L-structure. If c is a constant symbol of
L, let cM be the ∼ class of fc ∈ X where fc(i) = cMi for all i ∈ I.

Let f be an n-ary function symbol of L.
b) Suppose that g1, . . . , gn, h1, . . . , hn ∈ X, and gi ∼ hi for i = 1, . . . , n.

Define gn+1(i) = fMi(g1(i), . . . , gn(i)) and hn+1(i) = fMi(h1(i), . . . , hn(i))
for i ∈ I. Show that gn+1 ∼ hn+1. Thus fM(g1/∼, . . . , gn/∼) = gn+1/∼
determines a well-defined function on M.

c) Suppose that R is a relation symbol of L and g1, . . . , gn, h1, . . . , hn are
as above. Show that {i ∈ I : (g1(i), . . . , gn(i)) ∈ RMi} ∈ D if and only if
{i ∈ I : (h1(i), . . . , hn(i)) ∈ RMi} ∈ D.

Thus, we can interpret

RM = {(g1/∼, . . . , gm/∼) : {i ∈ I : (g1(i), . . . , gm(i)) ∈ RMi} ∈ D}.

d) (	Loś’s Theorem) Let φ(v1, . . . , vn) be an L-formula. Then, M |=
φ(g1/∼, . . . , gn/∼) if and only if {i ∈ I : Mi |= φ(g1(i), . . . , gn(i))} ∈ D.

e) What goes wrong in the proof of d) if D is a filter but not an ultrafil-
ter?

Exercise 2.5.20 (Ultraproduct and the Compactness Theorem) We show
how ultraproducts can be used to give a different proof of the Compactness
Theorem. Suppose that T is a finitely satisfiable theory. If T is finite, then
T is satisfiable, so we may assume that T is infinite. Let I = {∆ ⊆ T : ∆
is finite}.

a) For φ ∈ T , let Xφ = {∆ ∈ I : φ ∈ ∆}. Let

D = {Y ⊆ I : Xφ ⊆ Y for some φ ∈ T}.
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Show that D is a filter on I.
b) For ∆ ∈ I, let M∆ |= ∆. Let U be an ultrafilter on I with U ⊇ D.

Show that
∏
∆∈I

M∆/U |= T .

Exercise 2.5.21 † For each prime p, let Fp be the field with p elements. Let
D be a nonprincipal ultrafilter on the set of primes, and let K =

∏
Fp/D.

i) What can you say about the characteristic of K?
ii) Show that K has a unique algebraic extension of each degree.
iii) Let a, b ∈ K \ {0}. Show that there are infinitely many points (x, y)

in K2 such that y2 = x3 + x. [Hint: The equation defines an elliptic curve.
Hasse showed that if E is an elliptic curve defined over a finite field Fq and
Nq is the number of points on E with coordinates in Fq, then |Nq−q| ≤ 2

√
q

(see [95]).]

Exercise 2.5.22 Let M be a fixed L structure, and let Mi = M for every
i ∈ ω. Let D be a nonprincipal ultrafilter on ω. Let M∗ =

∏
Mi/D. We

call M∗ an ultrapower of M. Let d : M → M∗ by setting d(m) equal to
the ∼ class of the constant function i 	→ m. Show that d is an elementary
embedding and d is surjective if and only if M is finite.

Exercise 2.5.23 (Effective Henkin Constructions) Let L be a recursive
language. Consider an L-structure M with underlying set N. We say that
M is decidable if {(φ(n1, . . . , nm)) : n ∈ N and M |= φ(n1, . . . , nm), φ
and L-formula} is recursive. Show that if T is a complete, recursive L-
theory, then T has a decidable model. [Sketch: Let L∗ = L ∪ {ci : i =
0, 1, . . .}, where the ci are new constant symbols. We do a recursive Henkin
construction. Let φ0, φ1, . . . list all L∗-sentences, and let ψ0, ψ2, . . . list all
L∗-sentences with one free variable. At any stage s of the construction, we
will have a sentence θs such that T ∪ {θs : s = 0, 1, 2, . . .} is a complete
satisfiable theory with the witnessing property. Let θ0 = ∀x x = x. At
stage s = 2m, if T ∪ {θs, φm} is satisfiable, let θs+1 = θs ∧ φm; otherwise,
let θs+1 = θs ∧ ¬φm. Show that we can make this decision recursively and
that T ∪ {θs+1} is satisfiable. At stage s = 2m + 1, let i be least such that
the constant ci does not occur in θs+1 = θs ∧ (∃v ψ(v)) → ψ(ci). Show
that T ∪ {θs+1} is satisfiable. Argue that T ∗ = T ∪ {θs : s = 0, 1, . . .} is a
satisfiable complete decidable theory with the witness property. Build M
as in Lemma 2.1.7. Let σ : N → M by σ(i) = cj/ ∼, where j is least such
that |{c0/ ∼, . . . , cj/ ∼}| = i + 1. Use σ to make N into an L∗-structure N
so that σ is an isomorphism. Show that N is decidable.]

Exercise 2.5.24 We can also view a countable Henkin construction as
a forcing construction (see Appendix A). Let L,L∗, and T be as in the
previous exercise. Let P = {Σ : Σ is a finite set of L∗-formulas and T ∪ Σ
is satisfiable}. We order P by Σ < ∆ if and only if ∆ ⊂ Σ. For each L∗-
sentence φ, let Dφ = {Σ ∈ P : φ ∈ Σ or ¬φ ∈ Σ}. For each L∗-formula
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ψ(v) in one free variable v, let Eψ = {Σ ∈ P : ¬∃v ψ(v) ∈ Σ or ψ(c) ∈ Σ
for some constant c}.

a) Show that each Dφ and Eψ is dense.
b) Let D be the collection of all Dφ and Eψ. If G ⊆ P is a D-generic

filter, then T ∗ =
⋃

Σ∈G Σ is a satisfiable complete theory with the witness
property.

Exercise 2.5.25 We say that a theory T has definable Skolem functions
if for any formula φ(w, v) there is a formula ψ(w, v) such that

T |= ∀w∃v ψ(w, v) ,
T |= ∀w∀u∀v ((ψ(w, u) ∧ ψ(w, v)) → u = v),
T |= ∀w (∃vφ(w, v) → ∃u (ψ(w, u) ∧ φ(w, u)).

In other words, for each formula φ(w, v) there is a function f with a
definable graph that is a Skolem function for φ.

a) Show that Peano arithmetic has definable Skolem functions.
b) Show that if T has definable Skolem functions, then there is an ex-

pansion by definitions of T with built-in Skolem functions.

Exercise 2.5.26 Suppose thatT has built-in Skolem functions. Show that
T has a universal axiomatization.

Exercise 2.5.27 If (I, <) is a linear order and (Ai, <) is a linear order
for i ∈ I, we may linearly order {(i, x) : i ∈ I, x ∈ Ai} by (i, x) < (j, y) if
and only if i < j or i = j and x < y. We call this order

∑
i∈I Ai.

Let κ be an infinite cardinal. Let A be the linear order Q + 2 + Q (that
is, a copy of the rationals, followed by two discrete points, followed by a
copy of the rationals), and let B be the linear order Q + 3 + Q.

a) Let X ⊆ κ. For α < κ, let

Cα =
{

A if α ∈ X
B if α �∈ X

,

and let LX be the linear order
∑

α<κ Cα. Show that if X �= Y , then LX �∼=
LY . Conclude that there are 2κ nonisomorphic linear orders of cardinality
κ.

b)† Show that if κ ≥ ℵ1, then there are 2κ nonisomorphic dense linear
orders of cardinality κ.

Exercise 2.5.28 Let L3 = {<, c0, c1, . . .}, where c0, c1, . . . are constant
symbols. Let T3 be the theory of dense linear orders with sentences added
asserting c0 < c1 < . . ..

a) Show that T3 has exactly three countable models up to isomorphism.
[Hint: Consider the questions: Does c0, c1, c2, . . . have an upper bound? A
least upper bound?]

b) Prove the following two general results and use them to prove that T3
is complete.
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i) For any language L, two L-structures M and N are elementarily
equivalent if and only if they are elementarily equivalent for every finite
sublanguage.

ii) If L is countable, T is an L-theory with no finite models, and any
two countable models of T are elementarily equivalent, then T is complete.

c) Let L4 = L3 ∪ {P}, where P is a unary predicate. Let T4 be T3 with
the added sentences

∀x∀y(x < y → ∃z∃w(x < z < y ∧ x < w < y ∧ P (z) ∧ ¬P (w))).

In other words, P is a dense-codense subset. Show that T4 is a complete
theory with exactly four countable models.

d) Generalize c) to give examples of complete theories with exactly n
countable models for n = 5, 6, . . ..

Exercise 2.5.29 † a) Show that all ordinals α, β < ωω2, α �≡ β. [Here, ωω

is the ordinal sup{ω, ω2, . . .} (see Appendix A).]
b) Show that for all ordinals α there is an ordinal β < ωω2 such that

α ≡ β.

Exercise 2.5.30 Prove Lemma 2.4.11.

Exercise 2.5.31 Show that the Compactness Theorem fails for Lω1,ω.

Exercise 2.5.32 Show that if M ∼= N , then M ≡∞,ω N .

Exercise 2.5.33 The definition of quantifier depth extends to formulas of
L∞,ω by defining

depth
(∧

φi

)
= depth

(∧
ψi

)
= sup depth(φi).

We say that M ≡α
∞,ω if M |= φ if and only if N |= φ for all L∞,ω-sentences

of quantifier depth at most α.
a) Show that (M, a) ≡α

∞,ω (N , b) if and only if (M, a) ∼α (N , b).
b) Let ΦM be the Scott sentence of M. Show that if N |= ΦM, then

N ≡∞,ω M.

Exercise 2.5.34 If M and N are L-structures, then a back-and-forth
system for M and N is a family F of partial embeddings from M into N
with finite domain such that:

i) for all f ∈ F and a ∈ M , there is g ∈ F such that g ⊇ f and a is in
the domain of g, and

ii) for all f ∈ F and b ∈ N , there is g ∈ F such that g ⊇ f and b is in
the image of g.

a) Show that if M and N are countable and there is a back-and-forth
system, then M ∼= N .

b) Suppose that F is a back-and-forth system between M and N , f ∈ F ,
and a is the domain of F . Show that (M, a) ∼α (N , f(a)) for all α.
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c) Show that there is a back-and-forth system between M and N if and
only if M ≡∞,ω N .

d)† Show that M ≡∞,ω N if and only if there is a forcing extension of
the universe in which M is isomorphic to N .

Exercise 2.5.35 † Let L = {R}, where R is a binary relation. If f ∈
2N×N, let Mf be the L-structure with universe N and (x, y) ∈ RMf if
and only if f(x, y) = 1. We topologize 2N×N by taking subbasic open sets
{f : f(m, n) = i} where m, n ∈ N and i ∈ {0, 1}. If σ is a permutation of N

we view σ as acting on 2N×N by letting σ(f)(i, j) = f(σ(i), σ(j)). We say
that X ⊆ 2N×N is invariant if

f ∈ X ⇔ σ(f) ∈ X

for all permutations σ of f .
a) Show that for any sentence φ of Lω1,ω, {f ∈ 2N×N : Mf |= φ} is an

invariant Borel set.
b) Show that for any countable L-structure M, {f ∈ 2N×N : Mf

∼= M}
is an invariant Borel set.

c) Show that the equivalence relation fEg if and only if Mf
∼= Mg is an

invariant analytic subset of 2N×N × 2N×N. (Recall that an analytic subset
of Y is the continuous image of a Borel set in Y × NN.)

d) Show that every invariant Borel subset of 2N×N is of the form {f :
Mf |= φ} for some Lω1,ω-sentence.

Remarks
The Compactness Theorem was proved for countable languages by Gödel.
Malcev proved the general result and was the first who saw its power. In-
deed in a review of a paper of Skolem’s, Gödel [35] points out that the
existence of a nonstandard model of arithmetic follows from the Incom-
pleteness Theorem, but does not mention the simple compactness proof.

The completeness and decidability of ACFp for p = 0 or prime was first
proved by Tarski using the method of quantifier elimination from Chapter
3.

Ax’s Theorem 2.2.11 was first proved as we described above. Later, Borel
[13] gave a topological proof and Rudin [90] gave an algebraic proof.

The method of diagrams from Section 3.2 is due to Abraham Robinson.
Theorem 2.3.9 is due to 	Loś and Tarski. Theorem 2.3.11 is due to Tarski
and Vaught.

The analysis of the random graph is due to Fagin. See [97] for more
on zero-one laws for random graphs where we consider other probability
measures. These ideas can easily be generalized to study a random n-ary
relation. Constructions of this sort are generally referred to as Fräıssé con-
structions. This topic is discussed more carefully in [40]. Hrushovski [41],
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[42] has expanded these ideas into a powerful tool for constructing inter-
esting new structures.

Ehrenfeucht–Fräıssé games, and their variants, play an interesting role
in finite model theory (see, for example, [32]). The use of games and back-
and-forth systems to understand infinitary equivalence is due to Karp. The
use of Lω1,ω to characterize countable structures and Exercise 2.5.35 are
due to Scott. The reader is referred to [72] for a survey of the model theory
of infinitary logic and its connection to classical model theory.

Exercise 2.5.15 is due to Chang, 	Loś, and Suszko. The finitely axiomatiz-
able ℵ1-categorical theory given in Exercise 2.5.16 is Morley’s simplification
of an example by Peretjat’kin. Exercise 2.5.17 is due to Lindström.

Ultraproducts and ultrapowers are an important tool in model theory,
although they will not play a central role in this text. A very thorough
development of the model theory of ultraproducts is contained in [22]. A
high point of the theory is the Keisler–Shelah Theorem (see [22] 6.1.15).

Theorem 2.5.36 (Keisler–Shelah Theorem) Two L-structures M
and N are elementarily equivalent if and only if there is an index set I
and an ultrafilter D on I such that

∏
M/D ∼=

∏
N/D.

The study of ultraproducts of finite fields mentioned in Exercise 2.5.21 is
a fascinating one initiated by Ax [2] and developed further by Chatzidakis,
van den Dries, and Macintyre [23].

The examples from Exercise 2.5.28 are due to Ehrenfeucht. The analysis
of elementary equivalence of ordinals is due to Mostowski and Tarski.





3
Algebraic Examples

3.1 Quantifier Elimination

The study of definable sets is often made quite complicated by quantifiers.
For example, in the structure (N, +, ·, <) the quantifier-free definable sets
are defined by polynomial equations and inequalities. Even if we use only
existential quantifiers the definable sets become complicated. By the Mati-
jasevič–Robinson–Davis–Putnam solution to Hilbert’s 10th problem [24],
every recursively enumerable subset of N is defined by a formula

∃v1 . . .∃vn p(x, v1, . . . , vn) = 0

for some polynomial p ∈ N[X, Y1, . . . , Yn]. As we allow more alternations
of quantifiers, we get even more complicated definable sets.

Not surprisingly, it will be easiest to study definable sets that are defined
by quantifier-free formulas. Sometimes formulas with quantifiers can be
shown to be equivalent to formulas without quantifiers. Here are two well-
known examples. Let φ(a, b, c) be the formula

∃x ax2 + bx + c = 0.

By the quadratic formula,

R |= φ(a, b, c) ↔ [(a �= 0 ∧ b2 − 4ac ≥ 0) ∨ (a = 0 ∧ (b �= 0 ∨ c = 0))],

whereas in the complex numbers

C |= φ(a, b, c) ↔ (a �= 0 ∨ b �= 0 ∨ c = 0).
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In either case, φ is equivalent to a quantifier-free formula. However, φ is
not equivalent to a quantifier-free formula over the rational numbers Q.

For a second example, let φ(a, b, c, d) be the formula

∃x∃y∃u∃v (xa + yc = 1 ∧ xb + yd = 0 ∧ ua + vc = 0 ∧ ub + vd = 1).

The formula φ(a, b, c, d) asserts that the matrix(
a b
c d

)
is invertible. By the determinant test,

F |= φ(a, b, c, d) ↔ ad − bc �= 0

for any field F .

Definition 3.1.1 We say that a theory T has quantifier elimination if for
every formula φ there is a quantifier-free formula ψ such that

T |= φ ↔ ψ.

We will start by showing that DLO, the theory of dense linear orders
without endpoints, has quantifier elimination. We need a slight variant of
the proof of Theorem 2.4.1.

Lemma 3.1.2 Let (A, <) and (B, <) be countable dense linear orders,
a1, . . . , an ∈ A, b1, . . . , bn ∈ B, such that a1 < . . . < an and b1 < . . . < bn.
Then there is an isomorphism f : A → B such that f(ai) = bi for
i = 1, . . . , n.

Proof Modify the proof of Theorem 2.4.1 starting with A0 = {a1, . . . , an},
B0 = {b1, . . . , bn}, and the partial isomorphism f0 : A0 → B0, where
f0(ai) = bi. The rest of the proof works, and we build f : A → B, an
isomorphism extending f0.

Theorem 3.1.3 DLO has quantifier elimination.

Proof First, suppose that φ is a sentence. If Q |= φ, then because DLO is
complete, DLO|= φ and

DLO |= φ ↔ x1 = x1,

whereas if Q |= ¬φ,
DLO |= φ ↔ x1 �= x1.

Next, suppose that φ is a formula with free variables x1, . . . , xn, where
n ≥ 1. We will show that there is a quantifier-free formula ψ with free
variables from among x1, . . . , xn such that

Q |= ∀x (φ(x) ↔ ψ(x)).
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Because DLO is complete,

DLO |= ∀x (φ(x) ↔ ψ(x)),

so this will suffice.
For σ : {(i, j) : 1 ≤ i < j ≤ n} → 3, let χσ(x1, . . . , xn) be the formula∧

σ(i,j)=0

xi = xj ∧
∧

σ(i,j)=1

xi < xj ∧
∧

σ(i,j)=2

xi > xj .

We call χσ a sign condition. Each sign condition describes a (possibly in-
consistent) arrangement of n elements in an ordered set.

Let L be the language of linear orders and φ be an L-formula with n ≥ 1
free variables. Let Λφ be the set of sign conditions σ : {(i, j) : 1 ≤ i < j ≤
n} → 3 such that there is a ∈ Q such that Q |= χσ(a) ∧ φ(a). There are
two cases to consider.
case 1: Λφ = ∅.

Then Q |= ∀x ¬φ(x) and Q |= φ(x) ↔ x1 �= x1.
case 2: Λφ �= ∅.

Let
ψφ(x) =

∨
σ∈Λφ

χσ(x).

By choice of Λφ,
Q |= φ(x) → ψφ(x).

On the other hand, suppose that b ∈ Q and Q |= ψφ(b). Let σ ∈ Λφ

such that Q |= χσ(b). There is a ∈ Q such that Q |= φ(a) ∧ χσ(a). By
Theorem 2.4.1, there is f , an automorphism of (Q, <), such that f(a) = b.
By Theorem 1.1.10, Q |= φ(b). Thus φ(b) ↔ ψφ(b).

Note that there is a slight anomaly here. If φ is not a sentence, then
we can find an equivalent quantifier-free sentence using the same variables.
Because there are no quantifier-free L-sentences, to find a quantifier-free
formula equivalent to a sentence, we must introduce a new free variable. If
our language has constant symbols, this is unnecessary.

DLO is an example where we can give a direct explicit proof of quantifier
elimination. In the exercises, we will look at several more simple examples
where there is an easy explicit elimination of quantifiers. For more com-
plicated theories explicit proofs of quantifier elimination are often quite
difficult. Next we will give a useful model-theoretic criterion for quantifier
elimination.

Theorem 3.1.4 Suppose that L contains a constant symbol c, T is an
L-theory, and φ(v) is an L-formula. The following are equivalent:

i) There is a quantifier-free L-formula ψ(v) such that T |= ∀v (φ(v) ↔
ψ(v)).
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ii) If M and N are models of T , A is an L-structure, A ⊆ M, and
A ⊆ N , then M |= φ(a) if and only if N |= φ(a) for all a ∈ A.

Proof i)⇒ ii) Suppose that T |= ∀v (φ(v) ↔ ψ(v)), where ψ is quantifier-
free. Let a ∈ A, where A is a common substructure of M and N and the
latter two structures are models of T . In Proposition 1.1.8, we saw that
quantifier-free formulas are preserved under substructure and extension.
Thus

M |= φ(a) ⇔ M |= ψ(a)
⇔ A |= ψ(a) (because A ⊆ M)
⇔ N |= ψ(a) (because A ⊆ N )
⇔ N |= φ(a).

ii) ⇒ i) First, if T |= ∀v φ(v), then T |= ∀v (φ(v) ↔ c = c). Second, if
T |= ∀v ¬φ(v), then T |= ∀v (φ(v) ↔ c �= c).

Thus, we may assume that both T ∪ {φ(v)} and T ∪ {¬φ(v)} are satisfi-
able.

Let Γ(v) = {ψ(v) : ψ is quantifier-free and T |= ∀v (φ(v) → ψ(v))}. Let
d1, . . . , dm be new constant symbols. We will show that T ∪ Γ(d) |= φ(d).
Then, by compactness, there are ψ1, . . . , ψn ∈ Γ such that

T |= ∀v

(
n∧

i=1

ψi(v) → φ(v)

)
.

Thus

T |= ∀v

(
n∧

i=1

ψi(v) ↔ φ(v)

)

and
n∧

i=1

ψi(v) is quantifier-free. We need only prove the following claim.

Claim T ∪ Γ(d) |= φ(d).
Suppose not. Let M |= T ∪ Γ(d) ∪ {¬φ(d)}. Let A be the substructure

of M generated by d.
Let Σ = T∪Diag(A)∪φ(d). If Σ is unsatisfiable, then there are quantifier-

free formulas ψ1(d), . . . , ψn(d) ∈ Diag(A) such that

T |= ∀v

(
n∧

i=1

ψi(v) → ¬φ(v)

)
.

But then

T |= ∀v

(
φ(v) →

n∨
i=1

¬ψi(v)

)
,
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so
n∨

i=1

¬ψi(v) ∈ Γ and A |=
n∨

i=1

¬ψi(d), a contradiction. Thus, Σ is satisfi-

able.
Let N |= Σ. Then N |= φ(d). Because Σ ⊇ Diag(A), A ⊆ N , by Lemma

2.3.3 i). But M |= ¬φ(d); thus, by ii), N |= ¬φ(d), a contradiction.

The proof above can easily be adapted to the case where L contains
no constant symbols. In this case, there are no quantifier-free sentences,
but for each sentence we can find a quantifier-free formula ψ(v1) such that
T |= φ ↔ ψ(v1).

The next lemma shows that we can prove quantifier elimination by get-
ting rid of one existential quantifier at a time.

Lemma 3.1.5 Let T be an L-theory. Suppose that for every quantifier-
free L-formula θ(v, w) there is a quantifier-free formula ψ(v) such that
T |= ∃w θ(v, w) ↔ ψ(v). Then, T has quantifier elimination.

Proof Let φ(v) be an L-formula. We wish to show that T |= ∀v (φ(v) ↔
ψ(v)) for some quantifier-free formula φ(v). We prove this by induction on
the complexity of φ(v).

If φ is quantifier-free, there is nothing to prove. Suppose that for i = 0, 1,
T |= ∀v (θi(v) ↔ ψi(v)), where ψi is quantifier free.

If φ(v) = ¬θ0(v), then T |= ∀v (φ(v) ↔ ¬ψ0(v)).
If φ(v) = θ0(v) ∧ θ1(v), then T |= ∀v (φ(v) ↔ (ψ0(v) ∧ ψ1(v))).
In either case, φ is equivalent to a quantifier-free formula.
Suppose that T |= ∀v(θ(v, w) ↔ ψ0(v, w)), where ψ0 is quantifier-free

and φ(v) = ∃wθ(v, w). Then T |= ∀v (φ(v) ↔ ∃w ψ0(v, w)). By our as-
sumptions, there is a quantifier-free ψ(v) such that T |= ∀v (∃w ψ0(v, w) ↔
ψ(v)). But then T |= ∀v (φ(v) ↔ ψ(v)).

Combining Theorem 3.1.4 and Lemma 3.1.5 gives us the following simple,
yet useful, test for quantifier elimination.

Corollary 3.1.6 Let T be an L-theory. Suppose that for all quantifier-free
formulas φ(v, w), if M,N |= T , A is a common substructure of M and N ,
a ∈ A, and there is b ∈ M such that M |= φ(a, b), then there is c ∈ N such
that N |= φ(a, c). Then, T has quantifier elimination.

Divisible Abelian Groups
In Proposition 2.2.4 we showed that the theory of nontrivial torsion-free di-
visible Abelian groups is κ-categorical for uncountable cardinals and hence
complete by Vaught’s test. To illustrate Corollary 3.1.6, we will show that
the theory of divisible ordered Abelian groups has quantifier elimination.
It will be convenient (although not essential) to work with the language
L = {+,−, 0} because in this language substructures of groups are groups,
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whereas with {+, 0} substructures are semigroups. Let DAG be the L-
theory of nontrivial torsion-free divisible Abelian groups. We will show
DAG has quantifier elimination.

We start by verifying a special case of the quantifier elimination test.

Lemma 3.1.7 Suppose G and H are nontrivial torsion free divisible
Abelian groups, G ⊆ H, ψ(v, w) is quantifier-free, a ∈ G, b ∈ H, and
H |= φ(a, b). Then, there is c ∈ G such that G |= φ(a, c).

Proof We first note that ψ can be put in disjunctive normal form, namely
there are atomic or negated atomic formulas θi,j(v, w) such that:

ψ(v, w) ↔
n∨

i=1

m∧
j=1

θi,j(v, w).

Because H |= ψ(a, b), H |=
∧m

j=1 θi,j(a, b) for some i. Thus, without
loss of generality, we may assume that ψ is a conjunction of atomic and
negated atomic formulas. If θ(v1, . . . , vm, w) is an atomic formula, then for
some integers n1, . . . , nm, m, θ(v, w) is

∑
nivi + mw = 0.

Thus, we may assume that

ψ(a, w) =
s∧

i=1

m∑
j=1

ni,jaj + miw = 0 ∧
s∧

i=1

m∑
j=1

n′
i,jaj + m′

iw �= 0.

Let gi =
∑

ni,jaj and hi =
∑

n′
i,jaj . Then, gi, hi ∈ G and

ψ(a, w) ↔
∧

gi + miw = 0 ∧
∧

hi + m′
iw �= 0.

If any mi �= 0, then b = −gi

mi
∈ G and G |= θ(a, b), so suppose that

ψ(a, w) =
∧

hi + m′
iw �= 0. Thus, ψ(a, w) is satisfied by any element of H

that is not equal to any one of −h1
m′

1
, . . . , −hs

m′
s

. Because G is infinite, there is
an element of G satisfying ψ(a, w).

We will need the following algebraic lemma.

Lemma 3.1.8 Suppose that G is a torsion-free Abelian group. Then, there
is a torsion-free divisible Abelian group H, called the divisible hull of G,
and an embedding i : G → H such that if j : G → H ′ is an embedding of G
into a torsion-free divisible Abelian group, then there is h : H → H ′ such
that j = h ◦ i.

Proof If G is the trivial group, then we can take H = Q, so suppose that
G is non-trivial.

Let X = {(g, n) : g ∈ G, n ∈ N, n > 0}. We think of (g, n) as g/n.
We define an equivalence relation ∼ on X by (g, n) ∼ (h, m) if and only

if mg = nh. Let H = X/ ∼. For (g, n) ∈ X, let [(g, n)] denote the ∼-class
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of (g, n). We define + on H by [(g, n)] + [(h, m)] = [(mg + nh, mn)]. We
must show that + is well defined.

Suppose that (g0, n0) ∼ (g, n). We claim that (mg0 +n0h, mn0) ∼ (mg+
nh, mn). We must verify that mn0(mg + nh) = mn(mg0 + n0h). Because
G is Abelian, mn0(mg + nh) = m2n0g + mn0nh. But ng0 = n0g. Thus,
mn0(mg + nh) = m2ng0 + mn0nh = mn(mg0 + n0h), as desired. Thus, +
is well-defined.

Similarly, we can define − by [(g, n)]− [(h, m)] = [(mg−nh, mn)]. This is
also well-defined. It is easy to show that (H, +) is an Abelian group, where
[(0, 1)] is the identity and [(−g, n)] is the inverse of [(g, n)].

If [(g, m)] ∈ H and n > 0, then n[(g, m)] = [(ng, m)]. If (ng, m) ∼ (0, k),
then kng = 0. Because k > 0, n > 0, and G is torsion-free, g = 0. But then
[(g, m)] = [(0, 1)]. Thus, H is torsion-free.

Suppose that [(g, m)] ∈ H and n > 0, then n[(g, mn)] = [(ng, mn)] =
[(g, m)]. Thus, H is divisible.

We can embed G into H by the map i(g) = [(g, 1)]. Clearly, for g0 �= g1,
[(g0, 1)] �= [(g1, 1)]. Also [(g, 1)] + [(h, 1)] = [(g + h, 1)], as desired.

Suppose that H ′ is a divisible torsion-free Abelian group and j : G → H ′

is an embedding. Let h : H → H ′ by h([g, n]) = j(g)/n. The reader should
verify that h is a well-defined embedding and j = h ◦ i.

Theorem 3.1.9 DAG has quantifier elimination.

Proof Suppose that G0 and G1 are torsion-free divisible Abelian groups,
G is a common subgroup of G0 and G1, g ∈ G, h ∈ G0, and G0 |= φ(g, h),
where φ is quantifier-free. Let H be the divisible hull of G. Because we
can embed H into G0, by Lemma 3.1.7, H |= ∃w φ(g, w). Because we can
embed H into G1, there is h′ ∈ G1 such that G1 |= φ(g, h′). By Corollary
3.1.6, DAG has quantifier elimination.

Quantifier elimination gives us a good picture of the definable sets in
a model of DAG. Suppose that φ(v1, . . . , vn, w1, . . . , wm) is an atomic for-
mula. Then, there are integers k1, . . . , kn and l1, . . . , lm such that φ(v, w) ↔∑

kixi +
∑

liyi = 0. If G |= DAG and a1, . . . , am ∈ G, φ(v, a) defines
{g ∈ Gn :

∑
kigi +

∑
liai = 0}, a hyperplane in Gn. Because any L-

formula φ(v, w) is equivalent in DAG to a Boolean combination of atomic
L-formulas, every definable subset of Gn is a Boolean combination of hy-
perplanes.

In particular, suppose that a ∈ Gm and φ(v, a) defines a subset of G.
The “hyperplanes” in G are just single points. Thus, {g ∈ G : G |= φ(g, a)}
is either finite or cofinite. Thus, every definable subset of G was already
definable already in the language of equality.1 This is an example of a very
important phenomenon.

1Of course, in G2 there are definable sets which are not definable in the pure language
of equality.
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Definition 3.1.10 We say that an L-theory T is strongly minimal if for
any M |= T every definable subset of M is either finite or cofinite.

Corollary 3.1.11 DAG is strongly minimal.

In Chapter 6.1, we will see that strongly minimal theories are ℵ1-categorical
and that their analysis is crucial in any understanding of ℵ1-categorical
theories.

Because several of the proofs of quantifier elimination that we give below
will follow the exact pattern of the proof of Theorem 3.1.9, we will isolate
the properties highlighted in Lemmas 3.1.7 and 3.1.8 and show that they
suffice for quantifier elimination.

If T is a theory then T∀ is the set of all universal consequences of T . In
Exercise 2.5.10 we saw that A |= T∀ if and only if there is M |= T with
A ⊆ M. One consequence of Lemma 3.1.8 is that every torsion-free Abelian
group is a substructure of a nontrivial divisible Abelian group. Because the
axioms for torsion-free Abelian groups are universal, DAG∀ is exactly the
theory of torsion-free Abelian groups.

We say that a theory T has algebraically prime models if for any A |= T∀
there is M |= T and an embedding i : A → M such that for all N |= T and
embeddings j : A → N there is h : M → N such that j = h ◦ i. Lemma
3.1.8 asserts that DAG has algebraically prime models.

If M,N |= T and M ⊆ N , we say that M is simply closed in N and
write M ≺s N if for any quantifier free formula φ(v, w) and any a ∈ M , if
N |= ∃w φ(a, w) then so does M. Lemma 3.1.7 says that if G and H are
models of DAG and G ⊆ H, then G ≺s H.

The proof of Theorem 3.1.9 can be easily modified to yield the following
quantifier elimination test.

Corollary 3.1.12 Suppose that T is an L-theory such that
i) T has algebraically prime models and
ii) M ≺s N whenever M ⊆ N are models of T .

Then, T has quantifier elimination.

Quantifier elimination implies a significant strengthening of ii).

Definition 3.1.13 An L-theory T is model-complete M ≺ N whenever
M ⊆ N and M,N |= T .

Stated in terms of embeddings: T is model-complete if and only if all
embeddings are elementary.

Proposition 3.1.14 If T has quantifier elimination, then T is model-
complete.

Proof Suppose that M ⊆ N are models of T . We must show that M is an
elementary submodel. Let φ(v) be an L-formula, and let a ∈ M . There is
a quantifier-free formula ψ(v) such that M |= ∀v (φ(v) ↔ ψ(v)). Because
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quantifier-free formulas are preserved under substructures and extensions,
M |= ψ(a) if and only if N |= ψ(a). Thus

M |= φ(a) ⇔ M |= ψ(a) ⇔ N |= ψ(a) ⇔ N |= φ(a).

There are model-complete theories that do not have quantifier elimina-
tion. We will investigate model-completeness further in the exercises. For
now, let us just point out the following test for completeness of model-
complete theories.

Proposition 3.1.15 Let T be a model-complete theory. Suppose that there
is M0 |= T such that M0 embeds into every model of T . Then, T is com-
plete.

Proof If M |= T , the embedding of M0 into M is elementary. In particular
M0 ≡ M. Thus, any two models of T are elementarily equivalent.

Because (Q,+, 0) embeds in every model of DAG, this gives another
proof of the completeness of DAG. We will use Proposition 3.1.15 below in
several cases where Vaught’s test does not apply.

Ordered Divisible Abelian Groups
Let us use the tools we have developed to analyze the theory of (Q,+, <, 0).
Let L = {+,−, <, 0} and let ODAG be the theory of nontrivial divisible
ordered Abelian groups. We will show that ODAG is a complete theory
with quantifier elimination. It follows from completeness that ODAG ax-
iomatizes the theory of the ordered group of rationals.

We start by trying to identify ODAG∀. It is easy to see that the axioms
for ordered Abelian groups are universal and hence contained in ODAG∀.
We claim that these axioms suffice. We must show that every ordered
Abelian group embeds in an ordered divisible Abelian group. Because or-
dered groups are torsion-free, it suffices to show that the ordering of the
group extends to an ordering of the divisible hull. The next lemma will
show this and prove that ODAG has algebraically prime models.

Lemma 3.1.16 Let G be an ordered Abelian group and H be the divisible
hull of G. We can order H such that i : G → H is order-preserving,
(H, +, <) |= ODAG and if H ′ |= ODAG and j : G → H ′ is an embedding,
then there is an embedding h : H → H ′ such that j = h ◦ i.

Proof We let g
n denote [(g, n)]. We can order H by g

n < h
m if and only

if mg < nh. If g < h, then g
1 < h

1 so this extends the ordering of G. If
g1
n1

< g2
n2

and h1
m1

≤ h2
m2

, then n2g1 < n1g2 and m2h1 ≤ m1h2. Then,

m1m2n2g1 + n1n2m2h1 < m1m2n1g2 + n1n2m1h2
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and
m1g1 + n1h1

m1n1
<

m2g2 + n2h2

m2n2
.

Thus, < makes H an ordered group.
If H ′ is another ordered divisible Abelian group and j : G → H ′ is an

embedding, let h be as in Lemma 3.1.8. It is easy to see that h is order-
preserving.

To prove quantifier elimination, we must show that if G and H are or-
dered divisible Abelian groups and G ⊆ H, then G ≺s H.

Suppose that φ(v, w) is a quantifier-free formula, a ∈ G, and for some
b ∈ H, H |= φ(b, a). As above, it suffices to consider the case where φ is
a conjunction of atomic and negated atomic formulas. If θ(v,w) is atomic,
then θ is equivalent to either

∑
niwi + mv = 0 or

∑
niwi + mv > 0 for

some ni, m ∈ Z. In particular, there is an element g ∈ G such that θ(v, a)
is of the form mv = g or mv > g. Also note that any formula mv �= g is
equivalent to mv > g or −mv > g. Thus we may assume that

φ(v, a) ↔
∧

miv = gi ∧
∧

niv > hi,

where gi, hi ∈ G and mi, ni ∈ Z.
If there is actually a conjunct miv = gi, then we must have b = gi

mi
∈ G;

otherwise φ(v, a) =
∧

miv > hi. Let k0 = min{ hi

mi
: mi < 0} and ki =

max{ hi

mi
: mi > 0}. Then, c ∈ H satisfies φ(v, a) if and only if k0 < v < k1.

Because b satisfies φ, we must have k0 < k1. But it is easy to see that any
ordered divisible Abelian group is densely ordered because if g < h, then
g < g+h

2 < h, so there is d ∈ G such that k0 < d < k1. Thus G ≺s H.

Corollary 3.1.17 ODAG is a complete decidable theory with quantifier
elimination. In particular, every ordered divisible Abelian group is elemen-
tarily equivalent to (Q,+, <).

Proof By Lemma 3.1.16, ODAG∀ is the theory of ordered Abelian groups
and ODAG has algebraically prime models. From the remarks above and
Corollary 3.1.12 we see that ODAG has quantifier elimination. The ordered
group of rationals embeds into every ordered divisible Abelian group; thus,
by Proposition 3.1.15, ODAG is complete. Because ODAG has a recursive
axiomatization, it is decidable by Lemma 2.2.8.

ODAG is not strongly minimal. For example, {a ∈ Q : a < 0} is infinite
and coinfinite. On the other hand, definable subsets are quite well-behaved.
Suppose that G is an ordered divisible Abelian group and X ⊆ G is defin-
able. By quantifier elimination, X is a Boolean combination of sets defined
by atomic formulas. If φ(v, w1, . . . , wn) is atomic, then there are integers
k0, . . . , kn such that φ is equivalent to either

k0v +
∑

kiwi = 0
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or
k0v +

∑
kiwi > 0.

If a ∈ Gn, in the first case φ(v, a) defines a finite set whereas in the second
case it defines an interval. It follows that X is a finite union of points and
intervals with endpoints in G ∪ {±∞}. This is also a very useful property.

Definition 3.1.18 We say that an ordered structure (M, <, . . .) is o-
minimal (where “o” comes from “order”) if for any definable X ⊆ M there
are finitely many intervals I1, . . . Im with endpoints in M ∪ {±∞} and a
finite set X0 such that X = X0 ∪ I1 ∪ . . . ∪ Im.

If M is o-minimal, then the only definable subsets of M are already
definable using only the ordering. Although there may be more complicated
definable subsets in Mk, these sets will still be quite well behaved. We will
say a bit more about this in Section 3.3 (see [29] for a thorough treatment
of this important subject).

Presburger Arithmetic
We conclude this chapter by considering a slightly more complicated ex-
ample. Let L = {+,−, <, 0, 1} and consider the L-theory of the ordered
group of integers. In fact this theory will not have quantifier elimination in
the language L. Let ψn(v) be the formula

∃y v = y + . . . + y︸ ︷︷ ︸
n−times

,

which asserts that v is divisible by n. We will see in the exercises that ψn is
not equivalent to a quantifier free formula. It turns out that this is the only
obstruction to quantifier elimination. Let L∗ = L ∪ {Pn : n = 2, 3, . . .},
where Pn is a unary predicate which we will interpret as the elements
divisible by n. We will see that the L∗-theory of Z has quantifier elimination
and is decidable. Because we are only adding predicates for sets that we
could define already in the language L, we will not change the definable
sets (see Exercise 1.4.15).

There is something slippery going on here that we should be careful
about. For any language L and L-theory T , there is a language L′ ⊇ L
and an L′-theory T ′ ⊇ T such that for any M |= T we can interpret the
new symbols of L′ to make M′ |= T ′ such that any subset of Mk definable
using L′ is already definable using L, and any L′-formula is equivalent to
an atomic L′-formula!

Let L′ = L ∪ {Rφ : φ an L-formula}, where if φ is a formula in n free
variables, Rφ is an n-ary predicate symbol. Let T ′ be the theory obtained
by adding to T the sentences

∀v (φ(v) ↔ Rφ(v))
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for each L-formula φ. As an exercise, show that T ′ has the desired property.
Thus, by adding lots of predicate symbols for sets defined in the original
language, we obtain a new language in which we have quantifier elimination.

In general, this is a completely useless construction. Quantifier elimina-
tion in the new language is only helpful if the quantifier-free definable sets
are easy to understand. If we were having trouble understanding the sets
defined using L, we would have the same problems with sets defined using
L′.

In our analysis of the ordered group of integers, we will see that adding
predicates for subgroups of elements divisible by n suffices to allow us to
eliminate quantifiers, but the language is simple enough that we can prove
decidability and easily understand definable sets. We will consider the L∗-
theory, which we call Pr for Presburger arithmetic, with axioms:

i) axioms for ordered Abelian groups;
ii) 0 < 1;
iii) ∀x (x ≤ 0 ∨ x ≥ 1);
iv)n ∀x(Pn(x) ↔ ∃y x = y + . . . + y︸ ︷︷ ︸

n−times

), for n = 2, 3, . . .;

v)n ∀x
∨n−1

i=0 [Pn(x + 1 + . . . + 1︸ ︷︷ ︸
i times

) ∧
∧

j �=i ¬Pn(x + 1 + . . . + 1︸ ︷︷ ︸
j times

)]

for n = 2, 3, . . ..
Suppose that (G, +,−, <, 0, 1) is a model of Pr. For each n, axiom iv)n

asserts that PG
n = nG. Axiom v)n asserts that G

nG
∼= Z

nZ
.

What is Pr∀? Clearly the axioms i), ii), iii), and v)n are universal, whereas
axiom iv) is not. Let us define a theory T that we will eventually show is
Pr∀. The axioms for T are:

axioms i), ii), iii), and v)n;
vi)n Pn is closed under + and −;
vii)n ∀x, y (y + . . . + y︸ ︷︷ ︸

n times

= x) → Pn(x);

viii)n,m (for m dividing n) ∀x(Pm(x) → Pn(x));
ix)n,k∀x(Pkn(x + . . . + x︸ ︷︷ ︸

k times

) → Pn(x)) for k, n = 2, 3, . . ..

Axiom vi) ensures that the Pn are additive subgroups. Axiom vii)n as-
serts that nG ⊂ Pn. Axiom viii)n,m asserts that if m|n, then Pm ⊂ Pn.
Axiom ix)n,k asserts that if kx ∈ Pkn, then x ∈ Pn. Clearly, T ⊆ Pr∀. The
next lemma shows that T axiomatizes Pr∀ and Pr has algebraically prime
models.

Lemma 3.1.19 Let (G, +, <, P2, P3, . . .) |= T . There is H ⊇ G such that
H |= Pr and if H ′ ⊇ G and H ′ |= Pr, then there is h : H → H ′ such that
h|G is the identity.

Proof We define H a subgroup of the divisible hull of G. Let H = { x
n :

x ∈ G and n = 1 or Pn(x)}. We let PH
n = nH.
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We first show that H is a subgroup of the divisible hull of G. Suppose
that x

m , y
n ∈ H. We assume that m �= 1 and n �= 1, leaving the other cases

to the reader. Then x ∈ Pm and y ∈ Pn. Thus, by axiom ix), nx ∈ Pmn

and my ∈ Pmn. Because Pmn is closed under addition and subtraction,
nx ± my ∈ Pmn. Thus, nx±my

mn ∈ H and H is an ordered subgroup of the
divisible hull of G. In particular, H is Abelian.

Clearly, H |= 0 < 1. Suppose that x
m ∈ H and 0 < x

m < 1. Because G is
discretely ordered and 1 is the least positive element, m �= 1 and 0 < x < m.
Thus x ∈ {1, 2, . . . , m − 1}. But then, by axiom v), n, G |= ¬Pm(x), a
contradiction.

PH
n is defined so that axiom iv)n holds. We need only check axiom

v)n. Let x
m ∈ H. Thus Pm(x). We would like x

m to be congruent one of
0,1,. . . , n−1 mod n. By axiom v), there is a unique i such that 0 ≤ i < mn
such that x + i ∈ Pmn. By axiom viii), x + i ∈ Pm. Because Pm is a sub-
group, i ∈ Pm. Thus, i = lm, where 0 ≤ l < n. In H, there is y such that
y + . . . + y︸ ︷︷ ︸

mn times

= x + lm. Then y + . . . + y︸ ︷︷ ︸
n times

= x
m + l. Because there is only one

choice for i, there is only one choice for l.
Thus H |= Pr. Thus T = Pr∀.
Moreover, suppose that H ′ ⊇ G and H ′ |= Pr. Let x ∈ G such that

G |= Pm(x). There is y ∈ H ′ such that my = x. Thus, there is an embedding
of H into H ′ fixing G.

Quantifier elimination will follow from the next lemma.

Lemma 3.1.20 If G, H |= Pr and G ⊆ H, then G ≺s H.

Proof Let a ∈ G, let φ(v,w) be a quantifier-free formula, and let b ∈ H
such that H |= φ(b, a).

We claim that we may assume that φ(v, a) is of the form∧
miv = gi ∧

∧
Pni

(siv + hi) ∧
∧

ci < v < di,

where mi, ni, si ∈ Z and ci, di, gi, hi ∈ G.
First note that ¬Pn(x) ↔

∨n−1
i=1 Pn(x + i). If we first assume that φ is in

conjunctive normal form, we can then replace all negative occurrences of Pn

by a disjunction of positive occurrences. We then use the distributive law
to get an equivalent formula in conjunctive normal form with no negative
occurrences of Pn. As usual, we need only consider a single disjunct that
is satisfied by b. We can also replace mv > gi by v > h, where h ∈ G and
mh ≤ gi < m(h + 1).

Thus, without loss of generality, we may assume that φ(v, a) is of the
form above.

If there is any conjunct of the form miv = gi, then b = gi

mi
∈ G. Thus,

we may assume that there are no conjuncts of the first type.
We can find c and d ∈ G such that ci ≤ c < b < d ≤ di. If d − c is finite,

then b ∈ G. Thus we may assume that d − c is infinite.
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For each i, there is a ji such that 0 ≤ ji < ni and Pni(hi − ji) for all i.
Thus, Pni

(siv + hi) if and only if Pni
(siv + ji). Then, b is a solution to the

system of congruences

s1v + j1 ≡ 0 (mod n1)
s2v + j2 ≡ 0 (mod n2)

. . .
smv + jm ≡ 0 (mod nm).

Let N =
∏

ni and let l ∈ ω such that PN (b − l). Then l is a solution
to this system of congruences. Because d − c is infinite, there is a g ∈ G
such that c < g < d and PN (g − l). Then g is a solution to the system of
congruences above. Thus G |= φ(g, a).

Corollary 3.1.21 Presburger arithmetic is a complete decidable theory
with quantifier elimination in the language L∗.

Proof Because Z can be embedded in any model of Pr, Pr is complete
by Proposition3.1.15. Because we have given a recursive set of axioms Pr
is decidable by Lemma 2.2.8.

Corollary 3.1.21 provides an interesting counterpoint to Gödel’s Incom-
pleteness Theorem as Th(Z,+, <) is decidable whereas Th(Z,+, ·) is not.

We have provided a number of proofs of quantifier elimination without
explicitly explaining how to take an arbitrary formula and produce a quan-
tifier free one. In all of these cases, one can give explicit effective procedures.
After the fact, the following lemma tells us that there is an algorithm to
eliminate quantifiers.

Proposition 3.1.22 Suppose that T is a decidable theory with quantifier
elimination. Then, there is an algorithm which when given a formula φ as
input will output a quantifier-free formula ψ such that T |= φ ↔ ψ.

Proof Given input φ(v) we search for a quantifier-free formula ψ(v) such
that T |= ∀v (φ(v) ↔ ψ(v)). Because T is decidable this is an effective
search. Because T has quantifier elimination, we will eventually find ψ.

3.2 Algebraically Closed Fields

We now return to the theory of algebraically closed fields. In Proposition
2.2.5, we proved that the theory of algebraically closed fields of a fixed char-
acteristic is complete. We begin this section by showing that algebraically
closed fields have quantifier elimination. The first step is to identify ACF∀,
the universal consequences of the theory of ACF. We recall that the theory
of ACF is formulated in Lr, the language of rings {+,−, ·, 0, 1}.
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Lemma 3.2.1 ACF∀ is the theory of integral domains.

Proof The axioms for integral domains are universal consequences of ACF.
If D is an integral domain, then the algebraic closure of the fraction field
of D is a model of ACF. Because every integral domain is a subring of an
algebraically closed field, ACF∀ is the theory of integral domains.

Theorem 3.2.2 ACF has quantifier elimination.

Proof We will apply Corollary 3.1.12. If D is an integral domain, then the
algebraic closure of the fraction field of D embeds into any algebraically
closed field containing D. Thus, ACF has algebraically prime models.

To prove quantifier elimination, we need only show that if K and F are
algebraically closed fields, F ⊆ K, φ(x, y) is quantifier-free, a ∈ F , and
K |= φ(b, a) for some b ∈ K, then F |= ∃v φ(v, a).

As in Lemma 3.1.7, we may assume that φ(x, y) is a conjunction of
atomic and negated atomic formulas. In the language of rings, atomic for-
mulas θ(v1, . . . , vn) are of the form p(v) = 0, where p ∈ Z[X1, . . . , Xn]. If
p(X, Y ) ∈ Z[X,Y ], we can view p(X, a) as a polynomial in F [X]. Thus,
there are polynomials p1, . . . , pn, q1, . . . , qm ∈ F [X] such that φ(v, a) is
equivalent to

n∧
i=1

pi(v) = 0 ∧
m∧

i=1

qi(v) �= 0.

If any of the polynomials pi are nonzero, then b is algebraic over F . In this
case, because F is algebraically closed, b ∈ F . Thus, we may assume that
φ(v, a) is equivalent to

m∧
i=1

qi(v) �= 0.

But qi(X) = 0 has only finitely many solutions for each i ≤ m. Thus,
there are only finitely many elements of F that do not satisfy F . Because
algebraically closed fields are infinite, there is a c ∈ F such that F |=
φ(c, a).

Corollary 3.2.3 ACF is model-complete and ACFp is complete where p =
0 or p is prime.

Proof Model-completeness is an immediate consequence of quantifier elim-
ination.

The completeness of ACFp was proved in Proposition 2.2.5, but it also
follows from quantifier elimination. Suppose that K, L |= ACFp. Let φ be
any sentence in the language of rings. By quantifier elimination, there is a
quantifier-free sentence ψ such that

ACF |= φ ↔ ψ.
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Because quantifier-free sentences are preserved under extension and sub-
structure,

K |= ψ ⇔ Fp |= ψ ⇔ L |= ψ,

where Fp is the p-element field if p > 0 and the rationals if p = 0. Thus,

K |= φ ⇔ K |= ψ ⇔ L |= ψ ⇔ L |= φ.

Thus K ≡ L and ACFp is complete.

Zariski Closed and Constructible Sets
Quantifier elimination has a geometric interpretation. To state this, we
first must review some basic definitions from algebraic geometry. Let K
be a field. If S ⊆ K[X1, . . . , Xn], let V (S) = {a ∈ Kn : p(a) = 0 for all
p ∈ S}. If Y ⊆ Kn, we let I(Y ) = {f ∈ K[X1, . . . , Xn] : f(a) = 0 for
all a ∈ Y }. We say that X ⊆ Kn is Zariski closed if X = V (S) for some
S ⊆ K[X1, . . . , Xn]. We summarize some basic facts about Zariski closed
sets. For more details, see [37] or [91].

Lemma 3.2.4 Let K be a field.
i) If X ⊆ Kn, then I(X) is a radical ideal.
ii) If X is Zariski closed, then X = V (I(X)).
iii) If X and Y are Zariski closed and X ⊆ Y ⊆ Kn, then I(Y ) ⊆ I(X).
iv) If X, Y ⊆ Kn are Zariski closed, then X ∪ Y = V (I(X) ∩ I(Y )) and

X ∩ Y = V (I(X) + I(Y )).

Proof
i) Suppose that p, q ∈ I(X) and f ∈ K[X1, . . . , Xn]. If a ∈ X, then

p(a) + q(a) = f(a)p(a) = 0. Thus, p + q, fp ∈ I(X) and I(X) is an ideal.
If fn ∈ I(X) and a ∈ X, then fn(a) = 0 so f(a) = 0. Thus, f ∈ I(X) and
I(X) is a radical ideal.

ii) If a ∈ X and p ∈ I(X), then p(a) = 0. Thus X ⊆ V (I(X)). If
a ∈ V (I(X))\X, then there is p ∈ I(X) such that p(a) �= 0, a contradiction.
Thus X = V (I(X)).

iii) If p ∈ I(Y ) and a ∈ X, then p(a) = 0 because a ∈ Y . Thus I(Y ) ⊆
I(X). By ii), if I(X) = I(Y ), then X = Y .

iv) If p ∈ I(X) ∩ I(Y ), then p(a) = 0 for a ∈ X or a ∈ Y . Thus
X ∪ Y ⊆ V (I(X) ∩ I(Y )). On the other hand, if a �∈ X ∪ Y , there are
p ∈ I(X) and q ∈ I(Y ) such that p(a) �= 0 and q(a) �= 0. But then
p(a)q(a) �= 0. Because pq ∈ I(X) ∩ I(Y ), a �∈ V (I(X) ∩ I(Y )).

If a ∈ X ∪ Y , p ∈ I(X), and q ∈ I(Y ), then p(a) + q(a) = 0. Thus
X ∪ Y ⊆ V (I(X) + I(Y )). If a �∈ X, then there is p ∈ I(X) ⊆ I(X) + I(Y )
such that p(a) �= 0. Thus a �∈ V (I(X) + I(Y )). Similarly, if a �∈ Y , then
a �∈ V (I(X) + I(Y )).



3.2 Algebraically Closed Fields 87

By Lemma 3.2.4, the Zariski closed sets are closed under finite unions
and intersections. Closure under arbitrary intersections is a consequence of
the next important algebraic result (see, for example, [58] VI §2).

Theorem 3.2.5 (Hilbert’s Basis Theorem) If K is a field, then the
polynomial ring K[X1, . . . , Xn] is a Noetherian ring, (i.e., there are no
infinite ascending chains of ideals). In particular, every ideal is finitely
generated.

Corollary 3.2.6 i) There are no infinite descending sequences of Zariski
closed sets.

ii) If Xi is Zariski closed for i ∈ I, then there is a finite I0 ⊆ I such that⋂
i∈I

Xi =
⋂
i∈I0

Xi.

In particular, an arbitrary intersection of Zariski closed sets is Zariski
closed.

Proof
i) If X0 ⊃ X1 ⊃ X2 ⊃ . . . is a descending sequence of Zariski closed

sets, then I(X0) ⊂ I(X1) ⊂ I(X2) ⊂ . . . is an ascending sequence of prime
ideals contradicting Hilbert’s Basis Theorem.

ii) Suppose not. Then, we can find X1, X2, . . . , Zariski closed such that

n+1⋂
i=1

Xi ⊂
n⋂

i=1

Xi

for n = 1, 2, . . ., contradicting i).

Thus, the Zariski closed sets are closed under finite unions and arbitrary
intersections. Because ∅ = V (1) and Kn = V (0), the Zariski closed sets are
the closed sets of a topology.

We can now give a geometric description of the definable sets.

Lemma 3.2.7 Let K be a field. The subsets of Kn defined by atomic for-
mulas are exactly those of the form V (p) for some p ∈ K[X]. A subset of
Kn is quantifier-free definable if and only if it is a Boolean combination of
Zariski closed sets.

Proof If φ(x, y) is an atomic Lr-formula, then there is q(X, Y ) ∈ Z[X, Y ]
such that φ(x, y) is equivalent to q(x, y) = 0. If X = {x : φ(x, a)}, then
X = V (q(X, a)) and q(X, a) ∈ K[X]. On the other hand, if p ∈ K[X],
there is q ∈ Z[X,Y ] and a ∈ Km such that p(X) = q(X, a). Then, V (p) is
defined by the quantifier-free formula q(X, a) = 0.

If X is Zariski closed, then by Hilbert’s Basis Theorem, there are
p1, . . . , pl such that

X = V (p1, . . . , pn) = V (p1) ∩ . . . V (pn).



88 3. Algebraic Examples

Because the quantifier-free definable sets are exactly finite Boolean combi-
nations of atomic definable sets, the quantifier-free definable sets are exactly
the Boolean combinations of Zariski closed sets.

If X ⊆ Kn is a finite Boolean combination of Zariski closed sets we call
X constructible. If K is algebraically closed, the constructible sets have
much stronger closure properties.

Corollary 3.2.8 Let K be an algebraically closed field.
i) X ⊆ Kn is constructible if and only if it is definable.
ii) (Chevalley’s Theorem) The image of a constructible set under a

polynomial map is constructible.

Proof i) By Lemma 3.2.7, the constructible sets are exactly the quantifier-
free definable sets, but by quantifier elimination every definable set is
quantifier-free definable.

ii) Let X ⊆ Kn be constructible and p : Kn → Km be a polynomial
map. Then, the image of X = {y ∈ Km : ∃x ∈ Kn p(x) = y}. This set is
definable and hence constructible.

Quantifier elimination has very strong consequences for definable subsets
of K.

Corollary 3.2.9 If K is an algebraically closed field and X ⊆ K is alge-
braically closed, then either X or K \ X is finite. Thus, ACF is strongly
minimal.

Proof By quantifier elimination X is a finite Boolean combination of sets
of the form V (p), where p ∈ K[X]. But V (p) is either finite or (if p = 0)
all of K.

Lemma 3.2.4 shows that the map X 	→ I(X) is a lattice inverting map
from Zariski closed subsets of Kn to radical ideals in K[X]. Hilbert’s Null-
stellensatz says that this is a bijection and for I a radical ideal I = I(V (I)).
The model-completeness of algebraically closed fields can be used to give a
proof of the Nullstellensatz.

We need one fact from commutative algebra ([58] VI §5).

Lemma 3.2.10 (Primary Decomposition) If I ⊂ K[X] is a radi-
cal ideal, then there are prime ideals P1, . . . , Pm containing I such that
I = P1 ∩ . . . ∩ Pm, I �=

⋃
j∈J for any proper J ⊂ {1, . . . , m}, and if

Q1, . . . , Qn is another set of prime ideals with these properties, then n = m
and {Q1, . . . , Qn} = {P1, . . . , Pm}.

Theorem 3.2.11 (Hilbert’s Nullstellensatz) Let K be an algebraically
closed field. Suppose thatI and J are radical ideals in K[X1, . . . , Xn] and
I ⊂ J . Then V (J) ⊂ V (I). Thus X 	→ I(X) is a bijective correspondence
between Zariski closed sets and radical ideals.



3.2 Algebraically Closed Fields 89

Proof Let p ∈ J \ I. By Lemma 3.2.10, there is a prime ideal P ⊇ I
such that p �∈ P . We will show that there is x ∈ V (P ) ⊆ V (I) such that
p(x) �= 0. Thus V (I) �= V (J). Because P is prime, K[X]/P is a domain
and we can take F , the algebraic closure of its fraction field.

Let q1, . . . , qm ∈ K[X1, . . . , Xn] generate J . Let ai be the element Xi/P
in F . Because each qi ∈ P and p �∈ P ,

F |=
m∧

i=1

qi(a) = 0 ∧ p(a) �= 0.

Thus

F |= ∃w

m∧
i=1

qi(w) = 0 ∧ p(w) �= 0

and by model-completeness

K |= ∃w
m∧

i=1

qi(w) = 0 ∧ p(w) �= 0.

Thus there is b ∈ Kn such that q1(b) = . . . = qm(b) = 0 and p(b) �= 0. But
then b ∈ V (P ) \ V (J).

Corollary 3.2.12 If J ⊆ K[X] is a radical ideal, then J = I(V (J)).

Proof Clearly I(V (J)) ⊇ V (J). By Lemma 3.2.4, V (J) = V (I(V (J)).
Thus, by the Nullstellensatz, J = I(V (J)).

Quantifier elimination gives us a powerful tool for analyzing definability
in algebraically closed fields. For the moment, we will analyze definable
functions and equivalence relations. In Chapter 7.4, we will examine groups
definable in algebraically closed fields.

Definition 3.2.13 Let X ⊆ Kn. We say that f : X → K is quasirational
if either

i) K has characteristic zero and for some rational function q(X) ∈
K(X1, . . . , Xn), f(x) = q(x) on X, or

ii) K has characteristic p > 0 and for some rational function q(X) ∈
K(X), f(x) = q(x)

1
pn .

Rational functions are easily seen to be definable. In algebraically closed
fields of characteristic p, the formula x = yp defines the function x 	→ x

1
p ,

because every element has a unique pth-root. Thus, every quasirational
function is definable.

Proposition 3.2.14 If X ⊆ Kn is constructible and f : X → K is defin-
able, then there are constructible sets X1, . . . , Xm and quasirational func-
tions ρ1, . . . , ρm such that

⋃
Xi = X and f |Xi = ρi|Xi.
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Proof Let Γ(v1, . . . , vn) = {f(x) �= ρ(x) : ρ a quasirational function}
∪{v ∈ X}∪ ACF ∪ Diag(K).

Claim Γ is not satisfiable.
Suppose that Γ is consistent. Let L |= ACF +Diag(K) with b1, . . . , bn ∈ L

such that for all γ(v) ∈ Γ, L |= γ(b).
Let K0 be the subfield of L generated by K and b. Then, K0 is the

closure of B = {b1, . . . , bn} under the rational functions of K. Let K1 be
the closure of B under all quasirational functions. If K has characteristic

0, then K0 = K1. If K has characteristic p > 0, K1 =
⋃

K
1

pn

0 , the perfect
closure of K0.

By model-completeness, K ≺ L, thus fL, the interpretation of f in L,
is a function from XL to L, extending f . Because L |= Γ(b), f(b) is not
in K1. Because K1 is perfect there is an automorphism α of L fixing K1
pointwise such that α(fL(b)) �= fL(b). But fL is definable with parameters
from K; thus, any automorphism of L which fixes K and fixes a must fix
f(a), a contradiction. Thus Γ is unsatisfiable.

Thus, by compactness, there are quasirational functions ρ1, . . . , ρm such
that

K |= ∀x ∈ X
∧

f(x) = ρi(x).

Let Xi = {x ∈ X : f(x) = ρi(x)}. Each Xi is definable.

A similar argument shows the model theoretic notion of “algebraic” in-
troduced in Exercise 1.4.11 agrees with the field-theoretic notion. Recall
that if A ⊆ K we say that b ∈ acl(A) if there is a formula φ(x, y) and
a ∈ A such that K |= φ(b, a) and {x ∈ K : K |= φ(x, a)} is finite.

Proposition 3.2.15 Let K |= ACF and A ⊆ K. Then, a ∈ acl(A) if and
only if a is algebraic over the subfield of K generated by A.

Proof Let k be the field generated by A. If a is algebraic over k, there
are polynomials q0(X1, . . . , Xn), . . . , qm(X1, . . . , Xn) ∈ Z[X1, . . . , Xn] and
b1, . . . , bn ∈ A such that p(Y ) =

∑
qi(b1, . . . , bn)Y i is a nonzero polynomial

such that p(a) = 0. Let φ(x, y) be the Lr-formula∑
qi(y)xi = 0.

Then φ(a, b) and {x ∈ K : K |= φ(x, b)} is finite. Thus a ∈ acl(A).
On the other hand, suppose that b ∈ A, {x ∈ K : φ(x, b)} is finite, and

K |= φ(a, b), but a is transcendental over k. Let c be any other element of a
that is transcendental over k. Then, there is an automorphism σ of K such
that σ is the identity on k but σ(a) = c. By Theorem 1.1.10, K |= φ(c, b).
Because there are infinitely many choices for c, we have a contradiction.
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Elimination of Imaginaries in Algebraically Closed Fields
We conclude by studying definable equivalence relations in algebraically
closed fields. In Section 1.3, we remarked that quotient structures are
frequently important in mathematics. For example, if G is a group and
H is a subgroup, we study the coset space G/H. If G is a definable
group and H is a definable subgroup, then the equivalence relation xEy if
and only if y ∈ Hx is a definable equivalence relation. Another example
that arises in algebraic geometry is the construction of projective space.
If K is a field, define the equivalence relation ∼ on Kn+1 \ {0}, where
(x0, . . . , xn) ∼ (y0, . . . , yn) if and only if there is a nonzero λ ∈ K such
that yi = λxi for i = 0, . . . , n. The equivalence relation ∼ is definable and
the quotient is Pn

K = Kn+1 \ {0}mod ∼, projective n-space over K.
Our goal is to show that quotients are constructible. In particular, we

will show that if E is a definable equivalence relation on Kn, where K is
algebraically closed, then there is a definable function f : Kn → Km for
some m such that xEy if and only if f(x) = f(y). Thus, we can identify
the quotient Kn/E with the image of f . In other words it allows us to view
the quotient of a constructible set by a constructible equivalence relation
as a constructible set.

We begin with a very important special case. Let k be a field (in this
special case we will not need to assume that k is algebraically closed). We
can think of x ∈ knm as a sequence (x1, . . . , xm), where xi ∈ kn. Let E be
the equivalence relation xEy if and only if (x1, . . . , xn) is a permutation of
(y1, . . . , yn). Clearly, E is a definable equivalence relation.

Lemma 3.2.16 There is a definable function f : knm → kl for some l ∈ ω
such that cEd if and only if f(c) = f(d).

Proof Suppose that c = (c1, . . . , cm) where ci = (ci,1, . . . , ci,n). Let qc
i be

the polynomial

Y −
n∑

j=1

ci,jXj

in k[X1, . . . , Xn, Y ] and let pc =
∏

qc
i . Let f(c) be the sequence of coef-

ficients of pc. Because k[X1, . . . , Xn, Y ] is a unique factorization domain,
pc = pd if and only if (qc

1, . . . , q
c
m) is a permutation of (qd

1 , . . . , qd
m). Thus,

cEd if and only if f(c) = f(d).

We need to do some preparatory work before examining the general case.

Definition 3.2.17 Let M be an L-structure and E be a definable equiv-
alence relation on Mn. For a ∈ Mn, let a/E denote the E-equivalence
class of a. For b1, . . . , bm ∈ M and c ∈ M , we say that c is algebraic over
a/E, b1, . . . , bm if and only if there is a formula φ(x,y1, . . . , yn, z1, . . . , zm)
such that

i) M |= φ(c, a, b),
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ii) if aEa′, then M |= φ(x, a, b) ↔ φ(x, a′, b), and
iii) {x ∈ M : M |= φ(x, a, b)} is finite.
We say that c = (c1, . . . , cl) is algebraic over a/E, b1, . . . , bm if and only

if each ci is.

This definition agrees with the natural notion of algebraic in Meq (see
Lemma 1.3.10). Algebraic closure in Meq has all of the properties of alge-
braic closure in M developed in Exercise 1.4.11.

Lemma 3.2.18 Suppose that c is algebraic over a/E, d, b and b is algebraic
over a/E, d, then c is algebraic over a/E, d.

Proof Exercise 3.4.16.

Lemma 3.2.19 Suppose that K is an algebraically closed field and E is a
definable equivalence relation on Kn. Let ψ(x, y, d) define E. If a ∈ Kn,
then there is c ∈ Kn algebraic over a/E, d such that cEa.

Proof Let ψ(x, y, d) define E. Let 0 ≤ m ≤ n be maximal such that there
are c1, . . . , cm algebraic over a/E, d such that

K |= ∃vm+1 . . .∃vn ψ(c, v, a, d).

Suppose that m < n. Consider

X = {x ∈ K : K |= ∃wm+2 . . .∃wn ψ(c, x,w, a, d)}.

If X is finite we can choose cm+1 ∈ X algebraic over a/E, d, c1, . . . , cm

(indeed any element of X would work). By Lemma 3.2.18, cm+1 is algebraic
over a/E, d, contradicting the maximality of m.

If X is infinite, then by strong minimality K \ X is finite. Because the
algebraic closure of the prime field is infinite, we can find cm+1 ∈ X, which
is algebraic over ∅. This contradicts the maximality of m. Thus, m = n and
c = (c1, . . . , cn) is the desired element of Kn.

In Lemma 8.2.9 we will examine a generalization of 3.2.19. We can now
prove the main theorem.

Theorem 3.2.20 Suppose that K is an algebraically closed field, A ⊆ K,
and E is an A-definable equivalence relation on Kn. Then for some l there
is an A-definable function f : Kn → Kl such that xEy if and only if
f(x) = f(y).

Proof For notational simplicity, we will assume that E is defined over ∅.
For each formula φ(x, y) and k > 0, let Θφ,k(y) be the conjunction of
i) ∀x(φ(x, y) → xEy);
ii) ∀x∀z(yEz → (φ(x, y) ↔ φ(x, z)));
iii) |{x : φ(x, y)}| = k.
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By Lemma 3.2.19, for all a ∈ Kn, there are φ and k such that Θφ,k(a).
By ii), if Θφ,k(a) and bEa, then Θφ,k(b).

Let X = {a : Θφ,k(a)}. If a ∈ X, let Ya = {b : φ(b, a)}. For a, b ∈ X, aEb
if and only if Ya = Yb. By Lemma 3.2.16, there is a ∅-definable function
f : X → Kl for some l such that Ya = Yb if and only if f(a) = f(b).

By compactness, we can find φ1, . . . , φm and k1, . . . , km such that some
Θφi,ki

(y) holds for each element of Kn. Let Xi = {y : Θφi,ki
(x)}. There

is fi : Xi → li such that aEb if and only if fi(a) = fi(b) for a, b ∈ Xi.
Extend fi to Kn by making fi(x) = 0 for x �∈ Xi. Let f : Kn → K

∑
li by

f(x) = (f1(x), . . . , fm(x)). Then, aEb if and only if f(a) = f(b), as desired.

Exercise 3.4.19 explains why Theorem 3.2.20 is referred to as the “elim-
ination of imaginaries.”

3.3 Real Closed Fields

In this section, we will concentrate on the field of real numbers. Unlike
algebraically closed fields, the theory of the real numbers does not have
quantifier elimination in Lr, the language of rings. The proof of Corollary
3.2.9 shows that any field with quantifier elimination is strongly minimal,
whereas in R, if φ(x) is the formula ∃z z2 = x, then φ defines an infi-
nite coinfinite definable set (see also Exercise 3.4.24). In 7.2 we will see
that algebraically closed fields are the only infinite fields with quantifier
elimination in the language of rings.

In fact, the ordering is the only obstruction to quantifier elimination. We
will eventually analyze the real numbers in the language Lor and show that
we have quantifier elimination in this language. Because the ordering x < y
is definable in the real field by the formula

∃ z (z �= 0 ∧ x + z2 = y),

any subset of Rn definable using an Lor-formula is already definable using
an Lr-formula (see Exercise 1.4.15). We will see that quantifier elimination
in Lor leads us to a good geometric understanding of the definable sets.

We begin by reviewing some of the necessary algebraic background on
ordered fields. All of the algebraic results stated in this chapter are due to
Artin and Schreier and proved in Appendix B.

Definition 3.3.1 We say that a field F is orderable if there is a linear
order < of F making (F, <) an ordered field.

Although there are unique orderings of the fields R and Q, orderable fields
may have many possible orderings. The field of rational functions Q(X) has
2ℵ0 distinct orderings. To see this, let x be any real number transcendental
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over Q. The evaluation map f(X) 	→ f(x) is a field isomorphism between
Q(X) and Q(x), the subfield of R generated by x. We can lift the ordering
of the reals to an ordering Q(X) by f(X) < g(X) if and only if f(x) < g(x).
Because X < q if and only if x < q, choosing a different transcendental real
would yield a different ordering. These are not the only orderings. We will
see in Exercise 3.4.23 that we can also order Q(X) by making X infinite
or infinitesimally close to a rational.

There is a purely algebraic characterization of the orderable fields.

Definition 3.3.2 We say that F is formally real if −1 is not a sum of
squares.

In any ordered field all squares are nonnegative. Thus, every orderable
field is formally real. The following result shows that the converse is also
true.

Theorem 3.3.3 If F is a formally real field, then F is orderable. Indeed,
if a ∈ F and −a is not a sum of squares of elements of F , then there is an
ordering of F where a is positive.

Because the field of complex numbers is the only proper algebraic ex-
tension of the real field, the real numbers have no proper formally real
algebraic extensions. Fields with this property will play a key role.

Definition 3.3.4 A field F is real closed if it is formally real with no
proper formally real algebraic extensions.

Although it is not obvious at first that real closed fields form an ele-
mentary class, the next theorem allows us to axiomatize the real closed
fields.

Theorem 3.3.5 Let F be a formally real field. The following are equiva-
lent.

i) F is real closed.
ii) F (i) is algebraically closed (where i2 = −1).
iii) For any a ∈ F , either a or −a is a square and every polynomial of

odd degree has a root.

Corollary 3.3.6 The class of real closed fields is an elementary class of
Lr-structures.

Proof We can axiomatize real closed fields by:
i) axioms for fields
ii) for each n ≥ 1, the axiom

∀x1 . . .∀xn x2
1 + . . . + x2

n + 1 �= 0

iii) ∀x∃y (y2 = x ∨ y2 + x = 0)
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iv) for each n ≥ 0, the axiom

∀x0 . . .∀x2n∃y y2n+1 +
2n∑
i=0

xiy
i = 0.

Although we can axiomatize real closed fields in the language of rings, we
already noticed that we do not have quantifier elimination in this language.
Instead, we will study real closed fields in Lor, the language of ordered rings.
If F is a real closed field and 0 �= a ∈ F , then exactly one of a and −a is a
square. This allows us to order F by

x < y if and only if y − x is a nonzero square.

It is easy to check that this is an ordering and it is the only possible ordering
of F .

Definition 3.3.7 We let RCF be the Lor-theory axiomatized by the axioms
above for real closed fields and the axioms for ordered fields.

The models of RCF are exactly real closed fields with their canonical
ordering. Because the ordering is defined by the Lr-formula

∃z (z �= 0 ∧ x + z2 = y),

the next result tells us that using the ordering does not change the definable
sets.

Proposition 3.3.8 If F is a real closed field and X ⊆ Fn is definable by
an Lor-formula, then X is definable by an Lr-formula.

Proof Replace all instances of ti < tj by ∃v (v �= 0 ∧ v2 + ti = tj), where
ti and tj are terms occurring in the definition of X (see Exercise 1.4.15).

The next result suggests another possible axiomatization of RCF.

Theorem 3.3.9 An ordered field F is real closed if and only if whenever
p(X) ∈ F [X], a, b ∈ X, a < b, and p(a)p(b) < 0, there is c ∈ F such that
a < c < b and p(c) = 0.

We will prove quantifier elimination using the test given in Corollary 3.1.12.
We first identify RCF∀.

Definition 3.3.10 If F is a formally real field, a real closure of F is a real
closed algebraic extension of F .

By Zorn’s Lemma, every formally real field F has a maximal formally
real algebraic extension. This maximal extension is a real closure of F .

The real closure of a formally real field may not be unique. Let F =
Q(X), F0 = F (

√
X), and F1 = F (

√
−X). By Theorem 3.3.3, F0 and F1
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are formally real. Let Ri be a real closure of Fi. There is no isomorphism
between R0 and R1 fixing F because X is a square in R0 but not in R1.
Thus, some work needs to be done to show that any ordered field (F, <)
has a real closure where the canonical order extends the ordering of F .

Lemma 3.3.11 If (F, <) is an ordered field, 0 < x ∈ F , and x is not a
square in F , then we can extend the ordering of F to F (

√
x).

Proof We can extend the ordering to F (
√

x) by 0 < a + b
√

x if and only
if

i) b = 0 and a > 0, or
ii) b > 0 and (a > 0 or x > a2

b2 ), or
iii) b < 0 and (a < 0 and x < a2

b2 ).

Corollary 3.3.12 i) If (F, <) is an ordered field, there is a real closure R
of F such that the canonical ordering of R extends the ordering on F .

ii) RCF∀ is the theory of ordered integral domains.

Proof
i) By successive applications of Lemma 3.3.11, we can find an ordered

field (L, <) extending (F, <) such that every positive element of F has a
square root in L. We now apply Zorn’s Lemma to find a maximal formally
real algebraic extension R of L. Because every positive element of F is a
square in R, the canonical ordering of R extends the ordering of F .

ii) Clearly, any substructure of a real closed field is an ordered integral
domain. If (D, <) is an ordered integral domain and F is the fraction field
of F , then we can order F by

a

b
> 0 ⇔ a, b > 0 or a, b < 0.

By i), we can find (R,<) |= RCF such that (F, <) ⊆ (R,<).

Although a formally real field may have nonisomorphic real closures, if
(F, <) is an ordered field there will be a unique real closure compatible
with the ordering of F .

Theorem 3.3.13 If (F, <) is an ordered field, and R1 and R2 are real
closures of F where the canonical ordering extends the ordering of F , then
there is a unique field isomorphism φ : R1 → R2 that is the identity on F .

Note that because the ordering of a real closed field is definable in Lr, φ
also preserves the ordering. We often say that any ordered field (F, <) has
a unique real closure. By this we mean that there is a unique real closure
that extends the given ordering.

Corollary 3.3.14 RCF has algebraically prime models.
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Proof Let (D, <) be an ordered domain, and let (R,<) be the real closure
of the fraction field compatible with the ordering of D. Let (F, <) be any
real closed field extension of (D, <). Let K = {α ∈ F : α is algebraic over
the fraction field of D}. By Theorem 3.3.5, it is easy to see that K is real
closed. Because the ordering of K extends (D, <), by Theorem 3.3.13 there
is an isomorphism φ : F → K fixing D.

We are now ready to prove quantifier elimination.

Theorem 3.3.15 The theory RCF admits elimination of quantifiers in
Lor.

Proof Because RCF has algebraically prime models, by Corollary 3.1.12,
we need only show that F ≺s K when F, K |= RCF and F ⊆ K. Let
φ(v, w) be a quantifier-free formula and let a ∈ F , b ∈ K be such that
K |= φ(b, a). We must find b′ ∈ F such that F |= φ(b′, a).

Note that
p(X) �= 0 ↔ (p(X) > 0 ∨ −p(X) > 0)

and
p(X) �> 0 ↔ (p(X) = 0 ∨ −p(X) > 0).

With this in mind, we may assume that φ is a disjunction of conjunctions
of formulas of the form p(v, w) = 0 or p(v,w) > 0. As in Theorem 3.2.2, we
may assume that there are polynomials p1, . . . , pn and q1, . . . , qm ∈ F [X]
such that

φ(v, a) ↔
n∧

i=1

pi(v) = 0 ∧
m∧

i=1

qi(v) > 0.

If any of the polynomials pi(X) is nonzero, then b is algebraic over F .
Because F has no proper formally real algebraic extensions, in this case
b ∈ F . Thus, we may assume that

φ(v, a) ↔
m∧

i=1

qi(v) > 0.

The polynomial qi(X) can only change signs at zeros of qi and if all zeros of
qi are in F . Thus, we can find ci, di ∈ F such that ci < b < di and qi(x) > 0
for all x ∈ (ci, di). Let c = max(c1, . . . , cm) and d = min(d1, . . . , dm). Then,
c < d and

∧m
i=1 qi(x) > 0 whenever c < x < d. Thus, we can find b′ ∈ F

such that F |= φ(b′, a).

Corollary 3.3.16 RCF is complete, model complete, and decidable. Thus
RCF is the theory of (R, +, ·, <) and RCF is decidable.

Proof By quantifier elimination, RCF is model complete.
Every real closed field has characteristic zero; thus, the rational numbers

are embedded in every real closed field. Therefore, Ralg, the field of real
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algebraic numbers (i.e., the real closure of the rational numbers) is a sub-
field of any real closed field. Thus, for any real closed field R, Ralg ≺ R, so
R ≡ Ralg.

In particular, R ≡ Ralg ≡ R.
Because RCF is complete and recursively axiomatized, it is decidable.

Semialgebraic Sets
Quantifier elimination for real closed fields has a geometric interpretation.

Definition 3.3.17 Let F be an ordered field. We say that X ⊆ Fn is
semialgebraic if it is a Boolean combination of sets of the form {x : p(x) >
0}, where p(X) ∈ F [X1, . . . , Xn].

By quantifier elimination, the semialgebraic sets are exactly the definable
sets. The next corollary is a geometric restatement of quantifier elimination.
It is analogous to Chevalley’s Theorem (3.2.8) for algebraically closed fields.

Corollary 3.3.18 (Tarski–Seidenberg Theorem) The semialgebraic
sets are closed under projection.

The next corollary is a typical application of quantifier elimination.

Corollary 3.3.19 If F |= RCF and A ⊆ Fn is semialgebraic, then the
closure (in the Euclidean topology) of F is semialgebraic.

Proof We repeat the main idea of Lemma 1.3.3. Let d be the definable
function

d(x1, . . . , xn, y1, . . . , yn) = z if and only if z ≥ 0 ∧ z2 =
n∑

i=1

(xi − yi)2.

The closure of A is

{x : ∀ε > 0 ∃y ∈ A d(x, y) < ε}.

Because this set is definable, it is semialgebraic.

We say that a function is semialgebraic if its graph is semialgebraic. The
next result shows how we can use the completeness of RCF to transfer
results from R to other real closed fields.

Corollary 3.3.20 Let F be a real closed field. If X ⊆ F n is closed and
bounded, and f is a continuous semialgebraic function, then f(X) is closed
and bounded.
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Proof If F = R, then X is closed and bounded if and only if X is compact.
Because the continuous image of a compact set is compact, the continuous
image of a closed and bounded set is closed and bounded.

In general, there are a, b ∈ F and formulas φ and ψ such that φ(x, a)
defines X and ψ(x, y, b) defines f(x) = y. There is a sentence Φ asserting:

∀u, w [if ψ(x, y, w) defines a continuous function with domain
φ(x, u) and φ(x, u) is a closed and bounded set, then the range
of the function is closed and bounded].

By the remarks above, R |= Φ. Therefore, by the completeness of RCF,
F |= Φ and the range of f is closed and bounded.

Model-completeness has several important applications. A typical appli-
cation is Abraham Robinson’s simple proof of Artin’s positive solution to
Hilbert’s 17th problem.

Definition 3.3.21 Let F be a real closed field and f(X) ∈ F (X1, . . . , Xn)
be a rational function. We say that f is positive semidefinite if f(a) ≥ 0
for all a ∈ Fn.

Theorem 3.3.22 (Hilbert’s 17th Problem) If f is a positive semidef-
inite rational function over a real closed field F , then f is a sum of squares
of rational functions.

Proof Suppose that f(X1, . . . , Xn) is a positive semidefinite rational func-
tion over F that is not a sum of squares. By Theorem 3.3.3, there is an
ordering of F (X) so that f is negative. Let R be the real closure of F (X)
extending this order. Then

R |= ∃v f(v) < 0

because f(X) < 0 in R. By model-completeness

F |= ∃v f(v) < 0,

contradicting the fact that f is positive semidefinite.

In Exercise 3.4.28, we will show how model-completeness can be used to
give a real version of the Nullstellensatz.

We will show that quantifier elimination gives us a powerful tool for
understanding the definable subsets of a real closed field.

Corollary 3.3.23 RCF is an o-minimal theory.

Proof Let R |= RCF. We need to show that every definable subset of
R is a finite union of points and intervals with endpoints in R ∪ {±∞}.
By quantifier elimination, very definable subset of R is a finite Boolean
combination of sets of the form

{x ∈ R : p(x) = 0}



100 3. Algebraic Examples

and
{x ∈ R : q(x) > 0}.

Solution sets to nontrivial equations are finite, whereas sets of the second
form are finite unions of intervals. Thus, any definable set is a finite union
of points and intervals.

Next we will show that definable functions in one variable are piecewise
continuous. The first step is to prove a lemma about R that we will transfer
to all real closed fields.

Lemma 3.3.24 If f : R → R is semialgebraic, then for any open interval
U ⊆ R there is a point x ∈ U such that f is continuous at x.

Proof
case 1: There is an open set V ⊆ U such that f has finite range on V .

Pick an element b in the range of f such that {x ∈ V : f(x) = b}
is infinite. By o-minimality, there is an open set V0 ⊆ V such that f is
constantly b on V .

case 2: Otherwise.
We build a chain U = V0 ⊃ V1 ⊃ V2 . . . of open subsets of U such that

the closure V n+1 of Vn+1 is contained in Vn. Given Vn, let X be the range
of f on Vn. Because X is infinite, by o-minimality, X contains an interval
(a, b) of length at most 1

n . The set Y = {x ∈ Vn : f(x) ∈ (a, b)} contains a
suitable open interval Vn+1. Because R is locally compact,

∞⋂
i=1

Vi =
∞⋂

i=1

Vi �= ∅.

If x ∈
⋂n

i=1 Vi, then f is continuous at x.

The proof above makes essential use of the completeness of the ordering
of the reals. However, because the statement is first order, it is true for all
real closed fields, by the completeness of RCF.

Corollary 3.3.25 Let F be a real closed field and f : F → F is a semi-
algebraic function. Then, we can partition F into I1 ∪ . . . ∪ Im ∪ X, where
X is finite and the Ij are pairwise disjoint open intervals with endpoints in
F ∪ {±∞} such that f is continuous on each Ij.

Proof Let

D = {x : F |= ∃ε > 0 ∀δ > 0 ∃y |x − y| < δ ∧ |f(x) − f(y)| > ε}

be the set of points where f is discontinuous. Because D is definable, by
o-minimality D is either finite or has a nonempty interior. By Corollary
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3.3.23, D must be finite. Thus, F \D is a finite union of intervals on which
F is continuous.

The next result of van den Dries shows that real closed fields have defin-
able Skolem functions.

Corollary 3.3.26 Let F be a real closed field and X ⊆ Fn+m be semial-
gebraic. There is a semialgebraic function f : F n → F m such that for all
x ∈ Fn, if there is a y ∈ Fm such that (x, y) ∈ X, then (x, f(x)) ∈ X.

In fact, we can choose F such that if

{y ∈ Fm : (a, y) ∈ X} = {y ∈ Fm : (b, y)},
then F (a) = F (b). We call such an F an invariant Skolem function.

Proof We proceed by induction on m. For each m we will show that our
claim holds for all n and for all definable X ⊆ Fn+m.

Assume that m = 1. For a ∈ Fn, let Xa = {y : (a, y) ∈ X}. By o-
minimality, Xa is a finite union of points and intervals. If Xa is empty we
let f(a) = 0. If Xa is nonempty, we define f(a) by cases.
case 1: If Xa = F , let f(a) = 0.
case 2: If Xa has a least element b, let f(a) = b.

case 3: If the leftmost interval of Xa = (c, d), let f(a) =
d − c

2
.

case 4: If the leftmost interval of Xa = (−∞, c), let f(a) = c − 1.
case 5: If the leftmost interval of Xa = (c,+∞), let f(a) = c + 1.

This exhausts all possibilities. Clearly, f is definable and if Xa �= ∅, then
(a, f(a)) ∈ X.

Assume that our claim is true for m, and let X ⊆ Fn+m+1. By in-
duction, there is f : F n+1 → Fm such that if a1, . . . , an, b ∈ F and
∃z ∈ Fm (a, b, z) ∈ X, then (a, b, f(a, b)) ∈ X. Also by induction, there
is g : F n → F such that if ∃y∃z(x, y, z) ∈ X, then ∃z(x, f(x), z) ∈ X.
Let h : Fn → Fm+1 by h(x) = (f(x), g(x), f(x)). If a ∈ Fn and
∃y∃z(a, y, z) ∈ X, then (a, h(a)) ∈ X.

We leave it to the reader to show that the chosen element of Xa depends
on Xa but not a.

Definable Skolem functions give an easy proof of the next result of Mil-
nor’s, which was first proved by geometric techniques.

Corollary 3.3.27 (Curve Selection) Let F be a real closed field. Let
X ⊆ Fn be semialgebraic and a be a point in the closure of X. There
is a continuous semialgebraic function f : (0, r) → F n such that for all
ε ∈ (0, r), f(x) ∈ X and lim

ε→0
f(ε) = a.

Proof Let

X =
{

(ε, y) :
n∑

i=1

(yi − ai)2 < ε
}

.
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For all ε > 0, there is y ∈ Fn with (ε, y) ∈ X. By Corollary 3.3.26, there
is a definable function f : (0,+∞) → F n such that (ε, f(ε)) ∈ X for all
ε > 0. By Corollary 3.3.25 there is r > 0 such that f is continuous on (0, r).
Clearly, lim

ε→0
f(ε) = a.

Definable equivalence relations are very easy to analyze in real closed
fields.

Corollary 3.3.28 Let F be a real closed field. Let E ⊆ F n × Fn be a
definable equivalence relation. There is a definable X ⊂ Fn such that for
all a ∈ F n there is a unique b ∈ X such that aEb. We call X a definable
transversal of E.

Proof Let f : Fn → Fn be a definable invariant Skolem function. Then,
aEf(a) for all a ∈ Fn and if aEb, then f(a) = f(b). Let X be the range of
f .

If F is real closed, then o-minimality tells us what the definable subsets
of F look like. Definable subsets of Fn are also relatively simple.

Definition 3.3.29 We inductively define the collection of cells as follows.
• X ⊆ Fn is a 0-cell if it is a single point.
• X ⊆ F is a 1-cell if it is an interval (a, b), where a ∈ F ∪ {−∞},

b ∈ F ∪ {+∞}, and a < b.
• If X ⊆ Fn is an n-cell and f : X → F is a continuous definable

function, then Y = {(x, f(x)) : x ∈ X} is an n-cell.
• Let X ⊆ Fn be an n-cell. Suppose that f is either a continuous defin-

able function from X to F or identically −∞ and g is either a continuous
definable function from X to F such that f(x) < g(x) for all x ∈ X or g is
identically +∞; then

Y = {(x, y) : x ∈ X ∧ f(x) < y < g(x)}

is an n + 1-cell.

In a real closed field, every nonempty definable set is a finite disjoint
union of cells. The proof relies on the following lemma.

Lemma 3.3.30 (Uniform Bounding) Let X ⊆ F n+1 be semialgebraic.
There is a natural number N such that if a ∈ F n and Xa = {y : (a, y) ∈ X}
is finite, then |Xa| < N .

Proof First, note that Xa is infinite if and only if there is no interval
(c, d) such that (c, d) ⊆ Xa. Thus {(a, b) ∈ X : Xa is finite} is definable.
Without loss of generality, we may assume that for all a ∈ F n, Xa is finite.
In particular, we may assume that

F |= ∀x∀c∀d¬[c < d ∧ ∀y(c < y < d → y ∈ Xa)].
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Consider the following set of sentences in the language of fields with
constants added for each element of F and new constants c1, . . . , cn. Let Γ
be

RCF + Diag(F ) +

⎧⎨⎩∃y1, . . . , ym

⎡⎣∧
i<j

yi �= yj ∧
m∧

i=1

yi ∈ Xc

⎤⎦ : m ∈ ω

⎫⎬⎭
Suppose that Γ is satisfiable. Then, there is a real closed field K ⊇ F and

elements c ∈ Kn such that Xc is infinite. By model-completeness, F ≺ K.
Therefore

K |= ∀x∀c, d ¬[c < d ∧ ∀y (c < y < d → y ∈ Xa)].

This contradicts the o-minimality of K. Thus, Γ is unsatisfiable and there
is an N such that

RCF + Diag(F ) |= ∀x ¬

⎛⎝∃y1, . . . , yN

⎡⎣∧
i<j

yi �= yj ∧
N∧

i=1

yi ∈ Xx

⎤⎦⎞⎠ .

In particular, for all a ∈ F n, |Xa| < N .

We now state the Cell Decomposition Theorem and give the proof for
subsets of F 2. In the exercises, we will outline the results needed for the
general case.

Theorem 3.3.31 (Cell Decomposition) Let X ⊆ Fm be semialgebraic.
There are finitely many pairwise disjoint cells C1, . . . , Cn such that X =
C1 ∪ . . . ∪ Cn.

Proof (for m = 2) For each a ∈ F , let

Ca = {x : ∀ε > 0∃y, z ∈ (x − ε, x + ε) [(a, y) ∈ X ∧ (a, z) �∈ X]}.

We call Ca the critical values above a. By o-minimality, there are only
finitely many critical values above a. By uniform bounding, there is a nat-
ural number N such that for all a ∈ F , |Ca| ≤ N . We partition F into
A0, A1, . . . , AN , where An = {a : |Ca| = n}.

For each n ≤ N , we have a definable function fn : A1 ∪ . . . ∪ An → F by
fn(a) = nth element of Ca. As above, Xa = {y : (a, y) ∈ X}.

For n ≤ N and a ∈ An, we define Pa ∈ 22n+1, the pattern of X above a,
as follows.
If n = 0, then Pa(0) = 1 if and only if Xa = F . Suppose that n > 0.

Pa(0) = 1 if and only if x ∈ Xa for all x < f1(a).
Pa(2i − 1) = 1 if and only if fi(a) ∈ X.

For i < n, Pa(2i) = 1 if and only if x ∈ Xa for all x ∈ (fi(a), fi+1(a)).
P (2n) = 1 if and only if x ∈ Xa for all x > fn(a).
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For each possible pattern σ ∈ 22n+1, let An,σ = {a ∈ An : Pa = σ}.
Each An,σ is semialgebraic. For each An,σ, we will give a decomposition of
{(x, y) ∈ X : x ∈ An,σ} into disjoint cells. Because the An,σ partition F ,
this will suffice.

Fix one An,σ. By Corollary 3.3.25, we can partition An,σ = C1 ∪ . . .∪Cl,
where each Cj is either an interval or a singleton and fi is continuous on
Cj for i ≤ n, j ≤ l. We can now give a decomposition of {(x, y) : x ∈ An,σ}
into cells such that each cell is either contained in X or disjoint from X.

For j ≤ l, let Dj,0 = {(x, y) : x ∈ Cj and y < f1(x)}.
For j ≤ l and 1 ≤ i ≤ n, let Dj,2i−1 = {(x, fi(x)) : x ∈ Cj}.
For j ≤ l and 1 ≤ i < n, let Dj,2i = {(x, y) : x ∈ Cj , fi(x) < y <

fi+1(x)}.
For j ≤ l, let Dj,2n = {(x, y) : x ∈ Cj , y > fn(x)}.
Clearly, each Dj,i is a cell,

⋃
Dj,i = {(x, y) : x ∈ An,σ}, and each Dj,i

is either contained in X or disjoint from X. Thus, taking the Dj,i that are
contained in X, we get a partition of {(x, y) ∈ X : x ∈ An,σ} into disjoint
cells.

3.4 Exercises and Remarks

Exercise 3.4.1 Let L = {E} where E is a binary relation symbol. For each
of the following theories either prove that they have quantifier elimination
or give an example showing that they do not have quantifier elimination
and a natural L′ ⊃ L in which they do have quantifier elimination.

a) E has infinitely many classes all of size 2.
b) E has infinitely many classes all of which are infinite.
c) E has infinitely many classes of size 2, infinitely many classes of size

3, and every class has size 2 or 3.
d) E has one class of size n for each n < ω.

Exercise 3.4.2 Show that DAG∀ is the theory of torsion-free Abelian
groups.

Exercise 3.4.3 a) Show that the theory of (Z, s) has quantifier elimination
where s(x) = x + 1. Show that this theory is strongly minimal and that
acl(A) is the set of elements “reachable” from A.

b) Show that the theory of (N, s) does not have quantifier elimination.

Exercise 3.4.4 Show that the theory of (N, <) admits quantifier elimi-
nation in the language where we add a function symbol s for the function
s(x) = x+1 and a constant symbol for 0. Show that every definable X ⊆ N

is either finite or cofinite but that (N, <) is not strongly minimal.

Exercise 3.4.5 Show that in models of DAG, algebraic closure and de-
finable closure agree and acl(A) is the Q-vector space span of A.
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Exercise 3.4.6 Consider the theory of (Z,+, 0, 1) in the language where
we add the predicates Pn for the elements divisible by n. Axiomatize this
theory and show that it has quantifier elimination. We call this the theory
of Z-groups.

Exercise 3.4.7 For G a Z-group, there is a natural homomorphism Ψ :
G →

∏
n>0 Z/nZ, given by Ψ(g)(n) = g mod n.

a) Let D = ker G. Show that D =
⋂∞

n=1 nG, the subgroup of divisible
elements of G.

b) Let H ⊆
∏

n>0 Z/nZ be the image of ψ. Show that G ∼= D⊕H. [Hint:
If A, B, C are Abelian groups, A is divisible, and there is a short exact
sequence 0 → A → B → C → 0, then B ∼= A ⊕ C.]

c) Show that if κ ≥ 2ℵ0 , then there are exactly 22ℵ0 nonisomorphic Z-
groups of cardinality κ.

Exercise 3.4.8 It is useful to use a slightly more subtle homomorphism
than Ψ. For p a prime, let Zp be the additive group of p-adic integers.

a) Show that for each prime p there is a homomorphism φp : G → Zp

such that g mod pnG = Φp(g) mod pnZp for all n.
Suppose that (G, <, 0, 1) is an ordered group with least element 1, and

for each prime p, Φp : G → Zp such that p does not divide Φp(1). Let H
be the divisible hull of G, and let G∗ = { g

n
∈ H : g ∈ G and n|Φp(g) in Zp

for all primes p}.
b) Show that G∗ is a model of Presburger arithmetic.
c) Show that if G is a model of Presburger arithmetic and Φ2,Φ3, . . . are

as in a), then G∗ = G.

Exercise 3.4.9 Show that in (Z,+, 0, 1) we cannot define the ordering.
[Hint: Find G |= Pr and a bijection α : G → G such that α is a group
isomorphism preserving 0 and 1 but not preserving <.]

Exercise 3.4.10 Show that in Presburger arithmetic ∃y 2y = x is not
equivalent to a quantifier-free Lr-formula. [Hint: Find G ⊂ H models of
Pr, and a ∈ G such that a is divisible by 2 in H but not in G.]

Exercise 3.4.11 Suppose that M |= Pr and A ⊆ M . What is acl(A)?
What is dcl(A)?

Exercise 3.4.12 In Exercise 2.5.17, we introduced the notion of existen-
tially closed structures.

a) Show that if M ⊆ N and M is existentially closed, then there is
M1 |= T such that M ⊆ N ⊆ M1 with M ≺ M1. [Note: See Exercise
2.5.15.]

b) Show that T is model-complete if and only if every model of T is
existentially closed. [Hint: (⇐) Suppose that M0 ⊆ N0 are models of T .
Use a) to build M0 ⊆ N0 ⊆ M1 ⊆ N1 ⊆ M2 ⊆ . . ., a chain of models of
T such that Mi ≺ Mi+1 and Ni ≺ Ni+1.]
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c) Suppose that T is a ∀∃-axiomatizable theory with infinite models that
is κ-categorical for some infinite cardinal κ. Show that T is model-complete.
[Hint: See Exercise 2.5.17.]

d) Show that T is model-complete if and only if for any formula φ(v)
there is a quantifier-free formula ψ(v,w) such that T |= φ(v) ↔ ∃w ψ(v,w).
[Hint: Use Exercise 2.5.12.]

e) Show that any model-complete theory has a ∀∃ axiomatization. [Hint:
Use Exercise 2.5.15.]

Exercise 3.4.13 Suppose that T and T ′ are L-theories. We say that T ′

is a model companion of T if
i) T ′ is model-complete,
ii) every model of T has an extension that is a model of T ′, and
iii) every model of T ′ has an extension that is a model of T .
a) Show that any theory has at most one model companion.
b) Show that DLO is the model companion of the theory of discrete

linear orders.
c) Suppose that T is ∀∃-axiomatizable. Show that if T ′ is a model com-

panion of T , then T ′ is the theory of existentially closed models of T .

Exercise 3.4.14 If T ′ is a model companion of T and T ′ ∪ Diag(M) is
complete for any M |= T , then T ′ is a model completion of T .

We say that T has the amalgamation property if and only if whenever
M0,M1 and M2 are models of T and fi : M0 → Mi are embeddings
there is N |= T and gi : Mi → N such that f1 ◦ g1 = f2 ◦ g2.

a) Suppose that T ′ is a model companion of T . Show that T ′ is a model
completion of T if and only if T has the amalgamation property.

b) Suppose that T has a universal axiomatization and T ′ is a model
completion of T . Show that T ′ has quantifier elimination.

Exercise 3.4.15 Let M be an L-structure. We say that a definable X ⊆
Mn is strongly minimal if X is defined by an LM -formula φ(v) and for any
M ≺ N , if XM is the subset of N n defined by φ(v), then every definable
subset of XN is finite or cofinite.

Suppose that X ⊂ Mn is strongly minimal. Let aclX(A) = X ∩ acl(A)
for A ⊂ M .

a) Show that, if x ∈ aclX(A ∪ {b}) and x �∈ aclX(A), then b ∈ aclX(A ∪
{a}). (This is called the exchange principle.)

b) We say that A ⊆ X is independent if a �∈ aclX(A \ {a}) for all a ∈ X.
Show that for any A ⊆ X, there is an independent B ⊆ A such that
A = aclX(B). We call B a basis for X.

c) Suppose that B0 and B1 are bases for A. Show that |B0| = |B1|.
Exercise 3.4.16 Prove Lemma 3.2.18. [Hint: Use Exercise 1.4.11 in Meq.]

Exercise 3.4.17 Let K be an algebraically closed field and let V ⊆ Kn be
Zariski closed. We say that V is irreducible if there are Zariski closed sets
F0, F1 ⊂ V such that V = F0 ∪ F1.
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a) Show that V is irreducible if and only if I(V ) is a prime ideal.
b) Suppose that V ⊆ Kn is an irreducible Zariski closed set and K ≺ F .

Let φ(v) be the system of equations that defines V . Let V (F ) ⊆ Fn be the
solutions to φ(v) in Fn. Use model-completeness to show that V (F ) is also
irreducible.

c) Show that every Zariski closed set is a finite union of irreducible sets.
Indeed, if V is Zariski closed, there are irreducible sets V1, . . . , Vn such
that V = V1 ∪ . . . ∪ Vn, V �=

⋃
i∈I0

for any proper I0 ⊂ {1, . . . , n}. This
decomposition is unique in that if W1, . . . , Wm are irreducible closed sets,
V = W1 ∪ . . . ∪ Wm, and W �=

⋃
j∈J0

Wj for any proper J0 ⊂ {1, . . . , m},
then n = m and {V1, . . . , Vn} = {W1, . . . , Wm}. We call V1, . . . , Vn the
irreducible components of V . [This can be proved using Lemma 3.2.10 but
can also be proved directly (see also Exercise 8.4.15).

Exercise 3.4.18 Suppose that K is an algebraically closed field and
P ⊂ K[X1, . . . , Xn] is a maximal ideal. Show that P is generated by
X1 − a1, . . . , Xn − an for some a1, . . . , an ∈ K.

Exercise 3.4.19 (Elimination of Imaginaries for ACF) Show that if K is
an algebraically closed field, then for all x ∈ Keq there is y ∈ Kn such that
x ∈ dcleq(y) and y ∈ dcleq(x).

Exercise 3.4.20 Let K ⊂ L be algebraically closed fields. Let V,W ⊆ Ln

be Zariski closed sets defined over K. Suppose that there is f : V → W a
bijective polynomial map defined over L. Show that there is g : V ∩ Kn →
W ∩ Kn a bijective polynomial map defined over K.

Exercise 3.4.21 (Positive Quantifier Elimination) We say that an L-
formula φ(v) is positive if it is in the smallest collection of L-formulas
containing the atomic formulas and closed under ∧,∨,∃, and ∀.

We say that η : M → N is a L-homomorphism if and only if:
i) η(cM) = η(cN ) for all constants c in L;
ii) η(fM(x)) = fN (η(x)) for all x ∈ M and function symbols f ;
iii) if R is a relation symbol of L and x ∈ RM, then η(x) ∈ RN .

a) Show that if f : M → N is a surjective L-homomorphism, a ∈ M ,
φ(v) is positive, and M |= φ(a), then N |= φ(a).

Let T be a complete L-theory and φ(v) be an L-formula such that T |=
∃v φ(v). We will prove that the following are equivalent.

i) There is a positive quantifier-free formula ψ(v) such that T |=
∀v φ(v) ↔ ψ(v).

ii) For all M,N |= T and A ⊆ M, if f : A → N is an L-homomorphism,
a ∈ A, and M |= φ(a), then N |= φ(a).

b) Show that i)⇒ ii).

Assume that ii) holds. Let Γ(v) = {ψ(v) : ψ is a positive quantifier-free
formula and T |= ψ(v) → φ(v)}. Let Σ = T ∪ {¬(ψ(c)) : ψ ∈ Γ} ∪ {φ(v)}.



108 3. Algebraic Examples

c) Show that Σ is unsatisfiable. [Hint: Let M |= T with c ∈ M such
that M |= φ(c) and M |= ¬ψ(c) for ψ ∈ Γ. Let Σ′ = T ∪ ¬φ(c) ∪ {θ(c) :
M |= θ(c), θ(v) positive quantifier-free}. Show that Σ′ is satisfiable. Let
N |= Σ′. Let A be the substructure of M generated by c and apply ii) to
get a contradiction.]

d) Show that ii)⇒ i).

Exercise 3.4.22 † (Completeness of Projective Varieties) Let K be an alge-
braically closed field. Suppose that p1, . . . , pk ∈ Z[Y1, . . . , Yn, X0, . . . , Xm]
are homogeneous in X0, . . . , Xm (i.e., if t is a new variable, then

pi(Y , tX0, . . . , tXm) = tdpi(Y , X0, . . . , Xm)

for some d). Let φ(y) be the formula

∃x

(
k∧

i=1

pi(y, x) = 0 ∧
m∨

i=0

xi �= 0

)
asserting that the system of equations p1(y, x) = . . . = pk(y, x) = 0 has a
nontrivial solution.

a) Show that φ(y) is equivalent to a positive quantifier-free formula.
[Hint: Use Exercise 3.4.21. Suppose that A is a subring of K, L is an
algebraically closed field and σ : A → L is a homomorphism. We may
without loss of generality assume that A is a valuation ring (see [58] IX
§3). If (x0, . . . , xm) is a nontrivial solution in A, there is an i such that each
xj

xi
∈ A. Show thatL |= φ(σ(x0

xi
), . . . , σ(xn

xi
)).

b) Let Pl denote projective l-space over K, and let π : Pn × Pm → Pm

be the natural projection map. Show that π is a closed map in the Zariski
topology.

Exercise 3.4.23 a) Show that for q ∈ Q we can order Q(t) such that t− q
is a positive infinitesimal. [Hint: Let p(t) > 0 if and only if there is ε > 0
such that p(x) > 0 for x ∈ (q, q + ε).]

b) Show that we can order Q(t) such that t is infinite.

Exercise 3.4.24 Let x and y be algebraically independent over R.
a) Show that R(x, y) is formally real and that we can find orders <1 and

<2 of R(x, y) such that x <1 y and y <1 x.
b) Use a) to show that the ordering < is not quantifier-free definable in

R in the language of rings.

Exercise 3.4.25 Show that the Lr-theory of the real field is model-
complete.

Exercise 3.4.26 Show that for real closed fields dcl(A) = acl(A).

Exercise 3.4.27 Let F be a real closed field. We say that a function
g : Fn → F is algebraic if there is a nonzero polynomial p(X, Y ) ∈ F [X, Y ]
such that for all a ∈ F , p(a, g(a)) = 0.
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a) Use quantifier elimination to show that every semialgebraic function
is algebraic.

b) Show that if f : R → R is semialgebraic, then there are disjoint
intervals I1, . . . , I

n and a finite set X such that R = I1 ∪ Im ∪ X and f is
analytic on each Ij . (Hint: Use the Implicit Function Theorem for R.)

Exercise 3.4.28 (Real Nullstellensatz) Let F be a real closed field, and
let I be an ideal in F [X]. Then, VF (I) is nonempty if and only if whenever
p1, . . . , pm ∈ F [X] and

∑
p2

i ∈ I, then all the pi ∈ I.

Exercise 3.4.29 Let C be a k-cell. Show that there is a semialgebraic
homeomorphism h : (0, 1)k → C.

Exercise 3.4.30 (Dimension) Let X ⊆ Fn be semialgebraic. In partic-
ular, let φ(v, w) be a formula, and let a ∈ Fm be such that X = {x ∈
Fn : φ(x, a)}. If K ⊃ F is a real closed field, we define dimK(X), the al-
gebraic dimension of X in K, to be the maximum transcendence degree of
F (c1, . . . , cn) over F , where c ∈ Kn and K |= φ(c, a). We define dim(X),
the algebraic dimension of X, to be the maximum value of dimK(X) as K
ranges over all real closed extensions of F .

a) Show that every k-cell has algebraic dimension k.
b) Show that dim(X1 ∪ . . . ∪ Xn) = max dim(Xi).
c) Show that if f : F n → Fm is semialgebraic and X ⊆ Fn is semialge-

braic, then dim(X) ≥ dim(f(X)).
d) Show that if X ⊆ Fn+m is semialgebraic, then for all k ≤ m, {a ∈

Fn : dim(Xa) = k} is semialgebraic.
e) Show that X ⊆ F n has dimension n if and only if X has a nonempty

interior.
f) Show that if U ⊆ Fn is open and semialgebraic, then U cannot be

decomposed into a union of finitely many semialgebraic sets with empty
interior.

g) Suppose that U ⊆ Fn is open and semialgebraic and there is a semi-
algebraic f : U → F . Show that there is x ∈ U such that f is continuous
at x.

Exercise 3.4.31 Prove the Cell Decomposition Theorem. [Hint: It is best
to do this by proving a) and b) by simultaneous induction.]

a) Every semialgebraic set in X ⊆ F n can be written as a finite disjoint
union of cells.

b) If X ⊆ Fn is semialgebraic and f : X → F is semialgebraic, X can
be partitioned into disjoint cells C1, . . . , Cm such that for all i, f |Ci is
continuous.]

Exercise 3.4.32 We say that X ⊆ F is semialgebraically connected if
there are no semialgebraic open sets U0 and U1 such that each Ui ∩X �= ∅,
U0 ∩ U1 ∩ X = ∅, and (U0 ∪ U1) ∩ X = X.

a) Show that every cell is semialgebraically connected.
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b) (Whitney’s Finiteness Theorem) If X is semialgebraic, then X = C1∪
. . .∪Cm where the Ci are pairwise disjoint and each Ci is semialgebraically
connected and closed in X.

Exercise 3.4.33 Suppose that M = (G, +, <, . . .) is o-minimal and G is
an ordered group.

a) Show that if H ⊆ G is a nontrivial subgroup, then H is convex.
b) Show that G is Abelian. [Hint: For each x, consider {g ∈ G : gx = xg}.]
c) Show that G is divisible. [Hint: Consider the groups nG.]
d) Show that G has definable Skolem functions.

Exercise 3.4.34 Suppose that (F, +, ·, <) is an o-minimal field. Show that
F is real closed. [Hint: Show that F has the intermediate value property.]

Exercise 3.4.35 If K is a field, let K[[t]] denote the field of formal power
series over K in variable t, and let K((t)) denote its fraction field, the field
of formal Laurent series over K. Let

K〈〈t〉〉 =
∞⋃

n=1

K
((

t
1
n

))
be the field of formal Puiseux series over K. Series in K〈〈t〉〉 are of the form
∞∑

i=m

ait
i
n for some m, n ∈ Z with n > 0. An important theorem is that if

K is algebraically closed, then K〈〈t〉〉 is also algebraically closed ([102] IV
§3). Suppose that R is real closed.

a) Show that R〈〈t〉〉 is real closed, R ≺ R〈〈t〉〉, and t is a positive infini-
tesimal element of R〈〈t〉〉.

b) Suppose that r ∈ R and f : (0, r) → R is definable. Show that there
is µ ∈ R〈〈t〉〉 such that R〈〈t〉〉 |= f(t) = µ. Suppose that µ = atq+ higher-
degree terms. Show that f is asymptotic to axq at 0. In other words, show
that

R |= ∀ε > 0existsδ > 0
(

0 < x < δ →
∣∣∣∣f(x)
axq

− 1
∣∣∣∣ < ε

)
.

Exercise 3.4.36 Suppose that (D,+, ·, <, 0, 1) is an ordered integral do-
main with least element 1. We say that D is a model of open induction. if
whenever φ(v,w) is a quantifier-free formula and a ∈ A, then

D |= (∃v > 0 φ(v, a)) → ∃v > 0 (φ(v, a) ∧ ∀w (0 < w < v → ¬φ(w, a))).

In other words, the positive part of D satisfies the induction axioms for
quantifier-free formulas.

a) Let R be the real closure of the fraction field of D. Show that D is a
model of open induction if and only if for every r ∈ R there is d ∈ D such
that |r − d| < 1.
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Let D ⊂ R〈〈t〉〉, be the subring of series of the form

0∑
i=m

ait
i
n ,

where m, n ∈ Z, m ≤ 0, n > 0 and a0 ∈ Z.
b) Use a) to show that D is a model of open induction.
c) Show that D |= ∃a∃b(b �= 0 ∧ a2 = 2b2). This shows that the irra-

tionality of
√

2 is independent of open induction.

Remarks
Tarski first showed completeness and decidability for the fields of real and
complex numbers. His proof gave an explicit algorithm for eliminating
quantifiers. Robinson showed that quantifier-elimination results could be
proved by finding the right embedding theorems. These ideas were fur-
ther extended by Blum. Robinson also introduced the notion of model-
completeness and saw how it could be used to prove Hilbert’s Nullstel-
lensatz and answer Hilbert’s 17th-problem. All of the results on model-
complete theories developed in Exercises 3.4.12 and 3.4.13 are also due to
Robinson.

The completeness and decidability of Presburger arithmetic is due to
Presburger, although the proof of quantifier elimination given here is due
to van den Dries. Theorem 3.2.20 is due to Poizat [84], although the proof
given here is due to Lascar and Pillay.

The positive quantifier-elimination result of Exercise 3.4.21 is due to van
den Dries [28], who showed how it could be used to prove the completeness
of projective varieties and show that any closed semialgebraic set can be
built up from unions and intersections of semialgebraic sets of the form
{x : f(x) ≥ 0}.

The real Nullstellensatz was originally proved by Krivine. His model-
theoretic proof was not noticed by real algebraic geometers, and the result
was proved again later by Dubois and Risler. Model-completeness and
quantifier elimination have many applications in real algebraic geometry
(see for example [12]). Exercises 3.4.33 and 3.4.34 on o-minimal ordered
groups and fields are due to Pillay and Steinhorn. [83] Exercise 3.4.36 is
due to Shepherdson. There are many algebraic constructions of models of
open induction (see, for example [61]).

O-minimality was introduced by van den Dries, Pillay, and Steinhorn.
Surprisingly, o-minimal structures have many of the good topological and
geometric properties of strongly minimal sets. This material is developed
carefully in [29].

Once we know that the theories of the real and complex fields are de-
cidable, it is natural to wonder about the computational complexity of
these theories. Our proofs of decidability give no complexity information,
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but more direct proofs do yield concrete bounds. Collins gave an explicit
quantifier-elimination procedure using cylindric decomposition. His proof
leads to a doubly exponential upper bound on the complexity. Although
there are some good algorithms for attacking specific subproblems, Fischer
and Rabin showed that the decision problem is exponentially hard. Indeed,
they proved that there are exponential lower bounds even for the theory of
nontrivial torsion-free divisible Abelian groups. See [21] for a collection of
fundamental papers on these issues.

Tarski asked whether the theory of the structure Rexp = (R, +, ·, exp, <
, 0, 1) is decidable. In the early 1980s, van den Dries recast this question,
asking whether this structure was o-minimal. This was answered positively
by Wilkie [103].

Theorem 3.4.37 The theory of Rexp is model-complete and o-minimal.

The decidability of the theory of Rexp is still an open question, but Mac-
intyre and Wilkie [62] have given a partial positive result.

Conjecture 3.4.38 (Schanuel’s Conjecture) If λ1, . . . λn ∈ C are lin-
early independent over R, then the field Q(λ1, . . . , λn, eλ1 , . . . , eλn) has
transcendence degree at least n.

Theorem 3.4.39 If Schanuel’s Conjecture is true, then Th(Rexp) is de-
cidable.

Although we know that Rexp is model-complete, it does not have quanti-
fier elimination. Quantifier elimination was proved by van den Dries, Macin-
tyre, and Marker [30] if we add log and all restrictions of analytic functions
to compact sets.

Because Th(Rexp) is model complete it must have a ∀∃-axiomatization.
At present we have no clue what such an axiomatization might look like,
even assuming Schanuel’s Conjecture.

Ax, Kochen, and Ersov [3], [4], [5], and [55] investigated the model
theory of the p-adic field. If K is a valued field, let K be the residue field,
and G(K) be the value group.

Theorem 3.4.40 i) Let K and L be Henselian valued fields of character-
istic zero. Then, K ≡ L if and only if K ≡ L and G(K) ≡ G(L).

ii) The theory of Qp is decidable. It is exactly the theory of Henselian
fields of characteristic zero with residue field Fp and value group a model
of Presburger arithmetic.

One important corollary is that if D is a nonprincipal ultrafilter on the
set of prime numbers, then

∏
Qp/D ∼=

∏
Fp((t)), where Fp((t)) is the

field of formal Laurent series over Fp. This corollary was used to settle the
following conjecture of Artin.
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Corollary 3.4.41 For any integer d, there is M > 0 such that if p > M is
prime and f ∈ Qp[X1, . . . , Xn] is a homogeneous polynomial of degree d <√

n, then there are x1, . . . , xn ∈ Qp not all zero such that f(x1, . . . , xn) = 0.

Macintyre [60] showed that Qp has quantifier elimination if we add a
predicate Pn for the nth-powers for n = 2, 3, . . .. Macintyre’s quantifier
elimination was shown to have interesting applications by Denef [25] who
used it to prove the rationality of certain p-adic zeta functions.

The model theory of modules is another interesting area that we will not
discuss. The interested reader should consult [87].





4
Realizing and Omitting Types

4.1 Types

Suppose that M is an L-structure and A ⊆ M . Let LA be the language
obtained by adding to L constant symbols for each a ∈ A. We can naturally
view M as an LA-structure by interpreting the new symbols in the obvious
way. Let ThA(M) be the set of all LA-sentences true in M. Note that
ThA(M) ⊆ Diagel(M).

Definition 4.1.1 Let p be the set of LA-formulas in free variables
v1, . . . , vn. We call p an n-type if p ∪ ThA(M) is satisfiable. We say that
p is a complete n-type if φ ∈ p or ¬φ ∈ p for all LA-formulas φ with free
variables from v1, . . . , vn. We let SM

n (A) be the set of all complete n-types.

We sometimes refer to incomplete types as partial types. Also, we often
write p(v1, . . . , vn) to stress that p is an n-type.

By the Compactness Theorem, we could replace “satisfiable” by “finitely
satisfiable” in Definition 4.1.1.

Consider the example M = (Q, <) where A is the set of natural numbers.
Let p(v) be the set of formulas {v > 1, v > 2, v > 3, . . .}. If ∆ is a finite
subset of p(v) ∪ ThA(M), then we see that ∆ is satisfiable by interpreting
v as a sufficiently large element of Q. By the Compactness Theorem, p(v)∪
ThA(M) is satisfiable and p(v) is a 1-type.

For the same structure, let q(v) = {φ(v) ∈ LA : M |= φ(1
2 )}. For example

the formula v < 3 is in q(v), whereas v > 2 is not. For any LA-formula
ψ(v), either M |= ψ( 1

2) or M |= ¬ψ(1
2 ). Thus, q(v) is a complete 1-type.
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The latter example can be generalized to produce complete types in arbi-
trary structures. If M is any L-structure, A ⊂ M , and a = (a1, . . . , an) ∈
Mn, let tpM(a/A) = {φ(v1, . . . , vn) ∈ LA : M |= φ(a1, . . . , an)}. Then,
tpM(a/A) is a complete n-type. We write tpM(a) for tpM(a/∅).
Definition 4.1.2 If p is an n-type over A, we say that a ∈ Mn realizes p if
M |= φ(a) for all φ ∈ p. If p is not realized in M we say that M omits p.

In the examples given above, p(v) is not realized in M = (Q, <), whereas
clearly 1/2 realizes q(v). In fact, there are many realizations of q(v) in M.
Suppose that r is any rational number with 0 < r < 1. We can construct
an automorphism σ of M that fixes every natural number but σ(1/2) =
r. Because σ fixes all elements of A, σ is also an LA-automorphism. By
Theorem 1.1.10,

M |= φ(1/2) ⇔ M |= φ(r).

Thus, r also realizes q(v).
In fact, the elements of Q that realize q(v) are exactly the rational num-

bers s such that 0 < s < 1. If s ≤ 0, then the formula 0 < v is in q(v) but
M |= ¬(0 < s). Thus, s does not realize q(v). Similarly, no s ≥ 1 realizes
q(v).

The Compactness Theorem tells us that every type can be realized in an
elementary extension.

Proposition 4.1.3 Let M be an L-structure, A ⊆ M , and p an n-type
over A. There is N an elementary extension of M such that p is realized
in N .

Proof Let Γ = p ∪ Diagel(M). We claim that Γ is satisfiable.
Suppose that ∆ is a finite subset of Γ. Without loss of generality, ∆ is

the single formula

φ(v1, . . . , vn, a1, . . . , am) ∧ ψ(a1, . . . , am, b1, . . . , bl),

where a1, . . . , am ∈ A, b1, . . . , bl ∈ M \ A, φ(v, a) ∈ p, and M |= ψ(a, b).
Let N0 be a model of the satisfiable set of sentences p∪ThA(M). Because
∃w ψ(a,w) ∈ ThA(M),

N0 |= φ(v, a) ∧ ∃w ψ(a,w).

By interpreting b1, . . . , bl as witnesses to ∃w ψ(a1, . . . , am, w), we make
N0 |= ∆. Thus, ∆ is satisfiable.

By the Compactness Theorem, Γ is satisfiable. Let N |= Γ. Because
N |= Diagel(M), the map that sends m ∈ M to the interpretation of the
constant symbol m in N is an elementary embedding. Let ci ∈ N be the
interpretations of vi. Then, (c1, . . . , cn) is a realization of p.

It is worth noting that if N is an elementary extension of M, then
ThA(M) = ThA(N ). Thus SM

n (A) = SN
n (A). This observation and Propo-

sition 4.1.3 yield a characterization of complete types.
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Corollary 4.1.4 p ∈ SM
n (A) if and only if there is an elementary exten-

sion N of M and a ∈ Nn such that p = tpN (a/A).

Proof If a ∈ Nn, then tpN (a/A) ∈ SN
n (A) = SM

n (A). On the other hand
if p ∈ SM

n (A), then, by Proposition 4.1.3, there is an elementary extension
N of M and a ∈ M realizing p. Because p is complete, if φ(v) ∈ LA, then
exactly one of φ(v) and ¬φ(v) is in p. Thus, φ(v) ∈ tpN (a/A) if and only
if φ(v) ∈ p and p = tpN (a/A).

Complete types tell us what possible first-order properties elements can
have in an elementary extension. What does it mean if two elements of a
structure M realize the same complete type over A? Let us return to the
example where M = (Q, <) and A is the natural numbers. We showed that
a, b ∈ Q realize the same complete 1-type over A if and only if there is an
automorphism σ of M fixing A such that α(a) = b. Although this is not
true in general (see, for example, Exercises 4.5.1 and 4.5.9), it is if we allow
passage to an elementary extension.

Proposition 4.1.5 Suppose that M is an L-structure and A ⊆ M . Let
a, b ∈ Mn such that tpM(a/A) = tpM(b/A). Then, there is N an elemen-
tary extension of M and σ an automorphism of N fixing all elements of A
such that σ(a) = b.

If M and N are L-structures and B ⊆ M , we say that f : B → N is a
partial elementary map if and only if

M |= φ(b) ⇔ N |= φ(f(b))

for all L-formulas φ and all finite sequences b from B. We will prove Propo-
sition 4.1.5 by carefully iterating the following lemma and its corollary.

Lemma 4.1.6 Let M,N , B be as above and let f : B → N be partial
elementary. If b ∈ M , there is an elementary extension N1 of N and g :
B ∪ {b} → N1 a partial elementary map extending f .

Proof Let Γ = {φ(v, f(a1), . . . , f(an)) : M |= φ(b, a1, . . . , an), a1, . . . , an ∈
B} ∪ Diagel(N ).

Suppose that we find a structure N1 and an element c ∈ N1 satisfying
all of the formulas in Γ. Because N1 |= Diagel(N ), N1 is an elementary
extension of N . It is also easy to see that we can extend f to a partial
elementary map by b 	→ c.

Thus, it suffices to show that Γ is satisfiable. By the Compactness Theo-
rem it suffices to show that every finite subset of Γ is satisfiable in N . Taking
conjunctions, it is enough to show that if M |= φ(b, a1, . . . , an), then N |=
∃v φ(v, f(a1), . . . , f(an)). But this is clear because M |= ∃v φ(v, a1, . . . , an)
and f is partial elementary.
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Corollary 4.1.7 If M and N are L-structures, B ⊆ M and f : B → N
is a partial elementary map, then there is N ′ an elementary extension of
N and g : M → N ′ an elementary embedding.

Proof Let κ = |M |, and let {aα : α < κ} be an enumeration of M .
Let N0 = N , B0 = B, and g0 = f . Let Bα = B ∪ {aβ : β < α}. We
inductively build an elementary chain (Nα : α < κ) and gα : Bα → Nα

partial elementary such that gβ ⊆ gα for β < α.
If α = β+1, and gβ : Bβ → Nβ is partial elementary, then, by Proposition

4.1.3, we can find Nβ ≺ Nα and gα : Bα → Nα extending gβ .
If α is a limit ordinal, let Nα =

⋃
β<α Nβ and gα =

⋃
β<α gβ . By Lemma

2.3.11, Nα is an elementary extension of Nβ for β < α and fα is a partial
elementary map.

Let N ′ =
⋃

α<κ Nα and g =
⋃

α<κ gα. Again by Lemma 2.3.11, N ≺
N ′ and g is partial elementary. But dom(g) = M , so g is an elementary
embedding of M into N ′.

Proof of 4.1.5 Let f : A ∪ {a} → A ∪ {b} such that f |A is the identity
and f(a) = b. Because tpM(a/A) = tpM(b/A), f is a partial elementary
map. By Corollary 4.1.7 there is N0 an elementary extension of M and
f0 : M → N0 an elementary embedding extending f . We will build a
sequence of elementary extensions

M = M0 ≺ N0 ≺ M1 ≺ N1 ≺ M2 ≺ N2 . . .

and elementary embeddings fi : Mi → Ni such that f0 ⊆ f1 ⊆ f2 . . . and
Ni is contained in the image of fi+1. Having done this, let

N =
⋃
i<ω

Ni =
⋃
i<ω

Mi

and σ =
⋃

fi. By Lemma 2.3.11, N is an elementary extension of M and
σ : N → N is an elementary map such that σ|A is the identity and σ(a) = b.
By construction σ is surjective. Thus, σ is the desired automorphism.

We now describe the construction. Given fi : Mi → Ni, we can view
f−1

i as a partial elementary map from the image of fi into Mi ≺ Ni.
By Corollary 4.1.7, we can find Mi+1 an elementary extension of Ni and
extend f−1

i to an elementary embedding gi : Ni → Mi+1. We can view g−1
i

as a partial elementary map from the image of g into Ni ≺ Mi+1. Again
by Corollary 4.1.7, we can find Ni+1 an elementary extension of Mi+1 and
an elementary embedding fi+1 : Mi+1 → Ni+1 extending g−1

i . Because
fi+1 ⊇ g−1

i and gi ⊇ f−1
i , fi+1 ⊇ fi. Because Ni is the domain of gi, Ni is

in the range of fi+1.
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Stone Spaces
There is a natural topology on the space of complete n-types SM

n (A). For
φ an LA-formula with free variables from v1, . . . , vn, let

[φ] = {p ∈ SM(A) : φ ∈ p}.

If p is a complete type and φ ∨ ψ ∈ p, then φ ∈ p or ψ ∈ p. Thus [φ ∨ ψ] =
[φ] ∪ [ψ]. Similarly, [φ ∧ ψ] = [φ ∩ ψ].

The Stone topology on SM
n (A) is the topology generated by taking the

sets [φ] as basic open sets. For complete types p, exactly one of φ and ¬φ
is in p. Thus, [φ] = SM

n (A) \ [¬φ] is also closed. We refer to sets that are
both closed and open as clopen.

The topology of the type spaces will eventually play an important role.
The next lemmas summarize some of the basic topological properties.

Lemma 4.1.8 i) SM
n (A) is compact.

ii) SM
n (A) is totally disconnected, that is if p, q ∈ SM

n (A) and p �= q,
then there is a clopen set X such that p ∈ X and q �∈ X.

Proof
i) It suffices to show that every cover of SM

n (A) by basic open sets has a
finite subcover. Suppose not. Let C = {[φi(v)] : i ∈ I} be a cover of SM

n (A)
by basic open sets with no finite subcover. Let

Γ = {¬φi(v) : i ∈ I}.

We claim that Γ ∪ ThA(M) is satisfiable. If I0 is a finite subset of I, then
because there is no finite subcover of C, there is a type p such that

p �∈
⋃
i∈I0

[φi].

Let N be an elementary extension of M containing a realization a of p.
Then

N |= ThA(M) ∪
∧
i∈I0

¬φi(a).

We have shown that Γ is finitely satisfiable and hence, by the Compactness
Theorem, satisfiable.

Let N be an elementary extension of M, and let a ∈ N realize Γ. Then

tpN (a/A) ∈ SM
n (A) \

⋃
i∈I

[φi(v)],

a contradiction.
ii) If p �= q, there is a formula φ such that φ ∈ p and ¬φ ∈ q. Thus, [φ]

is a basic clopen set separating p and q.

Natural operations on types often give rise to continuous operations on
the type space.
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Lemma 4.1.9 i) If A ⊆ B ⊂ M and p ∈ SM
n (B), let p|A be the set of

LA-formulas in p. Then, p|A ∈ SM
n (A) and p 	→ p|A is a continuous map

from SM
n (B) onto SM

n (A).
ii) If f : M → N is an elementary embedding and p ∈ SM

n (A), let

f(p) = {φ(v, f(a)) : φ(v, a) ∈ p}.

Then, f(p) ∈ SN
n (f(A)) and p 	→ f(p) is continuous.

iii) If f : A → N is partial elementary, then SM
n (A) is homeomorphic

to SN
n (f(A)).

Proof
i) Because p|A ∪ ThA(M) ⊆ p ∪ ThB(M), p|A ∪ ThA(M) is satisfiable.

Because p|A is the set of all LA-formulas in p, p|A is complete. If φ is an
LA-formula, then

{p ∈ SM
n (B) : φ ∈ p} = [φ].

Thus, φ is continuous.
If q ∈ SM

n (A), there is an elementary extension N of M and a ∈ N real-
izing q. Then, p = tpN (a/B) ∈ SM

n (B) and p|A = q. Thus, the restriction
map is surjective.

ii) Suppose that ∆ is a finite subset of f(p). Say

∆ = {φ1(v, f(a)), . . . , φm(v, f(a))}

where φ1(v, a), . . . , φm(v, a) ∈ p. Because p ∪ ThA(M) is consistent,

M |= ∃v

m∧
i=1

φi(v, a).

Because f is elementary,

N |= ∃v
m∧

i=1

φi(v, f(a))

and f(p) ∪ Thf(A)(N ) is consistent. It is easy to see that f(p) is complete.
Because

{p ∈ SM
n (A) : φ(v, f(a)) ∈ f(p)} = [φ(v, a)],

p 	→ f(p) is continuous.

iii) Exercise 4.5.12.

Definition 4.1.10 We say that p ∈ SM
n (A) is isolated if {p} is an open

subset of SM
n (A).

Isolated points will play an important role in Section 4.2.
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Proposition 4.1.11 Let p ∈ SM
n (A). The following are equivalent.

i) p is isolated.
ii) {p} = [φ(v)] for some LA-formula φ(v). We say that φ(v) isolates p.
iii) There is an LA-formula φ(v) ∈ p such that for all LA-formulas ψ(v),

ψ(v) ∈ p if and only if

ThA(M) |= φ(v) → ψ(v).

Proof
i) ⇒ ii) If X is open, then

X =
⋃
i∈I

[φi]

for some collection of formulas (φi : i ∈ I). If {p} is open, then {p} = [φ]
for some formula φ.

ii) ⇒ iii) Suppose that {p} = [φ(v)]. Suppose that ψ(v) ∈ p. We claim
that ThA(M) |= φ(v) → ψ(v). If not, then there is an elementary extension
N of M and a ∈ N such that N |= φ(a) ∧ ¬ψ(a). Let q = tpN (a/A) ∈
SM

n (A). Because φ(v) ∈ q, q = p. But ¬ψ(v) ∈ q, a contradiction.
If, on the other hand, ψ(v) �∈ p, then ¬ψ(v) ∈ p and, by the argument

above, ThA(M) |= φ(v) → ¬ψ(v). Because ThA(M)∪{φ(v)} is satisfiable,
ThA(M) �|= φ(v) → ψ(v).

iii) ⇒ i) We claim that [φ(v)] = {p}. Clearly, p ∈ [φ(v)]. Suppose that
q ∈ [φ(v)] and ψ(v) is an LA-formula. If ψ(v) ∈ p, then ThA(M) |= φ(v) →
ψ(v) and ψ(v) ∈ q. On the other hand, if ψ(v) �∈ p, then ¬ψ(v) ∈ p and,
by the argument above, ψ(v) �∈ q. Thus p = q.

Examples
We conclude this section by giving concrete descriptions of SM

n (A) for
several important examples.

Example 4.1.12 Dense Linear Orders

Let L = {<}. Let M = (M,<) be a dense linear order without endpoints
and let A ⊆ M . Let p ∈ SM

1 (A). If a ∈ A, then, because p is a complete
type, exactly one of the formulas v = a, v < a, or v > a is in p.

case 1: p is realized in A.
In other words, the formula v = a ∈ p for some a ∈ A. In this case,

p = {ψ(v) : M |= ψ(a)} and p is isolated by the formula v = a.

case 2: Otherwise.
Let Lp = {a ∈ A : a < v ∈ p} and Up = {a ∈ A : v < a ∈ p}. If

a < v, v < b ∈ p, then, because p ∪ ThA(M) is satisfiable, a < b. Thus,
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a < b for a ∈ Lp and b ∈ Up and Lp and Up determine a cut in the ordering
(A, <).

Also note that if A is the disjoint union of L and U where a < b for
a ∈ L and b ∈ U , then ThA(M) ∪ {a < v : a ∈ L} and {v < b : b ∈ U} is
satisfiable. Thus, there is a type p with Lp = L and Up = U .

We claim that the cut completely determines p; that is,

{p} =
⋂

a∈Lp

[a < v] ∩
⋂

a∈Up

[v < b].

Suppose that q �= p, Lp = Lq and Up = Uq. Because the only atomic
formulas are u = v and u < v, p and q determine the same cut in A, and
they contain the same atomic formulas. Because quantifier-free formulas
are Boolean combinations of atomic formulas, p and q contain the same
quantifier-free formulas. Because every formula is equivalent to a quantifier-
free formula, p = q.

Using the identification between types and cuts, we can give a complete
description of all types in SQ

1 (Q).
For a ∈ Q, let pa be the unique type containing v = a.
Let p+∞ be the unique type p with Lp = Q and Up = ∅, and let p−∞

be the unique type p with Lp = ∅ and Up = Q. For r ∈ R \ Q, let pr be
the unique type p with Lp = {a ∈ Q : a < r} and Up = {b ∈ Q : r < b}.
Finally, for c ∈ Q, let pc+ be the unique type p with Lp = {a ∈ Q : a ≤ c}
and Up = {b ∈ Q : c < b}, and let pc− be the unique type p with Lp = {a ∈
Q : a < c} and Up = {b ∈ Q : c ≤ b}. These are all possible types. Note in
particular that |SQ

1 (Q)| = 2ℵ0 .
We return to the general case where M |= DLO and A ⊆ M is nonempty.

Aside from the types realized by elements of A, what types in SM
1 (A) are

isolated? Suppose that Lp has a largest element a and Up has a smallest
element b. Then p ∈ [a < v < b]. Moreover, ThA(M) |= a < v < b → c <
v < d for all c ∈ Lp and d ∈ Up. Thus, a < v < b isolates p. Similarly, if
Up = ∅ and Lp has a greatest element a, then a < v isolates p, and if Up

has a smallest element b and Lp = ∅, then v < b isolates p.
We claim that these are the only possibilities. For example, suppose that

Up �= ∅ and has no least element. Suppose that φ(v) isolates p. Because Up

and Lp determine p,

ThA(M) ∪ {a < v : a ∈ Lp} ∪ {v < b : v ∈ Up} |= φ(v).

Thus, we can find a ∈ Lp ∪ {−∞} and b ∈ Up such that

ThA(M) |= {a < v < b} → φ(v).

There is c ∈ Up such that c < b. Because a < c < b, M |= φ(c). But then
the type containing v = c is in [φ(v)] contradicting the fact that [φ(v)]
isolates p. Other cases are similar. We summarize as follows.
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Proposition 4.1.13 Let M |=DLO and let A ⊆ M be nonempty. Types in
SM

1 (A) not realized by elements of A correspond to cuts in the ordering of
A. A nonrealized type p is nonisolated if either Up �= ∅ has no least element
or Lp �= ∅ has no greatest element.

Example 4.1.14 Algebraically Closed Fields

Let K |= ACF, and let A ⊆ K. We first argue that, without loss of general-
ity, we may assume that A is a field. Let k be the subfield of K generated by
A. If p ∈ SK

n (k), then p|A ∈ SK
n (A). We claim that the restriction map is

a bijection. By Lemma 4.1.9, we know that it is surjective, so we need only
show that it is one-to-one. Suppose that q ∈ SK

n (A). For b1, . . . , bl ∈ k, there
are a1, . . . , am ∈ A such that for each i there is qi(X) ∈ Z(X1, . . . , Xm)
such that bi = qi(a). Thus, for any f(X1, . . . , Xl) ∈ Z[X1, . . . , Xl, Y ]
there is g ∈ Z[X1, . . . , Xm, Y ] such that f(b1, . . . , bl, y) = 0 if and only
if g(a1, . . . , am, y) = 0 for any y. Thus, by quantifier elimination, for any
formula φ(v, b) with b ∈ k, there is a formula ψ(v, a) with a ∈ A such that

K |= φ(v, b) ↔ ψ(v, a).

Thus, if p, q ∈ SK
l (k) and p �= q, then p|A �= q|A.

Let k be a subfield of K. We will show that n-types over k are determined
by prime ideals in k[X1, . . . , Xn]. For p ∈ SK

n (k), let

Ip = {f(X) ∈ k[X1, . . . , Xn] : f(v) = 0 ∈ p}.

If f, g ∈ Ip, then f + g ∈ Ip, and if f ∈ Ip and g ∈ k[X], then fg ∈ Ip.
Thus, Ip is an ideal. If f, g ∈ k[X], then

K |= ∀v f(v)g(v) = 0 → (f(v) = 0 ∨ g(v) = 0).

Thus, if fg ∈ Ip, then either f ∈ Ip or g ∈ Ip. Hence, Ip is a prime ideal.
On the other hand, suppose that P ⊂ k[X] is a prime ideal. There is a

prime ideal Q ⊂ K[X] such that Q ∩ k[X] = P .1 Let F be the algebraic
closure of the fraction field of K[X]/Q. By model-completeness, F is an
elementary extension of K. Let xi = Xi/Q for i = 1, . . . , n. For f ∈ K[X],
f(x) = 0 if and only if f ∈ Q. Thus, if p = tpF (x/k), then Ip = P . Thus,
p 	→ Ip is a surjective map from SK

n (k) onto the prime ideals of k[X]. We
claim that p 	→ Ip is one-to-one. Suppose that p, q ∈ SK

n (k) and p �= q.

1This follows, for example, from [68] 7.5, because K[X] is a faithfully flat k[X]-
algebra, but we sketch a more elementary proof. If K[X]P is the K[X] ideal generated
by P , we first claim that K[X]P ∩ k[X] = P . Let B be a basis for K as a k-vector
space with 1 ∈ B. B is also a basis for K[X] as a free k[X]-module. If f ∈ K[X], then
f =

∑
b∈B fbb, where each fb ∈ k[X] and all but finitely many fb = 0. If f ∈ K[X]P ,

then each fb ∈ P . If f ∈ K[X]P ∩ k[X], then f = f1 ∈ P . Let S be the multiplicatively
closed set k[X] \ P . Let Q ⊂ K[X] be maximal among the ideals containing P and
avoiding S. Then, Q is a prime ideal and Q ∩ k[X] = P .
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There is a formula φ ∈ p such that ¬φ ∈ q. By quantifier elimination, we
may assume that φ is

m∨
i=1

⎡⎣ k∧
j=1

fi,j(v) = 0 ∧
s∧

l=1

gi,l(v) �= 0

⎤⎦ ,

where fi,j , gi,l ∈ k[X]. If Ip = Iq, then

fi,j(v) = 0 ∈ p ⇔ fi,j(v) = 0 ∈ q

and
gi,l(v) = 0 ∈ p ⇔ gi,l(v) = 0 ∈ q.

Thus, φ ∈ p if and only if φ ∈ q.

Definition 4.1.15 For A a ring, the Zariski spectrum of A is the set
of all prime ideals of A. We denote the Zariski Spectrum by Spec(A) and
topologize Spec(A) by taking basic closed sets {P ∈ Spec(A) : a1, . . . , am ∈
P} for a1, . . . , am ∈ A. This is called the Zariski topology on Spec(A).

Proposition 4.1.16 The map p 	→ Ip is a continuous bijection from
SK

n (k) to Spec(k[X1, . . . , Xn]).

Proof We have shown that the map is one-to-one so we need only show
that it is continuous. Suppose that f1, . . . , fm ∈ k[X1, . . . , Xn]. Then, the
inverse image of {P ∈ Spec(k[X]) : f1, . . . , fm ∈ P} is {p ∈ SK

n (k) : f1(v) =
0 ∧ . . . ∧ fm(v) = 0 ∈ p}, a clopen set. Thus, p 	→ Ip is continuous.

Although p 	→ Ip is continuous, it is not a homeomorphism. In particular,
for f ∈ k[X] \ k, {p ∈ SK

n (k) : f(v) = 0} is clopen in SK
n (k), whereas the

image in Spec(A) is closed but not open. Although the Stone topology is
finer than the Zariski topology, we can use it when studying the Zariski
topology.

Corollary 4.1.17 The Zariski topology on Spec(k[X]) is compact.

Proof This is clear because SK
n (k) is compact and p 	→ Ip is continuous.

Proposition 4.1.16 also allows us to count types.

Corollary 4.1.18 Suppose that K |= ACF and k is a subfield of K. Then
|SK

n (k)| = |k| + ℵ0.

Proof By Hilbert’s Basis Theorem, all ideals in k[X] are finitely generated.
Thus, there are only |k| + ℵ0 prime ideals.
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4.2 Omitting Types and Prime Models

The Compactness Theorem allows us to build models realizing types. It
is often also useful to build models that omit certain types. Let L be a
language and T an L-theory. For p an n-type consistent with T , we would
like to know whether there is M |= T omitting p. It is not hard to give a
necessary topological condition.

For T an L-theory, we let Sn(T ) be the set of all complete n-types p such
that p∪T is satisfiable. If T is complete and M |= T , then Sn(T ) = SM

n (∅).
In particular, Sn(T ) is a totally disconnected compact topological space
with basic open sets

[φ] = {p : φ ∈ p}.

For p a complete type, p is isolated in Sn(T ) if and only if {p} = [φ] for
some φ. We can extend this notion to possibly incomplete types.

Definition 4.2.1 Let φ(v1, . . . , vn) be an L-formula such that T ∪ {φ(v)}
is satisfiable, and let p be an n-type. We say that φ isolates p if

T |= ∀v(φ(v) → ψ(v))

for all ψ ∈ p.

Note that if p is a complete type and φ(v) isolates p, then

T |= φ(v) → ψ(v) ⇔ ψ(v) ∈ p

for all formulas ψ(v). In particular, for all formulas ψ(v) exactly one of
T + φ(v) ∧ ψ(v) and T + φ(v) ∧ ¬ψ(v) is satisfiable.

We can only omit an isolated type if we do not witness the isolating
formula.

Proposition 4.2.2 If φ(v) isolates p, then p is realized in any model of
T ∪ {∃v φ(v)}. In particular, if T is complete, then every isolated type is
realized.

Proof If M |= T and M |= φ(a), then a realizes p. If T is complete and
T ∪ {φ(v)} is satisfiable, then T |= ∃v φ(v).

For countable languages, this is also a sufficient condition.

Theorem 4.2.3 (Omitting Types Theorem) Let L be a countable lan-
guage, T an L-theory, and p a (possibly incomplete) nonisolated n-type over
∅. Then, there is a countable M |= T omitting p.

Proof We will prove this by a modification of the Henkin construction
used to prove the Compactness Theorem. Let C = {c0, c1, . . .} be countably
many new constant symbols, and let L∗ = L ∪ C. As in the proof of the
Compactness Theorem, we will build T ∗ ⊇ T , a complete L∗-theory with
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the witness property, and build M |= T ∗ as in Lemma 2.1.7. We will
arrange the construction such that, for all d1, . . . , dn ∈ C, there is a formula
φ(v) ∈ p such that T ∗ |= ¬φ(d1, . . . , dn). This will ensure that dM

1 , . . . , dM
n

does not realize p. Because every element of M is the interpretation of a
constant symbol in C, M omits p.

We will construct a sequence θ0, θ1, θ2, . . . of L∗-sentences such that

|= θt → θs

for t > s and T ∗ = T ∪ {θi : i = 0, 1, . . .} is a satisfiable extension of T .
Let φ0, φ1, φ2, . . . list all L∗-sentences. To ensure that T ∗ is complete, we

will either have
|= θ3i+1 → φi

or
|= θ3i+1 → ¬φi.

If φi is ∃v ψ(v) and |= θ3i+1 → φi, then

|= θ3i+2 → ψ(c)

for some c ∈ C. This will ensure that T ∗ has the witness property. Let
d0, d1, . . . list all n-tuples from C. We will choose θ3i+3 to ensure that d

M
i

does not realize p in the canonical model of T ∗.
stage 0: Let θ0 be ∀x x = x.

Suppose that we have constructed θs such that T ∪θs is satisfiable. There
are three cases to consider.
stage s + 1 = 3i + 1: (completeness) If T ∪ {θs, φi} is satisfiable then θs+1
is θs ∧ φi; otherwise, θs+1 is θs ∧ ¬φi. In either case T ∪ θs+1 is satisfiable.
stage s + 1 = 3i + 2: (witness property) Suppose that φi is ∃v ψ(v) for some
formula ψ and T |= θs → φi. In this case, we want to find a witness for
ψ. Let c ∈ C be a constant that does not occur in T ∪ {θs}. Because only
finitely many constants from C have been used so far, we can always find
such a c. Let θs+1 = θs ∧ ψ(c). If N |= T ∪ {θs}, then there is a ∈ N such
that N |= ψ(a). By letting cN = a, we have N |= θs+1. Thus, in this case
T ∪ {θs+1} is satisfiable.

If φi is not of the correct form or T �|= θs → φi, then let θs+1 be θs.
stage s + 1 = 3i + 3: (omitting p) Let di = (e1, . . . , en). Let ψ(v1, . . . , vn)
be the L-formula obtained from θs by replacing each occurrence of ei by
vi and then replacing every other constant symbol c ∈ C \ {e0, . . . , en}
occurring in θs by the variable vc and putting a ∃vc quantifier in front. In
particular, we get rid of all of the constants in θs from C either by replacing
them by variables or by quantifying over them. For example, if θs is

∀x∃y cx + e1e2 = y2 + de2,
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where c, d, e1, e2 are distinct constants in C, then ψ(v1, v2) would be the
formula

∃vc∃vd∀x∃y vcx + v1v2 = y2 + vdv2.

Because p is nonisolated, there is a formula φ(v) ∈ p such that

T �|= ∀v (ψ(v) → φ(v)). (∗)

Let θs+1 be θs ∧¬φ(di). We must argue that T ∪ θs+1 is satisfiable. By (∗)
there is N |= T with a ∈ N such that

N |= ψ(a) ∧ ¬φ(a).

We can make N into a model of θs+1 by interpreting the constants c ∈
C \ {e1, . . . , en} as the witnesses to vc and ei as ai.

This completes the construction. Let T ∗ = T ∪ {θ0, θ1, . . .}. Because
T ∪ {θs} is satisfiable for each s, T ∗ is satisfiable. If φ is any L-sentence,
then φ = φi for some i, and at stage 3i + 1 we ensure that T ∗ |= φ or
T ∗ |= ¬φ. Thus, T ∗ is complete.

If ψ(v) is an L-formula and T ∗ |= ∃v ψ(v), then there is an i such that
φi is ∃v ψ(v) and at stage 3i+2 we ensure that T ∗ |= ψ(c) for some c ∈ C.
Thus, T ∗ has the witness property.

If M is the canonical model of T ∗ constructed as in Lemma 2.1.7, we
claim that M omits p. Suppose that a ∈ Mn. Because every element of M

is the interpretation of a constant symbol, there is di such that d
M
i = a.

At stage 3i + 3, we ensure that M |= ¬φi(d) for some φi ∈ p. Thus a does
not realize p.

The proof of the Omitting Types Theorem can be generalized to omit
countably many types at once.

Theorem 4.2.4 Let L be a countable language, and let T be an L-theory.
Let X be a countable collection of nonisolated types over ∅. There is a
countable M |= T that omits all of the types p ∈ X.

Proof (Sketch) Let p0, p1, . . . list X. Let C be as in the proof of Theorem
4.2.3, and let d0, d1 . . . list all finite sequences from C. Fix π : N × N → N,
a bijection.

We do a Henkin-style argument as in the proof of Theorem 4.2.3. If s = 0,
3i + 1, or 3i + 2, we proceed exactly as above. If i = π(m, n), then at stage
s = 3i + 3 we proceed as above to ensure that dm does not realize pn.

If M is the canonical model, we eventually ensure that no finite sequence
from M realizes any of the types pi.

The assumption of countability of L is necessary in the Omitting Types
Theorem. Suppose that L is the language with two disjoint sets of constant
symbols C and D, where C is uncountable and |D| = ℵ0. Let T be the
theory {a �= b : a, b ∈ C, a �= b} and p be the type {v �= d : d ∈ D}. Because
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every model of T is uncountable, there is always an element that is not the
interpretation of a constant in D. Thus, every model of T realizes p. On the
other hand, if φ(v) is any L-formula, then, because only countably many
constants from D occur in T ∪ {φ(v)}, there is d ∈ D such that T ∪ {φ(d)}
is satisfiable. Thus, p is nonisolated.

The necessity of X being countable in Theorem 4.2.4 is more problematic.
For example, if ℵ0 < λ < 2ℵ0 , we could ask whether for a countable T we
can omit a family of λ nonisolated types. This turns out to depend on set
theoretic assumptions (see Exercise 4.5.14).

We give one concrete application of the Omitting Types Theorem. Let
L = {+, ·, <, 0, 1}, and let PA be the axioms for Peano arithmetic. Suppose
that M,N |= PA. We say that N is an end extension of M if N ⊃ M and
a < b for all a ∈ M and b ∈ N \ M .

Theorem 4.2.5 If M is a countable model of PA, then there is M ≺ N
such that N is a proper end extension of M.

Proof Consider the language L∗ where we have constant symbols for all
elements of M and a new constant symbol c. Let T = Diagel(M)∪{c > m :
m ∈ M}, and for a ∈ M \ N let pa be the type {v < a, v �= m : m ∈ M}.
Any N |= T is a proper elementary extension of M. If N omits each pa,
then N is an end extension of M. By Theorem 4.2.4, it suffices to show
that each pa is nonisolated.

Suppose that φ(v) is an L∗ formula isolating pa. Let φ(v) = θ(v, c), where
θ is an LM -formula. Then

T ∪ θ(v, c) |= v < a.

Because T ∪ {θ(v, c)} is satisfiable,

M |= ∀x∃y > x∃v < a θ(v, y).

The Pigeonhole Principle is provable in Peano arithmetic. Thus

M |= [∀x∃y > x∃v < a θ(v, y)] → ∃v < a∀x∃y > x θ(v, y). (∗∗)

Thus, there is m < a such that

M |= ∀x∃y > x θ(m, y).

We claim that T ∪ {θ(m, c)} is satisfiable. If not, there is n ∈ M such that

Diagel(M) + c > n |= ¬θ(m, c)

contradicting (∗∗). Thus, φ(v) does not isolate pa, a contradiction.
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Prime and Atomic Models
We use the Omitting Types Theorem to study small models of a com-
plete theory. For the remainder of this section, we will assume that L is a
countable language and T is a complete L-theory with infinite models.

Definition 4.2.6 We say that M |= T is a prime model of T if whenever
N |= T there is an elementary embedding of M into N .

For example, let T =ACF0. If K |=ACF0, and F is the algebraic closure
of Q, then there is an embedding of F into K. Because ACF0 is model
complete this embedding is elementary. Thus, F is a prime model of ACF0.
Similarly, RCF has a prime model, the real closure of Q.

For a third example, consider L = {+, ·, <, 0, 1} and let T be Th(N),
true arithmetic. If M |= T , then we can view N as an initial segment
of M. We claim that this embedding is elementary. We use the Tarski–
Vaught test (Proposition 2.3.5). Let φ(v, w1, . . . , wm) be an L-formula and
let n1, . . . , nm ∈ N such that M |= ∃v φ(v, n). Let ψ be the L-sentence

∃v φ(v, 1 + . . . + 1︸ ︷︷ ︸
n1−times

, . . . , 1 + . . . + 1︸ ︷︷ ︸
nm−times

).

Then, M |= ψ and N |= ψ because M ≡ N. But then, for some s ∈ N,

N |= φ(s, 1 + . . . + 1︸ ︷︷ ︸
n1−times

, . . . , 1 + . . . + 1︸ ︷︷ ︸
nm−times

)

and
N |= φ(1 + . . . + 1︸ ︷︷ ︸

s−times

, 1 + . . . + 1︸ ︷︷ ︸
n1−times

, . . . , 1 + . . . + 1︸ ︷︷ ︸
nm−times

).

Because the latter statement is an L-sentence,

M |= φ(1 + . . . + 1︸ ︷︷ ︸
s−times

, 1 + . . . + 1︸ ︷︷ ︸
n1−times

, . . . , 1 + . . . + 1︸ ︷︷ ︸
nm−times

)

and M |= φ(s, n1, . . . , nm). By the Tarski–Vaught test, N ≺ M. Thus, N

is a prime model of T .
Suppose M is a prime model of T . Suppose that j : M → N is an

elementary embedding. If a ∈ Mn realizes p ∈ Sn(T ), then so does j(a). If
p ∈ Sn(T ) is nonisolated, there is N such that N omits p. If M realizes p,
then we can not elementarily embed M into N ; thus, M must also omit
p. In particular, if a ∈ Mn, then tpM(a) must be isolated. This leads us to
the following definition.

Definition 4.2.7 We say that M |= T is atomic if tpM(a) is isolated for
all a ∈ Mn.

We have just argued that prime models are atomic. For countable models,
the converse is also true.
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Theorem 4.2.8 Let L be a countable language and let T be a complete
L-theory with infinite models. Then, M |= T is prime if and only if it is
countable and atomic.

Proof
(⇒) We have argued that prime models are atomic. Because L is count-

able, T has a countable model. Thus, the prime model must be countable.
(⇐) Let M be countable and atomic. Let N |= T . We must construct an

elementary embedding of M into N . Let m0, m1, . . . , mn, . . . be an enumer-
ation of M . For each i, let θi(v0, . . . , vi) isolate the type of (m0, . . . , mi).
We will build f0 ⊆ f1 ⊆ . . . a sequence of partial elementary maps from M
into N where the domain of fi is {m0, . . . , mi−1}. Then, f =

⋃∞
i=0 fi is an

elementary embedding of M into N .
Let f0 = ∅. Because M ≡ N , f0 is partial elementary.
Given fs, let ni = f(mi) for i < s. Because θs(m0, . . . , ms) and fs is

partial elementary,

N |= ∃v θs(n0, . . . , ns−1, v).

Let ns ∈ N such that N |= θs(n0, . . . , ns). Because θs isolates
tpM(m0, . . . , ms),

tpM(m0, . . . , ms) = tpN (n0, . . . , ns).

Thus, fs+1 = fs ∪ {(ms, ns)} is a partial elementary map.

Theorem 4.2.8 will lead to a criterion for the existence of prime models.
We need one preparatory lemma.

Lemma 4.2.9 Suppose that (a, b) ∈ Mm+n realizes an isolated type in
Sm+n(T ). Then a realizes an isolated type in Sm(T ). Indeed if A ⊆ M
and (a, b) ∈ Mm+n realizes an isolated type in SM

m+n(A), then tpM(a/A)
is isolated.

Proof Let φ(v,w) isolate tpM(a, b/A). We claim that ∃w φ(v,w) isolates
tpM(a/A). Let ψ(v) be any LA-formula such that M |= ψ(a). We must
show that

ThA(M) |= ∃w (φ(v,w) → ψ(v)).

Suppose not. Then, there is c ∈ Mm such that

M |= ∃w (φ(c, w) ∧ ¬ψ(c)).

Let d ∈ Mn such that M |= φ(c, d) ∧ ¬ψ(c). Because φ(v,w) isolates
tpM(a, b/A),

ThA(M) |= φ(v,w) → ψ(v).

This is a contradiction because

ψ(v) ∈ tpM(a/A) ⊂ tpM(a, b/A).
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An extension of this lemma is proved in Exercise 4.5.11.

Theorem 4.2.10 Let L be a countable language and let T be a complete
L-theory with infinite models. Then, the following are equivalent:

i) T has a prime model;
ii) T has an atomic model M;
iii) the isolated types in Sn(T ) are dense for all n.

Proof We have already shown i) ⇔ ii).

ii) ⇒ iii) Let φ(v) be an L-formula such that [φ(v)] is a nonempty open
set in Sn(T ). We must show that [φ(v)] contains an isolated type.

Let M |= T be atomic. Because T is complete and T ∪ {φ(v)} is satis-
fiable, T |= ∃v φ(v). Thus, there is a ∈ Mn such that M |= φ(a). Then,
tpM(a) ∈ [φ] and, because M is atomic, tpM(a) is isolated. Therefore, the
isolated types are dense.

iii) ⇒ ii) Suppose that the isolated types in T are dense. We will build
an atomic model of T by a Henkin argument. Let C = {c0, . . . , cn, . . .}
be a new set of constant symbols, and let L∗ = L ∪ C. Let φ0, φ1, . . .
list all L∗-sentences. We build θ0, θ1, . . . a sequence of L∗-sentences such
that T ∗ = {θi : i = 0, 1, . . .} ∪ T is a complete satisfiable theory with the
witness property. We do this so that the canonical model of T ∗ is atomic.
We assume inductively that T ∪ {θs} is satisfiable and θs+1 |= θs.

stage 0: θ0 = ∃x x = x.

stage s + 1 = 3i + 1: (completeness) If T + θs ∧ φi is satisfiable, let θs+1 =
θs ∧ φi; otherwise, θs+1 = θs ∧ ¬φi.

stage s + 1 = 3i + 2: (witness property) If φi is ∃v ψ(v) and θs |= φi, let
c ∈ C be a constant symbol not occurring in θs, and let θs+1 = θs ∧ ψ(c).
Otherwise, let θs+1 = θs. As in Theorem 4.2.3, T ∪ {θs+1} is satisfiable.

stage s + 1 = 3i + 3: Let n be minimal such that all of the constants in C
occurring in θs are from {c0, . . . , cn}. Let ψ(v0, . . . , vn) be an L-formula
such that θs = ψ(c0, . . . , cn). Clearly, T ∪ {ψ(v0, . . . , vn)} is satisfiable.
Because the isolated types in Sn(T ) are dense, there is an isolated type
p ∈ [ψ(v)]. Let χ(v) be an L-formula isolating p; in particular, [χ(v)] = {p}
and T∪{χ(v)} is satisfiable. Let θs+1 = χ(c). Then, T∪{θs+1} is satisfiable.
Because ψ(v) ∈ p, θs+1 |= θs.

As in Theorem 4.2.3, the theory T ∗ = T ∪ {θ1, θ2, . . .} is a complete
theory with the witness property. Let M be the canonical model of T ∗. We
must show M is atomic. Let d ∈ M. We can find an n and an s = 3i + 2
such that each di is in {c0, . . . , cn} and n is minimal such that {c0, . . . , cn}
contains all the constants occuring in θs. At stage s + 1 we make sure that
(cM

0 , . . . , cM
n ) realizes an isolated type. By 4.2.9, d realizes an isolated type.
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In Exercise 4.5.16 we use Theorem 4.2.10 to give an example of a theory
with no prime models. We now give one important case where the iso-
lated types are dense. Note that if L is countable and A is countable, then
|SM

n (A)| ≤ 2ℵ0 because there are only 2ℵ0 sets of LA-formulas. We will
show that if there are fewer than the maximal possible number of types,
then there are prime models.

Theorem 4.2.11 Suppose that T is a complete theory in a countable lan-
guage and A ⊆ M |= T is countable. If |SM

n (A)| < 2ℵ0, then
i) the isolated types in SM

n (A) are dense and
ii) |SM

n (A)| ≤ ℵ0.
In particular, if |Sn(T )| < 2ℵ0 , then T has a prime model.

Proof
i) We first prove that the isolated types are dense. Suppose that there is

a formula φ such that [φ] contains no isolated types. Because φ does not
isolate a type, we can find ψ such that [φ∧ψ] �= ∅ and [φ∧¬ψ] �= ∅. Because
[φ] does not contain an isolated type, neither does [φ ∧ ±ψ].

We build a binary tree of formulas (φσ : σ ∈ 2<ω) such that:
i) each [φσ] is nonempty but contains no isolated types;
ii) if σ ⊂ τ , then φτ |= φσ;
iii) φσ,i |= ¬φσ,1−i.
Let φ∅ = φ for some formula φ where [φ] contains no isolated types.

Suppose that [φσ] is nonempty but contains no isolated types. As above,
we can find ψ such that [φσ ∧ ψ] and [φσ ∧ ¬ψ] are both nonempty and
neither contains an isolated type. Let φσ,0 = φ ∧ ψ and φσ,1 = φ ∧ ¬ψ.

Let f : ω → 2. Because

[φf |0] ⊇ [φ(f |1)] ⊇ [φ(f |2)] ⊇ . . .

and SM
n (A) is compact, there is

pf ∈
∞⋃

n=0

[φf |n].

If g �= f , we can find m such that f |m = g|m but f(m) �= g(m). By
construction, φf |m+1 |= ¬φg|m+1; thus pf �= pg. Because f 	→ pf is a
one-to-one function from 2ω into SM

n (A), |SM
n (A)| = 2ℵ0 .

ii) Suppose that |SM
n (A)| > ℵ0. We claim that |SM

n (A)| = 2ℵ0 . Because
|SM

n (A)| > ℵ0 and there are only countably many LA-formulas, there is a
formula φ such that |[φ]| > ℵ0.
Claim If |[φ]| > ℵ0, there is an LA-formula ψ such that |[φ∧ψ]| > ℵ0 and
|[φ ∧ ¬ψ] > ℵ0.

Suppose not. Let p = {ψ(v) : |[φ ∧ ψ]| > ℵ0}. Clearly, for each ψ either
ψ ∈ p or ¬ψ ∈ p but not both. We claim that p is satisfiable. Suppose that
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ψ1, . . . , ψm ∈ p. Either ψ1 ∧ . . . ∧ ψm ∈ p, in which case {ψ1, . . . , ψm} ∪
ThA(M) is satisfiable, or ¬ψ1 ∨ . . . ∨ ¬ψm ∈ p. Because

[¬ψ1 ∨ . . . ∨ ¬ψm] = [¬ψ1] ∪ . . . ∪ [¬ψm],

we must have |[¬ψi]| > ℵ0 for some ℵ0, a contradiction. Thus p ∈ SM
n (A).

Moreover, if ψ �∈ p, then |[φ ∧ ψ]| ≤ ℵ0. But

[φ] =
⋃
ψ �∈p

[φ ∧ ψ] ∪ {p}.

Because [φ] is the union of at most ℵ0 sets each of size at most ℵ0, we have
|[φ]| ≤ ℵ0, a contradiction.

We build a binary tree of formulas (φσ : σ ∈ 2<ω) such that:
i) if σ ⊂ τ then φτ |= φσ;
ii) φσ,i |= ¬φσ,1−i;
iii) |[φσ]| > ℵ0.
Let φ∅ = φ for some formula φ with |[φ]| > ℵ0. Given φσ where |[φσ]| >

ℵ0, by the claim we can find ψ such that |[φσ∧ψ]| > ℵ0 and |[φσ∧¬ψ]| > ℵ0.
Let φσ,0 = φσ ∧ ψ and φσ,1 = φσ ∧ ¬ψ.

As in i), for each f ∈ 2ω there is a

pf ∈
∞⋂

m=0

[φf |m],

and if f �= g, then pf �= pg. Thus |SM
n (A)| = 2ℵ0 .

We note that it is possible for there to be prime models even if |Sn(T )| =
2ℵ0 . For example, Th(N,+, ·, <, 0, 1) and RCF have prime models.

Countable Homogeneous Models
Our next goal is to show that prime models are unique up to isomorphism.
This will follow from work on homogeneous models.

Definition 4.2.12 Let κ be an infinite cardinal. We say that M |= T is
κ-homogeneous if whenever A ⊂ M with |A| < κ, f : A → M is a partial
elementary map, and a ∈ M , there is f∗ ⊇ f such that f∗ : A ∪ {a} → M
is partial elementary.

We say that M is homogeneous if it is |M |-homogeneous.

In homogeneous models, partial elementary maps are just restrictions of
automorphisms.

Proposition 4.2.13 Suppose that M is homogeneous, A ⊂ M , |A| < |M |,
and f : A → M is a partial elementary map. Then, there is an automor-
phism σ of M with σ ⊇ f .

In particular, if M is homogeneous and a, b ∈ Mn realize the same n-
type, then there is an automorphism σ of M with σ(a) = b.
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Proof Let |M | = κ, and let (aα : α < κ) be an enumeration of M . We
build a sequence of partial elementary maps (fα : α < κ) extending f with
fα ⊆ fβ for α < β such that aα is in the domain and image of fα+1 and
|fα+1| ≤ |fα| + 2 < κ. Then, σ =

⋃
α<κ fα is the desired automorphism.

Let f0 = f .
If α is a limit ordinal and fβ is partial elementary with

|fβ| ≤ |A| + |β| + ℵ0 < κ

for all β < α, let fα =
⋃

β<α fβ . Then, fα is partial elementary and

|fα| ≤ |α|(|A| + |α| + ℵ0) ≤ |A| + |α| + ℵ0 < κ.

Given fα with |fα| < κ, because M is homogeneous, there is b ∈ M such
that if gα = fα ∪ {(aα, b)}, then gα is partial elementary. Note that g−1

α is
also partial elementary. Thus, because M is homogeneous there is c ∈ M
such that g−1

α ∪{(aα, c)} is partial elementary. Thus, fα+1 = gα ∪{(c, aα)}
is partial elementary, |fα+1| ≤ |fα| + 2 ≤ |A| + |α| + ℵ0, and aα is in the
domain and range of fα+1.

If M is homogeneous and tpM(a) = tpM(b), then a 	→ b is a partial
elementary map that must extend to an automorphism.

Lemma 4.2.14 If M is atomic, then M is ℵ0-homogeneous. In particular,
countable atomic models are homogeneous.

Proof Suppose that a 	→ b is elementary and c ∈ M . Let φ(v, w) isolate
tpM(a, c). Because M |= ∃w φ(a, w) and a 	→ b is elementary, M |=
∃w φ(b, w). Suppose that M |= φ(b, d). Because φ(v, w) isolates a type,
tpM(a, c) = tpM(b, d). Thus, a, c 	→ b, d is elementary.

For countable homogeneous models, there is a simple test for isomor-
phism. Clearly, if M ∼= N , then M and N realize the same types from
Sn(T ). For countable homogeneous models, this condition is also sufficient.

Theorem 4.2.15 Let T be a complete theory in a countable language. Sup-
pose that M and N are countable homogeneous models of T and M and
N realize the same types in Sn(T ) for n ≥ 1. Then M ∼= N .

Proof We build an isomorphism f : M → N by a back-and-forth ar-
gument. We will build f0 ⊂ f1 ⊂ . . ., a sequence of partial elementary
maps with finite domain, and let f =

⋃∞
i=0 fi. Let a0, a1, . . . enumerate M

and b0, b1, . . . enumerate N . We will ensure that ai ∈ dom(f2i+1) and bi ∈
img(f2i+2). Thus, we will have dom(f)=M and f : M → N , a surjective
elementary map, as desired.
stage 0: Let f0 = ∅. Because T is complete f0 is partial elementary.

We inductively assume that fs is partial elementary. Let a be the domain
of fs and b = fs(a).
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stage s + 1 = 2i + 1: Let p = tpM(a, ai). Because M and N realize the
same types, we can find c, d ∈ N such that tpN (c, d) = p. Note that
tpN (c) = tpM(a), by choice of c, and tpM(a) = tpN (b) because fs is partial
elementary. Thus, tpN (c) = tpN (b). Because N is homogeneous, there is
e ∈ N such that tpN (b, e) = tpN (c, d) = p. Thus, fs+1 = fs ∪ {(ai, e)} is
partial elementary with ai in the domain.
stage s + 1 = 2i + 2: As in the previous case, we can find c, d ∈ M such
that tpM(c, d) = tpN (b, bi). Because M is homogeneous, there is e ∈ M
such that tpM(c, d) = tpM(a, e). Then, fs+1 = fs ∪ {(e, bi)} with bi in the
range.

Corollary 4.2.16 Let T be a complete theory in a countable language. If
M and N are prime models of T , then M ∼= N .

Proof By Theorem 4.2.8, M and N are atomic. Because the types in
Sn(T ) realized in an atomic model are exactly the isolated types, M and
N realize the same types. By Lemma 4.2.14, countable atomic models are
homogeneous. Thus, by Theorem 4.2.15, M ∼= N .

Prime Model Extensions of ω-Stable Theories
We conclude this section by looking at a relative notion of prime models.
Suppose that M |= T and A ⊆ M . We say that M is prime over A
if whenever N |= T and f : A → N is partial elementary, there is an
elementary f∗ : M → N extending f .

We give three examples. Let L be any linear order. We build L∗ |= DLO
prime over L as follows. If L has a least element a, add a copy of Q below a.
If L has a greatest element b, add a copy of Q above b. If c, d ∈ L with c < d
but there are no elements of L between c and d, add a copy of Q between
c and d. We add no other new elements. It is easy to see that L∗ |= DLO
and that if f : L → M |= DLO, then f extends to f∗ : L∗ → M. Because
DLO has quantifier elimination, it is model-complete and f∗ is elementary.

For ACF, if R is any integral domain and F is the algebraic closure of the
fraction field of R, then F is prime over R and any embedding of R into an
algebraically closed field K extends to F . Because ACF is model-complete,
this map is elementary. Similarly, if R is an ordered integral domain, then
the real closure of the fraction field of R is a model of RCF prime over R.
In Exercise 4.5.26, we will give examples of theories without prime model
extensions.

There is one very natural class of theories with prime model extensions.
This class will play a very important role later in the book.

Definition 4.2.17 Let T be a complete theory in a countable language,
and let κ be an infinite cardinal. We say that T is κ-stable if whenever
M |= T , A ⊆ M , and |A| = κ, then |SM

n (A)| = κ.
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We say that M is κ-stable if Th(M) is κ-stable.

For historical reasons, we will refer to ℵ0-stable theories as being “ω-
stable.” By Corollary 4.1.18, ACF is ω-stable. On the other hand,
|SQ

1 (Q)| = 2ℵ0 so DLO is not ω-stable.
We will show that ω-stable theories have prime model extensions. An

important first step is to show that if there are few types over countable
sets, then there are few types over arbitrary sets.

Theorem 4.2.18 Let T be a complete theory in a countable language. If
T is ω-stable, then T is κ-stable for all infinite cardinals κ.

Proof Suppose that M |= T , A ⊆ M , |A| = κ and |SM
n (A)| > κ. Because

there are only κ formulas with parameters from A, there is some LA-formula
φ∅(v) such that |[φ∅]| > κ. The argument from Theorem 4.2.11 ii) can be
extended to show that if |[φ]| > κ there is an LA-formula ψ such that
|[φ ∧ ψ]| > κ and |[φ ∧ ¬ψ]| > κ.

As in Theorem 4.2.11 ii), we build a binary tree of formulas (φσ : σ ∈
2<ω) such that:

i) if σ ⊂ τ , then φτ |= φσ;
ii) φσ,i |= ¬φσ,1−i;
iii) |[φσ]| > κ.
Let A0 be the set of all parameters from A occurring in any formula φσ.

Clearly A0 is a countable set. Arguing as in Theorem 4.2.11 ii), |SM
n (A0)| =

2ℵ0 , contradicting the ω-stability of T .

Proposition 4.2.19 Let T be a complete theory in a countable language.
If T is ω-stable, then for all M |= T and A ⊆ M , the isolated types in
SM

n (A) are dense.

Proof Suppose not. We can build a binary tree of formulas as in Theorem
4.2.11 i). As in Theorem 4.2.18, we can find a countable A0 ⊆ A such that
all parameters come from A0. But then |SM

n (A0)| = 2ℵ0 , contradicting the
ω-stability of T .

Theorem 4.2.20 Suppose that T is ω-stable. Let M |= T and A ⊆ M .
There is M0 ≺ M, a prime model extension of A. Moreover, we can choose
M0 such that every element of M0 realizes an isolated type over A.

Proof We will find an ordinal δ and build a sequence of sets (Aα : α ≤ δ)
where Aα ⊆ M and

i) A0 = A;
ii) if α is a limit ordinal, then Aα =

⋃
β<α Aβ ;

iii) if no element of M \ Aα realizes an isolated type over Aα, we stop
and let δ = α; otherwise, pick aα realizing an isolated type over Aα, and
let Aα+1 = Aα ∪ {aα}. Let M0 be the substructure of M with universe
Aδ.



4.2 Omitting Types and Prime Models 137

Claim 1 M0 ≺ M.
We apply the Tarski–Vaught test. Suppose that M |= φ(v, a), where

a ∈ Aδ. By Proposition 4.2.19, the isolated types in SM(Aδ) are dense.
Thus, there is b ∈ M such that M |= φ(b, a) and tpM(b/Aδ) is isolated. By
choice of δ, b ∈ Aδ. Thus, by Proposition 2.3.5, M0 ≺ M.
Claim 2 M0 is a prime model extension of A.

Suppose that N |= T and f : A → N is partial elementary. We show by
induction that there are f = f0 ⊂ . . . ⊂ fα ⊂ . . . ⊂ fδ,where fα : Aα → N
is elementary.

If α is a limit ordinal, we let fα =
⋃

β<α fβ .
Given fα : Aα → N partial elementary, l φ(v, a) isolate tpM0(aα/Aα).

Because fα is partial elementary, by Lemma 4.1.9 iii), φ(v, fα(a)) isolates
fα(tpM0(aα/Aα)) in SN

1 (fα(A)). Also, because fα is partial elementary,
there is b ∈ N with N |= φ(b, fα(a)). Thus,fα+1 = fα ∪{(aα, b)} is elemen-
tary.

In particular,fδ : M0 → N is elementary. Thus, M0 is a prime model
extension of A.

To see that every element of M0 realizes an isolated type over A, we
must show that a realizes an isolated type over A for all a ∈ Aα, α < δ. We
argue by induction on α. For α a limit ordinal,this is clear. For successor
ordinals,it follows from the following lemma.

Lemma 4.2.21 Suppose that A ⊆ B ⊆ M |= T and every b ∈ Bm realizes
an isolated type in SM

m (A). Suppose that a ∈ Mn realizes an isolated type
in SM

n (B). Then, a realizes an isolated type in SM
n (A).

Proof Let φ(v,w) be an L-formula and b ∈ Bm such that φ(v, b) isolates
tpM(a/B). Let θ(w) be an LA-formula isolating tpM(b/A). We first claim
that φ(v, w) ∧ θ(w) isolates tpM(a, b/A).

Suppose that M |= ψ(a, b). Because φ(v, b) isolates tpM(a/B),

ThA(M) |= φ(v, b) → ψ(v, b).

Thus, because θ(w) isolates tpM(b/A),

ThA(M) |= θ(w) → (φ(v,w) → ψ(v, w))

and
ThA(M) |= (θ(w) ∧ φ(v,w)) → ψ(v,w),

as desired.
Because tpM(a, b/A) is isolated, so is tpM(a/A) by Lemma 4.2.9.

For ω-stable theories (indeed, for theories that are κ-stable for some κ),
prime model extensions are unique, although we postpone the proof to
Chapter 6.
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Theorem 4.2.22 Let T be ω-stable. Suppose that M |= T and N |= T
are prime model extensions of A and ThA(M) = ThA(N ). Then, there is
f : M → N , an isomorphism fixing A.

4.3 Saturated and Homogeneous Models

In Section 4.2 we concentrated on models that realize very few types. In
this section, we will study models realizing many types. Throughout this
section, we will assume that T is a complete theory with infinite models in
a countable language L.

Definition 4.3.1 Let κ be an infinite cardinal. We say that M |= T is
κ-saturated if, for all A ⊆ M , if |A| < κ and p ∈ SM

n (A), then p is realized
in M.

We say that M is saturated if it is |M |-saturated.

Proposition 4.3.2 Let κ ≥ ℵ0. The following are equivalent:
i) M is κ-saturated.
ii) If A ⊆ M with |A| < κ and p is a (possibly incomplete) n-type over

A, then p is realized in M.
iii) If A ⊆ M with |A| < κ and p ∈ SM

1 (A), then p is realized in M.

Proof
i)⇒ ii) If M is κ-saturated and p is an incomplete n-type over A where

|A| < κ, then there is a complete type p∗ ∈ SM
n (A) with p∗ ⊇ p. Because

p∗ is realized in M so is p.
ii) ⇒ iii) Clear.
iii) ⇒ i) We prove this by induction on n. Let p ∈ SM

n (A). Let q ∈
SM

n−1 be the type {φ(v1, . . . , vn−1) : φ ∈ p}. By induction, q is realized
by some a in M. Let r ∈ SM

1 (A ∪ {a1, . . . , an−1}) be the type {ψ(a, w) :
ψ(v1, . . . , vn) ∈ p}. By iii), we can realize r by some b in M. Then, (a, b)
realizes p.

Homogeneity is a weak form of saturation.

Proposition 4.3.3 If M is κ-saturated, then M is κ-homogeneous.

Proof Suppose that A ⊆ M, |A| < κ, and f : A → M is partial elemen-
tary. Let b ∈ M \ A. Let

Γ = {φ(v, f(a)) : a ∈ Am and M |= φ(b, a)}.

If φ(v, f(a)) ∈ Γ, then M |= ∃v φ(v, a) and hence, because f is partial
elementary, M |= ∃v φ(v, f(a)). Thus, because Γ is closed under conjunc-
tions, Γ is satisfiable. Because M is saturated, there is c ∈ M realizing Γ.
Thus, f ∪ {(b, c)} is elementary and M is κ-homogeneous.
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Countably Saturated Models
We will begin by examining ℵ0-saturated models. If M is ℵ0-saturated,
then M realizes every type in Sn(T ). We will show that for ℵ0-homogeneous
models this condition is also sufficient.

Proposition 4.3.4 If M |= T , then M is ℵ0-saturated if and only if M
is ℵ0-homogeneous and M realizes all types in Sn(T ).

Proof
(⇒) Clear.
(⇐) Let a ∈ Mm and let p ∈ SM

n (a). Let q ∈ Sn+m(T ) be the type
{φ(v, w) : φ(v, a) ∈ p}. By assumption, there is (b, c) ∈ Mn+m realizing q.
Because tpM(c) = tpM(a) and M is ℵ0-homogeneous, there is d ∈ M such
that tpM(a, d) = tpM(c, b). Hence, d realizes p and M is ℵ0-saturated.

Countable saturated models are unique up to isomorphism.

Corollary 4.3.5 If M,N |= T are countable saturated models, then M ∼=
N .

Proof Because M and N are ℵ0-homogeneous and both realize all types
in Sn(T ) for all n < ω, by Theorem 4.2.15, M ∼= N .

The next proposition shows that we can extend models to
ℵ0-homogeneous models without increasing the cardinality.

Proposition 4.3.6 Let M |= T . There is M ≺ N such that N is ℵ0-
homogeneous and |N | = |M |.

Proof We first argue that we can find M ≺ N1 such that |M | = |N1|,
and if a, b, c ∈ M and tpM(a) = tpM(b), then there is d ∈ N1 such that
tpN1(a, c) = tpN1(b, d).

Let ((aα, bα, cα) : α < |M |) list all tuples (a, b, c) where a, b, c ∈ M and
tpM(a) = tpM(b). We build an elementary chain M0 ≺ M1 . . . ≺ Mα ≺
. . . for α < |M |.

Let M0 = M.
If α is a limit ordinal, let Mα =

⋃
β<α Mβ .

Given Mα, let Mα ≺ Mα+1 with |Mα| = |Mα+1| such that there is
d ∈ Mα with tpMα+1(b, d) = tpMα+1(a, c). Let N1 =

⋃
α<|M | Mα. Because

N1 is a union of |M | models of size |M |, |N1| = |M |.
We now build N0 ≺ N1 ≺ N2 . . . such that |Ni| = |M | and if a, b, c ∈ Ni

and tpNi(a) = tpNi(b), then there is d ∈ Ni+1 such that tpNi+1(a, c) =
tpNi+1(b, d).

Let N =
⋃

i<ω Ni. Clearly, |N | = |M| and N is ℵ0-homogeneous.

Propositions 4.3.5 and 4.3.6 allow us to characterize theories with count-
able saturated models.
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Theorem 4.3.7 T has a countable saturated model if and only if |Sn(T )| ≤
ℵ0 for all n.

Proof We need only show that if |Sn(T )| ≤ ℵ0 for all n then T has a
countable saturated model. Let p0, p1, . . . list all elements of

⋃
n∈ω Sn(T ).

Let M0 |= T . Iterating Lemma 4.1.3, we build M0 ≺ M1 ≺ . . . such that
Mi is countable and Mi+1 realizes pi. Thus, M =

⋃
i∈ω Mi is countable

and contains realizations of all types in Sn(T ) for n < ω. By Proposition
4.3.6, there is M ≺ N such that N is countable and ℵ0-homogeneous. By
Corollary 4.3.5, N is ℵ0-saturated.

Curiously, theories with large countable models also have small countable
models.

Corollary 4.3.8 i) If T has a countable saturated model, then T has a
prime model.

ii) If T has fewer than 2ℵ0 countable models, then T has a countable
saturated model and a prime model.

Proof
i) If T has a saturated model, then |Sn(T )| is countable for all n. By

Theorem 4.2.11, the isolated types are dense in Sn(T ) for all n. Thus, by
Theorem 4.2.10, T has a prime model.

ii) It suffices to show that Sn(T ) is countable for all n < ω. Suppose
not. By Theorem 4.2.11, if |Sn(T )| > ℵ0, then |Sn(T )| = 2ℵ0 . Each n-type
must be realized in some countable model. Because each countable model
realizes only countably many n-types, if there are 2ℵ0 n-types, then there
must be 2ℵ0 nonisomorphic countable models.

We consider several examples.

Example 4.3.9 Dense Linear Orders

We will show that (Q, <) is saturated. Suppose A ⊂ Q is finite. Suppose
that A = {a1, . . . , am} where a1 < . . . < am. By the analysis of types in
DLO given in Section 4.1, there are exactly 2m+1 types in S1(A). Each
type is isolated by one of the formulas v = ai, v < a0, ai < v < ai+1, or
am < v. Clearly, all of these types are realized in Q. Note that in this case
Q is both saturated and prime! In Section 4.4, we will see that this always
happens in ℵ0-categorical theories.

Example 4.3.10 Algebraically Closed Fields

Fix p prime or 0. Let k be Fp if p > 0 and Q if p = 0. Because Sn(ACFp) is in
bijection with Spec(k[X1, . . . , Xn]), by Corollary 4.1.18, |Sn(ACFp)| = ℵ0.
Thus, there is a countable saturated model of ACFp.

Let qn be the type corresponding to the 0 ideal in k[X1, . . . , Xn]. If
a1, . . . , an realizes qn, then a1, . . . , an are algebraically independent over
k. Thus, any saturated model has infinite transcendence degree. It follows



4.3 Saturated and Homogeneous Models 141

that the countable saturated model of ACFp is the unique algebraically
closed field of characteristic p and transcendence degree ℵ0.

Example 4.3.11 Real Closed Fields

Let r ∈ R \ Q. Let pr be the set of formulas
{

v + . . . + v︸ ︷︷ ︸
m−times

< 1 + . . . + 1︸ ︷︷ ︸
n−times

:

m, n ∈ N, r <
n

m

}
∪
{

v + . . . + v︸ ︷︷ ︸
m−times

> 1 + . . . + 1︸ ︷︷ ︸
n−times

: m, n ∈ N , r >
n

m

}
.

Clearly, pr is satisfiable. Let p∗
r ∈ S1(RCF) with p∗

r ⊇ pr. If r �= s, then
p∗

r �= p∗
s. Thus, |S1(RCF)| = 2ℵ0 and RCF has no saturated model.

Existence of Saturated Models
Next we think about the existence of κ-saturated models for κ > ℵ0.

Theorem 4.3.12 For all M, there is a κ+-saturated M ≺ N with |N | ≤
|M |κ.

Proof

Claim For any M there is M ≺ M′ such that |M ′| ≤ |M |κ, and if A ⊆ M ,
|A| ≤ κ and p ∈ SM

1 (A), then p is realized in M′.
We first note that

|{A ⊆ M : |A| ≤ κ}| ≤ |M |κ

because for each such A there is f mapping κ onto A. Also, for each such
A, |SM

1 (A)| ≤ 2κ. Let (pα : α < |M |κ) list all types in SM
1 (A) for n < ω,

A ⊆ M with |A| ≤ κ. We build an elementary chain (Mα : α < |M |κ) as
follows:

i) M0 = M;
ii) Mα =

⋃
β<α Mβ for α a limit ordinal;

iii) Mα ≺ Mα+1 with |Mα+1| = |Mα|, and Mα+1 realizes pα. By induc-
tion, we see that |Mα| ≤ |M |κ for all α. Let M′ =

⋃
α<|M |κ Mα. Then,

|M ′| ≤ |M |κ and M′ is the desired model. This proves the claim.
We build an elementary chain (Nα : α < κ+) such that each |Nα| ≤ |M |κ

and
i) N0 = M;
ii) Nα =

⋃
β<α Nβ for α a limit ordinal;

iii) Nα ≺ Nα+1, |Nα| ≤ |M |κ, and if A ⊆ Nα with |A| ≤ κ and p ∈
SNα

n (A), then p is realized in Nα+1. This is possible by the claim because,
by induction,

|Nα|κ ≤ (|M |κ)κ = |M |κ.

Let N =
⋃

α<κ+ Nα. Because κ+ ≤ |M |κ, N is the union of at most
|M |κ sets of size |M |κ so |N | ≤ |M |κ. Suppose that |A| ⊆ N , |A| ≤ κ, and
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p ∈ SN
n (A). Because κ+ is a regular cardinal, there is α < κ+ such that

A ⊂ Nα and p is realized in Nα+1 ≺ N . Thus, N is κ+-saturated.

Theorem 4.3.12 guarantees the existence of saturated models under suit-
able set-theoretic assumptions.

Corollary 4.3.13 Suppose that 2κ = κ+. Then, there is a saturated model
of T of size κ+. In particular, if the Generalized Continuum Hypothesis is
true, there are saturated models of size κ+ for all κ.

For arbitrary T , some set-theoretic assumption is necessary. For example,
if |Sn(T )| = 2ℵ0 , then any ℵ0-saturated model has size 2ℵ0 . If ℵ1 < 2ℵ0 ,
then there is no saturated model of size ℵ1.

We can extend this a bit further.

Corollary 4.3.14 Suppose that κ ≥ ℵ1 is regular and 2λ ≤ κ for λ < κ.
Then, there is a saturated model of size κ. In particular, if κ ≥ ℵ1 is
strongly inaccessible, then there is a saturated model of size κ.

Proof Let M |= T with |M | = κ. If κ = λ+ for λ < κ, then the corollary
follows from Corollary 4.3.13. Thus, we may assume that κ is a limit car-
dinal. We build an elementary chain (Mλ : λ < κ, λ a cardinal). Each Mλ

will have cardinality κ. Let M0 = M.
Let Mλ =

⋃
µ<λ Mµ for λ a limit cardinal. Because Mα is the union of

fewer than κ models of size κ, |Mα| = κ.
Given Mλ, by Theorem 4.3.12 there is Mλ ≺ Mλ+ such that M is

λ+-saturated and |Mλ+ | ≤ κλ = κ (see Corollary A.17).
Let N =

⋃
Mλ. Because κ is a regular limit cardinal, κ = ℵκ (see

Proposition A.13). Thus, because κ is regular, if A ⊂ N and |A| < κ, then
there is λ < κ such that A ⊂ Mλ. Thus, if p ∈ SN

n (A), then p is realized in
Mλ+ ≺ N .

The assumption of regularity is necessary for some T . For example, sup-
pose that M |= DLO with |M | = ℵω. We claim that M is not saturated.
Let M =

⋃
n<ω Mn where |Mn| = ℵn. If M is saturated, then for each

n < ω we can find an ∈ M such that an > b for all b ∈ Mn. One more use
of saturation allows us to find c ∈ M such that c > an for n < ω. This is
impossible. Similar arguments show that all saturated dense linear orders
must have regular cardinality.

If T is κ-stable, then we can eliminate all assumptions about cardinal
exponentiation.

Theorem 4.3.15 Let κ be a regular cardinal. If T is κ-stable, then there
is a saturated M |= T with |M | = κ. Indeed, if M0 |= T with |M0| = κ,
then there is a saturated elementary extension M of M0 with |M | = κ.

In particular, if T is ω-stable, then there are saturated models of size κ
for all regular cardinals κ.
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Proof We build an elementary chain (Mα : α < κ) where |Mα| = κ such
that:

i) M0 |= T with |M0| = κ;
ii) Mα =

⋃
β<α Mβ for α a limit ordinal;

iii) Mα ≺ Mα+1 and if p ∈ SMα
1 (Mα), then p is realized in Mα+1.

Because T is κ-stable, if |Mα| = κ, then |SMα
1 (Mα)| = κ. Thus, as in

Theorem 4.3.12, we can find Mα ≺ Mα+1 such that |Mα+1| = κ and
Mα+1 realizes all types in SMα

1 (Mα).
Let M =

⋃
Mα. Because M is the union of κ models of size κ, |M | = κ.

We claim that M is saturated. Let A ⊂ M with |A| < κ. Because κ is
regular, there is an α < κ such that A ⊆ Mα. If p ∈ SM

1 (A), then there is
q ∈ SM

1 (Mα) = SMα
1 (Mα) with p ⊆ q. Because q is realized in Mα+1, p is

realized in M. Thus, M is saturated.

Saturated models of singular cardinality exist for ω-stable theories, but
the proof is much more subtle. We prove this in Theorem 6.5.4.

Homogeneous and Universal Models
Although prime models elementarily embed into all models of T , saturated
models embed all small models.

Definition 4.3.16 We say that M |= T is κ-universal if for all N |= T
with |N | < κ there is an elementary embedding of N into M.

We say that M is universal if it is |M |+-universal.

Lemma 4.3.17 Let κ ≥ ℵ0. If M is κ-saturated, then M is κ+-universal.

Proof Let N |= T with |N | ≤ κ. Let (nα : α < κ) enumerate N . Let
Aα = {nβ : β < α}. We build a sequence of partial elementary maps
f0 ⊂ f1 ⊂ . . . ⊂ fα ⊂ . . . for α < κ with fα : Aα → M.

Let f0 = ∅ and, if α is a limit ordinal, let fα =
⋃

β<α fβ.
Given fα : Aα → M partial elementary, let

Γ(v) = {φ(v, fα(a)) : M |= φ(nα, a)}.

Because fα is partial elementary and |Aα| < κ, Γ is satisfiable and, by
κ-saturation, realized by some b in M. The fα+1 = fα ∪ {(nα, b)} is the
desired partial elementary map.

We have constructed f =
⋃

fα, an elementary embedding of N into M.

Theorem 4.3.18 Let κ ≥ ℵ0. The following are equivalent.
i) M is κ-saturated.
ii) M is κ-homogeneous and κ+-universal.

If κ ≥ ℵ1 i) and ii) are also equivalent to:
iii) M is κ-homogeneous and κ-universal.
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Proof By Proposition 4.3.2 and Lemma 4.3.17, i) ⇒ ii). Clearly, ii) ⇒
iii). We argue that ii) ⇒ i) and, if κ is uncountable, iii) ⇒ i).

Let A ⊆ M with |A| < κ, and let p ∈ SM
1 (A). We can find N |= ThA(M)

such that A ⊆ N and there is a ∈ N realizing p. If κ = ℵ0, then we can
choose N with |N | = ℵ0. If κ ≥ ℵ1, then we can choose N with |N | < κ.
By assumption, there is an elementary embedding f : N → M. Because
f |A is partial elementary, by κ-homogeneity, there is b ∈ M such that

tpM(b/A) = tpM(f((a))/f(A)) = tpN (a/A) = p.

Thus, M is κ-saturated.

Corollary 4.3.19 M is saturated if and only if it is homogeneous and
universal.

Similar arguments can be used to show that there is at most one satu-
rated model of any particular cardinality.

Theorem 4.3.20 If M and N are saturated models of T of cardinality κ,
then M ∼= N .

Proof By Corollary 4.3.5, we may assume that κ ≥ ℵ1. Let (mα : α < κ)
enumerate M and (nα : α < κ) enumerate N . We build a sequence of
partial embeddings f0 ⊂ . . . ⊂ fα . . . for α < κ such that mα ∈ dom(fα+1)
and nα ∈ img(fα+1). Let Aα denote the domain of fα. We will have |Aα| ≤
|α| + ℵ0 < κ for all α.

Let f0 = ∅, and let fα =
⋃

β<α fβ for β a limit ordinal.
Suppose that fα is partial elementary. By saturation, we can find b ∈ N

such that
N |= φ(b, fα(a)) ⇔ M |= φ(mα, a)

for all φ and all a ∈ Aα. Then gα = fα ∪ {(mα, b)} is partial elementary.
Again by saturation, we can find a ∈ M such that

N |= φ(nα, g(a)) ⇔ M |= φ(a, a)

for all φ and all a ∈ Aα ∪ {mα}. Then, fα+1 = gα ∪ {(a, nα)} is partial
elementary and f =

⋃
fα is an isomorphism from M to N .

Lemma 4.3.17 and Theorem 4.3.20 are special cases of embedding and
uniqueness results on homogeneous models generalizing Theorem 4.2.15.

Lemma 4.3.21 Suppose that N |= T is κ-homogeneous where κ ≤ |N |
and M ≡ N such that every type in Sn(T ) realized in M is realized in N
for n < ω. If A ⊆ M and |A| ≤ κ, then there is a partial elementary map
f : A → N .

Proof We prove the claim by induction on |A|. Suppose that |A| is finite.
Let A = {a1, . . . , an}. Because every type realized in M is realized in
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N , there is b ∈ Nn such that tpM(a) = tpN (b). Then, a 	→ b is partial
elementary.

Suppose that |A| = λ ≤ κ and the claim is true for sets of size µ < λ.
Let (aα : α < λ) enumerate A. For α < λ, let Aα = {aβ : β < α}. We build
a sequence of partial elementary maps f0 ⊆ . . . ⊆ fα ⊆ . . . where Aα is the
domain of fα for α < λ.

Let f0 = ∅. If α is a limit ordinal, let fα =
⋃

β<α fβ .
Suppose that we are given fα. Because |Aα+1| < λ, by the induction

assumption, there is a partial elementary g : Aα+1 → N . Let B be the
image of Aα under fα and let C be the image of Aα under g. Let h =
fα ◦ g−1 : C → B. Because fα and g are partial elementary, h : C → B
is partial elementary. Because N is homogeneous, we can extend h to a
partial elementary h∗ : C ∪ {g(aα)} → N . Let b = h∗(g(aα)), and let
fα+1 = fα ∪ {(aα, b)}. Then, fα+1 = h∗ ◦ g is partial elementary.

Clearly, f =
⋃

α<λ fα : A → N is partial elementary.

Corollary 4.3.22 If M |= T is κ-homogeneous and realizes all types in
Sn(T ) for all n < ω, then M is κ-saturated.

Proof By Lemma 4.3.21, M is κ+-universal. Thus, by Theorem 4.3.18,
M is saturated.

Theorem 4.3.23 If M ≡ N are homogeneous models of T of the same
cardinality realizing the same types in Sn(T ) for all n < ω, then M ∼= N .

Proof If M and N are countable, this is Theorem 4.2.15 so we assume
that κ = |M | = |N | is uncountable. We build an isomorphism f : M →
N by a back-and-forth argument. Let (aα : α < κ) enumerate M . Let
(bα : α < κ) enumerate N . We build a sequence of partial elementary maps
f0 ⊂ . . . ⊂ fα ⊂ . . . such that the domain of fα has cardinality at most
|α| + ℵ0 < κ, aα is in the domain of fα+1, and bα is in the image of fα+1.
Then, f =

⋃
α<κ fα is the desired isomorphism.

Let f0 = ∅. If α is a limit ordinal, then fα =
⋃

β<α fβ . Let A be the
domain of fα, and let B be its image. By Lemma 4.3.21, there is a partial
elementary h : A ∪ {aα} → N . Let C be the image of A under h, and
let c = h(aα). As in the proof of Lemma 4.3.21, fα ◦ h−1 : C → B is
partial elementary and, because N is homogeneous, we can extend this
map to C ∪ {c}. Let b be the image of c under this extension. Then, gα =
fα ∪ {(aα, b)} is partial elementary and aα is in the domain.

Let D be the image of gα. Then, g−1
α : D → M is partial elementary.

By a symmetric argument, we can find a ∈ M such that g−1
α ∪ {(bα, a)} is

partial elementary. Let fα+1 = gα ∪ {(a, bα)}.

Corollary 4.3.24 i) The number of nonisomorphic homogeneous models
of T of size κ is at most 22ℵ0 .

ii) If T has a countable saturated model, then the number of homogeneous
models of T of size κ is at most 2ℵ0 .
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Proof Homogeneous models of cardinality κ are determined by the set
of types realized. Because |Sn(T )| ≤ 2ℵ0 , the number of possible sets of
types realized in a model is at most 22ℵ0 . If T has a saturated model, then
|Sn(T )| ≤ ℵ0 for all n < ω and there are at most 2ℵ0 possible sets of types.

Applications of Saturated Models
We conclude this section with several applications of saturated and homo-
geneous models. Saturated models are useful because we can do things in
the model that we usually could only do in an elementary extension.

Proposition 4.3.25 Let M be saturated. Let A ⊂ M with |A| < |M |. Let
X ⊂ Mn be definable with parameters from M . Then, X is A-definable if
and only if every automorphism of M that fixes A pointwise fixes the X
setwise.

Proof
(⇒) If a ∈ A, X = {b ∈ Mn : M |= φ(b, a)} and σ is an automorphism

of M, then

σ(X) = {c ∈ Mn : M |= φ(σ−1(c), a)}
= {c ∈ Mn : M |= φ(c, σ(a))} because σ is an automorphism
= {c ∈ Mn : M |= φ(c, a)} because σ(a) = a
= X.

(⇐) Let ψ(v,m) define X, where m ∈ Mk. Consider the type Γ(v,w) =

{ψ(v,m),¬ψ(w, m)} ∪ {φ(v) ⇔ φ(w) : φ an LA-formula}.

Suppose that Γ∪Diagel(M) is satisfiable. Then, by saturation, we can find
(a, b) realizing Γ in M. Let f be the map that is the identity on A and
sends a to b. By choice of Γ, f is elementary. Because M is homogeneous,
f extends to an automorphism σ of M. But M |= ψ(a,m)∧¬ψ(b,m), thus
a ∈ X and σ(a) = b �∈ X, a contradiction. Thus, Γ ∪ Diagel(M) is not
satisfiable.

Therefore, there are LA-formulas φ1, . . . φm such that

M |= ∀v∀w

(
n∧

i=1

(φi(v) ↔ φi(w)) → (ψ(v,m) ↔ ψ(w, m))

)
. (∗)

For τ : {1, . . . , n} → 2, let θτ (v) be the formula∧
τ(i)=1

φi(v) ∧
∧

τ(i)=0

¬φi(v).
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If θτ (a) and θτ (b), then, by (∗), a ∈ X if and only if b ∈ X. Let S = {τ :
{1, . . . , m} → 2 : M |= θτ (a) for some a in Mn}. Then,

a ∈ X if and only if M |=
∨
τ∈S

θτ (v).

Hence, X is definable with parameters from A.

Recall that b ∈ M is definable from A if {b} is A-definable. The next
corollary is a simple consequence of Proposition 4.3.25.

Corollary 4.3.26 Let M be saturated, and let A ⊂ M with |A| < |M |.
Then, b is definable from A if and only if b is fixed by all automorphisms
of M that fix A pointwise.

Proof By Proposition 4.3.25, {b} is A-definable if and only if every auto-
morphism that fixes A pointwise fixes the set {b}.

Recall that b is algebraic over A if there is a finite A-definable set X such
that b ∈ X.

Proposition 4.3.27 Let M be saturated. Let A ⊂ M with |A| < |M | and
b ∈ M . The following are equivalent:

i) b is algebraic over A;
ii) b has only finitely many images under automorphisms of M fixing A

pointwise;
iii) tpM (b/A) has finitely many realizations.

Proof
i)⇒ ii) Let X be a finite A-definable set with b ∈ A. By Proposition

4.3.25, any automorphism of M that fixes A pointwise permutes the ele-
ments of the finite set X.

ii)⇒ iii) If c realizes tpM(b/A), then, because M is homogeneous, there
is an automorphism of M fixing A pointwise and mapping b to c. Thus,
if b has only finitely many images under automorphisms fixing A, then
tpM(b/A) has only finitely many realizations.

iii) ⇒ i) Suppose that p = tpM(b/A) has exactly n realizations. Let

Γ = ThA(M) ∪ {φ(vi) : φ ∈ p, i = 0, . . . , n} ∪ {
∧

0≤i<j≤n

vi �= vj}.

Because p has only n realizations in M and M is saturated, Γ is not
satisfiable. Thus there are φ1, . . . , φm ∈ p such that

M |=
(

m∧
k=1

n∧
i=0

φk(vi)

)
→
∨
i�=j

vi = vj .

In particular {c ∈ M : M |=
∧m

j=1 φj(c)} is an A-definable set of size n
containing b, so b is algebraic over A.
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Saturated models can be used to give a new test for quantifier elimina-
tion.

Proposition 4.3.28 If L is a language containing a constant symbol and
T is an L-theory, then T has quantifier elimination if and only if whenever
M |= T , A ⊆ M , N |= T is |M |+-saturated, and f : A → N is a partial
embedding, f extends to an embedding of M into N .

Proof
(⇒) By quantifier elimination f is a partial elementary embedding. As in

the proof of Lemma 4.3.17, we can extend f to an elementary embedding
of M into N .

(⇐) We use the quantifier elimination criterion from Corollary 3.1.6.
Suppose that M,N |= T , A ⊆ M ∩ N , and M |= φ(b, a), where φ is
quantifier-free, a ∈ A, and b ∈ M . Let N ≺ N ′ be an |M |+-saturated
model of T . By assumption the identity map on A extends to an embedding
f : M → N ′. Because f is the identity on A, N ′ |= φ(f(b), a). Because
N ≺ N ′, N |= ∃v φ(v, a), as desired.

Quantifier Elimination for Differentially Closed Fields
We will show how to apply Proposition 4.3.28 in one very interesting case.
A derivation on a commutative ring R is a map δ : R → R such that

δ(x + y) = δ(x) + δ(y)

and
δ(xy) = xδ(y) + yδ(x).

We often write a′, a′′, . . . , a(n) for δ(a), δ(δ(a)), . . ..
If (R, δ) is a differential ring, we form the ring of differential polynomials

R{X} = R[X, X ′, X ′′, . . . , X(n), . . .]. There is a natural extension of the
derivation δ to R{X} where δ(X(n)) = X(n+1). For f in R{X} \ R, the
order of f is the least n such that f ∈ R[X, . . . , X(n)], whereas if f ∈ R we
say that f has order −∞.

We will consider differential fields, which we always assume have charac-
teristic zero.

Definition 4.3.29 We say that K is a differentially closed field if K is a
differential field of characteristic zero such that if f, g ∈ K{X} \ {0} and
the order of f is less than the order of g, then there is x ∈ K such that
f(x) = 0 and g(x) �= 0.

In particular, if f has order 0, there is x ∈ K with f(x) = 0, so K is al-
gebraically closed. We can give axioms for DCF, the theory of differentially
closed fields, in the language L = {+,−, ·, δ, 0, 1}, where δ is a unary func-
tion symbol for the derivation. Our goal is to show that DCF has quantifier
elimination.
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Let k ⊆ K be differential fields, we say that a ∈ K is differentially
algebraic over k if f(a) = 0 for some nonzero f ∈ k{X}. Otherwise, we say
that a is differentially transcendental over k.

The next proposition summarizes some basic algebra of differential fields
that we will need. We assume that all of our fields have characteristic zero.
If k ⊂ K are differential fields and a ∈ K, we let k〈a〉 be the differential
subfield of K generated by a over k.

Proposition 4.3.30 Let k ⊂ K be differential fields of characteristic zero.
i) Suppose that f(X, X ′, . . . , X(n)) ∈ k{X} \ 0 and a,b ∈ K such

that f(a) = f(b) = 0, a, . . . , a(n−1) are algebraically independent over k,
b, . . . , b(n−1) are algebraically independent over k, and g(a) �= 0, g(b) �= 0
for any g of order n of lower degree in X(n). Then, k〈a〉 and k〈b〉 are
isomorphic over k.

ii) If a ∈ K is differentially algebraic over k, then there is f ∈ k{X}\{0}
such that f(a) = 0 and if g ∈ k{X} \ {0} has lower order, then g(a) �= 0.
Moreover, we can choose f such that if f(b) = 0 and g(b) �= 0 for any lower
order g, then k〈a〉 and k〈b〉 are isomorphic over k.

iii) If f ∈ k{X}, there is a differential field F ⊃ k and a ∈ F such that
f(a) = 0 and g(a) �= 0 for all g ∈ k{X} \ {0} where the order of g is less
than the order of f .

Proof
i) Certainly, k(a, . . . , a(n)) and k(b, . . . , b(n)) are isomorphic as fields. We

need only show that the isomorphism preserves the derivation. For i < n
we have δ(a(i)) = a(i+1) and δ(b(i)) = b(i+1). Because f(a, . . . , an) = 0, we
must have δ(f(a, . . . , an)) = 0, but an easy calculation shows that

δ(f(a, . . . , a(n)) = fδ(a, . . . , a(n)) +
n∑

i=0

∂f

∂X(i) (a, . . . , an)δ(a(i)),

where fδ is the polynomial obtained by differentiating the coefficients of f .
Because f(a, . . . , a(n−1), Y ) is irreducible,

∂f

∂X(n) (a, . . . , a(n)) �= 0.

Thus

δ(a(n)) =
−fδ(a, . . . , a(n)) −

∑n−1
i=0

∂f
∂X(i) (a, . . . , a(n))δ(a(i))

∂f
∂X(n) (a, . . . , an)

.

Similarly,

δ(b(n)) =
−fδ(b, . . . , b(n)) −

∑n−1
i=0

∂f
∂X(i) (b, . . . , b(n))δ(b(i))

∂f
∂X(n) (b, . . . , bn)

.
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Thus, the natural field isomorphism is a differential field isomorphism.
ii) Let n be minimal such that a, a′, . . . , a(n) are algebraically dependent

over k and let f(X, . . . , Xn) ∈ k[X, . . . , X(n)] be of minimal degree such
that f(a, a′, . . . , a(n)) = 0. Clearly, g(a) �= 0 for any g ∈ k{X}\{0} of order
less than n.

Suppose that f(b) = 0 and g(b) �= 0 for any lower order g. Then,
b, . . . , b(n−1) are algebraically independent over k and bn is a solution to
the irreducible polynomial f(b, . . . , bn−1, Y ). Thus, by i), k〈a〉 and k〈b〉 are
isomorphic over k.

iii) Let n be the order of f . By taking an irreducible factor of f of maximal
order, we may assume that f is irreducible. Let K0 be the field obtained
from k by first adding elements a, a′, . . . , a(n−1) algebraically independent
over k. Let K be the algebraic extension of K0 obtained by adding a solution
a(n) to the irreducible algebraic equation f(a, a′, . . . , a(n−1), Y ) = 0. We
must extend the derivation δ from k to K. For i < n, let δ(a(i)) = a(i+1).
As in i), we let

δ(a(n)) =
−fδ(a, . . . , a(n)) −

∑n−1
i=0

∂f
∂X(i) (a, . . . , a(n))δ(a(i))

∂f
∂X(n) (a, . . . , a(n))

.

Because a, . . . , a(n−1) are algebraically independent over k, a satisfies no
differential polynomial over k of order less than n.

Corollary 4.3.31 If k is a differential field of characteristic zero, then
there is K ⊇ k with K |= DCF.

Proof If f, g ∈ k{X}\{0} with g of lower order than f , then by Proposition
4.3.30 iii) we can find k1 ⊃ k with a ∈ k1 where f(a) = 0 and g(a) �= 0.
Iterating this process, we build K ⊃ k differentially closed.

We can now prove quantifier elimination.

Theorem 4.3.32 DCF has quantifier elimination.

Proof Let K, L be differential closed fields where L is |K|+-saturated. Let
R be a differential subring of K, and let f : R → L be a differential ring
embedding. We must show that f extends to an embedding of K into L.
Because there is a unique extension of the derivation from R to its fraction
field k, we may as well assume that R = k is a field. By induction, it
suffices to show that if f : k → L is a differential field embedding and
a ∈ K \ k, there is a differential field embedding of k〈a〉 into L extending
f . Identifying k with f(k), we may assume that k ⊂ L and f is the identity
on k. There are two cases to consider.
case 1: a is differentially algebraic over k.

Let f be as in Proposition 4.3.30 ii). Let n be the order of f . Let p be
the type {f(v) = 0} ∪ {g(v) �= 0 : g is nonzero of order less than n}. If
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g1, . . . , gm are nonzero differential polynomials of order less than n, then
there is x ∈ L such that f(x) = 0 and

∏
gi(x) �= 0. Thus p is satisfiable. If

b ∈ L realizes p, then b, b′, . . . , b(n−1) are algebraically independent over k;
thus, by i), we can extend the embedding by sending a to b.
case 2: a is differentially transcendental over k.

We claim that there is b ∈ L differentially transcendental over k. Let p
be the type {f(v) �= 0 : f ∈ k{X} \ 0}. Let f1, . . . , fn ∈ k{X} \ {0}. Let
N be greater than the order of fi for i = 1, . . . , N . Because L is differen-
tially closed, there is x ∈ L such that x(N) = 0 and

∏
fi(x) �= 0. Thus

p is consistent and must be realized in L by some element b differentially
transcendental over k. Because a and b are differentially transcendental
over k, k〈a〉 and k〈b〉 are isomorphic to the fraction field of the differential
polynomial ring k{X} over k. In particular, we can extend the embedding
by sending a to b.

Vaught’s Two-Cardinal Theorem
We conclude this section with an application of homogeneous models that
will be useful in Chapter 6. If M is an L-structure and φ(v1, . . . , vn) is an
L-formula, we let φ(M) = {x ∈ Mn : M |= φ(x)}.
Definition 4.3.33 Let κ > λ ≥ ℵ0. We say that an L-theory T has a
(κ, λ)-model if there is M |= T and φ(v) an L-formula such that |M | = κ
and |φ(M)| = λ.

(κ, λ)-models are an obstruction to κ-categoricity. If T is a theory in a
countable language with infinite models, then an easy compactness argu-
ment shows that there is M |= T of cardinality κ where every ∅-definable
subset of M has cardinality κ. If T also has a (κ, λ)-model, then T is not
κ-categorical. Our main goal is the following theorem of Vaught.

Theorem 4.3.34 If T has a (κ, λ)-model where κ > λ ≥ ℵ0, then T has
an (ℵ1,ℵ0)-model.

We will prove Theorem 4.3.34 by first showing that the existence of a
(κ, λ)-model has interesting implications for the countable models of T .

Definition 4.3.35 We say that (N ,M) is a Vaughtian pair of models of
T if M ≺ N , M �= N , and there is an LM -formula φ such that φ(M) is
infinite and if φ(M) = φ(N ).

For example, if M and N are nonstandard models of Peano arithmetic
and N is a proper elementary end extension of M, then (N ,M) is a
Vaughtian pair. If a is any infinite element of M, then the formula v < a
defines an infinite set containing no elements of N \ M .

Lemma 4.3.36 If T has a (κ, λ)-model where κ > λ ≥ ℵ0, then there is
(N ,M) a Vaughtian pair of models of T .
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Proof Let N be a (κ, λ)-model. Suppose that X = φ(N ) has cardinality
λ. By the Löwenheim–Skolem Theorem, there is M ≺ N such that X ⊆ M
and |M | = λ. Because X ⊆ M , (N ,M) is a Vaughtian pair.

We would like to show that if there is a Vaughtian pair, then there is a
Vaughtian pair of countable models. In the right context, this is a simple
Löwenheim–Skolem argument.

Let L∗ = L∪{U}, where U is a unary predicate symbol. If M ⊆ N are L-
structures, we consider the pair (N ,M) as an L∗-structure by interpreting
U as M .

If φ(v1, . . . , vn) is an L-formula, we define φU (v), the restriction of φ to
U , inductively as follows:

i) if φ is atomic, then φU is U(v1) ∧ . . . ∧ U(vn) ∧ φ;
ii) if φ is ¬ψ, then φU is ¬ψU ;
iii) if φ is ψ ∧ θ, then φU is ψU ∧ θU ;
iv) if φ is ∃v ψ, then φU is ∃v U(v) ∧ ψU .
An easy induction shows that if M ⊂ N , a ∈ Mk and we view (N ,M)

as an L∗-structure, then M |= φ(a) if and only if (N ,M) |= φU (a).

Lemma 4.3.37 If (N ,M) is a Vaughtian pair for T , then there is a
Vaughtian pair (N0,M0) where N0 is countable.

Proof Let φ be an LM -formula such that φ(M) is infinite and φ(M) =
φ(N ). Let m0 be the parameters from M occurring in φ. By the Löwenheim–
Skolem Theorem, there is (N0,M0) a countable L∗-structure such that
m ∈ M0 and (N0,M0) ≺ (N ,M). Because M ≺ N , for any formula
ψ(v1, . . . , vk)

(N ,M) |= ∀v

((
k∧

i=1

U(vi) ∧ ψ(v)

)
→ ψU (v)

)
.

Because (N0,M0) ≺ (N ,M), these sentences are also true in (N0,M0),
so N0 ≺ M0.

Let φ(v) be an LM -formula with infinitely many realizations in M and
none in N \ M, witnessing that (N ,M) is a Vaughtian pair. For each k,
the sentences

∃v1 . . .∃vk

⎛⎝∧
i<j

vi �= vj ∧
k∧

i=1

φ(vi)

⎞⎠
hold in (N ,M), as do the sentences ∃x ¬U(x) and

∀v (φ(v) →
∧

U(vi)).

Because these sentences also hold in (N0,M0), this structure is also a
Vaughtian pair.

We need one more lemma before proving Vaught’s Theorem.
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Lemma 4.3.38 Suppose that M0 ≺ N0 are countable models of T . We can
find (N0,M0) ≺ (N ,M) such that N and M are countable, homogeneous,
and realize the same types in Sn(T ). By Theorem 4.2.15 M ∼= N .

Proof
Claim 1 If a ∈ M0 and p ∈ Sn(a) is realized in N0, then there is
(N0,M0) ≺ (N ′,M′) such that p is realized in M′.

Let Γ(v) = {φU (v, a) : φ(v, a) ∈ p} ∪ Diagel(N0,M0). If φ1, . . . , φm ∈ p,
then N0 |= ∃v

∧
φi(v, a), thus M0 |= ∃v

∧
φi(v, a) and (N0,M0) |=

∃v
∧

φU
i (v, a). Thus, Γ(v) is satisfiable. Let (N ′,M′) be a countable el-

ementary extension realizing Γ.
By iterating Claim 1, we can find (N0,M0) ≺ (N ∗,M∗) countable such

that if a ∈ M0 and p ∈ Sn(a) is realized in N0, then p is realized in M∗.
Claim 2 If b ∈ N0 and p ∈ Sn(b), then there is (M0,N0) ≺ (N ′,M′)
such that p is realized in N ′.

Let Γ(v) = p ∪ Diagel(N0,M0). If φ1, . . . , φm ∈ p, then N0 |=
∃v

∧
φi(v, b); thus, we can find a countable elementary extension of

(N0,M0) realizing p.
We build an elementary chain of countable models

(N0,M0) ≺ (N1,M1) ≺ . . .

such that
i) if p ∈ Sn(T ) is realized in N3i, then p is realized in M3i+1;
ii) if a, b, c ∈ M3i+1 and tpM3i+1(a) = tpM3i+1(b), then there is d ∈

M3i+2 such that tpM3i+2(a, c) = tpM3i+2(b, d);
iii) if a, b, c ∈ N3i+2 and tpN3i+2(a) = tpN3i+2(b), then there is d ∈ N3i+3

such that tpN3i+3(a, c) = tpN3i+3(b, d).
i) and ii) are done by using the first claim to build elementary chains,

iii) is done by using the second claim to build an elementary chain.
Let (N ,M) =

⋃
i<ω(Ni,Mi). Then, (N ,M) is a countable Vaughtian

pair. By i), M and N realize the same types. By ii) and iii), M and N are
homogeneous and hence isomorphic by Theorem 4.2.15.

Proof of 4.3.34 Suppose that T has a (κ, λ)-model. By the lemmas above,
we can find (N ,M) a countable Vaughtian pair such that M and N are
homogeneous models realizing the same types. Let φ(v) be an LM -formula
with infinitely many realizations in M and none in N \ M .

We build an elementary chain (Nα : α < ω1), each Nα is isomorphic
to N , and (Nα+1,Nα) ∼= (N ,M). In particular, Nα+1 \ Nα contains no
elements satisfying φ.

Let N0 = N . For α a limit ordinal, let Nα =
⋃

β<α Nβ . Because Nα is
a union of models isomorphic to N , Nα is homogeneous and realizes the
same types as N so Nα

∼= N by Theorem 4.2.15.
Given Nα

∼= N , because N ∼= M there is Nα+1 an elementary extension
of Nα such that (N ,M) ∼= (Nα+1,Nα). Clearly, Nα+1 ∼= N .
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Let N ∗ =
⋃

α<ω1
Nα. Then, |N∗| = ℵ1 and if N ∗ |= φ(a), then a ∈ M ;

thus, N ∗ is an (ℵ1,ℵ0)-model.

Corollary 4.3.39 If T is ℵ1-categorical, then T has no Vaughtian pairs
and hence no (κ, λ) models for κ > λ ≥ ℵ0.

If T is ω-stable, we can prove a partial converse to Vaught’s Theorem.

Lemma 4.3.40 Suppose that T is ω-stable, M |= T , and |M | ≥ ℵ1. There
is a proper elementary extension N of M such that if Γ(w) is a countable
type over M realized in N , then Γ(w) is realized in M.

Proof
Claim There is an LM -formula φ(v) such that |[φ(v)]| ≥ ℵ1 and for all
ψ(v) ∈ LM either |[φ(v) ∧ ψ(v)]| ≤ ℵ0 or |[φ(v) ∧ ¬ψ(v)]| ≤ ℵ0.

Suppose not. Then for any LM -formula φ(v) with |[φ(v)]| ≥ ℵ1, there
is a formula ψ(v) such that [φ(v) ∧ ψ(v)] and [φ(v) ∧ ¬ψ(v)] are both
uncountable. Let φ∅ be the formula v = v. Then [φ∅] = |M | ≥ ℵ1. We can
build an infinite tree of formulas (φσ : σ ∈ 2<ω) such that for all σ ∈ 2<ω:

i) |[φσ]| ≥ ℵ1;
ii) [φσ,0] ∩ [φσ,1] = ∅.
As in Theorem 4.2.18 we can find a countable A ⊂ M such that

|SM
1 (A)| = 2ℵ0 , contradicting ω-stability.
Let φ(v) be as above. We construct the type p of formulas that are true

for “almost all” elements satisfying φ(v). Let p = {ψ(v) : ψ an LM -formula
and |[φ(v) ∧ ψ(v)]| ≥ ℵ1}. If ψ1, . . . , ψm ∈ p, then |[φ(v) ∧

∨
¬ψi(v)]| ≤ ℵ0.

Thus,
∧m

i=1 ψ(v) ∈ p and p is finitely satisfiable. Because |[φ(v)]| ≥ ℵ1, for
each LM -formula ψ(v) exactly one of ψ(v) and ¬ψ(v) is in p. Thus, p is a
complete type over M .

Let M′ be an elementary extension of M containing c, a realization of p.
By Theorem 4.2.20, there is N ≺ M′ prime over M ∪ {c} such that every
a ∈ N realizes an isolated type over M ∪ {c}.

Let Γ(w) be a countable type over M realized by b ∈ N . There is an
LM -formula θ(w, v) such that θ(w, c) isolates tpN (b/M ∪ {c}). Note that
∃w θ(w, v) ∈ p and

∀w (θ(w, v) → γ(w)) ∈ p

for all γ(w) ∈ Γ. Let

∆ = {∃w θ(w, v)} ∪ {∀w (θ(w, v) → γ(w)) : γ ∈ Γ}.
Then, ∆ ⊂ p is countable and, if c′ realizes ∆, then ∃w θ(w, c′), and if
θ(b

′
, c′), then b

′
realizes Γ.

Let δ0(v), δ1(v), . . . enumerate ∆. By choice of p, |{x ∈ M : φ(x)}| ≥ ℵ1
and |{x ∈ M : φ(x) ∧ ¬(δ0(x) ∧ . . . ∧ δn(x))}| ≤ ℵ0 for all n < ω. Thus
|{x ∈ M : φ(x) and x realizes ∆}| ≥ ℵ1. Let c′ ∈ M realize ∆ and choose
b
′
such that M |= θ(b

′
, c′). Then, b

′
is a realization of Γ in M.
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Theorem 4.3.41 Suppose that T is ω-stable and there is an (ℵ1,ℵ0)-model
of T . If κ > ℵ1, then there is a (κ,ℵ0)-model of T .

Proof Let M |= T with |M | ≥ ℵ1 such that |φ(M)| = ℵ0 and let M ≺ N
be as in Lemma 4.3.40. The type Γ(v) = {φ(v)} ∪ {v �= m : m ∈ M and
M |= φ(m)} is a countable type omitted in M and hence in N . Thus
φ(N ) = φ(M).

Iterating this construction, we build an elementary chain (Mα : α < κ)
such that M0 = M and Mα+1 �= Mα but φ(Mα) = φ(M0). If N =⋃

α<κ Mα, then N is a (κ,ℵ0)-model of T .

Without the assumption of ω-stability, Theorem 4.3.41 is false (see Ex-
ercise 5.5.7).

4.4 The Number of Countable Models

Throughout this section, T will be a complete theory in a countable lan-
guage with infinite models.

For any infinite cardinal κ, we let I(T, κ) be the number of nonisomorphic
models of T of cardinality κ. In this section, we will look at the possible
values of I(T,ℵ0). We have already considered a number of examples.

• I(DLO,ℵ0) = 1.
• In Exercise 2.5.28, we gave examples of Tn where I(Tn,ℵ0) = n for

n = 3, 4, . . . ,.
• I(ACFp,ℵ0) = ℵ0.
• I(RCF, ℵ0) = I(Th(N),ℵ0) = 2ℵ0 .
Because there are at most 2ℵ0 nonisomorphic countable models of T ,

there are two natural questions:
Can we have I(T,ℵ0) = 2?
Can we have ℵ0 < I(T,ℵ0) < 2ℵ0?
Surprisingly, Vaught answered the first question negatively. If the Con-

tinuum Hypothesis is true, then the second question has a trivial negative
answer. Vaught conjectured that the answer is negative even when the
Continuum Hypothesis fails. This remains one of the deep open questions
of model theory. Although Vaught’s Conjecture has been proved for some
special classes of theories (for example, Shelah [93] proved Vaught’s Con-
jecture for ω-stable theories), the best general result is Morley’s theorem
that if I(T,ℵ0) > ℵ1, then I(T,ℵ0) = 2ℵ0 .

ℵ0-categorical Theories
We begin by taking a closer look at ℵ0-categorical theories. In particular,
we show how to recognize ℵ0-categoricity by looking at the type space.
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Theorem 4.4.1 The following are equivalent:
i) T is ℵ0-categorical.
ii) Every type in Sn(T ) is isolated for n < ω.
iii) |Sn(T )| < ℵ0 for all n < ω.
iv) For each n < ω, there is a finite list of formulas

φ1(v1, . . . , vn), . . . , φm(v1, . . . , vn)

such that for every formula ψ(v1, . . . , vn)

T |= φi(v) ↔ ψ(v)

for some i ≤ m.

Proof
i) ⇒ ii) If p ∈ Sn(T ) is nonisolated, then there is a countable M |= T

omitting p. There is also a countable N |= T realizing p. Clearly, M �∼= N
so T is not ℵ0-categorical.

ii) ⇒ iii) Suppose that Sn(T ) is infinite. For each p ∈ Sn(T ), let φp

isolate p. Because
⋃

p∈Sn(T )[φp] = Sn(T ) and Sn(T ) is compact, there are
p1, . . . , pm such that [φp1 ]∪ . . .∪ [φpm

] = Sn(T ). Because [φp] = {p}, Sn(T )
is finite.

iii) ⇒ iv) For each i, we can find a formula θi such that θi ∈ pi and
¬θi ∈ pj for i �= j. Then, θi isolates pi. For any formula ψ(v1, . . . , vn),

T |= ψ(v) ↔
∨

ψ∈pi

θi.

Thus, each ψ with free variables v1, . . . , vn is equivalent to
∨
i∈S

θi for some

S ⊆ {1, . . . , m}. There are at most 2m such formulas.
iv) ⇒ i) Let M be a countable model of T . If a ∈ Mn, let Sa = {i ≤ m :

M |= φi(a)}. Then, tpM(a) is isolated by∧
i∈Sa

φi(v) ∧
∧

i�∈Sa

¬φ(v).

Thus, M is atomic and hence, by Theorem 4.2.8, prime. Because there is
a unique prime model, T is ℵ0-categorical.

Theorem 4.4.1 tells us a great deal about definability in ℵ0-categorical
theories. Recall that b is algebraic over A if there is a formula φ(v, w) and
a ∈ A such that M |= φ(b, a) and {x ∈ M : M |= φ(x, a)} is finite. Also,
acl(A) = {b ∈ A : b is algebraic over A}.

Corollary 4.4.2 Suppose that T is ℵ0-categorical. There is a function f :
N → N such that if M |= T , A ⊂ M , and |A| ≤ n, then |acl(A)| ≤ f(n).
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Proof By Theorem 4.4.1, |Sn+1(T )| is finite. Let q1, . . . , qk list all n + 1-
types. Let X = {i : qi contains a formula φ(v, w) such that M |=
∀v0, . . . , vN

∧N
i=0 φ(vi, w) →

∨
i<j≤N vi = vj for some N}. For i ∈ X,

let Ni be the least N such that some formula φ,

∀v0, . . . , vN

N∧
i=0

φ(vi, w) →
∨
i<j

vi = vj ,

is in qi.
If a, b1, . . . , bn ∈ M and a is algebraic over b, then (a, b) realizes some

qi ∈ X and |{x : (x, b) realizes qi}| ≤ Ni. Thus,

|acl(b1, . . . , bn)| ≤
∑
i∈X

Ni.

Let
f(n) =

∑
i∈X

Ni.

Corollary 4.4.2 is very useful in understanding algebraic examples.

Corollary 4.4.3 If F is an infinite field, then the theory of F is not ℵ0-
categorical.

Proof By compactness, we can find an elementary extension K of F such
that K contains a transcendental element t. Because t, t2, t3, . . . are distinct,
acl(t) is infinite. Thus, by Corollary 4.4.2, Th(F ) is not ℵ0-categorical.

For groups, the situation is more interesting. We study groups in the
multiplicative language L = {·, 1}. We say that a group G is locally finite
if, for any finite X ⊆ G, the subgroup generated by X is finite.

Corollary 4.4.4 Let G be an infinite group.
i) If Th(G) is ℵ0-categorical, then G is locally finite. Moreover, there is

a number b such that if g ∈ G, then gn = 1 for some n ≤ b (we say that G
has bounded exponent).

ii) If G is an infinite Abelian group of bounded exponent, then Th(G) is
ℵ0-categorical.

Proof
i) By Corollary 4.4.2, there is a function f : N → N such that if |X| ≤ n,

the group generated by X has size at most f(n). In particular, if g ∈ G,
then gn = 1 for some n ≤ f(1).

ii) Suppose that G is a countable abelian group of bounded exponent.
Then, there are q1, . . . , qm distinct prime powers such that

G ∼= (Z/q1Z)n1 ⊕ . . . ⊕ (Z/qkZ)nk ⊕
∞⊕

i=1

Z/qk+1Z ⊕ . . . ⊕
∞⊕

i=1

Z/qmZ
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where ni ∈ N for i ≤ k. Because G is infinite, we must have k < m.
Let qi = pli

i , where pi is a prime. The group (Z/qiZ)ni has pnili
i −p

ni(li−1)
i

elements of order exactly qi. If g ∈ (Z/qiZ)ni has order less than qi, then
there is h ∈ (Z/qiZ)ni with pih = g (i.e., g is pi-divisible).

Let T be the theory with the following axioms:
i) the axioms for Abelian groups;
ii) ∀x x

∏
qi = 1;

iii) there are pnili
i − p

ni(li−1)
i elements of order exactly qi that are not

pi-divisible for i ≤ k;
iv) there are infinitely many elements of order exactly qi that are not

pi-divisible for i > k.
By the remarks above G |= T . If H is a countable model of T , then

H ∼= G. Thus, T is ℵ0-categorical.

We now move on to Vaught’s result that I(T,ℵ0) �= 2. We will use the
next lemma, although we leave the proof for the exercises.

Lemma 4.4.5 Let κ ≥ ℵ0. Let A ⊂ M with |A| < κ. Let MA be the LA-
structure obtained from M by interpreting the new constant symbols in the
natural way. If M is κ-saturated, then so is MA.

Theorem 4.4.6 I(T,ℵ0) �= 2.

Proof Suppose that I(T,ℵ0) = 2. By Corollary 4.3.8 ii), there is N a prime
model of T and M a countable saturated model of T . Because T is not
ℵ0-categorical, by Theorem 4.4.1, there is a nonisolated type p ∈ Sn(T ) for
some n. The type p is realized in M and omitted in N . Let a ∈ M realize
p. Let T ∗ be the La-theory of Ma (in the notation of the previous lemma).

By Theorem 4.4.1, there are infinitely many T -inequivalent formulas in
the free variables v1, . . . , vn. As they are still T ∗-inequivalent, T ∗ is not
ℵ0-categorical. By Lemma 4.4.5, Ma is a saturated La-structure. Thus, by
Corollary 4.3.8 i), T ∗ has a countable atomic model A. Let B denote the
L-reduct of B. Because A |= T ∗, B contains a realization of p, thus B �∼= N .
Because T ∗ is not ℵ0-categorical, there is a nonisolated La-type. This type
is not realized in A. Thus A is not saturated. If B were saturated, then, by
Lemma 4.4.5, A would be saturated. Thus, B �∼= M and I(T,ℵ0) ≥ 3.

Morley’s Analysis of Countable Models
Next we prove Morley’s theorem that if I(T,ℵ0) > ℵ1, then I(T,ℵ0) = 2ℵ0 .
As in the proof of Theorem 2.4.15 , we will use infinitary logic to analyze
countable models.

Definition 4.4.7 A fragment of Lω1,ω is a set of Lω1,ω-formulas contain-
ing all first-order formulas and closed under subformulas, finite Boolean
combinations, quantification, and change of free variables.
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If F is a fragment of Lω1,ω, we say that M ≡F N if

M |= φ if and only if N |= φ

for all sentences φ ∈ F .
If F is a fragment of Lω1,ω, we say that p ⊂ F is an F -type if

there is a countable L-structure M and a1, . . . , an ∈ M such that p =
{φ(v1, . . . , vn) ∈ F : M |= φ(a)}. Let Sn(F, T ) be the set of all F -types
realized by some n-tuple in some countable model of T .

We will count models by counting types for various fragments. If
|Sn(F, T )| = 2ℵ0 for some countable fragment F , then, because a countable
model can realize only countably many types, we must have I(T,ℵ0) = 2ℵ0 .

Next, we look at a case where we have the minimal number of types for
all countable fragments.

Definition 4.4.8 We say that an L-theory T is scattered if |Sn(F, T )| is
countable for all countable fragments F of Lω1,ω and all n < ω.

In particular, if T is scattered, then for countable fragments F , there are
only countably many ≡F -classes of countable models of T . We will show
that if T is scattered, then I(T,ℵ0) ≤ ℵ1.

Suppose that T is scattered. We build a sequence of countable fragments
(Lα : α < ω1) as follows. Let L0 be all first-order L-formulas. If α is a limit
ordinal, then Lα =

⋃
β<α Lβ .

Suppose that Lα is a countable fragment. For p ∈ Sn(Lα, T ), let
Φp(v1, . . . , vn) be the Lω1,ω-formula

∧
φ∈p

φ. This is an Lω1,ω-formula be-

cause Lα is countable. Let Lα+1 be the smallest fragment containing Φp

for p ∈ Sn(Lα, T ), n < ω. Because T is scattered, Lα+1 is a countable
fragment.

If M is a countable model of T and a1, . . . , an ∈ M , let tpM
α (a) ∈

Sn(Lα, T ) be the Lα-type realized by a in M .

Lemma 4.4.9 For each countable M |= T , there is an ordinal γ < ω1
such that if a, b ∈ Mn and tpM

γ (a) = tpM
γ (b), then tpM

α (a) = tpM
α (b) for

all α < ω1.
We call the least such γ the height of M.

Proof Note first that if tpM
α (a) �= tpM

α (b), then tpM
β (a) �= tpM

β (b) for all
β > α. For a, b in Mn, let

f(a, b) =
{

−1 tpM
α (a) = tpM

α (b) for all α < ω1
α if α is least tpM

α (a) �= tpM
α (b).

Because M is countable, we can find γ < ω1 such that γ > f(a, b) for all
a, b ∈ Mn and n < ω.
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Lemma 4.4.10 Suppose that M and N are countable models of T such
that M has height γ and M ≡Lγ+1 N . If a, b ∈ Nn and tpN

γ (a) = tpN
γ (b),

then tpN
γ+1(a) = tpN

γ+1(b).

Proof Let p = tpN
γ (a) = tpN

γ (b) and let ψ(v) be an Lγ+1-formula. Let Θ
be the Lγ+1-formula

∀v∀w ((Φp(v) ∧ Φp(w)) → (ψ(v) ↔ ψ(w))).

Because γ is the height of M, M |= Θ. Because N ≡Lγ+1 M, N |= Θ.
Thus tpN

γ+1(a) = tpN
γ+1(b).

Lemma 4.4.11 If M and N are countable models of T such that M has
height γ and M ≡Lγ+1 N , then M ∼= N .

Proof Let a0, a1, . . . list M and let b0, b1, . . . list N . We build a sequence
of finite partial embeddings f0 ⊆ f1 ⊆ . . . such that if a is the domain of fn,
then tpM

γ (a) = tpN
γ (fn(a)). We will ensure that an is in the domain of fn+1

and bn is in the image of fn+1. Then f =
⋃

fn is the desired isomorphism.
Let f0 = ∅. Suppose that a is the domain of fn and fn(a) = b. Let

p = tpM
γ (a, an). We must find e ∈ N such that tpN

γ (b, e) = p. Because

M |= ∃v∃w
∧
φ∈p

φ(v, w)

and this is an Lγ+1-sentence,

N |= ∃v∃w
∧
φ∈p

φ(v, w).

Let (c, d) ∈ N realize p. Because a and c realize the same Lγ-type, c and
b realize the same Lγ -type. By Lemma 4.4.10, c and b realize the same
Lγ+1-type. Because

N |= ∃w
∧
φ∈p

φ(c, w)

and this is an Lγ+1-formula,

N |= ∃w
∧
φ∈p

φ(b, w).

Thus, there is e ∈ N such that p = tpN
γ (b, e).

By a symmetric argument, we can find s ∈ M such that tpM
γ (a, an, s) =

tpN
γ (b, e, bn). Let fn+1 = fn ∪ {(an, e), (s, bn)}.

Theorem 4.4.12 If T is scattered, then I(T,ℵ0) ≤ ℵ1.
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Proof For each countable M |= T , let i(M) = (γ, tpM
γ+1(∅)), where γ is

the height of M. Note that M ≡Lα
N if and only if tpM

α (∅) = tpN
α (∅).

By Lemma 4.4.11, if M and N are countable models of T , then M ∼= N
if and only i(M) = i(N ). There are only ℵ1 possible heights and, for any
given α, there are only ℵ0 possibilities for tpM

α (∅). Thus I(T,ℵ0) ≤ ℵ1.

To finish the proof of Morley’s theorem, we will show that if T is not
scattered, then |Sn(F, T )| = 2ℵ0 for some countable fragment F . Although
this is a generalization of Theorem 4.2.11 i), complications arise because we
do not have the Compactness Theorem in Lω1,ω. The proof requires some
ideas from descriptive set theory.

Suppose F is a fragment of Lω1,ω. We will consider L-structures where
the universe of the models is ω. If M = (ω, . . .) is an L-structure, the
F -diagram of M is {φ(v0, . . . , vn) ∈ F : M |= φ(0, 1, . . . , n)}.

We consider D(F, T ) the set of all possible F -diagrams of models of T .
There is a natural bijection between the power set P(F ) and 2F , the set
of all functions from F to {0, 1} (identifying a set with its characteristic
function). Because D(F, T ) is a set of subsets of F , we can view D(F, T ) as a
subset of 2F . If we think of {0, 1} as the two-element space with the discrete
topology, then we can give 2F the product topology. The topology on 2F

has a basis of clopen sets of the form {f ∈ 2F : ∀x ∈ F0 f(x) = σ(x)} where
F0 ⊆ F is finite and σ : F0 → 2. If F is countable, then 2F is homeomorphic
to 2ω.

Lemma 4.4.13 If F is a countable fragment of Lω1,ω, then D(F, T ) is a
Borel subset of 2F .2

Proof Let

E0 = {f ∈ 2F : f(φ) = 1 ⇔ f(¬φ) = 0 for all φ ∈ F}
=

⋂
φ∈F

{f ∈ 2F : (f(φ) = 0 ∧ f(¬φ) = 1) ∨ (f(φ) = 1 ∧ f(¬φ) = 0)}.

Because E0 is an intersection of clopen sets, E0 is closed.
Let E1 = {f ∈ 2F : f(∃vφ(v)) = 1 if and only if f(φ(vi)) = 1 for some i

for all φ ∈ F with one free variable}. If

E+
1,φ = {f ∈ 2F : f(∃vφ(v)) = 1} ∩

∞⋃
i=0

{f ∈ 2F : f(φ(vi)) = 1}

and

E−
1,φ = {f ∈ 2F : f(∃vφ(v)) = 0} ∩

∞⋂
i=0

{f ∈ 2F : f(φ(vi)) = 0},

2Recall that the collection of Borel subsets of 2F is the smallest collection of sets
containing the open sets and closed under complement and countable unions and inter-
sections.
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then
E1 =

⋂
φ∈F

(E+
1,φ ∪ E−

1,φ)

and E1 is Borel.
If ψ =

∧
i∈I

φi and ψ ∈ F , let

E2,ψ = {f ∈ 2F : f(ψ) = 1 if and only if f(φi) = 1 for all i ∈ I}.

Because I is countable, we argue as above that E2,ψ is Borel. Thus

E2 =
⋂{

E2,ψ : ψ =
∧
i∈I

φi and ψ ∈ F
}

is Borel. Similarly the following sets are Borel:
E3 = {f ∈ 2F : f(vi = vj) = 0 for all i �= j},
E4 = {f ∈ 2F : f(vi = vi) = 1 for all i},
E5 = {f ∈ 2F : f(vi = vj → vj = vi) = 1 for all i, j},
E6 = {f ∈ 2F : f((vi = vj ∧ vj = vk) → vi = vk) = 1 for all i, j, k}, and
E7 = {f ∈ 2F : f(φ) = 1 for all φ ∈ T}.
Let D = E0 ∩ . . . ∩ E7. Clearly, D is Borel. We claim that D = D(F, T ).

It is easy to see that if M |= T with universe ω, then the F -diagram of M
is in D.

Suppose that f ∈ D. We build an L-structure Mf with universe ω. If
R is an n-ary relation symbol of L, then (i1, . . . , in) ∈ RMf if and only if
f(R(vi1 , . . . , vin

)) = 1. Let g be an n-ary function symbol of L. Because f ∈
E7, f(∃vg(vi1 , . . . , vin

) = v) = 1. Because f ∈ E1, f(g(vi1 , . . . , iin
) = vj) =

1 for some j. Let gMf (i1, . . . , in) = j. Because f ∈ D, f(g(vi1 , . . . , iin
) =

vk) = 0 for j �= k and gMf is well-defined. Now, using the fact that f ∈ D,
we can do an induction on formulas to show that

Mf |= φ(i1, . . . , in) ⇔ f(φ(vi1 , . . . , vin
)) = 1

for all φ ∈ F . Thus, f is in D(F, T ).

We may also view Sn(F, T ) as a subset of 2F . Although this set may not
be Borel, it is not much more complicated.

We construct a continuous map Ψ such that Sn(F, T ) is the image of
D(F, T ) under this map. For f ∈ 2F , let Ψ(f) ∈ 2F , where

Ψ(f)(φ) =
{

1 φ has free variable v0, . . . , vn−1 and f(φ) = 1
0 otherwise.

Because Ψ(f)(φ) = Ψ(g)(φ) if f(φ) = g(φ), Ψ is continuous. If p ∈
Sn(F, T ), then there is M |= T with universe ω such that (0, 1, . . . , n − 1)
realizes p in M. Thus, the space of F -types Sn(F, T ) is the image of D(F, T )
under Ψ.



4.5 Exercises and Remarks 163

We now need a classical result from descriptive set theory.

Definition 4.4.14 If |X| = ℵ0, we say that Y ⊆ 2X is analytic if there is
a continuous map τ : 2X → 2X and a Borel set B ⊆ 2X such that Y is the
image of B under τ .

By the remarks above Sn(F, T ) is an analytic subset of 2F for any count-
able fragment F .

Theorem 4.4.15 Suppose that X is countable and Y ⊆ 2X is analytic. If
|Y | > ℵ0, then |Y | = 2ℵ0.

Proof See [52] 14.13.

Theorem 4.4.16 Let T be a complete theory in a countable language. If
I(T,ℵ0) > ℵ1, then I(T,ℵ0) = 2ℵ0 .

Proof For any countable fragment F , Sn(F, T ) is analytic. Thus, by The-
orem 4.4.15, we either have |Sn(F, T )| ≤ ℵ0 or |Sn(F, T )| = 2ℵ0 . If there is
any countable fragment F , where |Sn(F, T )| = 2ℵ0 , then I(T,ℵ0) = 2ℵ0 . If
not, then T is scattered and, by Theorem 4.4.12, I(T,ℵ0) ≤ ℵ1.

4.5 Exercises and Remarks

We assume throughout that L is a countable language and that T is an
L-theory with only infinite models.

Exercise 4.5.1 a) Let M = (X, <) be a dense linear order, let A ⊂ M and
b, c ∈ Mn with b1 < . . . < bn and c1 < . . . < cn. Show that tpM(a/A) =
tpM(b/A) if and only if bi < a ⇔ ci < a and bi > a ⇔ ci < a for all
i = 1, . . . , n and a ∈ A. In particular, show that any two elements of X
realize the same 1-type over ∅.

b) If a, b ∈ Q, then tpQ(a/N) = tpQ(b/N) if and only if there is an
automorphism σ of Q fixing N pointwise with σ(a) = b.

c) Let A = {1 − 1
n : n = 1, 2, . . .} ∪ {2 + 1

n : n = 1, 2, . . .}. Show that
1 and 2 realize the same type over A, but there is no automorphism of Q

fixing A pointwise sending 1 to 2.

Exercise 4.5.2 Let T be the theory of (Z, s) where s(x) = x+1. Determine
the types in Sn(T ) for each n. Which types are isolated? Do the same for
(Z, <, s).

Exercise 4.5.3 Recall that for A ⊂ M , dcl(A) denotes the definable
closure of A (see Exercise 1.4.10). Show that if a, b ∈ Mn and tpM(a/A) =
tpM(b/A), then tpM(a/dcl(A)) = tpM(b/dcl(A)).

Exercise 4.5.4 Suppose that M is an L-structure, A ⊆ M , b ∈ M , and b
is algebraic over A (see Exercise 1.4.11). Show that tpM(b/A) is isolated.
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Exercise 4.5.5 Let K be an algebraically closed field and k be a subfield
of K. What are the isolated types in SK

1 (k)?

Exercise 4.5.6 Let R be a real closed field. Show that 1-types over R
correspond to cuts in the ordering (R,<).

Exercise 4.5.7 Let T be a complete extension of Peano arithmetic. Show
that |S1(T )| = 2ℵ0 . [Hint: Let pn be the nth prime number. For X ⊆ N, let
ΓX(v) = {pn divides v : n ∈ X} ∪ {pn does not divide v : n �∈ X}.]

Exercise 4.5.8 † If A is a commutative ring, then an ideal P ⊂ A is real
if whenever a2

1 + . . . + a2
n ∈ P , then a1, . . . , an ∈ P .

a) Show that a prime ideal P is real if and only if A/P is orderable.
Let Specr(A) = {(P, <) : P ⊂ A is a real prime ideal and < is an

ordering of A/P}. We call Specr(A) the real spectrum of A. If a ∈ A, let
Xa = {(P, <) ∈ Specr(A) : a/P > 0 in A/P}. We topologize Specr(A) by
taking the weakest topology in which the sets Xa are open.

If R is a real closed field, k is a subfield of R, and p ∈ SR
n (k), let Pp =

{f ∈ k[X1, . . . , Xn] : f(v1, . . . , vn) = 0 ∈ p}.
b) Show that Pp is a real prime ideal.
c) Show that we can order k[X]/Pp by f(X)/Pp <p g(X)/Pp if and only

if f(v) < g(v) ∈ p. Thus (Pp, <p) ∈ Specr(k[X]).
d) Show that p 	→ (Pp, <p) is a continuous bijection between SR

n (k) and
Specr(k[X]).

e) Show that Specr(k[X]) is compact.
f) What are the isolated types in SR

1 (k)?

Exercise 4.5.9 Let x and y be algebraically independent over R. Order
R(x, y) such that x > r for all r ∈ R and y > xn for all n > 0. Let F
be the real closure of R(x, y). Show that tpF (x) = tpF (y), but there is no
automorphism of F sending x to y.

Exercise 4.5.10 Suppose that A ⊆ B, θ(v) is a formula with parameters
from A, and θ isolates tpM(a/B). Then, θ isolates tpM(a/A).

Exercise 4.5.11 Suppose that A ⊂ M , a, b ∈ M such that tpM(a, b/A) is
isolated. Show that tpM(a/A, b) is isolated.

Combining this with Lemma s4.2.9 and 4.2.21, we have shown that
tpM(a, b/A) is isolated if and only if tpM(a/A, b) is isolated and tpM(b/A)
is isolated.

Exercise 4.5.12 Prove Lemma 4.1.9 iii).

Exercise 4.5.13 Let ∆ be a set of L-formulas closed under ∧,∨,¬ and
let M be an L-structure. Let S∆

n (T ) = {Σ ⊂ ∆ : Σ ∪ T is satisfiable and
φ ∈ Σ or ¬φ ∈ Σ for all φ ∈ ∆}.

a) Show that for all p ∈ S∆
n (T ) there is q ∈ Sn(T ) with p ⊆ q.

b) Suppose that for each n and each p ∈ S∆
n (T ) there is a unique q ∈

Sn(T ) with p ⊆ q. Show that for every L-formula φ(v) there is ψ(v) ∈ ∆
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such that T |= φ(v) ↔ ψ(v). In particular, if every quantifier-free type has
a unique extension to a complete type, then T has quantifier elimination.

Exercise 4.5.14 † We continue with the notation from Exercise 2.5.24.
Suppose that p is a non-isolated n-type over ∅ and c1, . . . , cn are constants
in L∗. Let D′

p,c = {Σ ∈ P : ¬φ(c) ∈ Σ for some φ(v1, . . . , vn) ∈ p}.
a) Show that D′

p,c is dense.
b) Use a) and Exercise 2.5.24 to give another proof of Theorem 4.2.4.
c) Assume that Martin’s Axiom is true (see Appendix A). Suppose that

L is a countable language, T is an L-theory, and X is a collection of noniso-
lated types over ∅ with |X| < 2ℵ0 . Show that there is a countable M |= T
that omits all of the types p ∈ X.

Exercise 4.5.15 We say that a linear order (X, <) is ℵ1-like if |X| = ℵ1
but |{y : y < x}| ≤ ℵ0 for all x ∈ X.

Show that there is an ℵ1-like model of Peano arithmetic.

Exercise 4.5.16 Let Ln = {U0, U1, . . . , Un}, where U0, U1, . . . , Un are
unary predicates. Let Tn be the Ln-theory that asserts that for each
X ⊆ {0, . . . , n} there are infinitely many x such that Ui(x) for i ∈ X
and ¬Ui(x) for i �∈ X.

a) For which κ is Tn κ-categorical?
b) Show that Tn is complete.
c) Show that Tn has quantifier elimination. [Remark: It is probably eas-

iest to do this explicitly.]
Let L =

⋃
Ln. For X and Y finite subsets of N, let ΦX,Y be the sentence

∃x
∧
i∈X

Ui(x) ∧
∧
i∈Y

¬Ui(x).

Let T be the L-theory {ΦX,Y : X, Y disjoint finite subsets of N}.
d) Suppose that M |= T . Show that M |= Tn for all n.
e) Show that T is complete and has quantifier elimination.
f) For X ⊂ N, let ΓX = {Ui(v) : i ∈ X} ∪ {¬Ui(v) : i �∈ X}. Show that

there is a unique 1-type pX over ∅ with pX ⊃ ΓX .
g) Show that X 	→ pX is a bijection between 2ω and SM

1 (∅).
h) Show that SM

1 (∅) has no isolated points and hence has no prime
model.

i) If 2ω is given the product topology, then X 	→ pX is a homeomorphism
between 2ω and SM

1 (∅).
j) Describe all 2-types over ∅.
k) Show that T is κ-stable for all κ ≥ 2ℵ0 .

Exercise 4.5.17 Show that every algebraically closed field is homoge-
neous. Show that any uncountable algebraically closed field is saturated.

Exercise 4.5.18 Suppose that M = (R, +, ·, <, 0, 1) is a real closed
field. Show that M is κ-saturated if and only if the ordering (R,<) is
κ-saturated.
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Exercise 4.5.19 a) Show that the theory of Z-groups is κ-stable for all
κ ≥ 2ℵ0 .

b) Does the theory of Z-groups have prime models over sets?

Exercise 4.5.20 Let L = {E} be the language with a single binary
relation symbol. Let T be the theory of an equivalence relation where for
each n ∈ ω there is a unique equivalence class of size n.

a) Show that T is ω-stable but not ℵ1-categorical.
b) Exhibit a Vaughtian pair of models of T .

Exercise 4.5.21 Show that DLO is not κ-stable for any infinite κ.

Exercise 4.5.22 Let L = {E1, E2, E3, . . .}, and let T be the theory assert-
ing that:

i) each En is an equivalence relation where every equivalence class is
infinite;

ii) if xEi+1y, then xEiy.
We say that E1, E2, . . . is a family of refining equivalence relations.
Let T 2 ⊃ T be the theory that asserts that E1 has two classes and each

Ei class is the union of two infinite Ei+1 classes.
Let T∞ ⊃ T be the theory that asserts that E1 has infinitely many classes

and each Ei class is the union of infinitely many infinite Ei+1 classes.
For example, if En is the equivalence relation f |n = g|n on ωω, then

(ωω, E1, E2, . . .) |= T∞ and (2ω, E1, E2, . . .) |= T 2. Both T 2 and T ∞ are
complete theories with quantifier elimination.

a) Show that T 2 is κ-stable for all κ ≥ 2ℵ0 .
b) Show that T∞ is κ-stable if and only if κ such that κℵ0 = κ.

Exercise 4.5.23 Suppose that M is interpretable in N and κ ≥ ℵ0.
a) Show that if M is κ-stable, then N is κ-stable.
b) Show that if M is κ-stable, then Meq is κ-stable.
c) Show that if M is κ-saturated, then N is κ-saturated.

Exercise 4.5.24 We say that M |= T is minimal if M has no proper
elementary submodels.

a) Show that the field of algebraic numbers is a minimal model of ACF
and that the field of real algebraic numbers is a minimal model of RCF.

b) Give an example of a theory with a prime model that is not minimal.

Exercise 4.5.25 Suppose that T is a theory in a countable language with
a prime model M that is not minimal. We will show that T has an atomic
model of size ℵ1.

a) Show that there is an elementary embedding j : M → M such that
j(M) �= M.

b) Use a) to show that there is M ≺ N , M ∼= N and M �= N .
c) Show that if M0 ≺ M1 ≺ M2 . . . and each Mi

∼= M, then
⋃

Mi
∼=

M. [Hint: Use the uniqueness of atomic models.]
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d) Use b) and c) to construct an elementary chain (Mα : α < ω1) such
that each Mα

∼= M and Mα �= Mα+1. Let M′ =
⋃

α<ω1
Mα. Show that

M′ is atomic and |M ′| = ℵ1.
e) Show that if T is not ℵ0-categorical, then T has a nonatomic model

of size ℵ1. Conclude that if T is ℵ1-categorical, but not ℵ0-categorical,
then any prime model is minimal. (We will prove in Corollary 5.2.10 that
ℵ1-categorical theories are ω-stable, thus there always is a prime model.)

f) Give an example of a theory that is ℵ1-categorical and ℵ0-categorical
but has a prime model that is not minimal.

Exercise 4.5.26 Let L = {U, <}, where U is a unary predicate and < is
a binary relation symbol. Let T be the L-theory extending DLO where U
picks out a subset that is dense and has a dense complement. Let M |= T
and let A = UM. Show that there is no prime model over A.

Exercise 4.5.27 Suppose that A ⊂ M, |A| ≤ ℵ0, M0, and M1 are
elementary submodels of M with A ⊆ M0 ∩ M1, and M0 and M1 are
prime model extensions of A. Then, M0 and M1 are isomorphic over A
(i.e., there is an isomorphism f : M0 → M1 that fixes A pointwise).

Exercise 4.5.28 Suppose that T is an o-minimal theory, M |= T , and
A ⊆ M . Show that the isolated types in A ⊆ M are dense. Conclude that
o-minimal theories have prime models over sets.

Exercise 4.5.29 Show that the union of an elementary chain of ℵ0-
homogeneous structures is ℵ0-homogeneous.

Exercise 4.5.30 Show that if T is ℵ0-categorical, then any homogeneous
model is saturated. In particular, a dense linear order is saturated if and
only if it is homogeneous.

Exercise 4.5.31 Show that if M is κ-saturated, then every infinite defin-
able subset of Mk has cardinality at least κ.

Exercise 4.5.32 Prove Lemma 4.4.5.

Exercise 4.5.33 Suppose that M is κ-saturated, A ⊂ M , and |A| < κ. If
p ∈ SM

n (A) has only finitely many realizations in M and a realizes p, then
a ∈ acl(p).

Exercise 4.5.34 Suppose that M is κ-saturated, and (φi(v) : i ∈ I) and
(θj(v) : j ∈ J) are sequences of LM -formulas such that |I|, |J | < κ and

M |=
∨
i∈I

φi(v) ↔ ¬

⎛⎝∨
j∈J

θj(v)

⎞⎠ .

Show that there are finite sets I0 ⊆ I and J0 ⊆ J such that

M |=
∨
i∈I

φi(v) ↔
∨

i∈I0

φi(v).
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Exercise 4.5.35 (Expandability of Saturated Models) Suppose that κ ≥
ℵ0 and M is a saturated L-structure of cardinality κ. Let L∗ ⊃ L with
|L∗| ≤ κ. Suppose that T is an L∗-theory consistent with Th(M). We
show that we can interpret the symbols in L∗ \ L to obtain an expansion
M∗ of M with M∗ |= T .

Let L∗
M be the language obtained by adding to L∗ constants for every

element of M. Let (φα : α < κ) enumerate all L∗
M -sentences. We build an

increasing sequence of L∗-theories (Tα : α < κ) such that Tα∪T∪Diagel(M)
is satisfiable and |Tα| < κ for all α < κ (indeed |Tα+1| ≤ |Tα| + 2).

Let T0 = ∅. For α a limit ordinal, let Tα =
⋃

β<α Tβ . Suppose that we
have Tα such that |Tα| < κ and Tα ∪ T ∪ Diagel(M) is satisfiable.

a) Show that either Tα ∪ {φα} ∪ T ∪ Diagel(M) is satisfiable or Tα ∪
{¬φα} ∪ T ∪ Diagel(M) is satisfiable.

b) Show that if φα is ∃v ψ(v) and Tα∪{φα}∪T ∪Diagel(M) is satisfiable,
then for some a ∈ M , Tα ∪{φα, ψ(a)}∪T ∪Diagel(M) is satisfiable. [Hint:
Let A ⊂ M be all parameters from M occurring in formulas in Tα ∪ {φα}.
Let Γ(v) be all of the LA-consequences of Tα ∪{φα, ψ(v)}∪T ∪Diagel(M).
Show that Γ(v) is satisfiable and hence, by saturation, must be realized by
some a in M. Show that Tα ∪ {φα, ψ(a)} ∪ T ∪ Diagel(M) is satisfiable.]

c) Show that we can always choose Tα+1 such that
i) Tα+1 ∪ T ∪ Diagel(M) is satisfiable;
ii) either φα ∈ Tα+1 or ¬φα ∈ Tα+1;
iii) if φα ∈ Tα+1 and φα is ∃v ψ(v), then ψ(a) ∈ Tα+1 for some a ∈ M ;
iv) |Tα+1| ≤ |Tα| + 2 < κ.

Let T ∗ =
⋃

α<κ Tα.
d) Show that T ∗ is a complete L∗

M -theory with the witness property and
T ∗ ⊃ T ∪ Diagel(M). Let N be the canonical model of T ∗. Show that as
an L-structure N is exactly M. Thus, N is the desired expansion of M to
a model of T .

Exercise 4.5.36 Let L = {U0, U1, . . .} ∪ {s0, s1, . . .}. We describe an L-
structure M with universe N × Z. Let UM

i = {i} × Z and

si((j, x)) =
{

(j, x) if i �= j
(j, x + 1) if i = j.

Let T be the full theory of M. Basically, T is the theory of countably many
copies of (Z, s).

a) Show that |Sn(T )| = ℵ0 for all n. (Either show or assume that T has
quantifier elimination.)

b) Show that I(T,ℵ0) = 2ℵ0 .

Exercise 4.5.37 (ℵ1-saturation of Ultraproducts) Suppose that U is a non
principal ultrafilter on ω. Let (M0,M1, . . .) be a sequence of L-structures,
and let M∗ =

∏
Mi/U . We will show that M∗ is ℵ1-saturated.
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Let A ⊂ M∗ be countable. For each a ∈ A, choose fa ∈
∏

Mi such that
a = fa/ ∼. Let Γ(v) = {φi(v) : i < ω} be a set of LA-formulas such that
Γ(v) ∪ ThA(M∗) is satisfiable. By taking conjunctions, we may, without
loss of generality, assume that φi+1(v) → φi(v) for i < ω. Let φi(v) be
θi(v, ai,1, . . . , ai,mi

), where θi is an L-formula.
a) Let Di = {n < ω : Mn |= ∃vθi(v, fai,1(n), . . . , fai,mi

(n))}. Show that
Di ∈ U .

b) Find g ∈
∏

Mi such that if i ≤ n and n ∈ Di, then

Mn |= θi(g(n), fai,1(n), . . . , fai,mi
(n)).

c) Show that g realizes Γ(v). Where do you use the fact that U is non-
principal? Conclude that M∗ is ℵ1-saturated. Show that if the Continuum
Hypothesis holds, then M∗ is saturated.

Exercise 4.5.38 (Recursively Saturated Models) Let L be a recursive
language. We say that M is recursively saturated if whenever A ⊂ M is
finite and Γ is a recursive (possibly incomplete) n-type over A, then Γ is
realized in M. In particular, every ℵ0-saturated structure is recursively
saturated.

a) Suppose that N is a countable model of T . Show that there is a
countable recursively saturated M with N ≺ M.

b) Show that if M is recursively saturated, then M is ℵ0-homogeneous.
[Hint: If tp(a) = tp(b), consider the set of formulas {φ(v, b) ↔ φ(c, a) : φ
an L-formula}.]

c) Show that if M0 ≺ M1 ≺ . . . is an elementary chain of recursively
saturated models, then M =

⋃
n∈ω Mn is recursively saturated.

d) Suppose M,N |= T and such that (M,N ) is a countable recursively
saturated model of the theory of pairs of models of T (as in our proof of
Vaught’s Two-Cardinal Theorem). Show M ∼= N . [Hint: Recall that count-
able ℵ0-homogeneous models are isomorphic if and only if they realize the
same types.] Use this to give a simplified proof of Vaught’s Two-Cardinal
Theorem.

e) Let M be a recursively saturated L-structure. Suppose that L∗ ⊃ L
is recursive and T is a recursive L∗-theory such that Diagel(M) ∪ T is
satisfiable. Show that there is an expansion of M∗ of M such that M∗ |= T .
[Hint: Follow the proof of expandability of saturated models.] Show that
we can make M∗ recursively saturated.

Exercise 4.5.39 (Robinson’s Consistency Theorem) Let L0 and L1 be
languages, and let L = L1 ∩ L2. Let T be a complete L-theory and let
Ti ⊃ T be a satisfiable Li-theory for i = 1, 2.

a) Show that there is a recursively saturated structure (M1,M2) where
Mi |= Ti for i = 1, 2.

b) Let Ni be the L-reduct of Mi. Show that (N1,N2) is still recursively
saturated and that N1 ∼= N2.
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c) Conclude that we can view M1 and M2 as expansions of a single
L-structure and that T1 ∪ T2 is satisfiable.

Exercise 4.5.40 † Let M be a nonstandard model of Peano arithmetic.
a) Let A be a finite subset of M, and let Γ be a recursive type over A

of bounded quantifier complexity (i.e., there is n such that all formulas in
Γ have at most n-quantifiers). Show that Γ is realized in M. [Hint: (see
[51] §9). There is a formula S(v, w) that is a truth definition for formulas
with at most n quantifiers. In other words if "φ# is the Gödel code for a
formula φ(v1, . . . , vn) and "b# codes a sequence b = (b1, . . . , bn) ∈ Mn, then
M |= S("φ#, b) ↔ φ(b1, . . . , bn). Because Γ is recursive, there is a formula
G("φ#) if and only if φ(v, a) ∈ Γ. Because Γ is satisfiable for all n < ω

M |= ∃b∀m < n G(m) → S(m, "(b, a)#)#.

Apply overspill (Exercise 2.5.7).]
b) Let (G, +, <, 0) be the ordered additive group of M. Use a) to show

that G is a recursively saturated model of Presburger arithmetic.

Exercise 4.5.41 † (Tennenbaum’s Theorem) If M is a nonstandard model
of Peano arithmetic and a ∈ M , let r(a) = {n ∈ N : pn divides a}, where pn

is the nth prime number. Let SS(M) = {r(a) : a ∈ M}. We call SS(M)
the Scott set of M.

a) Suppose that X ∈ SS(M) and Y is recursive in X, then Y ∈ SS(M).
[Hint: use Exercise 4.5.40.]

b) We say that T ⊆ 2<ω is a tree if whenever σ ∈ T and τ ⊂ σ, then
τ ∈ T . We say that f ∈ 2ω is an infinite path through T if f |n ∈ T for all
n < ω. Show that if X ∈ SS(M) and T is an infinite tree recursive in X,
then there is Y ∈ SS(M) and f an infinite path through T recursive in Y .
[Hint: use Exercise 4.5.40.]

c) Let φ0, φ1, . . . be a list of all partial recursive functions. We write
φi(n) ↓= j if on input n Turing machine i halts with output j. Let A = {i :
φi(i) ↓= 0} and B = {i : φi(i) ↓= 1}. Show that there is no recursive set C
such that A ⊆ C and B ∩ C = ∅. We call A and B recursively inseparable.
[Hint: Suppose that φi is the characteristic function of C and ask whether
i ∈ C.]

d) There is a recursive infinite tree T ⊆ 2<ω with no recursive infinite
paths. [Hint: Let T = {σ ∈ 2<ω : if i < |σ| and Turing machine i on input
i halts by stage |σ| with output j ∈ {0, 1}, then σ(i) = j}. Show that if f
is a recursive infinite path through T , then C = {i : f(i) = 0} contradicts
c).]

e) We can find an isomorphic copy of M with universe ω. Thus, we may
assume that M = (ω,⊕,⊗). Show that r(a) is recursive in ⊕ for all a ∈ M .
Conclude that ⊕ is not recursive.

Exercise 4.5.42 Show that there is no Vaughtian pair of real closed fields.
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Exercise 4.5.43 Let k be a differential field, K |= DCF, and k ⊆ K. The
ring of differential polynomials in X = (X1, . . . , Xn) is the ring

k{X1, . . . , Xn} = k[X1, . . . , Xn, X ′
1, . . . , X

′
n, . . . , X

(m)
1 , . . . , X(m)

n , . . .].

We extend the derivation from k to k{X} by letting δ(X(m)
n ) = X

(m+1)
n .

An ideal I ⊂ k{X} is called a differential ideal if δ(f) ∈ I whenever f ∈ I.
a) For p ∈ SK

n (k), let Ip = {f ∈ k{X} : f(v1, . . . , vn) = 0 ∈ p}. Show
that Ip is a differential prime ideal.

b) Show that if I ⊂ k{X} is a differential prime ideal, then I = Ip for
some p ∈ SK

n (k). Thus, p 	→ Ip is a bijection between complete n-types
over k and differential prime ideals in k{X}.

c) The Ritt–Raudenbusch Basis Theorem (see [50]) asserts that every
differential prime ideal in k{X} is finitely generated. Use this to show that
DCF is ω-stable.

d) If K |= DCF, we say that X ⊆ Kn is Kolchin closed if X is a finite
union of sets of the form {x ∈ Kn : f1(x) = . . . = fm(x) = 0} where
f1, . . . , fm ∈ K{X}. Prove that there are no infinite descending chains of
Kolchin closed sets.

e) (Differential Nullstellensatz) Suppose that K |= DCF, P ⊆
K{X1, . . . , Xn} is a differential prime ideal and g ∈ K{X} \ P . Show that
there is a ∈ Kn such that f(a) = 0 for all f ∈ P but g(a) �= 0.

f) (Existence of Differential Closures) Suppose that k is a differentially
closed field and k ⊆ K |= DCF. We say that K is a differential closure of
k if whenever k ⊆ L and L |= DCF there is a differential field embedding
of K into L fixing k. Show that every field has a differential closure. [Hint:
Show that differential closures are prime model extensions.]

Exercise 4.5.44 Suppose that L is a countable language and T is an L-
theory. Let C = {T ′ ⊇ T : T ′ a complete L-theory}. Show that if |C| ≥ ℵ1,
then |C| = 2ℵ0 . Argue that if Vaught’s Conjecture is true for complete
theories, then it is also true for incomplete theories.

Exercise 4.5.45 Suppose L is a finite language with no function sym-
bols and T is an L-theory with quantifier elimination. Prove that T is
ℵ0-categorical.

Exercise 4.5.46 Describe all ℵ0-categorical linear orders.

Remarks
The Omitting Types Theorem is due to Henkin and Orey , each of whom
used it to prove the Completeness Theorem for ω-logic. Theorem 4.2.5
is due to MacDowell and Specker. Their proof uses an ultraproduct con-
struction and works for uncountable models as well. See [51] §8.2 for further
results on end extensions of models of arithmetic.
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The results on prime models, atomic models, and countable saturated
models are due to Vaught and appear in [99], one of the most elegant
papers in model theory. Theorem 4.3.23 is due to Keisler, and the other
basic results on saturated and homogeneous models are due to Morley and
Vaught.

Recursively saturated models were introduced by Barwise and Schlipf.
Many results that can be proved using saturated models have elegant proofs
using recursively saturated models (see [22] §2.4 or [53]). Friedman showed
the weak recursive saturation of nonstandard models of arithmetic and used
it to prove the following result (see [51] §12.1).

Theorem 4.5.47 If M is a countable nonstandard model of Peano arith-
metic, then there is I a proper initial segment of M with I ∼= M.

The ℵ1-saturation of ultraproducts is due to Keisler (see [22] §6.1 for
generalizations).

Morley introduced ω-stable theories in his proof of Theorem 6.1.1. He
also proved that ω-stable theories have prime model extensions. Shelah
showed that there are three possibilities for {κ ≥ ℵ0 : T is κ-stable}.

Theorem 4.5.48 If T is a complete theory in a countable language, then
one of the following holds:

i) there are no cardinals κ such that T is κ-stable,
ii) T is κ-stable for all κ ≥ 2ℵ0 ,
iii) T is κ-stable if and only if κℵ0 = κ.

A proof of this theorem can be found in [7], [18] or [76]. If i) holds, we
say that T is unstable; otherwise, we say that T is stable. If ii) holds,
we say that T is superstable. By Theorem 4.2.18, every ω-stable theory is
superstable. In Exercise 4.5.22, we gave an example of a superstable theory
that is not ω-stable and a stable theory that is not superstable.

The saturated model test for quantifier elimination is due to Blum, who
also axiomatized the theory of DCF, proved that DCF is ω-stable, and
deduced from that the existence of differential closures.

In Theorem 5.2.15, we will examine another two-cardinal result. There
are many interesting two cardinal questions, but most can not be answered
in ZFC. The following Theorem gives several interesting examples.

Theorem 4.5.49 Let L be a countable language and T an L-theory.
i) Assume that V = L.3 If κ > λ ≥ ℵ0 and T has a (κ, λ)-model, then T

has a (µ+, µ)-model for all infinite cardinals µ.
ii) Assume that V = L. If T has a (κ++, κ)-model for some infinite

cardinal κ, then T has a (λ++, λ)-model for all infinite cardinals λ.

3V = L is Gödel’s Axiom of Constructibility asserting that all sets are constructible
(see [57] or [47]).
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iii) If ZFC is consistent, then it is consistent with ZFC that there is a
countable theory with an (ℵ1,ℵ0)-model but no (ℵ2,ℵ1)-model.

The first result was proved by Chang (see [22] 7.2.7) for regular µ under
the weaker assumption that the Generalized Continuum Hypothesis holds.
The general case is due to Jensen who also proved the second result (see
[27] §VIII). The third result is due to Mitchell and Silver (see [47] §29).

The characterization of ℵ0-categorical theories was proved independently
by Ryll-Nardzewski, Engler, and Svenonius.

Although Vaught’s Conjecture is open for arbitrary theories, we do know
that it holds for several interesting classes of theories.

Theorem 4.5.50 Vaught’s Conjecture holds for:
i) (Shelah [93]) ω-stable theories;
ii) (Buechler [19]) superstable theories of finite U-rank;
iii) (Mayer [69]) o-minimal theories;
iv) (Miller) theories of linear orders with unary predicates;
v) (Steel [98]) theories of trees.

See [100] for more on iv) and v).
Theorem 4.4.16 also follows from another powerful theorem in descriptive

set theory. Consider the equivalence relation on D(L, T ) given by fEg if
and only if Mf

∼= Mg. It is easy to argue that E is an analytic subset of
D(L, T )×D(L, T ). Burgess (see, for example, [98]) proved that any analytic
equivalence relation on a Borel subset of 2ω with at least ℵ2 classes has 2ℵ0

classes.
If φ is an Lω1,ω-sentence, we can ask about the number of nonisomorphic

countable models of φ. Burgess’ Theorem shows that if there are at least
ℵ2 nonisomorphic models, then there are 2ℵ0 , but it is unknown whether
there can be an Lω1,ω-sentence with exactly ℵ1 < 2ℵ0 models.

Questions around Vaught’s Conjecture can be reformulated in a way
that does not involve any model theory. We say that a topological space
X is Polish if it is a complete separable metric space. Suppose that G is
a Polish topological group and G acts continuously on a Borel subset X
of a Polish space X. For example, X could be D(L, T ) and G could be
the group of permutations of ω topologized by taking subbasic open sets
Nn,m = {f : f(n) = m}. The Topological Vaught Conjecture asserts that
if G has uncountably many orbits on X, then G has 2ℵ0 orbits. See [9] for
more on this topic.
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Indiscernibles

5.1 Partition Theorems

In this chapter, we will develop a powerful method for analyzing and con-
structing models. We begin by developing some tools from infinite combi-
natorics that will play a crucial role.

For X a set and κ, λ (possibly finite) cardinals, we let [X]κ be the collec-
tion of all subsets of X of size κ. We call f : [X]κ → λ a partition of [X]κ.
We say that Y ⊆ X is homogeneous for the partition f if there is α < λ
such that f(A) = α for all A ∈ [Y ]κ (i.e., f is constant on [Y ]κ). Finally,
for cardinals κ, η, µ, and λ, we write κ → (η)µ

λ if whenever |X| ≥ κ and
f : [X]µ → λ, then there is Y ⊆ X such that |Y | ≥ η and Y is homogeneous
for f .

The starting point is Ramsey’s Theorem.

Theorem 5.1.1 (Ramsey’s Theorem) If k, n < ω, then ℵ0 → (ℵ0)n
k .

Before proving Ramsey’s Theorem, we give several sample applications
to give the flavor of the subject.

One simple application is the standard fact that any sequence of real
numbers (r0, r1, . . .) has a monotonic subsequence. Let f : [N]2 → 3 by

f({i, j}) =

⎧⎨⎩
0 i < j and ri < rj

1 i < j and ri = rj

2 i < j and ri > rj

.
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By Ramsey’s Theorem, there is Y ⊆ N an infinite homogeneous set for f .
Let j0 < j1 < . . . list Y . There is c < 3 such that f({jm, jn}) = c for m < n.
If c = 0, the sequence rj0 , rj1 , . . . is increasing, if c = 1 it is constant, and
if c = 2 it is decreasing.

For another application, suppose that G is an infinite graph. Let f :
[G]2 → 2 by

f({a, b}) =
{

1 (a, b) is an edge of G
0 (a, b) is not an edge of G

.

By Ramsey’s Theorem, there is an infinite H ⊆ G homogeneous for f .
If f is constantly 1 on [H]2, then H is a complete subgraph, and if f is
constantly 0, there are no edges between vertices in H. Thus, every infinite
graph either has an infinite complete subgraph or an infinite null subgraph.

Proof We prove Ramsey’s Theorem by induction on n. For n = 1, Ram-
sey’s Theorem asserts that if X is infinite, k < ω, and f : X → k, then
f−1(i) is infinite for some i < k. This is just the Pigeonhole Principle that
if we put infinitely many items into finitely many boxes, at least one of the
boxes will contain infinitely many items.

Suppose that we have proved that if i < n, k < ω, X is infinite, and
f : [X]i → k, then there is an infinite Y ⊆ X homogeneous for f .

We could always replace X by a countable subset of X; thus, without
loss of generality, we may assume that X = N.

Let f : [N]n → k. For a ∈ N, let fa : [N \ {a}]n−1 → k by fa(A) =
f(A ∪ {a}). We build a sequence 0 = a0 < a1 < . . . in N and N = X0 ⊃
X1 ⊃ . . . a sequence of infinite sets as follows. Given ai and Xi, let Xi+1 ⊂
Xi \ {0, 1, . . . , ai} be homogeneous for fai

. Let ai+1 be the least element of
Xi+1.

Let ci < k be such that fai
(A) = ci for all A ∈ [Xi+1]n−1. By the

Pigeonhole Principle, there is c < k such that {i : ci = c} is infinite. Let
X = {ai : ci = c}. We claim that X is homogeneous for f . Let x1 < . . . < xn

where each xi ∈ X. There is an i such that x1 = ai and x2, . . . , xn ∈ Xi.
Thus

f({x1, . . . , xn}) = fx1({x2, . . . , xn}) = ci = c

and X is homogeneous for f , as desired.

From Ramsey’s Theorem, we can deduce some results of finite combina-
torics.

Theorem 5.1.2 (Finite Ramsey Theorem) For all k, n, m < ω, there
is l < ω such that l → (m)n

k .

Proof Suppose that there is no l such that l → (m)n
k . For each l < ω,

let Tl = {f : [{0, . . . , l − 1}]n → k : there is no X ⊆ {0, . . . , l − 1} of size
at least m, homogeneous for f}. Clearly, each Tl is finite and if f ∈ Tl+1
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there is a unique g ∈ Tl such that g ⊂ f . Thus, if we order T =
⋃

Tl by
inclusion, we get a finite branching tree. Each Tl is not empty, so T is an
infinite finite branching tree. By König’s Lemma (see Lemma A.21) we can
find f0 ⊂ f1 ⊂ f2 ⊂ . . . with fi ∈ Ti.

Let f =
⋃

fi. Then f : [N]n → k. By Ramsey’s Theorem, there is an infi-
nite X ⊆ N homogeneous for f . Let x1, . . . , xm be the first m elements of X
and let s > xm. Then {x1, . . . , xm} is homogeneous for fs, a contradiction.

Because the finite version of Ramsey’s Theorem is a statement about
the natural numbers, it might be more satisfying to give a direct proof
that does not use infinite methods. Such proofs are well-known to finite
combinatorists (see [36]). The proof we gave, in addition to being quite
slick, also allows us to prove stronger finite versions. In Section 5.4, we will
show that a small variant of the argument allows us to prove a result that
cannot be proved in Peano arithmetic.

When we begin partitioning sets into infinitely many pieces it becomes
harder to find homogeneous sets.

Proposition 5.1.3 2ℵ0 �→ (3)2ℵ0
.

Proof We define F : [2ω]2 → ω by F ({f, g}) is the least n such that
f(n) �= g(n). Clearly, we cannot find {f, g, h} such that f(n) �= g(n),
g(n) �= h(n), and f(n) �= h(n).

On the other hand, if κ > 2ℵ0 , then κ → (ℵ1)2ℵ0
. This is a special case

of an important generalization of Ramsey’s Theorem. For κ an infinite
cardinal and α an ordinal, we inductively define �α(κ) by �0(κ) = κ and

�α(κ) = sup
β<α

2�β(κ).

In particular �1(κ) = 2κ. We let �α = �α(ℵ0). Under the Generalized
Continuum Hypothesis, �α = ℵα.

Theorem 5.1.4 (Erdös–Rado Theorem) �n(κ)+ → (κ+)n+1
κ .

Proof We prove this by induction on n. For n = 0, κ+ → (κ+)1κ is just
the Pigeonhole Principle.

Suppose that we have proved the theorem for n−1. Let λ = �n(κ)+, and
let f : [λ]n+1 → κ. For α < λ, let fα : [λ\{α}]n → κ by fα(A) = f(A∪{α}).

We build X0 ⊆ X1 ⊆ . . . ⊆ Xα ⊆ . . . for α < �n−1(κ)+ such that
Xα ⊆ �n(κ)+ and each Xα has cardinality at most �n(κ). Let X0 = �n(κ).
If α is a limit ordinal, then Xα =

⋃
β<α

Xβ .

Suppose we have Xα with |Xα| = �n(κ). Because

�n(κ)�n−1(κ) = (2�n−1(κ))�n−1(κ) = 2�n−1(κ) = �n(κ),
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there are �n(κ) subsets of Xα of cardinality �n−1(κ). Also note that if
Y ⊂ Xα and |Y | = �n−1(κ), then there are �n(κ) functions g : [Y ]n → κ
because

κ�n−1(κ) = 2�n−1(κ) = �n(κ).

Thus, we can find Xα+1 ⊇ Xα such that |Xα+1| = �n(κ), and if Y ⊂ Xα

with |Y | = �n−1(κ) and β ∈ λ \ Y , then there is γ ∈ Xα+1 \ Y such that
fβ |[Y ]n = fγ |[Y ]n.

Let X =
⋃

α<�n−1(κ)+ Xα. If Y ⊂ X with |Y | ≤ �n−1(κ), then Y ⊂ Xα

for some α < �n(κ)+. If β ∈ λ \ Y , then there is γ ∈ X \ Y such that
fβ |[Y ]n = fγ |[Y ]n.

Fix δ ∈ λ \ X. Inductively construct Y = {yα : α < �+
n−1(κ)} ⊆ X. Let

y0 ∈ X. Suppose that we have constructed Yα = {yβ : β < α}. Choose
yα ∈ X such that fyα

|[Yα]n = fδ|[Yα]n.
By the induction hypothesis, there is Z ⊆ Y such that |Z| ≥ κ+ and Z

is homogeneous for fδ. Say fδ(B) = γ for all B ∈ [Z]n. We claim that Z is
homogeneous for f . Let A ∈ [Z]n+1. There are α1 < . . . < αn+1 such that
A = {yα1 , . . . , yαn+1}. Then

f(A) = fyαn+1
({yα1 , . . . , yαn

}) = fδ({yα1 , . . . , yαn
}) = γ.

Thus, Z is homogeneous for f .

We will use the following corollary.

Corollary 5.1.5 �+
α+n → (�+

α )n+1
�α

.

Proof This follows from Erdös–Rado because �α+n = �n(�α).

5.2 Order Indiscernibles

Let M be an L-structure.

Definition 5.2.1 Let I be an infinite set and suppose that X = {xi : i ∈ I}
is a set of distinct elements of M. We say that X is an indiscernible set if
whenever i1, . . . , im and j1, . . . , jm are two sequences of m distinct elements
of I, then M |= φ(xi1 , . . . , xim

) ↔ φ(xj1 , . . . , xjm
).

For example, suppose that F is an algebraically closed field of infinite
transcendence degree and x1, x2, . . . is an infinite algebraically independent
set. For any two sequence i1, . . . , im, j1, . . . , jm as above, there is an au-
tomorphism σ of F with σ(xik

) = xjk
for k = 1, . . . , m. It follows that

x1, x2, . . . is an infinite set of indiscernibles.
Unfortunately, many structures have no infinite sets of indiscernibles. For

example if (A, <) is an infinite linear order, then because we cannot have
a < b and b < a there is no set of indiscernibles of size 2. Remarkably, this
is the only obstruction.
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Definition 5.2.2 Let (I, <) be an ordered set, and let (xi : i ∈ I) be a
sequence of distinct elements of M . We say that (xi : i ∈ I) is a sequence
of order indiscernibles if whenever i1 < i2 < . . . < im and j1 < . . . <
jm are two increasing sequences from I, then M |= φ(xi1 , . . . , xim

) ↔
φ(xj1 , . . . , xjm

).

For example, in (Q, <), by quantifier elimination, if x1 < . . . < xm and
y1 < . . . < ym, then Q |= φ(x) ↔ φ(y) for all φ. Thus Q, itself is a sequence
of order indiscernibles.

We can always find models with infinite sequences of order indiscernibles.

Theorem 5.2.3 Let T be a theory with infinite models. For any infinite
linear order (I, <), there is M |= T containing (xi : i ∈ I), a sequence of
order indiscernibles.

Proof Let L∗ = L ∪ {ci : i ∈ I}. Let Γ be the union of
• T ;
• ci �= cj for i, j ∈ I with i �= j;
• φ(ci1 , . . . , cim

) → φ(cj1 , . . . , cjm
) for all L-formulas φ(v), where i1 <

. . . < im and j1 < . . . < jm are increasing sequences from I.
If M |= Γ, then (cM

i : i ∈ I) is an infinite sequence of order indiscernibles.
Thus, it suffices to show that Γ is satisfiable. Suppose that ∆ ⊂ Γ is finite.
Let I0 be the finite subset of I such that if ci occurs in ∆, then i ∈ I0.
Let φ1, . . . , φm be the formulas such that ∆ asserts indiscernibility with
respect to the formula φi, i ≤ m. Let v1, . . . , vn be the free variables from
φ1, . . . , φm.

Let M be an infinite model of T . Fix < any linear order of M. We will
define a partition F : [M ]n → P({1, . . . m}). If A = {a1, . . . , an} where
a1 < . . . < an, then

F (A) = {i : M |= φi(a1, . . . , an)}.

Because F partitions [M ]n into at most 2m sets, we can find an infinite
X ⊆ M homogeneous for F . Let η ⊆ {1, . . . , m} such that F (A) = η for
A ∈ [X]n.

Suppose that I0 is a finite subset of I. Choose (xi : i ∈ I0) such that each
xi ∈ X and such that xi < xj if i < j. If i1 < . . . < in and j1 < . . . < jn,
then

M |= φk(xi1 , . . . , xin
) ⇔ k ∈ η ⇔ M |= φk(xj1 , . . . , xjn

).

If we interpret ci as xi for i ∈ I0, then we make M a model of ∆. Because
Γ is finitely satisfiable, it is satisfiable.

If (xi : i ∈ I) is any sequence of order indiscernibles in M , we can order
X = {xi : i ∈ I} by xi < xj if i < j. In this way, we frequently identify X
and I.
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Suppose that ψ(x, y) is a formula in the language such that in some M |=
T , ψ linearly orders an infinite set Y . When we did the construction above,
we could add the condition that ψ(ci, cj) for i < j. We would then restrict
the partition to [Y ]m and let the ordering < be the ordering determined by
ψ. In this way, we would get an infinite sequence of indiscernibles (xi : i ∈ I)
such that ψ(xi, xj) if and only if i < j. In this case, ψ is the ordering of
the indiscernible sequence.

Ehrenfeucht–Mostowski Models
Suppose that our theory has built-in Skolem functions. Then, when we
have a model containing an infinite sequence of order indiscernibles, we can
form the elementary submodel generated by the indiscernibles. We can use
properties of the indiscernible set to deduce properties of the elementary
submodel. For example, automorphisms of the indiscernibles will induce
automorphisms of the elementary submodel. If T does not have built in
Skolem functions, we will still get interesting information when we study
skolemizations of T .

Let T be an L-theory. By Lemma 2.3.6 we can find L∗ ⊇ L, and T ∗ ⊇ T
an L∗-theory with built-in Skolem functions, such that if M is any model
of T , we can interpret the symbols of L∗ such that M |= T ∗. Note that if
I is a sequence of order indiscernibles for L∗, then I is also a sequence of
order indiscernibles for L.

If M |= T ∗ and X ⊆ M , let H(X) be the L∗-substructure of M generated
by X. We call H(X) the Skolem hull of X. Because X has built in Skolem
functions, H(X) ≺ M. Models built as Skolem hulls of sequences of order
indiscernibles are called Ehrenfeucht–Mostowski models.

If I is an infinite set of order indiscernibles, then order-preserving per-
mutations of I induce automorphisms of H(I).

Lemma 5.2.4 Suppose that T ∗ is an L∗-theory with built-in Skolem func-
tions. Let M |= T ∗. Let I ⊆ M be an infinite sequence of order indis-
cernibles. Suppose that τ : I → I is an order-preserving permutation. Then,
there is an automorphism σ : H(I) → H(I) extending τ .

Proof For each element a ∈ H(I), there is a Skolem term t and x1 < x2 <
. . . < xn ∈ I such that a = t(x1, . . . , xn). Let σ(a) = t(τ(x1), . . . , τ(xn)).

We first show that σ is well-defined. Suppose that there is a second
Skolem term s such that a = s(x1, . . . , xn). Because

M |= t(x1, . . . , xn) = s(x1, . . . , xn)

and τ is order-preserving,

M |= t(τ(x1), . . . , τ(xn)) = s(τ(x1), . . . , τ(xn)).

Thus σ is well defined.
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We must show that σ is an automorphism. If a = t(x) and b = t(τ−1(x)),
then σ(b) = a so σ is surjective.

Let φ(v1, . . . , vm) be any L∗-formula, and let a1, . . . , am ∈ H(I). There
are terms t1, . . . , tm and x ∈ I such that ai = ti(x). By indiscernibility,

M |= φ(a1, . . . , am) ⇔ M |= φ(t1(x), . . . , tm(x))
⇔ M |= φ(t1(τ(x)), . . . , tm(τ(x)))
⇔ M |= φ(σ(a1), . . . , σ(am)).

Thus, σ is an automorphism.

Lemma 5.2.4 shows that it would be useful to find order indiscernibles
where there are many order-preserving permutations. Indeed, once we have
an infinite sequence of order indiscernibles, we can find them of any given
order type.

Let X = (xi : i ∈ I) be a sequence of order indiscernibles in M. Let

tp(I) = {φ(v1, . . . , vn) : M |= φ(xi1 , . . . , xin
), i1 < . . . < in ∈ I, n < ω}.

We call tp(X) the type of the indiscernibles.

Lemma 5.2.5 Let T ∗ be an L∗-theory with built-in Skolem functions. Sup-
pose that X = (xi : i ∈ I) is an infinite sequence of order indiscernibles in
M |= T ∗. If (J, <) is any infinite ordered set, we can find N |= T contain-
ing a sequence of order indiscernibles Y = (yj : j ∈ J) and tp(X) = tp(Y ).

Proof Add to L∗ constant symbols cj for j ∈ J and let Γ = T ∗ ∪ {ci �=
cj : i, j ∈ J, i �= j} ∪ {φ(ci1 , . . . , cim

:i1 < . . . < im ∈ J and φ ∈ tp(X)}.
If ∆ is a finite subset of Γ, then by choosing elements of X we can make

M a model of ∆. Thus, Γ is satisfiable.
If N |= Γ, then the interpretation of the (cj : j ∈ J) is the desired

indiscernible sequence.

Lemma 5.2.6 Suppose that T ∗ is an L∗-theory with built-in Skolem func-
tions. If I is a sequence of order indiscernibles in M |= T ∗ and J is
a sequence of order indiscernibles in N |= T ∗ with tp(I) = tp(J), then
any order-preserving map τ : I → J extends to an elementary embedding
σ : H(I) → H(J).

Proof If a = t(x1, . . . , xn) for t a term and x1, . . . , xn ∈ I we let σ(a) =
t(τ(x1), . . . , τ(xn)). We then argue as in Lemma 5.2.4 that this map is
well-defined and elementary.

We give several applications of this method.

Corollary 5.2.7 Let T be an L-theory with infinite models. For any κ ≥
|L| + ℵ0, there is N |= T of cardinality κ with 2κ automorphisms.
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Proof Let L∗ and T ∗ be as above. We can find M |= T ∗ containing an
infinite sequence of order indiscernibles I.
Claim There is a linear order (X, <) of size κ with 2κ order-preserving
permutations.

Let X = κ × Q with the lexicographic ordering (α, q) < (β, r) if α < β
or α = β and q < r. For each A ⊆ κ let σA be the order-preserving
permutation

σA((α, q)) =
{

(α, q) if α ∈ A
(α, q + 1) if α �∈ A

.

Clearly, σA = σB if and only if A = B. Thus, there are 2κ order-preserving
permutations of X.

By Lemma 5.2.5, we can find N |= T ∗ containing J a sequence of order
indiscernibles of order type (X, <). By Lemma 5.2.4, each order preserv-
ing permutation of the indiscernibles induces an automorphism of H(J).
Thus, H(J) has 2κ automorphisms and |H(J)| = κ. When viewed as an
L-structure, N still has 2κ automorphisms.

Indiscernibles can be used to build large models omitting types.

Corollary 5.2.8 Suppose that T ∗ is an L∗-theory with built in Skolem
functions, M |= T ∗, M omits p— a type over ∅, and M contains an infinite
sequence of order indiscernibles I. There are arbitrarily large models of T ∗

omitting p.

Proof Let κ ≥ ℵ0. By Lemma 5.2.5, we can find N |= T ∗ containing
a sequence of order indiscernibles J with |J | ≥ κ and tp(I) = tp(J).
Then |H(J)| ≥ κ. Suppose that (a1, . . . , an) ∈ H(J) realizes p. Let ai =
ti(x1, . . . , xm), where ti is a Skolem term, x1 < . . . < xm, and each xi ∈ J .
If y1 < . . . < ym is an increasing sequence in I, then, because t(I) = t(J),

M |= φ(t1(y), . . . , tn(y)) ⇔ N |= φ(a1, . . . , an).

Thus, (t1(y), . . . , tn(y)) realizes p ∈ M, a contradiction.

If we are careful about the order type of our sequence of indiscernibles,
we can also omit types over sets of parameters.

Theorem 5.2.9 Let L be countable and T be an L-theory with infinite
models. For all κ ≥ ℵ0, there is M |= T ∗ with |M | = κ such that if
A ⊆ M , then M realizes at most |A| + ℵ0 types in SM

n (A).

Proof For notational simplicity we assume that n = 1. This is no loss of
generality. Let L∗ and T ∗ be as above. Let M |= T be the Skolem hull of
a sequence of order indiscernibles I of order type (κ, <). Then |M | = κ.

Let A ⊆ M . For each a in A, there is a term ta and xa a sequence from
I such that a = ta(xa). Let X = {x ∈ I : x occurs in some xa}. Then
|X| ≤ |A| + ℵ0.
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If y1 < . . . < yn and z1 < . . . < zn, we say that y ∼X z if yi < x if
and only if, for all x ∈ X, zi < x and yi = x if and only if zi = x for
i = 1, . . . , n.
Claim If y ∼X z and t is a Skolem term, then t(y) and t(z) realize the
same type in SM

1 (A).
Let a1, . . . , am ∈ A. Because y and z are in the same position in the

ordering with respect to X, by indiscernibility,

M |= φ(t(y), a1, . . . , am) ⇔ M |= φ(t(y), ta1(xa1), . . . , tam
(xam

))
⇔ M |= φ(t(z), ta1(xa1), . . . , tam

(xam
))

⇔ M |= φ(t(z), a1, . . . , am).

It suffices to show that |In/ ∼X | ≤ |A| + ℵ0. For y ∈ I \ X, let Cy =
{x ∈ X : x < y}. Then, y ∼X z if and only if for each i:

i) if yi ∈ X, then yi = zi; and
ii) if yi �∈ X, then zi �∈ X and Cyi

= Czi
.

Because I is well-ordered, Cy = Cz if and only if Cy = Cz = ∅ or

inf{i ∈ I : i > Cy} = inf{i ∈ I : i > Cz}.

In particular, there are at most |X| + 1 possible cuts Cy. It follows that
|In/∼X | ≤ |A| + ℵ0 and M realizes at most |A| + ℵ0 types over A.

From Theorem 5.2.9, we get crucial information about uncountably cat-
egorical theories.

Corollary 5.2.10 Let T be a complete theory in a countable language with
infinite models, and let κ ≥ ℵ1. If T is κ-categorical, then T is ω-stable.

Proof If T is not ω-stable, then we can find a countable M |= T with
A ⊆ M such that |SM

n (A)| > ℵ0. By compactness, we can find M ≺ N0
of cardinality κ realizing uncountably many types in SM

n (A). By Theorem
5.2.9, we can find N1 |= T of cardinality κ such that for all B ⊂ M if
|B| = ℵ0, then N1 realizes at most ℵ0 types over B. Then, N0 �∼= N1,
contradicting κ-categoricity.

Combining Corollary 5.2.10 with Theorem 4.3.41 allows us to extend
Corollary 4.3.39.

Corollary 5.2.11 Let T be a complete theory in a countable language with
infinite models. If κ ≥ ℵ1 and T is κ-categorical, then T has no Vaughtian
pairs and hence no (κ, λ)-models for κ > λ ≥ ℵ0.

Proof Because T is κ-categorical, T is ω-stable. If there is a Vaughtian
pair, then by Theorem 4.3.34 there is an (ℵ1,ℵ0)-model, and, by Theorem
4.3.41, a (κ,ℵ0)-model. Because we can find a model of T of cardinality κ
where every infinite definable set has cardinality κ, this is a contradiction.

In Theorem 6.1.18, we will show that Corollaries 5.2.10 and 5.2.11 char-
acterize uncountably categorical theories.
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Indiscernibles in Stable Theories
We have seen that, although it is always possible to find infinite sequences of
order indiscernibles, for some theories we cannot find infinite indiscernible
sets. There are, however, very important classes of theories where every
infinite sequence of order indiscernibles is a set of indiscernibles. We need
one combinatorial lemma.

Lemma 5.2.12 For any infinite cardinal κ, there is a dense linear order
(A, <) with B ⊂ A such that B is dense in A and |B| ≤ κ < |A|.

Proof Let λ ≤ κ be least such that 2λ > κ. Let A be the set of all functions
from λ to Q. If we order A by f < g if and only if f(α) < g(α), where α is
least such that f(α) �= g(α), then (A, <) |= DLO.

Let B be the set of sequences in A that are eventually 0. Then

|B| = sup{µ < λ : 2µ} ≤ κ

and, for all f, g ∈ X, if f < g, there is h ∈ Y such that f < h < g.

Theorem 5.2.13 Suppose that L is a countable language, κ is an infinite
cardinal, and T is a κ-stable L-theory. If M |= T and X ⊆ M is an infinite
sequence of order indiscernibles, then X is a set of indiscernibles.

Proof Let φ(v1, . . . , vn) be an L-formula and x1, . . . , xn be an increasing
sequence from I such that M |= φ(x1, . . . , xn). Let Sn be the group of all
permutations of {1, . . . , n}. Let Γφ = {σ ∈ Sn : M |= φ(xσ(1), . . . , xσ(n))}.
To show that X is a set of indiscernibles, we must show that Γφ = Sn.

Claim Γφ = Sn.
Suppose not. Because every permutation is a product of transpositions we

can find σ ∈ Γφ and τ ∈ Sn \Γφ such that τ = σ ◦µ for some transposition
µ. Say µ(y1, . . . , yn) = (y1, . . . , ym−1, ym+1, ym, ym+2, . . . , yn).

Let ψ(v1, . . . , vn) be the formula φ(vσ(1), . . . , vσ(n)). Then

M |= ψ(x1, . . . , xn)

but
M |= ¬ψ(x1, . . . , xm−1, xm+1, xm, xm+2, . . . , xn).

Let (A, <) and B be as in Lemma 5.2.12. We can find N |= T containing a
sequence of order indiscernibles Y of order type (A, <) with tp(Y ) = tp(X).
Let Y0 be the subset of Y corresponding to B. If y1 < . . . < yn are in Y ,
then

N |= ψ(y1, . . . , yn)

and
N |= ¬ψ(y1, . . . , ym−1, ym+1, ym, ym+2, . . . , yn).
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If x, y ∈ Y and x < y we can find z1, . . . , zn−1 in Y0 such that z1 < . . . <
zk−1 < x < zk < y < zk+1 < . . . zn−1. Then

N |= ψ(z1, . . . , zk−1, x, zk, . . . , zn−1)

but
N |= ¬ψ(z1, . . . , zk−1, y, zk, . . . , zn−1).

Thus, any two elements of Y realize distinct 1-types over Y0. Because
|Y0| ≤ κ < |Y |, T is not κ-stable, a contradiction.

Applications of Erdös–Rado
So far, we have tried to build interesting models by controlling the order
type of the sequence of indiscernibles. There are other constructions where
we instead control tp(I). This is more difficult and often requires more
complicated combinatorics.

Corollary 5.2.8 showed that if we can omit a type in a model of T ∗

containing an infinite sequence of order indiscernibles, then we can omit
the type in arbitrarily large models, but it is nontrivial to find models
with indiscernibles omitting a type. The Erdös–Rado Theorem provides
one method for building such models.

Theorem 5.2.14 Let T be a theory in a countable language. Suppose that
for all α < ω1 there is M |= T with |M | > �α such that M omits p, a type
over ∅. Then, there are arbitrarily large models of T omitting p.

Proof For notational simplicity, we assume, without loss of generality,
that p is a 1-type. Let T ∗ ⊇ T be a skolemization of T in a language
L∗ ⊇ L as in Lemma 2.3.6. By Corollary 5.2.8, it suffices to find M |= T ∗

omitting p and containing an infinite set of indiscernibles I. We will do this
by building the type of the indiscernibles. Let C = {ci : i < ω} be a new
set of constant symbols. We build an L∗ ∪ C theory Σ ⊇ T ∗ such that Σ is
satisfiable and:

a) ci �= cj ∈ Σ for all i �= j;
b) for each L∗-formula φ(v1, . . . , vn) either φ(ci1 , . . . , cin

) ∈ Σ for all
i1 < . . . < in or ¬φ(ci1 , . . . , cin) ∈ Σ for all i1 < . . . < in;

c) if t(v1, . . . , vn) is a term, then there is φ(v) ∈ p such that
¬φ(t(ci1 , . . . , cin

)) for all i1 < . . . < in.

Suppose that we have such a theory Σ. If N |= Σ, then the interpretation
of the ci are, by a) and b), an infinite order-indiscernible sequence I. Let
M be the Skolem hull of I. If a = t(ci1 , . . . , cin), then, by c), a does not
realize T , so M omits p.

The construction of Σ will use the following two claims. Suppose that for
α < ω1 we have Mα |= T ∗ omitting p, Xα ⊂ Mα such that |Xα| > �α, and
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<α a linear ordering of each Mα. For notational simplicity, we will drop
the subscript and refer to <α as <.
Claim 1 Let φ(v1, . . . , vn) be an L∗-formula. There is a sequence of models
(M′

α : α < ω) with Yα ⊆ M ′
α, |Yα| > �α such that for all α < ω1 there is

β ≥ α such that M′
α = Mβ , Yα ⊆ Xβ, and either

i) M′
α |= φ(y1, . . . , yn) for all α < ω1 and for all y1 < . . . < yn in Yα, or

ii) M′
α |= ¬φ(y1, . . . , yn) for all α < ω1 and for all y1 < . . . < yn in Yα.

Let Nα = Mα+n−1. We define Fα : [Xα+n−1]n → 2. If A = {a1, . . . , an}
where a1 < . . . < an, then Fα(A) = 0 if Nα |= φ(a1, . . . , an) and Fα(A) = 1
if Nα |= ¬φ(a1, . . . , an). By Corollary 5.1.5, we can find Zα ⊆ Xα+n−1 and
iα ∈ {0, 1} such that |Zα| > �α and Fα : [Zα]n → {iα}.

Let Wi = {α < ω1 : iα = i} for i = 0, 1. If |W0| = ℵ1, let α 	→ δα be
a nondecreasing map from ω1 into Wi. Let M′

α = Nδα
, and let Yα = Zδα

.
Then, Yα ⊆ Xδα+n−1, |Yα| > �δα ≥ �α and i) holds. Similarly, if |W1| = ℵ1,
then we can find M′

α and Yα such that ii) holds.
Claim 2 For each Skolem term t(v1, . . . , vn), we can find a sequence of
models (M′

α : α < ω1) with Yα ⊆ M ′
α, |Yα| > �α such that for all α < ω1

there is β ≥ α such that M′
α = Mβ, Yα ⊆ Xβ, and there is φ(v) ∈ p such

that M′
α |= ¬φ(t(y1, . . . , yn)) for all α < ω1 and all y1 < . . . < yn ∈ Yα.

Let φ0, φ1, . . . list the formulas in p. Let Nα = Mα+n−1. Let Fα :
[Xα+n−1]n → ω such that if A = {a1, . . . , an} where a1 < . . . < an,
then Fα(A) is the least i such that Nα |= ¬φi(t(a1, . . . , an)). Because each
Nα omits p, this is well-defined. By Corollary 5.1.5, there is iα < ω and
Zα ⊆ Xα+n−1 such that |Zα| > �α and Fα : [Zα]n → {iα}.

As in Claim 1, we can thin this sequence to get (M′
α : α < ω1) and

(Yα : α < ω1), as desired.
We construct Σ as the union of a chain Σ0 ⊆ Σ1 ⊆ . . .. At each stage of

the construction we will also have ((Mi,α, Xi,α) : α < ω1) and < a linear
order of

⋃
Mi,α such that Xi,α ⊆ Mi,α, |Xi,α| > �α, and for all i < j and

α < ω1 there is β ≥ α such that Mj,α = Mi,β, Xi,α ⊆ Xj,β , and if we
interpret c0, c1, c2, . . . as any increasing sequence in Xi,α, then Mi,α |= Σi.

Let φ0, φ1, . . . list all L∗-formulas, and let t1, t2, . . . list all Skolem terms.
stage 0: Let Σ0 = T ∗ ∪ {ci �= cj : i < j < ω}. For α < ω1, let M0,α |= T
omit p with |M0,α| > �α. We may interpret the Skolem functions of L∗ in
M0,α so that M0,α |= T ∗, let X0,α = M0,α.
stage s + 1 = 2i + 1: Let φi = φ(v1, . . . , vn). By the first claim we can find
((Ms+1,α, Xs+1,α) : α < ω1) with |Xs+1,α| > �α and for each α there is
β ≥ α such that Ms+1,α = Ms,β and Xs+1,α ⊆ Xs,β such that either

i) for all α < ω1 and for all x1 < . . . < xn, an increasing sequence from
Xs+1,α Ms+1,α |= φ(x1, . . . , xn), or

ii) for all α < ω1 and for all x1 < . . . < xn, an increasing sequence from
Xs+1,α Ms+1,α |= ¬φ(x1, . . . , xn).

In the first case, let Σs+1 = Σs ∪ {φ(ci1 , . . . , cin) : i1 < . . . < in}; other-
wise, let Σs+1 = Σs ∪ {¬φ(ci1 , . . . , cin) : i1 < . . . < in}. By construction,
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for any α, if we interpret the constants ci as any increasing sequence in
Xs+1,α, then Ms+1,α |= Σs+1.
stage s + 1 = 2i + 2: Let ti = t(v1, . . . , vn). By the second claim we can find
φ(v) ∈ p and ((Ms+1,α, Xs+1,α) : α < ω1) such that |Xs+1,α| > �α and for
each α there is β ≥ α such that Ms+1,α = Ms,β and Xs+1,α ⊆ Xs,β and
Ms+1,α |= ¬φ(t(x1, . . . , xn)) for all α < ω1 and all increasing sequences
x1 < . . . < xn ∈ Xs+1,α.

Let Σs+1 = Σs ∪ {¬φ(t(ci1 , . . . , cin
)) : i1 < . . . < in}. By construction,

for any α, if we interpret the constants ci as any increasing sequence in
Xs+1,α, then Mα |= Σs+1.

Because each Σs is satisfiable, so is Σ. Our construction ensures that
the desired properties a), b), and c) hold. Thus we can find a model of T ∗

omitting p and containing an infinite sequence of order indiscernibles.

In Exercise 5.5.8, we show that the bounds in Theorem 5.2.14 are opti-
mal.

We give one further application of Erdös–Rado. Suppose that L contains
a unary predicate U . We say that M is a (κ, λ)-model if |M | = κ and
|U(M)| = λ, where U(M) = {x ∈ M : M |= U(x)}.

Theorem 5.2.15 Let T be a theory in a countable language such that T
has a (�n,ℵ0)-model for all n < ω. Then, T has a (κ, λ)-model for all
κ ≥ λ ≥ ℵ0.

Proof The proof will be similar to the proof of Theorem 5.2.14. Let L∗

and T ∗ be a skolemization as in Lemma 2.3.6.
Let {c1, c2, . . .} be a set of new constant symbols. We will construct a

satisfiable theory Σ ⊃ T ∗ such that:
a) ci �= cj ∈ Σ for i �= j;

b) ∃v1 . . .∃vn

(∧
i�=j

vi �= vj ∧
n∧

i=1

U(vi)
)

∈ Σ for n = 1, 2, . . .;

c) for each L∗-formula φ(v1, . . . , vn), either φ(ci1 , . . . , cin
) ∈ Σ for all

i1 < . . . < in or ¬(ci1 , . . . , cin
) �∈ Σ for all i1 < . . . < in;

d) if t(v1, . . . , vn, w1, . . . , wk) is a term, let θt(v1, . . . , vn, u1, . . . , un) be
the formula

∀w1 . . .∀wk

((
m∧

i=1

U(wi) ∧ U(t(v,w)

)
→ t(v,w) = t(u, w)

)
.

Then, θi(ci1 , . . . , cin , cj1 , . . . , cjn) ∈ Σ for i1 < . . . < in and j1 < . . . < jn.
We build Σ as a union of chains Σ0 ⊂ Σ1 ⊂ . . .. At any stage s, we

will have a sequence of models (Ms,n : n < ω), Xs,n ⊆ Ms,n and < linear
order of each Ms,n such that |Xs,n| > �n, for all n there is m ≥ n such
that Ms+1,n = Ms,m, Xs+1,n ⊆ Xs,m, and if we interpret the ci as any
increasing sequence in Xs,n, then Ms,n |= Σs.
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Let φ0, φ1, . . . list all L∗-formulas and t0, t1, . . . list all Skolem terms in
variables vi and wi, i < ω.

stage 0: Let Σ0 be T ∗ union the axioms from a) and b) above. Let M0,n |=
T ∗ with |M0,n| > �n and |U(M0,n)| = ℵ0.

stage s + 1 = 2i + 1: Let φi be φ(v1, . . . , vm). As in the odd stages of the
previous construction, we can find a sequence ((Ms+1,n, Xs+1,n) : n < ω)
such that |Xs+1,n| > �n and for each n there is k ≥ n such that Ms+1,n =
Ms,k and Xs+1,n ⊆ Xs,k such that either

i) for all n < ω and for all x1 < . . . < xm, an increasing sequence from
Xs+1,n, Ms+1,n |= φ(x1, . . . , xm), or

ii) for all n < ω and for all x1 < . . . < xm, an increasing sequence from
Xs+1,n, Ms+1,n |= ¬φ(x1, . . . , xm).1

In case i), we let Σs+1 = Σs ∪ {φ(ci1 , . . . , cim
) : i1 < . . . < im}, and in

case ii) we let Σs+1 = Σs ∪ {¬φ(ci1 , . . . , cim
) : i1 < . . . < im}.

stage s + 1 = 2i + 2: Let ti = t(v1, . . . , vn, w1, . . . , wk). Let Ms+1,i =
Ms,i+n. Fix η �∈ U(Ms,i+n). For x1 < . . . < xn in Ms+1,n, let fx :
U(Ms,i+n)k → U(Ms,i+n) ∪ {η} by

fx(a) =
{

t(x, a) if t(x, a) ∈ U(Ms+1,n)
η otherwise

.

Because U is countable, there are at most 2ℵ0 such functions. Thus, x 	→ fx

partitions [Xs,i+n]k into 2ℵ0 pieces. By Corollary 5.1.5, there is Xs+1,i ⊆
Xs,i+n homogeneous of size greater than �i.

Let Σs+1 = Σs ∪ {θt(ci1 , . . . , cin
, cj1 , . . . , cjn

) : i1 < . . . < in, j1 < . . . <
jn}. By construction, if we interpret c0, c1, . . . as an increasing sequence in
Xs+1,i, then Ms+1,i |= Σs+1.

Thus, the theory Σ that we have constructed is satisfiable. If M0 |= Σ
such that |U(M0)| = λ, the interpretation of the constants c0, c1, . . . in M0
is an infinite sequence of order indiscernibles J . We can find M0 ≺ M1
containing an infinite sequence of order indiscernibles I ⊇ J with tp(I) =
tp(J) and |I| = κ. Let M = H(U(M0) ∪ I). Then |M | = κ. Suppose
that a ∈ U(M). Then, a = t(x1, . . . , xn, b), where t is a Skolem term,
x1 < . . . < xn ∈ I, and b ∈ U(M0). By condition d), a = t(y1, . . . , yn, b)
where y1 < . . . < yn ∈ J . Thus a ∈ M0. Hence, M is a (κ, λ)-model.

In Exercise 5.5.7 we show that the hypothesis of 5.2.15 is necessary.

1Note that, in the proof of Theorem 5.2.14, the fact that we have a sequence of models
of length ω1 is only used in the Pigeonhole argument at the end of the second claim.
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5.3 A Many-Models Theorem

In this section, we give a taste of one of the main applications of indis-
cernibles. Let T be a complete theory in a countable language with infinite
models. We know that T has at most 2κ nonisomorphic models of cardinal-
ity κ. In a series of results, Shelah forged dividing lines between theories
where there is a good structure theory for the models and theories where
there is none. One of the main ideas is that theories with no good structure
theory have 2κ nonisomorphic models of size κ for all κ ≥ ℵ1.

Definition 5.3.1 We say that T is stable if it is λ-stable for some λ ≥ ℵ0;
otherwise, we say T is unstable.

Stability is the first dividing line for structure vs. nonstructure. Shelah
proved that if T is unstable, then T has 2κ nonisomorphic models of car-
dinality κ for all κ ≥ ℵ0. Indeed, he showed that unless T is κ-stable for
all κ ≥ 2ℵ0 , then T has the maximal number of nonisomorphic models for
each uncountable cardinal κ. We will prove a special case of the first result.
Assumptions For the rest of this section, we will make the following as-
sumptions:

• T is a complete theory in a countable language L with infinite models;
• there is a binary relation symbol < in the language;
• there is M |= T containing an infinite set linearly ordered by <.
These simplifying assumptions are not particularly strong. In fact, if T

is any unstable theory, we can find M |= T and I ⊂ Mk an infinite set
that is linearly ordered by some L-formula φ(x, y). The arguments we will
give can easily be modified to work in the general unstable context.

Theorem 5.3.2 If κ ≥ ℵ1, then there are 2κ nonisomorphic models of T .

To simplify the combinatorics of the proof, we will prove this only for
regular κ > ℵ1. The proof for κ = ℵ1 is a bit harder. The proof for κ singular
is much more involved. We begin with some results from combinatorial set
theory that will be used in the proof.

Definition 5.3.3 Let κ ≥ ℵ1 be a regular cardinal. We say that C ⊆ κ is
closed unbounded if

i) for all α < κ there is β ∈ C with α < β, and
ii) if X ⊂ C is bounded, then the least upper bound is in C (i.e., C is

closed in the order topology).

For example, if C = {α < κ : α is a limit ordinal}, then C is closed
unbounded.

Lemma 5.3.4 Let κ ≥ ℵ1 be a regular cardinal.
i) If C0 and C1 are closed unbounded subsets of κ, then C0 ∪ C1 and

C0 ∩ C1 are closed unbounded.
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ii) If α < κ and (Cβ : β < α) is a sequence of closed unbounded subsets
of κ, then C =

⋂
β<α

Cβ is closed unbounded.

Proof
i) Clearly, C0∪C1 is unbounded. If X ⊆ C0∪C1, then X∩Ci is unbounded

in X for some i and the least upper bound of X ∩ Ci is the least upper
bound of X.

It is easy to see that C0 ∩ C1 is closed. Suppose that α < κ. We build a
sequence α = α0 < α1 < α2 < . . . such that α2i+1 ∈ C0 and α2i+2 ∈ C1.
Because β = sup αi ∈ C0 ∩ C1, C0 ∩ C1 is unbounded.

ii) If X ⊆ C is bounded and γ is the least upper bound of X, then γ ∈ Cβ

for all β < α. Hence, γ ∈ C and we need only show that C is unbounded.
We will prove this by induction on α. For β < α, let Dβ =

⋂
γ<β Cγ . By

induction, each Dβ is closed unbounded. If α = β+1, then Dα = Dβ ∩Cβ is
closed unbounded by i). Suppose that α is a limit ordinal and δ < κ. Define
f(β) for β < α such that f(0) = δ and f(γ) ∈ Dγ+1 with f(γ) > f(β) for
β < γ. This is possible because Dγ+1 is unbounded and κ is regular. Then

δ = sup
β<α

f(β) ∈
⋂

β<α

Dβ =
⋂

β<α

Cβ .

A stronger closure property is true. Suppose that (Xα : α < κ) is a
sequence of subsets of κ. The diagonal intersection of this sequence is the
set

&Xα =
{

α < κ : α ∈
⋂

β<α

Xβ

}
.

Lemma 5.3.5 If (Cα : α < κ) is a sequence of closed unbounded subsets
of κ, then &Cα is closed unbounded.

Proof Suppose that X ⊆ &Cα is bounded. Let β = sup X. If α < β,
then {γ ∈ X : α < γ} is a bounded subset of Cα with supremum β. Thus,
β ∈ Cα. Because β is in Cα for all α < β, β ∈ &Cα. Thus &Cα is closed.

Let α < κ. Build a sequence α = β0 < β1 < β2 < . . . where βi+1 is in
the closed unbounded set Di =

⋂
γ<βi

Cγ . Let β = sup βi. Because

β ∈
⋂
i<ω

Di =
⋂
γ<β

Cγ ,

β ∈ &Cα. Thus, &Cα is unbounded.

Definition 5.3.6 We say that S ⊆ κ is stationary if X ∩ C �= ∅ for every
closed unbounded C ⊆ κ.
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If C is closed unbounded, then, by Lemma 5.3.4 i), C is stationary. For
example, the set S = {α < κ : α has cofinality ω} is a stationary set. For
any closed unbounded set C, we can find a sequence α0 < α1 < . . . where
each αi ∈ C. Then α = sup αi ∈ C ∩ S. If κ > ℵ1, then S is not closed.
Note that if S is stationary and S′ ⊇ S, then S′ is stationary.

Definition 5.3.7 We say that f : κ → κ is regressive on S if f(α) < α for
all α ∈ S.

If f is regressive on a stationary set, then it is constant on a stationary
subset.

Lemma 5.3.8 (Fodor’s Lemma) Suppose that f : κ → κ is regressive
on a stationary set S, then, there is γ < κ such that S∩f−1(γ) is stationary.

Proof Suppose not. Then, for each α < κ, we can find a closed unbounded
set Cα such that Cα ∩ S ∩ f−1(α) = ∅. By Lemma 5.3.5, &Cα is closed
unbounded; thus, there is β ∈ S ∩ &Cα. Let γ = f(β) < β. Because
β ∈ &Cα, β ∈ Cγ . But then β ∈ Cγ ∩ S ∩ f−1(γ), a contradiction.

Corollary 5.3.9 If S is stationary and S =
⋃

α<λ Sα for some λ < κ,
then some Sα is stationary.

Proof Let f : S → λ by f(α) = least β < λ such that α ∈ Sβ . Because
λ < κ, f(α) < α on the stationary set {α ∈ S : λ < α}. Thus, by Fodor’s
Lemma, f is constant on a stationary subset of S.

The following lemma of Ulam’s will play an important role in our proof.

Lemma 5.3.10 Suppose that κ ≥ ℵ1 is regular. There is a family (Sα :
α < κ) of disjoint stationary subsets of κ.

Proof
case 1: κ = λ+.

For each ordinal α < κ, let fα : λ → α be surjective. For β < λ and
γ < κ, let Uβ,γ = {α < κ : fα(β) = γ}. We think of the sets as the matrix⎛⎜⎜⎜⎜⎜⎜⎝

U0,0 U0,1 . . . U0,γ . . .
U1,0 U1,1 . . . U1,γ . . .

...
... . . .

... . . .
Uβ,0 Uβ,1 . . . Uβ,γ . . .

...
... . . .

... . . .

⎞⎟⎟⎟⎟⎟⎟⎠
We first argue that each column contains a stationary set. Fix γ < κ.

Let E be the stationary set
⋃

β<λ Uβ,γ = {α < κ : α > γ}. Let g : E → λ
be g(α) = inf{β : α ∈ Uβ,γ}. Because g : κ → λ, g is regressive on the
stationary set {α ∈ E : α > λ}. Thus, by Fodor’s Lemma, there is β such
that g−1(β) ∩ E is stationary. Thus, Uβ,γ is stationary.
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By the Pigeonhole Principle, we can find a single β̂ such that W = {γ :
Uβ̂,γ is stationary} has cardinality κ. But all of the sets in any fixed row are
pairwise disjoint (i.e., if γ �= δ, then Uβ,γ ∩Uβ,δ = ∅). Thus, {Uβ̂,γ : γ ∈ W}
is a collection of κ pairwise disjoint stationary subsets of S.

case 2: κ is inaccessible.
Recall that κ = ℵκ (see A.17). For each regular infinite cardinal λ < κ, let

Sλ = {α < κ : cof(α) = λ}. This is a pairwise disjoint family of stationary
sets.

We can now begin the proof of Theorem 5.3.2. Let T ∗ be a skolemization
of T . By the remarks after Theorem 5.2.3, we can find a countable M |= T ∗

containing an infinite sequence of order-indiscernibles I that is linearly
ordered by <. We will build 2κ nonisomorphic models by stretching the
indiscernible sequence I. The following lemma will allow us to distinguish
models. If I is an ordered set, we say that I = I0 + I1 if I = I0 ∪ I1 and
I0 < I1 (i.e., a < b for a ∈ I0 and b ∈ I1).

Lemma 5.3.11 Let N |= T ∗ contain an infinite sequence of order indis-
cernibles J linearly ordered by <.

i) Suppose that J = J0 + J1, where |J1| ≥ 2. Then, no element of J1 is
in H(J0).

ii) Suppose that J = J0 + J1, where J0 has no top element and J1 has
no bottom element. There is no a ∈ H(J) with J0 < a < J1.

Proof
i) Let a ∈ J1. Suppose that c is a sequence from J0 and t is a Skolem

term such that a = t(c). By indiscernibility, t(c) = b for all b ∈ J1, thus
|J1| ≤ 1.

ii) Suppose that J0 < a < J1. Let a = t(x1, . . . , xn, y1, . . . , ym) where
x1 < . . . < xn ∈ J0 and y1 < . . . < ym ∈ J1. Pick x ∈ J0 and y ∈ J1 with
xn < x < y < y1. Because a < J1, N |= t(x1, . . . , xn, y1, . . . , ym) < y. By
indiscernibility, N |= t(x1, . . . , xn, y1, . . . , ym) < x, contradicting J0 < a.

We start by building a family of 2κ linear orders. By Lemma 5.3.10, we
can find (Sα : α < κ), a sequence of κ disjoint stationary subsets of κ. For
A ⊂ κ, let SA =

⋃
α∈A Sα. If A �= B, then there is S stationary such that

S ⊆ (SA \ SB) ∪ (SB \ SA).
If X is a linear order, we let X∗ be the same set with the ordering

reversed. For α an ordinal, let α∗ be the order type of a decreasing α-
chain. If Xα is a linear order for α < κ we let

∑
Xα be the order with

universe {(α, x) : x ∈ Xα, α < κ} with the lexicographic order (in other
words, the order obtained when we replace each α < κ with a copy of Xα).

For each A ⊆ κ, we build a linear order LA as follows. Let

LA
α =

{
ω∗

1 if α ∈ SA

ω∗ if α �∈ SA
.
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and let LA =
∑

α<κ LA
α . Clearly, LA is a linear order of size κ. It will follow

from the arguments below that LA �∼= LB if A �= B. The reader is asked to
prove this directly in Exercise 5.5.11.

For each A ⊆ κ, we build a model MA that is the Skolem hull of
a sequence of order indiscernibles IA with t(IA) = t(I) and IA order-
isomorphic to LA. We will show that MA �∼= MB for A �= B. Note that
although we build MA as an L∗-structure, we must show that MA and
MB are not isomorphic as L-structures.

Suppose that f : MB → MA is an L-isomorphism. We let M be MA

viewed as an L-structure. Because |M | = κ we may assume that the un-
derlying set of M is κ. Let I = IA and let J = f(IB), J is a set of
L-indiscernibles of order type LB . There are two ways to expand M to
make it into an L∗-structure. Let A be the expansion where we take the
MA-structure and let B be the expansion where we use f to expand M
so that it is isomorphic to MB. The structure A is the Skolem hull of I,
and B is the Skolem hull of J . For t a Skolem term we let tA denote the
interpretation of t in A and tB denote the interpretation of t in B.

We have I =
∑

α<κ Iα and J =
∑

α<κ Jα, where each Iα and Jα has
order type ω∗ or ω∗

1 and there is a stationary set S such that Iα and Jα

have different order types for α ∈ S. By Lemma 5.3.9, we may, without
loss of generality, assume that Iα

∼= ω∗ and Jα
∼= ω∗

1 for α ∈ S. We write
I<α and J<α for

∑
β<α Iβ and

∑
β<α Jβ , respectively.

For α < κ let Aα be the Skolem hull of I<α in A and let Bα be the Skolem
hull of J<α. If Aα and Bα are the universes of Aα and Bα respectively, then

κ =
⋃

α<κ

Aα =
⋃

α<κ

Bα

and |Aα|, |Bα| < κ for all α < κ.
Frequently, Aα = Bα.

Lemma 5.3.12 The set C = {α < κ : Aα = Bα = α} is closed unbounded.

Proof We show that CA = {α < κ : Aα = α} is closed unbounded. Sim-
ilarly {α < κ : Bα = α} is closed unbounded, and C is closed unbounded
because it is the intersection of these two sets.

Because CA is clearly closed, we need only show that it is unbounded.
Let α0 < κ. We build α0 < α1 < α2 < . . . such that Aαi

⊆ αi+1 and
αi ⊆ Aαi+1 . If α = sup αi, then Aα = α.

For each α < κ, pick aα ∈ Iα. Note that by Lemma 5.3.11 i), aα �∈ Aα.
There is a Skolem term tα(v) and bα ∈ J such that tBα(bα) = aα. We write
bα as cα, dα, where cα ∈ J<α and dα ∈ J \ J<α.

Lemma 5.3.13 The set D = {α < κ : dβ ∈ Bα for all β < α} is closed
unbounded.
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Proof It is easy to see that D is closed. Let α0 < κ. Build a sequence
α0 < α1 < . . . such that for all β < αn, dβ ∈ Bαn+1 . If α = sup αi, then
α ∈ D.

Next, we make several applications of Fodor’s Lemma.

Lemma 5.3.14 i) There is a stationary S ′ ⊆ S ∩ C ∩ D and a Skolem
term t such that tα = t for all α ∈ S′.

ii) There is c a sequence from J and a stationary S′′ ⊆ S′ such that
cα = c for α ∈ S′′.

Proof
i) Because C and D are closed unbounded and S is stationary, S ∩C ∩D

is stationary. Because there are only countably many terms, this follows
from Lemma 5.3.9.

ii) Suppose that cα = (cα,1, . . . , cα,m). Each

cα,i ∈ J<α ⊆ Bα = α.

Thus, the function α 	→ cα,i is regressive on S′. By repeated applications of
Fodor’s Lemma, we find S′ ⊇ S′

1 ⊇ . . . ⊇ S′
m and ci < κ such that cα,i = ci

for α ∈ S′
i. Let S′′ = S′

m and c = (c1, . . . , cm).

Because there are only finitely many possible permutations of each se-
quence dα, by one further application of Corollary 5.3.9 and permuting
the variables, we may assume that each dα = (dα,1, dα,2, . . . , dα,n) where
dα,1 < . . . < dα,n. By replacing S with S′′, we may, without loss of gener-
ality, assume that S ⊆ C ∩ D and there is a Skolem term t and c ∈ J such
that aα = tB(c, dα) for all α ∈ S.

Although S is not closed, it must contain a stationary set of limit points.

Lemma 5.3.15 The set S′ = {α ∈ S : α = sup(α ∩ S)} is stationary.

Proof The set X = {α < κ : α = sup(α ∩ S)} is closed unbounded and
S′ = X ∩ S.

In particular, S′ �= ∅. For the remainder of the proof, we fix δ ∈ S′. In
particular, δ ∈ S and δ is a limit point of elements of S.

Lemma 5.3.16 If α ∈ S and α < δ, then dα ∈ J<δ.

Proof Because δ is a limit point of S, there is β ∈ S with α < β < δ.
Because β ∈ S, dα ∈ Bβ . By Lemma 5.3.11 i), Bβ ∩ J = J<β . Thus
dα ∈ J<β ⊂ J<δ.

Lemma 5.3.17 Let a ∈ Iδ. There is x ∈ J<δ and y ∈ Jδ such that if
j1, . . . , jn ∈ J with x < j1 < . . . < jn < y, then tB(c, j) < a.
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Proof Because δ ∈ S, Aδ = Bδ and a �∈ Bδ. Let a = sB(x1, . . . , xk, y1, . . . , yl)
where s is a Skolem term, x ∈ J<δ, and y ∈ J \J<δ. Note that l > 0 because
a �∈ Bδ. Choose x ∈ J<δ and y ∈ Jδ such that x > sup{c, x1, . . . , xk} and
y < yi for i = 1, . . . , l. By indiscernibility, if i1 < . . . < in and j1 < . . . < jn

are two sequences from J with x < i1, j1 and in, jn < y, then tB(c, i) < a
if and only if tB(c, j) < a.

Because δ is a limit point of S, we can find α < δ with α ∈ S such that
x < dα,1 and dα,n < y. But then tB(c, dα) = aα < a and hence tB(c, j) < a
for all j1, . . . , jn ∈ J with x < j1 < . . . < jn < y.

Finally, we will exploit the fact that because δ ∈ S, Iδ
∼= ω∗ and Jδ

∼= ω∗
1 .

Lemma 5.3.18 i) If j1, . . . , jn ∈ Jδ and j1 < . . . < jn, then tB(c, j) > aα

for α ∈ S with α < δ.
ii) There are j1 < . . . < jn in Jδ such that tB(c, j) < a for all a ∈ Iδ.

Proof
i) Because δ ∈ S and α < δ, dα ∈ Bδ. Because, by Lemma 5.3.11 i),

Bδ ∩ J = J<δ, dδ,1 �∈ J<δ. Thus dα,n < dδ,1.
Because

aα = tB(c, dα) < tB(c, dδ),

by indiscernibility
aα = tB(c, dα) < tB(c, j).

ii) Let z0 > z1 > . . . be a cofinal descending sequence in Iδ. For each i,
we find xi ∈ J<δ and yi ∈ Jδ such that tB(c, j) < zi for all j1, . . . , jn ∈ J
with xi < j1 < . . . < jn < yn. Because Jδ has order type ω∗

1 , we can find
j1, . . . , jn ∈ Jδ such that xi < j1 < . . . < jn < yi for all i < n. Thus,
tB(c, j) < ai for i = 0, 1, 2, . . .. Thus, tB(c, j) < a for all a ∈ Iδ.

Thus, there is an element of M that is above all of the elements of I<δ

but below all of the elements of Iδ. Because A is the Skolem hull of I,
this violates Lemma 5.3.11 ii). Thus, MA and MB are not isomorphic as
L-structures.

In this proof, we needed κ > ℵ1 so we could use the ordering ω∗
1 and still

have |Aα| < κ. More care is needed to prove the theorem when κ = ℵ1.

5.4 An Independence Result in Arithmetic

Gödel’s famous Incompleteness Theorem asserts that there are sentences φ
in the language of arithmetic such that φ is true in the natural numbers
but unprovable from the Peano Axioms for arithmetic. Indeed, for any con-
sistent recursive extension T of Peano arithmetic, we can find a sentence
that is independent from T . The original independent sentences were self-
referential sentences that asserted their own unprovability or metamathe-
matical sentences asserting the consistency of the theory. People wondered
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whether the independent statements could be made more “mathematical.”
In the late 1970s, Paris and Harrington [73] showed that a slight variant
of the finite version of Ramsey’s Theorem is true but unprovable in Peano
arithmetic. The proof is an interesting application of indiscernibles.

We begin with the combinatorial statement.

Theorem 5.4.1 (Paris–Harrington Principle) For all natural num-
bers n, k, m, there is a number l such that if f : [l]n → k, then there is
Y ⊆ l such that Y is homogeneous for f , |Y | ≥ m, and if y0 is the least
element of Y , then |Y | ≥ y0.

Proof We argue as in the proof of the finite version of Ramsey’s Theorem.
Suppose that there is no such l. For l < ω, let Tl = {f : [{0, . . . , l − 1}]n →
k : there is no Y homogeneous for f with |Y | ≥ m,minY }. Clearly, each
Tl is finite, and if f ∈ Tl+1 there is a unique g ∈ Tl such that g ⊂ f . Thus,
if we order T =

⋃
Tl by inclusion, we get a finite branching tree. Because

each Tl is nonempty, T is an infinite finite branching tree and by König’s
Lemma there is f0 ⊂ f1 ⊂ f2 ⊂ . . . with fi ∈ Ti.

Let f =
⋃

fi. Then f : [N]n → k. By Ramsey’s Theorem, there is an
infinite X ⊆ N homogeneous for f . Let x1 be the least element of X,
and choose s ≥ x1, m. Let x1, . . . , xl be the first l-elements of X and let
l > xl. Then, Y = {x1, . . . , xl} is homogeneous for fs and |Y | ≥ m,minY ,
a contradiction.

Although the proof above is only a minor variant of the proof of the
finite version of Ramsey’s Theorem, the use of the infinite version of Ram-
sey’s Theorem is in this case unavoidable. We will show that the Paris–
Harrington Principle cannot be proved in Peano arithmetic. The approach
we give here is due to Kanamori and McAloon [49].

Definition 5.4.2 Let X ⊆ ω. We say that f : [X]n → ω is regressive if
f(A) < minA for all A ∈ [X]n. We say that Y ⊆ X is min-homogeneous
for f , if whenever A, B ∈ [Y ]n and minA = min B, then f(A) = f(B).

If a < b, we let (a, b) and [a, b] denote {x : a < x < b} and {x : a ≤ x ≤
b}, respectively.

We will consider the combinatorial principle.

(∗) For all c, m, n, k, there is d such that if f1, . . . , fk : [d]n → d are
regressive, then there is Y ⊆ [c, d] such that |Y | ≥ m and Y is min-
homogeneous for each fi.

We will show that (∗) is true but not provable in Peano arithmetic. We
begin by giving a finite combinatorial proof that (∗) follows from the Paris–
Harrington Principle. This proof can be formalized in Peano arithmetic.
This tells us that not only is (∗) true but also if it is not provable in Peano
arithmetic, then neither is the Paris-Harrington Principle.
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Lemma 5.4.3 For all c, m, n, k < ω, there is d < ω such that if g : [d]n →
k, then there is a homogeneous set Y ⊆ (c, d) with |Y | ≥ m + 2n, minY +
n + 1.

Proof By the Paris–Harrington Principle, there is a d such that for
any partition h : [d]n → k + 1 there is a homogeneous set Z with
|Z| ≥ c + m + 2n + 1,minZ. Given g : [l]n → k, we define h : [l]n → k + 1
by h({a1, . . . , an}) = k if some ai < n + 1 or some ai ≤ c; otherwise,
h({a1, . . . , an}) = h({a1 +n+1, . . . , an +n+1}). Let Z be a homogeneous
set for h with |Z| ≥ c + m + 2n + 1,minZ. Because |Z| ≥ c + m + 2n + 1,
we can find a1, . . . , an ∈ Z such that each ai ≥ c + n + 1. Because
h({a1, . . . , an}) �= k, we must have h(A) �= k for all A ∈ [Z]n. Thus, every
element of Z is greater than or equal to c+n+1. Let Y = {a−n−1 : a ∈ Z}.
Then Y ⊂ (c, d), |Y | = |Z| ≥ c + m + 2n + 1,minZ. But min Z ≥ minY .

Lemma 5.4.4 For all c, m, n, k, there is d such that, if f1, . . . , fk : [d]n →
b are regressive, then there is Y ⊆ d such that |Y | ≥ m and Y is min-
homogeneous for each fi.

Proof By Lemma 5.4.3, there is a d < ω such that for all g : [d]n+1 → 3k,
there is Y ⊂ (c, d) homogeneous for g with |Y | ≥ m + n, minY + n + 1.

Suppose that f1, . . . , fk : [d]n → d are regressive. For i ≤ l, define gi :
[d]n+1 → 3. Suppose that A = {a0, . . . , an} where a0 < a1 < . . . < an; then

gi(A) =

⎧⎨⎩ 0 if fi(a0, a1, . . . , an−1) < fi(a0, a2, . . . , an)
1 if fi(a0, a1, . . . , an−1) = fi(a0, a2, . . . , an)
2 if fi(a0, a1, . . . , an−1) > fi(a0, a2, . . . , an).

Let g : [d]n → 3k by g(A) = (g1(A), . . . , gl(A)). By Lemma 5.4.3, there is
Y ⊆ (c, d) homogeneous for g with |Y | ≥ minY +n+1, m+n. Clearly, Y is
homogeneous for each gi. Let y0 < y1 < . . . < ys list Y . For j = 1, ...s−n+1,
let aj = (yt, yj+1, . . . , yj+n−1). Because fi is regressive fi(y0, aj) < y0 for
each j < s − n + 1. But s + 1 = |Y | ≥ y0 + n + 1. Thus s − n + 1 ≥ x0 + 1.
Thus, we must have fi(y0, aj) = fi(y0, al) for some j �= l. Because Y is
homogeneous, the sequence fi(y0, a1), fi(y0, a2), . . . , fi(y0, as−n−2) is either
increasing, decreasing, or constant. Because we know that at least two
values are equal, they must all be equal. Thus, gi is constantly zero on
[Y ]n+1.

Let z1 < . . . < zn−1 be the largest n − 1 elements of Y , and let X =
Y \ {z1, . . . , zn}. Because |Y | ≥ m + n, |X| > n. We claim that X is
min-homogeneous for each fi. Suppose that x1 < x2, . . . < xn. Then

fi(x1, x2, . . . , xn−1, xn) = fi(x1, x3, . . . , xn−1, z1)
= fi(x1, x4, . . . , z1, z2)
...
= fi(x1, z1, . . . , zn−1).
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But the same argument shows that if y2, . . . , yn−1 ∈ X with x1 < y2 <
. . . < yn−1, then

fi(x1, y2, . . . , yn−1) = fi(x1, z1, . . . , zn−1) = fi(x1, x2, . . . , xn−1, xn).

Thus, X is min-homogeneous for each fi.

Note that aside from appealing to the Paris–Harrington Principle in the
proof of Lemma 5.4.3, the two proofs above are straightforward finite com-
binatorics that could easily be formalized in Peano arithmetic.

The independence proof will use a strong form of indiscernibles. Let
Γ be a finite set of formulas in the language of arithmetic and M be
a model of Peano arithmetic. We say that I ⊆ M is a sequence of
diagonal indiscernibles for Γ if whenever φ(u1, . . . , um, v1, . . . , vn) ∈ Γ
x0, . . . , xn, y1, . . . , yn ∈ I with x0 < x1 < . . . < xn and x0 < y1 < . . . < yn

and a1, . . . , am < x0, then

M |= φ(a, x1, . . . , xn) ↔ φ(a, y1, . . . , yn).

We first show how the combinatorial principle (∗) allows us to find sets
of diagonal indiscernibles in the standard model N.

Lemma 5.4.5 For any l, m, n and formulas φ1(u1, . . . , uk, v1, . . . , vn),. . .,
φl(u1, . . . , uk, v1, . . . , vn) in the language of arithmetic, there is a set I of
diagonal indiscernibles for φ1, . . . , φl with |I| ≥ m.

Proof We may assume that m > 2n. By the Finite Ramsey Theorem, we
can find w such that w → (m + n)2n+1

l+1 . By (∗), we can find s such that
whenever f1, . . . , fk : [s]n → s are regressive there is Y ⊆ s with |Y | ≥ w
and Y is min-homogeneous for each fj . We define regressive functions fj :
[s]2n+1 → l for j = 1, . . . , k and a partition g : [s]2n+1 → l + 1 as follows.
Let X = {x0, . . . , x2n} where x0 < x1 < . . . < x2n < l. If

φi(a, x1, . . . , xn) ↔ φi(a, xn+1, . . . , x2n)

for all i ≤ l and a1, . . . , am < x0, then let f(X) = 0 and g(X) = 0.
Otherwise, let g(X) = i and (f1(X), . . . , fk(X)) = a such that

φg(X)(a, x1, . . . , xn) �↔ φg(X)(a, xn+1, . . . , x2n).

Because each function fj is regressive, there is Y ⊆ s min-homogeneous
for each fj with |Y | ≥ w. By choice of w there is X ⊆ Y and i ≤ k such
that |X| ≥ m + n and g(A) = i for A ∈ [X]2n+1.

Suppose that i > 0. Because m > 2n, |X| > 3n. Thus, we can find
x0 < x1 < . . . < x3n in X. Because X is min-homogeneous for each fj , we
can find aj < x0 such that

aj = fj(x0, x1, . . . , x2n)
= fj(x0, x1, . . . , xn, x2n+1, . . . , x3n)
= fj(x0, xn+1, . . . , x2n).
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Let a = (a1, . . . , ak). But then,

φi(a, x1, . . . , xn) �↔ φ̂i(a, xn+1, . . . , x2n),

φi(a, x1, . . . , xn) �↔ φî(a, x2n+1, . . . , x3n)

and
φi(a, xn+1, . . . , x2n) �↔ φ̂i(a, x2n+1, . . . , x3n).

But this is impossible because at least two of the formulas must have the
same truth value. Thus i = 0.

Let z1 < . . . < zn be the n-largest elements of X and let I = X \
{z1, . . . , zn}. Then, |I| ≥ m and we claim that I is the desired sequence
of diagonal indiscernibles. If x0 < x1 < . . . < xn and y1 < . . . < yn are
sequences from I with x0 < y1 and a < x0, then for any i ≤ k,

φi(a, x1, . . . , xn) ↔ φi(a, z1, . . . , zn)

and
φi(a, y1, . . . , yn) ↔ φi(a, z1, . . . , zn).

Thus
φi(a, x1, . . . , xn) ↔ φi(a, y1, . . . , yn)

and I is a set of diagonal indiscernibles.

We will look for diagonal indiscernibles for a rather simple class of for-
mulas.

Definition 5.4.6 The set of ∆0-formulas is the smallest set D of formulas
in the language of arithmetic such that:

i) every quantifier-free formula is in D;
ii) if φ, ψ ∈ D, then φ ∧ ψ, φ ∨ ψ, and ¬φ are in D;
iii) if φ ∈ D and t is any term, then ∃v < t φ and ∀v < t φ are in D.

For example, if φ(x) is ∀v < x ∀w < x vw �= x is a ∆0-formula defining
the set of prime numbers. The next lemma is an easy induction on formulas
that we leave to exercise 5.5.12.

Lemma 5.4.7 Suppose that M is a model of Peano arithmetic and N ⊆
M is an initial segment of N (i.e., if a ∈ M , b ∈ N , and a < b, then
a ∈ N). If φ(v) is a ∆0-formula and a ∈ N , then M |= φ(a) if and only if
N |= φ(a).

Diagonal indiscernibles can be used to find initial segments that are models
of Peano arithmetic.

Lemma 5.4.8 Suppose that M is a model of Peano arithmetic and x0 <
x1 < . . . is a sequence of diagonal indiscernibles for all ∆0-formulas. Let
N = {y ∈ M : y < xi for some i < ω}. Then, N is closed under addition
and multiplication, and if N is the substructure of M with underlying set
N , then N is a model of Peano arithmetic.
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Proof Suppose that i < j < k < l and a < xi. If a + xj ≥ xk, then we
can find b ≤ a such that b + xj = xk. By indiscernibility, b + xj = xl, so
xk = xl, a contradiction. Thus a + xj < xk. It follows that N is closed
under addition. Indeed xi + xj ≤ xk.

Suppose that i < j < k < l. We claim that axj < xk for all a < xi. If
not, then, by induction, we can find a < xi such that axj < xk ≤ (a+1)xj .
By indiscernibility, xl ≤ (a + 1)xj . But, adding xj to the first two terms,
we see that (a+1)xj < xk +xj. By the remarks above, xk +xj ≤ xl. Thus,
xl ≤ (a + 1)xj < xl, a contradiction. Thus axj < xk. It follows that N is
closed under multiplication.

Next, we show that truth of arbitrary formulas in N can be reduced to
the truth of ∆0-formulas in M.

Suppose that φ(w) is the formula ∃v1∀v2∃v3 . . .∃vnψ(w, v1, . . . , vn), where
ψ(w, v) is quantifier-free. By adding dummy variables, every formula can
be put in this form. Let a < xi.

Because the sequence x0 < x1 < . . . is unbounded in I, then N |= φ(a)
if and only if ∃i1 > i∀i2 > i1 . . .∃in > in−1 :

N |= ∃v1 < xi1∀v2 < xi2 . . .∃vn < xin
ψ(a, v1, . . . , vn).

By Lemma 5.4.7, N |= φ(a) if and only if ∃i1 > i ∀i2 > i1 . . .∃in > in−1 :

M |= ∃v1 < xi1∀v2 < xi2 . . .∃vn < xin
ψ(a, v1, . . . , vn).

By diagonal indiscernibility, N |= φ(a) if and only if

M |= ∃v1 < xi+1∀v2 < xi+2 . . .∃vn < xi+n ψ(a, v1, . . . , vn).

Next, we show that induction holds in N . Let φ(u,w) be a formula in the
language of arithmetic. Suppose that a, b ∈ N and N |= φ(b, a). Choose i0
such that a, b < xi0 . If φ is ∃v1∀v2 . . .∃vn ψ(u, w, v) where ψ is ∆0, then,
by the analysis above, if i < i1 < . . . < in, then for c < xi

N |= φ(c, a) ⇔ M |= ∃v1 < xi1∀v2 < xi2 . . .∃vn < xin
ψ(c, a, v1, . . . , vn).

Because induction holds in M, there is a least c < xi0 such that N |=
φ(c, a). Thus, N is a model of Peano Arithmetic.

To prove the independence of the Paris–Harrington Principle from Peano
arithmetic, we will assume familiarity with formalizing finite combinatorics
and syntactic manipulations in arithmetic via coding. We summarize what
we will need and refer the reader to [51] §9 for more complete details.

There are formulas S(u), l(u, v), e(u, x) in the language of arithmetic such
that in the standard model S(u) defines the set of codes for finite sequence,
l(u, v) if u codes a set of length v, and e(v, u, i) if v is the ith element of
the sequence coded by v. All basic properties of finite sets and sequences
are provable in Peano arithmetic. Using these predicates, we can formalize
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the Paris–Harrington Principle and (∗) as sentences in the language of
arithmetic. We can pick our coding of finite sets such that if X ⊆ {0, . . . , a−
1}, then the code for X is less than 22a

.
Next, we use some basic facts about coding syntax in the language of

arithmetic. For each formula φ, we let "φ# be the Gödel code for φ. There
is a formula Form0(v) that defines the set of Gödel codes for ∆0-formulas,
and there is a formula Sat0(u, v, w) such that Sat0(u, v, w) asserts that u
is a code for a ∆0-formula with free variables from v1, . . . , vw, v codes a se-
quence a of length w, and the formula with code u holds of the sequence a.
We call Sat0 a truth-definition for ∆0-formulas. All basic metamathemati-
cal properties of formulas and satisfaction for ∆0-formulas are provable in
Peano arithmetic.

Theorem 5.4.9 The combinatorial principle (∗) and the Paris–Harrington
Principle are not provable in Peano arithmetic.

Proof By the remarks after Lemma 5.4.4, it suffices to show that (∗) is
unprovable. Suppose that M is a nonstandard model of Peano arithmetic
and c is a nonstandard element of M. Suppose that M |= (∗). We will use
Lemma 5.4.8 to construct an initial segment of M where (∗) fails.

Because the Finite Ramsey Theorem is provable in Peano arithmetic,
there is a least w ∈ M such that M |= w → (3c + 1)2c+1

c . Let d ∈ M
be least such that if f1, . . . , fc : [d]2c+1 → d are regressive, then there is
Y ⊆ (c, d) with |Y | ≥ w and Y min-homogeneous for each fi.

Using the truth predicate for ∆0-sets, we can follow the proof of Lemma
5.4.5 inside M and obtain I ⊂ (c, d) with |I| ≥ c such that M believes I
is a set of diagonal indiscernibles for all ∆0-formulas from M with Gödel
code at most c, free variables from v1, . . . , vc, and parameter variables from
w1, . . . , wc. In particular, I is a set of diagonal indiscernibles for all standard
∆0-formulas.

Let x0 < x1 < . . . be an initial segment of I, and let N be the initial
segment of M with universe N = {y ∈ M : y < xi for some i = 1, 2, . . .}.
By Lemma 5.4.8, N is a model of Peano arithmetic. Clearly, c ∈ N and
d �∈ N . We claim that w ∈ N . Because the finite version of Ramsey’s
Theorem is provable in Peano arithmetic, there is w′ ∈ N such that N |=
w′ → (3c + 1)2c+1

c . Because all functions from [w′]2c+1 → c and all subsets
of w′ that are coded in M are coded in N , M |= w′ → (3c+1)2c+1

c . Because
w was minimal, w ≤ w′ and w ∈ N . By a similar argument, if d′ ∈ N and
N |= ∀f1, . . . , fc : [d′]2c+1 → d′ is regressive, there is Y ⊆ (c, d′) min-
homogeneous for each fi with |Y | ≥ w. Then, this is also true in M; thus,
by choice of d, d ≤ d′. Because d �∈ N , this is a contradiction. Thus, (∗)
fails in N and (∗) is not provable from Peano arithmetic.
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5.5 Exercises and Remarks

Exercise 5.5.1 Show that 6 → (3)22 (i.e., if there are six people at a
party, you can either find three mutual acquaintances or three mutual non-
acquaintances).

Exercise 5.5.2 Let L = {E}, where E is a binary relation symbol, and
let T be the theory of an equivalence relation with infinitely many classes
each of which is infinite. Show that in any M |= T we can find infinite sets
of indiscernibles I0 and I1 such that tp(I0) �= tp(I1), but if J is any other
infinite set of indiscernibles, then tp(J) = tp(Ii) for i = 0 or 1.

Exercise 5.5.3 Let G be the free group on generators X. Show that X is
a set of indiscernibles in G.

Exercise 5.5.4 Show that if M is κ-saturated, then there is I ⊆ M , a
sequence of order indiscernibles with |I| = κ.

Exercise 5.5.5 Show that, for any infinite L-structure M, we can find
(Nn : n < ω), a descending elementary chain (i.e., Nn+1 ≺ Nn for each n)
of elementary extensions of M, such that M =

⋂
n<ω N . [Hint: Let N0 be

the Skolem hull of M and an infinite set of indiscernibles.]

Exercise 5.5.6 We say that a theory T has the order property if and only
if there is a formula φ(v1, . . . , vn, w1, . . . , wn) and M |= T with x1, x2, . . .
in Mn such that M |= φ(xi, xj) if and only if i < j.

a) Show that if φ has the order property in T , then T is not κ-stable for
any infinite κ. [Hint: Let (A, <) and B be as in Lemma 5.2.12. Find N |= T
containing (xa : a ∈ A) such that N |= φ(xa, xb) if and only if a < b. Argue
as in Theorem 5.2.13 that |Sn({xb : b ∈ B})| > |B|.]

b) Show that T has the order property if and only if there is a formula
ψ(v, w) and M |= T with a1, b1a2, bn . . . such that T |= ψ(ai, bj) if and
only if i < j.[Hint: (⇒) Let φ(v1, v2, w1, w2) be ψ(v1, w2). Let ci = (ai, bi).
Show that φ(ci, cj) if and only if i < j. The other direction is even easier.]

Exercise 5.5.7 Let L = {U0, U1, . . . , Un, E1, . . . , En}, where each Ui is
unary and Ei is binary, and let T be the L-theory:

n∨
i=1

Ui(x) ∧
∧
i�=j

¬(Ui(x) ∧ Uj(x))

∃x1 . . .∃xm

⎛⎝∧
i�=j

xi �= xj ∧
m∧

i=1

U0(xi)

⎞⎠
Ei(x, y) → (Ui−1(x) ∧ Ui(y)) for i = 1, 2, . . . , n,
(Ui(x) ∧ Ui(y) ∧ ∀z(Ei(z, x) ↔ Ei(z, y))) → x = y, for i = 1, 2, . . . , n.

For example, if X is any infinite set, let U(M0) = X, U(Mi+1) = P(Ui),
and EM

i be ∈ restricted to Ui−1 × Ui, then M |= T . Show that if M |= T
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and |UM
0 | = ℵ0, then |M | ≤ �n. Thus, T has a (�n,ℵ0)-model but does

not have (κ,ℵ0)-models for arbitrarily large κ. Thus, Theorem 5.2.15 is
optimal.

Exercise 5.5.8 Let ω ≤ α < ω1. Let L = {O, <, V, E, cβ : β ≤ α}, where
O is unary, < and V are binary, E is ternary, and cβ is a constant symbol
for β < α. Let T be the following L-theory:

< is a linear order of O;
O(cβ) for β ≤ α;
cβ < cδ for δ < α;
O(x) → x ≤ cα;
(O(x) ∧ O(y) ∧ x < y ∧ V (z, x)) → V (z, y);
∀xV (x, cα);
∀x O(x) ↔ V (x, c0);
E(x, y, z) → (O(z) ∧ V (y, z) ∧ ∃w < zV (x, w));
(O(x) ∧ ∀y < x∃z y < z < x) → ∀z(V (z, x) ↔ ∃y < x V (z, y));
(O(x) ∧ ∃y < x∀z < x z ≤ y) → ∀w∀u ((V (u, x) ∧ V (w, x) ∧

∀v(E(v, u, x) ↔ E(v, w, x))) → u = w).
There is a natural model of T . Let X0 = {β : β ≤ α}. For β ≤ α

a limit ordinal, let Xβ =
⋃

δ<α Xδ, and let Xβ+1 = Xβ ∪ P(Xβ). Let
M = Xα. Let OM = X0 with the natural ordering, and interpret cβ as β.
Let V M = {(x, α) : x ∈ Xα} and let EM(x, y, α) if and only if y ∈ Xα and
x ∈ y. Then, M |= T and |M | = �α.

Let Γ(v) be the set of formulas {O(v), v �= cβ : β ≤ α}. Show that any
model of T omitting Γ(v) has cardinality at most �α. Thus, the bound on
Theorem 5.2.14 is optimal.

Exercise 5.5.9 Let L be a countable language and κ ≥ ℵ1 a reg-
ular cardinal. Let M be an L-structure of cardinality κ. Suppose that
M =

⋃
α<κ Mα where |Mα| < κ. Then, {α < κ : Mα ≺ M} is closed

unbounded.

Exercise 5.5.10 Recall from Exercise 4.5.15 that a linear order (X, <) is
ℵ1-like if and only if |X| = ℵ1 and |{y : y < x}| ≤ ℵ0 for all x ∈ X. We
will show that there are 2ℵ1 ℵ1-like dense linear orders.

Let (SA : A ⊆ ω1) be a family of stationary subsets of ω1 such that
SA&SB contains a stationary set if A �=B. Fix (L, <) a countable dense
linear ordering with a least element but no greatest element. For A ⊆ ω1,
we define a linear order (XA, <) as follows. For α < ω1, let

XA
α =

{
(Q, <) if α ∈ SA

(L, <) if α �∈ SA

and let XA = Q +
∑

α<ω1
XA

α . We let XA
<α = Q +

∑
β<α XA

β . We will
assume that each XA has underlying set ω1.

a) Show that each XA is an ℵ1-like model of DLO.
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b) Show that {α < ω1 : the underlying set of XA
<α = α} is closed

unbounded.
c) Suppose that f : κ → κ is a bijection. Then, {α < κ : f |α is a bijection

from α onto α} is closed unbounded.
d) Show that XA �∼= XB for A �= B. [Hint: Suppose that f : κ → κ is an

isomorphism. Use b) and c) to find α ∈ SA&SB such that XA
<α = XB

<α = α
and f |α is an isomorphism between XA

<α and XB
<α. Find a contradiction.]

Exercise 5.5.11 Suppose that κ > ℵ1 is a regular cardinal, A, B ⊆ κ and
LA and LB are the linear orderings constructed in the proof of 5.3.2. Show
that LA �∼= LB.

Exercise 5.5.12 Prove Lemma 5.4.7.

Exercise 5.5.13 † If f : N → N, let f (n)(x) be defined by f (0)(x) = x
and f (n+1)(x) = f(f (n)(x)). We define a sequence of functions fi : N → N

by f0(x) = x + 1 and fn+1(x) = f
(x)
n (x). For example, f1(x) = 2x and

f2(x) = 2xx. Each fn is primitive recursive and, if g : N → N, then there
are n, m ∈ N such that fn(x) > g(x) for all x > m (see [94]).

Consider the function F : N2 → N given by F (m, k) is the least l such
that if f : [l]2 → k then there is X ⊆ l homogeneous for f with |X| >
m,minX. By the Paris–Harrington Principle, F is a total function. We
will show that F grows very fast.

Fix m and k. Let g : [fk(m)]2 → k be defined by g({x, y}) = 0 if
x < m or y < m, and otherwise g({x, y}) is the least i ≥ 1 such that
x, y ∈

[
f j

i (m), f j+1
i (m)

)
for some j.

Suppose that X is homogeneous for g with |X| > m. Let i ≤ k + 1 such
that g : [X]2 → {i}.

a) Show that x ≥ m for all x ∈ X.
b) Show that there is j such that X ⊆

[
f

(j)
i (m), f (j+1)

i (m)
)
. Let p =

f
(j)
i (m).
c) Suppose that i = 1. Show that |X| ≤ minX.
d) Show that p = f

(l)
i−1(m) for some l and fi(p) = f

(l+p)
i−1 (m).

e) Show that if i > 1, then

X ⊆ [p, fi(p)) =
p−1⋃
j=0

[
f

(l+j)
i−1 (m), f (l+j+1)

i−1 (m)
)

and each
[
f

(l+j)
i−1 (m), f (l+j+1)

i−1 (m)
)

contains at most one element of X. Con-
clude that |X| ≤ minX.

f) Conclude that F (m, k) > fk(m). Let g(m) = F (m, m). Show that g
majorizes all primitive recursive functions.
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Remarks
Ehrenfeucht and Mostowski introduced indiscernibles and showed that
Skolem hulls of models generated by indiscernibles could be used to build
models with many automorphisms. Morley showed that indiscernibles could
be used to build large models realizing few types and also showed that the
Erdös–Rado Theorem could be used to build models with indiscernibles
omitting a type. Theorem 2.11 is due to Vaught.

Shelah has proved much finer many-models theorems than the one
sketched in Section 5.3. For example, if T is unstable, then, for any uncount-
able κ, we can find a family of 2κ mutually nonelementarily embeddable
models of T that are all L∞,ω-equivalent. The simplified proof in Section 5.3
is from Poizat’s review [85] of Shelah. Proofs of the many-models theorems
that we mentioned can be found in Shelah [92]. Hodges [40] contains the
proof that unstable theories have 2κ nonisomorphic models of cardinality κ
for all regular uncountable κ (in particular, this includes the case κ = ℵ1,
which we ignored). Baldwin [7] has the proof that stable unsuperstable
theories have the maximum number of models in uncountable cardinals in
regular cardinals.

The proof of the independence of the Paris–Harrington Principle given
is Section 5.4 is from Kanamori and McAloon [49]. The growth analysis of
Exercise 5.5.13 is just the tip of the iceberg because we have only really used
Paris–Harrington for partitions of pairs of sets. The sequence f0, f1, . . . can
be extended to fα for α < ε0. For example, fω(n) = fn(n). Any recursive
function that we can prove total in Peano arithmetic is majorized by fα

for some α < ε0. These classic results of proof theory are surveyed in [33].
Let G(n) be the least number m such that whenever g : [m]n → n there
is X ⊂ m homogeneous for g with |X| > n + 1,minX. By the Paris–
Harrington Principle, G is a total recursive function, but G majorizes fα

for all α < ε0. This analysis was done by Ketonen and Solovay and is
explained well in [36]. Kanamori and McAloon do a similar analysis for
their combinatorial principle.

Indiscernibles also play a central role in the set-theoretic investigation of
large cardinals. Rowbottom showed that if there is a measurable cardinal,
then there are indiscernibles for Gödel’s constructible universe. This idea
was developed much further by Silver. These results can be found in [47]
§29–30 or [48] §9.





6
ω-Stable Theories

6.1 Uncountably Categorical Theories

Throughout this chapter, T will be a complete theory in a countable lan-
guage with infinite models.

We say that T is uncountably categorical if it is κ-categorical for some
uncountable κ. We have already seen several examples of uncountably cat-
egorical theories. For example, the theory of algebraically closed fields of
a fixed characteristic, the theory of (Z, s), and the theory of torsion-free
divisible Abelian groups are κ-categorical for all uncountable κ but not
ℵ0-categorical. On the other hand, the theory of an infinite Abelian group
where every element has order 2 is κ-categorical for all infinite cardinals.

Every uncountably categorical theory that we have examined is actu-
ally κ-categorical for all uncountable κ. Morley proved that this is true
for all countable uncountably categorical theories. Morley’s proof was the
beginning of modern model theory.

Theorem 6.1.1 (Categoricity Theorem) If T is κ-categorical for some
uncountable κ, then T is κ-categorical for every uncountable κ.

In Theorems 5.2.10 and 5.2.11, we proved two important facts about
uncountably categorical theories.

• If κ ≥ ℵ1 and T is κ-categorical, then T is ω-stable.
• If κ ≥ ℵ1 and T is κ-categorical, then T has no Vaughtian pairs.
Baldwin and Lachlan showed that, conversely, if T is ω-stable with no

Vaughtian pairs, then T is κ-categorical for all uncountable cardinals κ.
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Morley’s Theorem follows immediately. We will prove this in Theorem
6.1.18. We begin by considering the simplest uncountably categorical the-
ories.

Strongly Minimal Sets
If M is an L-structure and φ(v) is an LM -formula, we will let φ(M) denote
the elements of M that satisfy φ.

Definition 6.1.2 Let M be an L-structure and let D ⊆ Mn be an infinite
definable set. We say that D is minimal in M if for any definable Y ⊆ D
either Y is finite or D \ Y is finite. If φ(v, a) is the formula that defines D,
then we also say that φ(v, a) is minimal.

We say that D and φ are strongly minimal if φ is minimal in any elemen-
tary extension N of M.

We say that a theory T is strongly minimal if the formula v = v is
strongly minimal (i.e., if M |= T , then M is strongly minimal).

We have already seen several examples of strongly minimal theories.
In particular, we have shown that DAG and ACFp are strongly minimal
theories (see Corollaries 3.1.11 and 3.2.9).

Let L = {E} and consider the L-structure M, where E is an equivalence
relation with one class of size n for n = 1, 2, . . . and no infinite classes. In
this structure, v = v is a minimal formula, but suppose that M ≺ N and
a ∈ N such that the equivalence class of a is infinite. Then, the formula
vEa defines an infinite-coinfinite subset of the universe. Thus, the formula
v = v is not strongly minimal.

Let M be an L-structure and D ⊆ M be strongly minimal. We will
consider aclD, the algebraic closure relation restricted to D. Recall that
b is algebraic over A if there is a formula φ(x, a) with a ∈ A such that
φ(M, a) is finite and φ(b, a). For A ⊆ D, we let aclD(A) = {b ∈ D : b is
algebraic over A}. We will omit the subscript D when no confusion arises.

We have already examined algebraic closure in several strongly minimal
theories. If K is an algebraically closed field and A ⊆ K, then acl(A) is the
algebraic closure of the subfield generated by A (Proposition 3.2.15). If G
is a torsion-free divisible Abelian group, then acl(A) is the Q-vector space
span of A (Exercise 3.4.5). If M ≡ (Z, s), then acl(A) is the set of points
reachable from A (Exercise 3.4.3).

The following properties of algebraic closure are true for any set D (see
Exercise 1.4.11).

Lemma 6.1.3 i) acl(acl(A)) = acl(A) ⊇ A.
ii) If A ⊆ B, then acl(A) ⊆ acl(B).
iii) If a ∈ acl(A), then a ∈ acl(A0) for some finite A0 ⊆ A.

A more subtle property is true if D is strongly minimal.
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Lemma 6.1.4 (Exchange Principle) Suppose that D ⊂ M is strongly
minimal, A ⊆ D, and a, b ∈ D. If a ∈ acl(A ∪ {b}) \ acl(A), then b ∈
acl(A ∪ {a}).

Proof We write acl(A, b) for acl(A ∪ {b}).
Suppose that a ∈ acl(A, b) \ acl(A). Suppose that M |= φ(a, b), where φ

is a formula with parameters from A and |{x ∈ D : φ(x, b)}| = n. Let ψ(w)
be the formula asserting that |{x ∈ D : φ(x, w)}| = n. If ψ(w) defines a
finite subset of D, then b ∈ acl(A) and a ∈ acl(A), a contradiction. Thus,
ψ(w) defines a cofinite subset of D.

If {y ∈ D : φ(a, y) ∧ ψ(y)} is finite, we are done (because b ∈ acl(A, a)).
Thus, we assume, for purposes of contradiction, that |D − {y : φ(a, y) ∧
ψ(y)}| = l for some l. Let χ(x) be the formula expressing

|D − {y : φ(x, y) ∧ ψ(y)}| = l.

If χ(x) defines a finite subset of D, then a ∈ acl(A), a contradiction. Thus,
χ(x) defines a cofinite set.

Choose a1, . . . , an+1 such that χ(ai). The set Bi = {w ∈ D : φ(ai, w) ∧
ψ(w)} is cofinite for i = 1, . . . , n + 1. Choose b̂ ∈

⋂
Bi. Then, φ(ai, b̂) for

each i, so |{x ∈ D : φ(x, b̂)}| ≥ n + 1, contradicting the fact that ψ(̂b).

In any strongly minimal set, we can define a notion of independence that
generalizes linear independence in vector spaces and algebraic independence
in algebraically closed fields.

We fix M |= T and D a strongly minimal set in M.

Definition 6.1.5 We say that A ⊆ D is independent if a �∈ acl(A \ {a})
for all a ∈ A. If C ⊂ D, we say that A is independent over C if a �∈
acl(C ∪ (A \ {a})) for all a ∈ A.

We will show that infinite independent sets are sets of indiscernibles.

Lemma 6.1.6 Suppose that M,N |= T and φ(v) is a strongly minimal
formula with parameters from A, where either A = ∅ or A ⊆ M0 where
M0 |= T , M0 ≺ M, and M0 ≺ N . If a1, . . . , an ∈ φ(M) are independent
over A and b1, . . . , bn ∈ φ(N ) are independent over A, then tpM(a/A) =
tpN (b/A).

Proof We will assume that φ(v) has parameters from A ⊆ M0 where
M0 ≺ M and M0 ≺ N , and leave the case A = ∅ until Exercise 6.6.4.

We prove this by induction on n. Assume that n = 1, a ∈ φ(M)\acl(A),
and b ∈ φ(N ) \ acl(A). Let ψ(v) be a formula with parameters from A.
Suppose that M |= ψ(a). Because a �∈ acl(A), φ(M) ∩ ψ(M) is infinite.
Because φ is strongly minimal, φ(M) \ ψ(M) is finite. Thus there is an n
such that

M |= |{x : φ(x) ∧ ¬ψ(x)}| = n.
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Because M0 ≺ M, M0 ≺ N , and b �∈ acl(A), N |= ψ(b). Thus tpM(a/A) =
tpN (b/A).

Suppose that the claim is true for n and a1, . . . , an+1 ∈ φ(M) and
b1, . . . , bn+1 ∈ φ(N ) are independent sequences over A. Let a = (a1, . . . , an)
and b = (b1, . . . , bn). By induction, tpM(a/A) = tpN (b/A). Let ψ(w, v) be
a formula with parameters from A such that M |= ψ(a, an+1). Because
an+1 �∈ acl(A, a), φ(M) ∩ ψ(a,M) is infinite and φ(M) \ ψ(a,M) is finite.
There is an n such that

M |= |{v : φ(v) ∧ ¬ψ(a, v)}| = n.

Because M0 ≺ M and M0 ≺ N and tpM(a/A) = tpN (b/A),

N |= |{v : φ(v) ∧ ¬ψ(b, v)}| = n.

Because bn+1 �∈ acl(A, b), N |= ψ(b, bn+1). Thus tpM(a, an+1/A) =
tpN (b, bn+1/A).

Corollary 6.1.7 If M,N |= T , A, and φ(v) are as above, B is an infinite
subset of φ(M) independent over A and C is an infinite subset of φ(N )
independent over A, then B and C are infinite sets of indiscernibles of the
same type over A.

Therefore, cardinality is the only way to distinguish independent subsets
of D.

Definition 6.1.8 We say that A is a basis for Y ⊆ D if A ⊆ Y is
independent and acl(A) = acl(Y ).

Clearly, any maximal independent subset of Y is a basis for Y . Just as in
vector spaces and algebraically closed fields, any two bases have the same
cardinality.

Lemma 6.1.9 Let A, B ⊆ D be independent with A ⊆ acl(B).
i) Suppose that A0 ⊆ A, B0 ⊆ B, A0 ∪ B0 is a basis for acl(B) and

a ∈ A \A0. Then, there is b ∈ B0 such that A0 ∪ {a} ∪ (B0 \ {b}) is a basis
for acl(B).

ii) |A| ≤ |B|.
iii) If A and B are bases for Y ⊆ D, then |A| = |B|.

Proof
i) Let C ⊆ B0 be of minimal cardinality such that a ∈ acl(A0 ∪ C).

Because A is independent, |C| ≥ 1. Let b ∈ C. By exchange, b ∈ acl(A0 ∪
{a} ∪ (C \ {b})) and thus acl(A0 ∪ {a} ∪ (B0 \ {b})) = acl(B). If a ∈
acl(A0 ∪ (B0 \ {b})), then b ∈ acl(A0 ∪ (B0 \ {b})), contradicting the fact
that A0 ∪ B0 is a basis. Thus, A0 ∪ {a} ∪ (B0 \ {b}) is independent.

ii) Suppose that B is finite. For purposes of contradiction, suppose that
|B| = n and a1, . . . , an+1 are distinct elements of A. Let A0 = ∅ and
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B0 = B. Using i) inductively, we can find b1, . . . , bn ∈ B distinct such
that {a1, . . . , ai} ∪ (B \ {b1, . . . , bi}) is a basis for acl(B) for i ≤ n. But
then acl(a1, . . . , an) = acl(B). Because an+1 ∈ acl(B), this contradicts the
independence of A.

If B is infinite, then for any finite B0 ⊂ B, A ∩ acl(B0) is finite and

A ⊆
⋃

B0⊆B finite

acl(B0).

Thus |A| ≤ |B|.
iii) This is immediate from ii).

Definition 6.1.10 If Y ⊆ D, then the dimension of Y is the cardinality
of a basis for Y . We let dim(Y ) denote the dimension of Y .

Note that if D is uncountable, then dim(D) = |D| because our language
is countable and acl(A) is countable for any countable A ⊆ D.

For strongly minimal theories, every model is determined up to isomor-
phism by its dimension.

Theorem 6.1.11 Suppose T is a strongly minimal theory. If M,N |= T ,
then M ∼= N if and only if dim(M) = dim(N).

More generally, if M,N and φ are as in Lemma 6.1.6, and dim(φ(M)) =
dim(φ(N )), then there is a bijective partial elementary map f : φ(M) →
φ(N ).

Proof Let B be a transcendence basis for φ(M) and C be a transcendence
basis for φ(N ). Because |B| = |C|, we can find a bijection f : B → C. By
Corollary 6.1.7, f is elementary. Let I = {g : B′ → C′ : B ⊆ B′ ⊆ φ(M),
C ⊆ C ′ ⊆ φ(N ), f ⊆ g partial elementary}. By Zorn’s Lemma, there is a
maximal g : B′ → C′. Suppose that b ∈ φ(M) \ B′. Because b is algebraic
over B′, there is a formula ψ(v, d) isolating tpM(b/B′) (see Exercise 4.5.4).
Because g is partial elementary, we can find c ∈ φ(N ) such that ψ(c, g(d)).
Then, tpM(b/B′) = tpN (c/C ′), and we can extend g by sending b to c. This
contradicts the maximality of g. Thus φ(M) = B′. An analogous argument
shows that C ′ = φ(N ).

Corollary 6.1.12 If T is a strongly minimal theory, then T is κ-categorical
for κ ≥ ℵ1 and I(T,ℵ0) ≤ ℵ0.

Proof If M has cardinality κ ≥ ℵ1, then any transcendence basis for M
has cardinality κ, whereas if |M | = ℵ0, then dim(M) ≤ ℵ0.

Existence of Strongly Minimal Formulas
In ω-stable theories, we can always find minimal formulas.
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Lemma 6.1.13 Let T be ω-stable.
i) If M |= T , then there is a minimal formula in M.
ii) If M |= T is ℵ0-saturated and φ(v, a) is a minimal formula in M,

then φ(v, a) is strongly minimal.

Proof
i) Suppose not. We build a tree of formulas (φσ : σ ∈ 2<ω) such that:
if σ ⊂ τ , then φτ |= φσ;
φσ,i |= ¬φσ,1−i;
φσ(M) is infinite.
Let φ∅ be the formula v = v. Suppose that we have a formula φσ such that

φσ(M) is infinite. Because φσ is not minimal, we can find a formula ψ such
that (φσ ∧ ψ)(M) and (φσ ∧ ¬ψ)(M) are both infinite. Let φσ,0 = φσ ∧ ψ,
and let φσ,1 be φσ ∧ ¬ψ. As in Theorem 4.2.18 we can find a countable
A ⊆ M such that |SM

1 (A)| = 2ℵ0 , contradicting ω-stability.
ii) Suppose not. Let M ≺ N , b ∈ N such that ψ(N , b) is an infinite

coinfinite subset of φ(N , a). Because M is ℵ0-saturated, we can find b
′ ∈ M

such that tpM(a, b
′
) = tpN (a, b). Then, ψ(v, b) defines an infinite coinfinite

subset of φ(M, a), a contradiction.

We will show that if there are no Vaughtian pairs, then any minimal
formula is strongly minimal. The key to the proof is the following lemma
showing that we can express “there exist infinitely many” in theories with
no Vaughtian pairs.

Lemma 6.1.14 Suppose that T is an L-theory with no Vaughtian pairs.
Let M |= T , and let φ(v1, . . . , vk, w1, . . . , wm) be a formula with parameters
from M . There is a number n such that if a ∈ M and |φ(M, a)| > n, then
φ(M, a) is infinite.

Proof Suppose not. Then, for each n ∈ N, we can find an in M such
that φ(M, an) is a finite set of size at least n. Consider the language L∗ =
L ∪ {U} for pairs of models of T used in the proof of Lemma 4.3.37, and
let Γ(w) ⊃ T be the L∗-type asserting:

U defines a proper L-elementary submodel;∧m
i=1 U(wi);

there are infinitely many elements v such that φ(v,w);
φ(v, w) →

∧k
i=1 U(vi).

Let N be a proper elementary extension of M. Because φ(M, an) is finite
and M ≺ N , φ(M, an) = φ(N , an). If ∆ ⊆ Γ(w) is finite, then by choosing
n sufficiently large, an realizes ∆ in (M,N ). Thus, by the Compactness
Theorem, Γ is satisfiable.

Suppose that a realizes Γ(w) in (N ′,M′) where M′ |= T and N ′ is a
proper elementary extension. Then, φ(M′, a) is an infinite set such that
φ(M′, a) = φ(N ′, a), contradicting the fact that there are no Vaughtian
pairs of models of T .
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Note that if n is as in Lemma 6.1.14, then in any elementary extension
N of M, |φ(N , b)| is infinite whenever |φ(N , b)| > n.

Corollary 6.1.15 If T has no Vaughtian pairs, then any minimal formula
is strongly minimal.

Proof Let φ(v) be a minimal formula over M |= T (possibly with parame-
ters). Suppose, for purposes of contradiction, that there is an elementary
extension N of M, b ∈ N , and an L-formula ψ(v,w) such that ψ(N , b) is
an infinite coinfinite subset of φ(N ).

By Lemma 6.1.14, there is a number n such that, for any M ≺ N ′ and
a ∈ N ′, ψ(N ′, a) is an infinite coinfinite subset of φ(N ′) if and only if
|ψ(N ′, a) ∩ φ(N ′)| > n and |¬ψ(N ′, a) ∩ φ(N ′)| > n. But

M |= ∀w (|ψ(M, w) ∩ φ(M)| ≤ n ∨ |¬ψ(M, w) ∩ φ(M)| ≤ n) .

Because this is a first-order statement, it must also be true in N , a contra-
diction.

Corollary 6.1.16 If T is ω-stable and has no Vaughtian pairs, then for
any M |= T there is a strongly minimal formula over M. In particular,
there is a strongly minimal formula with parameters from M0, the prime
model of T .

The Categoricity Theorem
Our proof of categoricity will follow the argument in Theorem 6.1.11. We
can find a strongly minimal formula φ(v) over the prime model. If M and
N are models of T of the same uncountable cardinality, then we can find
a partial elementary bijection between φ(M) and φ(N ). The next lemma
allows us to extend this to an isomorphism between M and N .

Lemma 6.1.17 If T has no Vaughtian pairs, M |= T , and X ⊆ Mn is
infinite and definable, then no proper elementary submodel of M contains
X. If, in addition, T is ω-stable, then M is prime over X.

Proof Let φ(v) define X. If N is a proper elementary submodel of M
containing X, then X = φ(M) = φ(N ) and (M,N ) is a Vaughtian pair.

If T is ω-stable, then by Theorem 4.2.20, there is N ≺ M, a prime model
over X. Because T has no Vaughtian pairs, we must have N = M, so M
is prime over X.

We can now prove the Baldwin–Lachlan characterization of uncountably
categorical theories and deduce Morley’s Categoricity Theorem.

Theorem 6.1.18 Let T be a complete theory in a countable language with
infinite models, and let κ be an uncountable cardinal. T is κ-categorical if
and only if T is ω-stable and has no Vaughtian pairs.
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In particular, if T is κ-categorical for some uncountable cardinal κ, then
T is λ-categorical for all uncountable cardinals λ.

Proof
(⇒) If T is κ-categorical, then, by Corollaries 5.2.10 and 5.2.11, T is

ω-stable and has no Vaughtian pairs.
(⇐) Suppose that T is ω-stable and has no Vaughtian pairs. Because T is

ω-stable, it has a prime model M0. By Lemma 6.1.13 and Corollary 6.1.15,
there is φ(v), a strongly minimal formula with parameters from M0.

Suppose that M and N are models of T of cardinality κ ≥ ℵ1. We
can view M and N as elementary extensions of M0. Then dim(φ(M)) =
dim(φ(N )) = κ. By Theorem 6.1.11, there is f : φ(M) → φ(N ), a partial
elementary bijection. By Lemma 6.1.17, M is prime over φ(M). Thus, we
can extend f to an elementary f ′ : M → N . But, by Lemma 6.1.17, N
has no proper elementary submodels containing φ(N ). Thus f ′ is surjective
and f ′ is an isomorphism.

Because the Baldwin–Lachlan characterization of κ-categorical theories
does not depend on κ, T is κ-categorical for some uncountable cardinal if
and only if T is λ-categorical for every uncountable cardinal λ.

The proof shows that if M0 is the prime model of T , φ(v) is a strongly
minimal formula with parameters from some finite A ⊂ M0, M,N |= T ,
and dim(φ(M)/A) = dim(φ(N )/A), then M ∼= N . Because there are only
ℵ0 possibilities for dim(M/A), we also get an upper bound on the number
of countable models.

Proposition 6.1.19 If T is uncountably categorical, then I(T,ℵ0) ≤ ℵ0.

Note that in the analysis above we did not assert that if M ∼= N , then
dim(φ(M)/A) = dim(φ(N )/A). This converse is true if A = ∅. If φ(v)
is a strongly minimal L-formula, then any isomorphism maps φ(M) onto
φ(N ). In this case, dim(φ(M)) = dim(φ(N )). What values are possible for
dim(φ(M))?

Lemma 6.1.20 Suppose that T is an ω-stable L-theory and φ(v) is a
strongly minimal L-formula (with no additional parameters). Suppose that
M |= T and dim(φ(M)) = n < ℵ0. Then, for all m ≥ n there is N |= T
with dim(φ(N )) = m.

Proof Let M∗ |= T be an ω-saturated elementary extension of M. It is
easy to see that dim(φ(M∗)) ≥ ℵ0. Let a1, . . . , am be independent elements
of φ(M∗). By Theorem4.2.20, there is N ≺ M∗ prime over a, where every
b ∈ N realizes an isolated type over a.

In M, φ(M) is infinite and φ(M) is the algebraic closure of n in-
dependent elements. Because m ≥ n, acl(a) is infinite. We claim that
φ(N ) = acl(a). Suppose not. Let b ∈ φ(N ) \ acl(a). There is θ(v, a)
isolating tpN (b/a). Because b �∈ acl(a), φ(N ) \ θ(N , a) is finite. Because
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acl(a) is infinite, there is c ∈ acl(a) such that φ(c) and θ(c, a). But then
tpN (c/a) = tpN (b/a), because θ(v, a) isolates tpN (b/a). This is impossible
because b �∈ acl(a). Thus, φ(N ) = acl(a) and dim(φ(N )) = m.

Thus, the set of dimensions for a strongly minimal L-formula in a count-
able model is either {ℵ0} or {n, n + 1, . . .} ∪ {ℵ0} for some n.

Corollary 6.1.21 If T is uncountably categorical and there is a strongly
minimal L-formula, then either T is ℵ0-categorical or I(T,ℵ0) = ℵ0.

The situation is much more murky if we really need to use parameters
from the prime model. Suppose that M0 is the prime model of T , M and
N are elementary extensions of M0, and the strongly minimal formula φ(v)
is ψ(v, a), where ψ is an L-formula and a ∈ M0. A priori it seems possible
that dim(φ(M)) �= dim(φ(N )), but there is b ∈ N with tpM(a) = tpN (b)
and dim(ψ(M, a)/a) = dim(ψ(N , b)/b). Then, we could find f : M → N ,
an isomorphism with f(a) = b, and have M ∼= N despite the fact that
dim(φ(M)) �= dim(φ(N )). In fact, this does not happen.

Theorem 6.1.22 (Baldwin–Lachlan Theorem) If T is uncountably
categorical but not ℵ0-categorical, then I(T,ℵ0) = ℵ0.

A generalization of this was later proved by Lachlan.

Theorem 6.1.23 If T is superstable but not ℵ0-categorical, then I(T,ℵ0) ≥
ℵ0.

The proofs of these results use more detailed results from stability theory
than we will develop here. The reader can find the proofs in [7] or [18].

6.2 Morley Rank

Throughout this chapter, T is a complete theory with infinite models.
In this section, we will develop Morley rank, one of the most impor-

tant tools for analyzing ω-stable theories. Morley rank provides a notion
of “dimension.” We begin with an illustration from linear algebra. Suppose
that K is an infinite field and V ⊆ Kn is an m-dimensional vector space.
Suppose that f is a linear function that is not constant on V . For a ∈ K,
let Va = {x ∈ V : f(x) = a}. Then, {Va : a ∈ K} is an infinite family
of (m − 1)-dimensional affine subsets of V . Morley rank is an attempt to
generalize this property of dimension. The basic idea is that if a definable
set X contains infinitely many pairwise disjoint sets of dimension m, then
X should have dimension at least m + 1. To make this precise, we must
allow arbitrary ordinals to occur as dimensions.

Definition 6.2.1 Suppose that M is an L-structure and φ(v) is an LM -
formula. We will define RMM(φ) the, Morley rank of φ in M. First, we
inductively define RMM(φ) ≥ α for α an ordinal:
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i) RMM(φ) ≥ 0 if and only if φ(M) is nonempty;
ii) if α is a limit ordinal, then RMM(φ) ≥ α if and only if RMM(φ) ≥ β

for all β < α;
iii) for any ordinal α, RMM(φ) ≥ α + 1 if and only if there are LM -

formulas ψ1(v), ψ2(v), . . . such that ψ1(M), ψ2(M), . . . is an infinite family
of pairwise disjoint subsets of φ(M) and RMM(ψi) ≥ α for all i.

If φ(M) = ∅, then RMM(φ) = −1. If RMM(φ) ≥ α but RMM(φ) �≥ α+
1, then RMM(φ) = α. If RMM(φ) ≥ α for all ordinals α, then RMM (φ) =
∞.

We would like to define Morley rank so that it does not depend on which
model the parameters come from. The next lemmas show that we can elim-
inate dependence on the model if we restrict our attention to ℵ0-saturated
models. We first show that if M is ℵ0-saturated, then RMM(θ(v, a)) de-
pends only on tpM(a).

Lemma 6.2.2 Suppose that θ(v,w) is an L-formula, M is ℵ0-saturated,
a, b ∈ M and tpM(a) = tpM(b). Then RMM(θ(v, a)) = RMM(θ(v, b)).

Proof We prove by induction on α that if θ(v,w) is any L-formula and
tpM(a) = tpM(b), then RMM(θ(v, a)) ≥ α if and only if RMM(θ(v, b)) ≥
α.

Because tpM(a) = tpM(b), θ(M, a) = ∅ if and only if θ(M, b) = ∅. Thus,
RMM(θ(v, a)) ≥ 0 if and only if RMM(θ(v, b)) ≥ 0.

If α is a limit ordinal and the claim is true for all β < α, then

RMM(θ(v, a)) ≥ α ⇔ RMM(θ(v, a)) ≥ β for all β < α

⇔ RMM(θ(v, b)) ≥ β for all β < α, by induction
⇔ RMM(θ(v, b)) ≥ α.

Suppose that the claim is true for α and RMM(θ(v, a)) ≥ α + 1. There are
LM -formulas ψ1, ψ2, . . . such that ψ1(M), ψ2(M), . . . is an infinite sequence
of pairwise disjoint subsets of θ(M, a) and RMM(ψi) ≥ α for all i. For each
i, there is an L-formula χi(v, w1, . . . , wmi

) and ci ∈ Mmi such that ψi(v) is
χi(v, ci). Because M is ℵ0-saturated, we can do a back-and-forth argument
to find d1, d2, . . . such that

tpM(a, c1, . . . , cm) = tpM(b, d1, . . . , dm)

for all m < ω. Then, χ1(M, d1), χ2(M, d2), . . . is an infinite sequence of
pairwise disjoint subsets of θ(M, b) and, by induction, RMM(χi(v, di)) ≥
α. Thus RMM(θ(v, b)) ≥ α + 1.

A symmetric argument shows that if RMM(θ(v, b)) ≥ α + 1, then
RMM(θ(v, a)) ≥ α + 1.
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Thus, by induction, RMM(θ(v, a)) ≥ α if and only if RMM(θ(v, b)) ≥ α
for all α. Consequently,

RMM(θ(v, a)) = RMM(θ(v, b)).

Lemma 6.2.3 Suppose that M and N are ℵ0-saturated models of T and
M ≺ N . If φ is an LM -formula, then RMM(φ) = RMN (φ).

Proof We will prove by induction on α that if φ is an LM -formula, then
RMM(φ) ≥ α if and only if RMN (φ) ≥ α.

Because M ≺ N , φ(M) = ∅ if and only if φ(N ) = ∅. Thus, RMM(φ) ≥ 0
if and only if RMN (φ) ≥ 0.

Suppose that α is a limit ordinal. Then

RMM(φ(v)) ≥ α ⇔ RMM(φ) ≥ β for all β < α

⇔ RMN (φ) ≥ β for all β < α, by induction
⇔ RMN (φ) ≥ α.

If RMM(φ) ≥ α + 1, then we can find LM -formulas ψ1, ψ2, . . . such that
ψ1(M), ψ2(M), . . . is an infinite sequence of pairwise disjoint subsets of
φ(M) and RMM(ψi) ≥ α for all i. By induction, RMN (ψi) ≥ α. Because
M ≺ N , ψ1(N ), ψ2(N ), . . . is an infinite sequence of pairwise disjoint sub-
sets of φ(N ). Thus RMN (φ) ≥ α + 1.

Suppose that RMN (φ) ≥ α + 1. There are LN -formulas ψ1, ψ2, . . . such
that ψ1(N ), ψ2(N ), . . . is an infinite family of pairwise disjoint subsets of
φ(N ) and RMN (ψi) ≥ α for all i. Let a be the parameters from M occurring
in the formula φ. Let ψi(v) be θi(v, bi), where θi is an L-formula and bi ∈ N .
Because M is ℵ0-saturated, we can find c1, c2, . . . in M such that

tpN (a, b1, . . . , bm) = tpM(a, c1, . . . , cm) = tpN (a, c1, . . . , cm)

for m < ω. By Lemma 6.2.2, RMN (θi(v, ci)) ≥ α. By induction,
RMM(θi(v, ci)) ≥ α. Consequently, RMM(φ) ≥ α + 1.

This concludes the induction. Thus RMM(φ) = RMN (φ).

Corollary 6.2.4 Suppose that M is an L-structure, φ is an LM -formula,
and N0 and N1 are ℵ0-saturated elementary extensions of M. Then
RMN0(φ) = RMN1(φ).

Proof By Exercise 2.5.11 there is N2, a common elementary extension
of N0 and N1. Let N3 be an ℵ0-saturated elementary extension of N2. By
Lemma 6.2.3, RMN0(φ) = RMN3(φ) = RMN1(φ).

Corollary 6.2.4 allows us to define the Morley rank of φ in a way that
does not depend on which model contains the parameters occurring in φ.
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Definition 6.2.5 If M is an L-structure and φ is any L-formula, we define
RM(φ), the Morley rank of φ, to be RMN (φ), where N is any ℵ0-saturated
elementary extension of M.

Morley rank gives us our desired notion of “dimension” for definable sets.

Definition 6.2.6 Suppose that M |= T and X ⊆ Mn is defined by the
LM -formula φ(v). We let RM(X), the Morley rank of X, be RM(φ).

In particular, if M is ℵ0-saturated and X ⊆ Mn is definable, then
RM(X) ≥ α + 1 if and only if we can find Y1, Y2, . . . pairwise disjoint
definable subsets of X of Morley rank at least α.

The next lemma shows that Morley rank has some basic properties that
we would want for a good notion of dimension.

Lemma 6.2.7 Let M be an L-structure and let X and Y be definable
subsets of Mn.

i) If X ⊆ Y , then RM(X) ≤ RM(Y ).
ii) RM(X ∪ Y ) is the maximum of RM(X) and RM(Y ).
iii) If X is nonempty, then RM(X) = 0 if and only if X is finite.

Proof We leave the proofs of i) and ii) as exercises.
iii) Let X = φ(M). Because X is nonempty, RM(φ) ≥ 0. Because φ(M)

is finite if and only if φ(N ) is finite for any M ≺ N , we may, without loss
of generality, assume that M is ℵ0-saturated. If X is finite, then, because
X cannot be partitioned into infinitely many nonempty sets, RM(X) �≥ 1.
Thus RM(X) = 0. If X is infinite, let a1, a2, . . . be distinct elements of X.
Then, {a1}, {a2}, . . . is an infinite sequence of pairwise disjoint definable
subsets of X. Thus RM(X) ≥ 1.

We will be interested in theories where every formula is ranked.

Definition 6.2.8 A theory T is called totally transcendental if, for all
M |= T , if φ is an LM -formula, then RM(φ) < ∞.

The Monster Model
The definition we just gave of Morley rank is rather awkward because
even if a formula has parameters from M |= T we need to work in an
ℵ0-saturated elementary extension to calculate the Morley rank. Then, to
show that Morley rank is well-defined, we must show that our calculation
did not depend on our choice of ℵ0-saturated model. Arguments such as
this come up very frequently and tend to be both routine and repetitive. To
simplify proofs, we will frequently adopt the expository device of assuming
that we are working in a fixed, very large, saturated model of T .

Let M |= T be saturated of cardinality κ, where κ is “very large.” We
call M the monster model of T. If M |= T and |M | ≤ κ, then by Lemma
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4.3.17 there is an elementary embedding of M into M. Moreover, if M ≺ M,
f : M → N is elementary, and |N | < κ, we can find j : N → M elementary
such that j|M is the identity. Thus, if we focus attention on models of T
of cardinality less than κ, we can view all models as elementary submodels
of M.

There are several problems with this approach. First, we really want
to prove theorems about all models of T , not just the small ones. But
if there are arbitrarily large saturated models of T , then we can prove
something about all models of T by proving it for submodels of larger and
larger monster models. Second, and more problematic, for general theories
T there may not be any saturated models. For our purposes, this is not a
serious problem because, for the remainder of this text, we will be focusing
on ω-stable theories and, by Theorem 4.3.15, if T is ω-stable, there are
saturated models of T of cardinality κ for each regular cardinal κ. If we
were considering arbitrary theories, we could get around this by making
some extra set-theoretic assumptions. For example, we could assume that
for all cardinals λ there is a strongly inaccessible cardinal κ > λ. Then, by
Corollary 4.3.14, there are arbitrarily large saturated models.

We will tacitly assume that T has arbitrarily large saturated models, and
thus we can prove theorems about all models of T by proving theorems
about elementary submodels of saturated models.1 We will only use this
assumption in arguments where, by careful bookkeeping as in the proofs
above, we could avoid it.

For the remainder of the chapter, we make the following assumptions:
• M is a large saturated model of T ;
• all M |= T that we consider are elementary submodels of M and

|M | < |M|;
• all sets A of parameters that we consider are subsets of M with |A| < M;
• if φ(v, a) is a formula with parameters, we assume a ∈ M;
• we write tp(a/A) for tpM(a/A) and Sn(A) for SM

n (A).
Note that if a ∈ M , then, because M ≺ M, M |= φ(a) if and only if

M |= φ(a). We will say that φ(a) holds if M |= φ(a).
Because M is saturated, if A ⊂ M and p ∈ Sn(A), then p is realized in

M. Moreover, if f : A → M is a partial elementary map, then f extends to
an automorphism of M.

We could define Morley rank referring only to the monster model. The
Morley rank of an LM-formula is inductively defined as follows:

RM(φ) ≥ 0 if and only if φ(M) is nonempty;
RM(φ) ≥ α + 1 if and only if there are LM-formulas ψ1, ψ2, . . . such

that ψ1(M), ψ2(M), . . . is an infinite sequence of pairwise disjoint subsets
of φ(M) and RM(ψi) ≥ α for each i;

1There are other approaches to the monster model, which we discuss in the remarks
at the end of this chapter.
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if α is a limit ordinal, RM(φ) ≥ α if and only if RM(φ) ≥ β for each
β < α.

Morley Degree
If X is a definable set of Morley rank α, then we cannot partition X into
infinitely many pairwise disjoint definable subsets of Morley rank α. Indeed,
we will show that there is a number d such that X cannot be partitioned
into more than d definable sets of Morley rank α.

Proposition 6.2.9 Let φ be an LM-formula with RM(φ) = α for some
ordinal α. There is a natural number d such that if ψ1, . . . , ψn are LM-
formulas such that ψ1(M), . . . , ψn(M) are disjoint subsets of φ(M) such
that RM(ψi) = α for all i, then n ≤ d.

We call d the Morley degree of φ and write degM(φ) = d.

Proof We build S ⊆ 2<ω and (φσ : σ ∈ S) with the following properties.
i) If σ ∈ S and τ ⊆ σ, then τ ∈ S.
ii) φ∅ = φ.
iii) RM(φσ) = α for all σ ∈ S.
iv) If σ ∈ S, there are two cases to consider. If there is an LM-formula

ψ such that RM(φσ ∧ ψ) = RM(φσ ∧ ¬ψ) = α, then σ, 0 and σ, 1 are in S,
φσ,0 is φσ ∧ ψ, and φσ,1 is φσ ∧ ¬ψ. If there is no such ψ, then no τ ⊃ σ is
in S.

The set S is a binary tree. We claim that S is finite. If S is infinite,
then, by König’s Lemma (see Lemma A.21), there is f : ω → 2 such that
f |n ∈ S for all n. Let ψn be the formula φf |n ∧ ¬φf |n+1 for n = 1, 2, . . ..
Then, RM(ψn) = α for all n and ψ1(M), ψ2(M), . . . are disjoint subsets of
φ(M). But then RM(φ) ≥ α + 1, a contradiction. Thus, S is finite.

Let S0 = {σ ∈ S : τ �∈ S for all τ ⊃ σ} be the terminal nodes
of the tree S. Let d = |S0|, and let ψ1, . . . , ψd be an enumeration of
{φσ : σ ∈ S0}. Then, RM(ψi) = α for all i, φ(M) is the disjoint union
of ψ1(M), . . . , ψd(M), and, for each i, there is no formula χ such that
RM(ψi ∧ χ) = RM(ψi ∧ ¬χ) = α.

Suppose that θ1, . . . , θn is a sequence of LM-formulas of Morley rank α
such that θ1(M), . . . , θn(M) is a sequence of pairwise disjoint subsets of
φ(M). We claim that n ≤ d. By our choice of ψ1, . . . , ψd, for each i ≤ d,
there is at most one j ≤ n such that RM(ψi ∧ θj) = α. If n > d, there is
ĵ ≤ n such that RM(ψi ∧ θĵ) < α for all i ≤ d. But

M |= θĵ ↔
d∨

i=1

ψi ∧ θĵ .

Thus, by Lemma 6.2.7, RM(θĵ) < α, a contradiction.
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Strongly minimal formulas can be described using Morley rank and de-
gree.

Corollary 6.2.10 A formula φ is strongly minimal if and only if RM(φ) =
degM(φ) = 1.

Proof If φ is strongly minimal, then, because φ(M) is infinite, RM(φ) ≥
1. Because φ(M) cannot be partitioned into two definable infinite sets,
RM(φ) = 1 and degM(φ) = 1.

On the other hand, if RM(φ) = degM(φ) = 1, then φ(M) is infinite and
cannot be partitioned into two infinite definable sets. Thus, φ is strongly
minimal.

Recall from Exercise 5.5.6 that a formula φ(v,w) has the order property if
there are a1, b1, a2, b2, . . . in M such that M |= φ(ai, bj) if and only if i < j.
We can use Morley rank and degree to show that in totally transcendental
theories no formula has the order property.

Proposition 6.2.11 If T is totally transcendental, then no formula has
the order property.

Proof Suppose, for purposes of contradiction, that φ(v,w) has the order
property. By compactness and saturation, we can find (aq, bq : q ∈ Q) such
that M |= φ(aq, br) if and only if q < r. Note that {q ∈ Q : φ(aq, br)} =
(−∞, r) is an infinite convex set. Thus, there is ψ(v), an LM-formula of
minimal rank and degree such that C = {q ∈ Q : M |= ψ(aq)} is an infinite
convex set. Choose r in the interior of C. Let ψ0(v) be ψ(v)∧φ(v, br), and
let ψ1(v) be ψ(v)∧¬φ(v, br). The set {q ∈ Q : ψi(aq)} is infinite and convex
for i = 0, 1, and if neither ψi has lower Morley rank than ψ, then both have
lower Morley degree, contradicting the minimality of ψ.

Ranks of Types
We extend the definitions of Morley rank and degree from formulas to
types.

Definition 6.2.12 If p ∈ Sn(A), then RM(p) = inf{RM(φ) : φ ∈ p}. If
RM(p) is an ordinal, then degM(p) = inf{degM(φ) : φ ∈ p and RM(φ) =
RM(p)}.

If RM(p) < ∞, then (RM(p),degM(p)) is the minimum element of
{(RM(φ),degM(φ)) : φ ∈ p} in the lexicographic order. For each type p with
RM(p) < ∞, we can find a formula φp ∈ p such that (RM(p),degM(p)) =
(RM(φp),degM(φp)).

Lemma 6.2.13 If p, q ∈ Sn(A), RM(p),RM(q) < ∞, and p �= q, then
φp �= φq.
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Proof There is a formula ψ such that ψ ∈ p and ψ �∈ q. Because φp∧ψ ∈ p,
RM(φp ∧ ψ) ≤ RM(φp) ≤ RM(p). Because RM(φp) is minimal,

RM(φp ∧ ψ) = RM(φp) = RM(p).

Similarly,
RM(φq ∧ ¬ψ) = RM(φq) = RM(q).

If φp = φq, then

RM(φp ∧ ψ) = RM(φp ∧ ¬ψ) = RM(φp).

Thus, degM(φp ∧ ψ) < degM(φp), contradicting our choice of φp.

Theorem 6.2.14 If T is ω-stable, then T is totally transcendental. Con-
versely, if L is countable and T is totally transcendental, then T is ω-stable.

Proof
(⇒) Suppose, for purposes of contradiction, that φ(v1, . . . , vn) is an LM-

formula such that RM(φ) = ∞. Let β = sup{RM(ψ) : ψ an LM-formula
and RM(ψ) < ∞}.

Because RM(φ) = ∞ ≥ β + 2, we can find an LM-formula ψ such that
RM(φ ∧ ψ) ≥ β + 1 and RM(φ ∧¬ψ) ≥ β + 1. Then RM(φ ∧ ψ) = RM(φ ∧
¬ψ) = ∞.

Iterating this construction, we can build a binary tree of LM-formulas
(φσ : σ ∈ 2<ω) such that:

i) φ∅ = φ;
ii) RM(φσ) = ∞ for all σ;
iii) for each σ there is a formula ψσ such that φσ,0 = φσ ∧ ψσ and

φσ,1 = φσ ∧ ¬ψσ.
There is a countable A ⊆ M such that each φσ is an LA-formula. Then,

|Sn(A)| = 2ℵ0 so T is not ω-stable.
(⇐) Suppose that |A| ≤ ℵ0. For each p ∈ Sn(A), RM(p) < ∞ so there is

φp as above. Because φp �= φq for p �= q and there are only countably many
choices for φp, |Sn(A)| ≤ ℵ0. Thus, T is ω-stable.

Because we are concentrating on theories in countable languages, we will
not mention totally transcendental theories again, but the reader should
note that many of the results we state for ω-stable theories only use the
existence of ranks and thus follow for totally transcendental theories as
well.

Definition 6.2.15 If A ⊂ M and a ∈ M, we write RM(a) for RM(tp(a))
and RM(a/A) for RM(tp(a/A)).

The following facts are easy to prove and we leave them as exercises.

Lemma 6.2.16 i) If X ⊆ Mn is definable, then RM(X) = sup{RM(a/A) :
a ∈ X, A ⊂ M, |A| < |M|, X, A-definable}.
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ii) If X ⊆ Mn is definable, and β < RM(X), then there is a definable
Y ⊂ X with RM(Y ) = β. In particular, if RM(X) = α and β < α we can
find disjoint definable sets Y1, Y2, . . . such that each Yi has Morley rank α.

iii) For any LA-formula φ, |{p ∈ Sn(M) : φ ∈ p and RM(p) = RM(φ)}| =
degM(φ).

Next, we prove an important generalization of Lemma 6.2.7 iii).

Lemma 6.2.17 Suppose that A ⊂ M, a, b ∈ M, and b is algebraic over
A ∪ {a}. Then RM(a, b/A) = RM(a/A).

Proof Without loss of generality we will assume that A = ∅. We leave as
an exercise the proof that RM(a, b) ≥ RM(a). We will prove by induction
on α that if a, b ∈ M, b is algebraic over a, and if RM(a, b) ≥ α, then
RM(a) ≥ α.

By Exercise 6.6.10, RM(a) ≥ 0. Thus, the claim is true for α = 0. If α is
a limit ordinal and the claim is true for all β < α, then it is also true for α.

Suppose that the claim is true for α and RM(a, b) ≥ α+1. By induction,
RM(a) ≥ α. Suppose, for purposes of contradiction, that RM(a) = α. Let
φ(v) be an L-formula such that RM(φ(v)) = α and there is no L-formula
φ1 such that RM(φ ∧ φ1) = RM(φ ∧ ¬φ1) = α.

Because b is algebraic over a, there is a formula ψ(v, w) such that ψ(a, b)
and |{x : ψ(a, x)}| = n. Let φ̂(v, w) be the formula

φ(v) ∧ ψ(v, w) ∧ |{x : ψ(v, x)}| = n.

Because φ̂(a, b) holds and RM(a, b) > α, RM(φ̂) > α. Suppose that
θ1, θ2, . . . are LM-formulas such that θ1(M), θ2(M), . . . is a sequence of dis-
joint subsets of φ̂(M) and RM(θi) ≥ α for all i. Let χi(v) be the formula
∃w θi(v, w).
Claim 1 RM(χi) ≥ α for all i.

Because RM(θi) ≥ α, there is c, d ∈ M such that θi(c, d) and RM(c, d) ≥
α. By induction, RM(c) ≥ α. Because χi(c), RM(χi) ≥ α.
Claim 2 RM(χ1 ∧ . . . ∧ χm) ≥ α for all m.

Suppose that m is least such that this fails. Then

RM(χ1 ∧ . . . ∧ χm−1) = RM

(
χm ∧ ¬

m−1∧
i=1

χi

)
≥ α,

contradicting our assumption that we cannot find an L-formula φ1 such
that φ ∧ φ1 and φ ∧ ¬φ1 both have rank α.

Because M is saturated, we can find c ∈ M such that χi(c) for all i. For
each i, we can find di such that θi(c, di). Because the θi(M) are disjoint,
d1, d2, . . . are distinct. But θi(M) ⊆ φ̂(M). Thus, ψ(c, di) holds for all i,
contradicting the fact that |{x : ψ(c, x)}| = n. Thus, RM(a) ≥ α + 1 and
the lemma follows by induction.
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In particular, this shows that Morley rank is preserved by definable bi-
jections or indeed definable finite-to-one functions.

Corollary 6.2.18 Suppose that T is ω-stable, M |= T , X ⊆ Mn, Y ⊆ Mm

are definable, and f : X → Y is a definable finite-to-one function from X
onto Y . Then RM(X) = RM(Y ).

Proof Let A ⊂ M such that X, Y and f are definable over A. Suppose
that f(a) = b. Then, b is definable over A, a and, because f is finite-to-one,
a is algebraic over A, b. By Lemma 6.2.17

RM(a/A) = RM(a, b/A) = RM(b/A).

If a ∈ X such that RM(a/A) = RM(X), then

RM(Y ) ≥ RM(f(a)/A) = RM(a/A) = RM(X).

On the other hand, if b ∈ Y such that RM(b/A) = RM(Y ), then, because
f is surjective, there is a ∈ X such that f(a) = b and

RM(X) ≥ RM(a/A) = RM(b/A) = RM(Y ).

Hence RM(X) = RM(Y ).

Morley Rank in Strongly Minimal Theories
In strongly minimal theories, Morley rank agrees with the notion of di-
mension introduced in Definition 6.1.10. Recall that a theory is strongly
minimal if the formula v = v is strongly minimal (i.e., if M is a strongly
minimal set).

Theorem 6.2.19 Suppose that T is a strongly minimal theory. If A ⊂ M

and a ∈ M, then RM(a/A) = dim(a/A).

Proof We will first show by induction that if a1, . . . , ak are independent
over A, then RM(a) = k. We prove this by induction on k.

Suppose that k = 1. If φ(v) ∈ tp(a/A), then, because a �∈ acl(A), φ(M)
is infinite and RM(φ) ≥ 1. Because T is strongly minimal RM(v = v) = 1.
Thus RM(φ) ≤ 1.

Suppose k > 1 and a1, . . . , ak are independent over A. Let φ(v) ∈ tp(a/A)
be a formula of minimal Morley rank. We first argue that RM(a/A) ≥ k.
Let b1, b2, . . . be distinct elements of M that are not in acl(A). Let ψi(v) be
the formula φ(v)∧v1 = bi. Clearly, ψ1(M), ψ2(M), . . . is a family of pairwise
disjoint subsets of φ(M). If c2, . . . , ck are independent over A∪{bi}, then, by
Lemma 6.1.6, tp(bi, c/A) = tp(a1, . . . , ak/A). In particular, M |= φ(bi, c).
Thus M |= ψi(bi, c). Then

RM(ψi) ≥ RM(bi, c/A) ≥ RM(c/A)
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and, by induction, RM(c/A) ≥ k−1. Thus, RM(ψi) ≥ k−1 and RM(φ) ≥ k.
Hence RM(a/A) ≥ k.

Next, we show that RM(a/A) ≤ k. Let M be an ℵ0-saturated model
containing A. If d1, . . . , dk are independent over M , then, by Lemma 6.1.6,
tp(a/A) = tp(d/A) so we may without loss of generality assume that
a1, . . . , ak are independent over M . Suppose that ψ(v) is an LM -formula
such that ψ(M) ⊂ φ(M) and ¬ψ(a). It suffices to show that RM(ψ) < k. If
ψ(b), then, because tp(b/M) �= tp(a/M), b1, . . . , bk are dependent over M .
By permuting variables, we may assume that bk ∈ acl(M, b1, . . . , bk−1). Let
θ(v) be an LM -formula such that |{w : θ(b1, . . . , bk−1, w)}| = s for some
s < ω. Replacing ψ by

ψ(v) ∧ |{w : θ(v1, . . . , vk−1, w)}| = s

we may assume that if ψ(c), then ck ∈ acl(M, c1, . . . , ck−1).
Choose c1, . . . , ck such that ψ(c) and RM(ψ) = RM(c/M). By permuting

variables, we may assume that c1, . . . , cl are independent over M and c ∈
acl(M, c1, . . . , cl) for some l ≤ k. But then, by Lemma 6.2.17,

RM(ψ) = RM(c/M) = RM(c1, . . . , cl/M)

and RM(c1, . . . , cl/M) = l < k by induction.

The equivalence of Morley rank and dimension will allow us to conclude
that Morley rank is definable in strongly minimal theories.

Lemma 6.2.20 Let T be strongly minimal. Suppose that C ⊆ Mm+n is
definable. Let Ca = {x ∈ Mn : (a, x) ∈ C} for a ∈ Mm. The set Yn,k =
{a ∈ Mm : RM(Ca) ≥ k} is definable for each k ≤ n.

Proof We prove this by induction on n.
Suppose that n = 1. We first note that there is a number N such that

|Ca| < N or |M \ Ca| < N for all a ∈ Mm because otherwise the type

{
∃v1, . . . , v2s

∧
i�=j

vi �= vj ∧
s∧

i=1

φ(w, vi) ∧
2s∧

i=s+1

¬φ(w, vi) : s = 1, 2, . . .
}

is satisfiable and a realization violates strong minimality.
Thus, RM(Ca) ≥ 1 if and only if |Ca| > N , so Y1,1 is definable. Clearly,

Y1,0 = {a : ∃w w ∈ Ca}.
Suppose that n = s+1. We work by induction on k. Clearly, Yn,0 = Mn is

definable. For a ∈ Mm, let Ba = {b ∈ Ms : ∃y (b, y) ∈ Ca}. If RM(Ba) ≥ k,
then RM(Ca) ≥ k. Suppose that RM(Ba) < k. If b ∈ Ba and (b, c) ∈ Ca,
then dim(b, c) = dim b + dim(c/b). Let Aa = {b ∈ Ms : {y : (b, y) ∈ Ca} is
infinite}. As above, there is an N (independent of a) such that

b ∈ Aa if and only if |{y : (b, y) ∈ Ca}| > N.
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Thus, Aa is definable and RM(Ca) ≥ k if and only if RM(Aa) ≥ k − 1.
Thus, RM(Ca) ≥ k if and only if RM(Ba) ≥ k or RM(Aa) > k − 1, so,

by induction, Yn,k is definable.

Morley Rank in Algebraically Closed Fields
For algebraically closed fields, we will show that Morley rank is equal to
the classical notion of dimension from algebraic geometry.

Definition 6.2.21 Let K be an algebraically closed field. Let V ⊆ Kn be
an irreducible algebraic variety. Let I(V ) be the prime ideal of polynomials
in K[X1, . . . , Xn] vanishing on V . The Krull dimension of V is the largest
number m such that there is a chain of prime ideals

I(V ) = P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pm ⊂ K[X1, . . . , Xn].

If V has Krull dimension 0, then I(V ) is a maximal ideal. Because K is
algebraically closed, I(V ) is the ideal generated by X1 − a1, . . . , Xn − an

for some a1, . . . , an ∈ K and V is the single point {a}.
There are many alternative characterizations of dimension. For example,

the Krull dimension is the minimum of the vector space dimension of the
tangent space to V at points p ∈ V . If K = C and V is smooth, then
the Krull dimension is equal to the dimension of V as a complex man-
ifold. We will use another characterization of dimension. If V ⊆ Kn is
an algebraic variety, the function field of V is K(V ), the fraction field of
K[X1, . . . , Xn]/I(V ).

Theorem 6.2.22 If K is an algebraically closed field and V ⊆ Kn is an
irreducible variety, then the Krull dimension of V is equal to the transcen-
dence degree of the function field K(V ) over K.

Proof See [6] §11.

It follows that in algebraically closed fields, the Morley rank of a variety
is equal to the Krull dimension.

Corollary 6.2.23 If K is an algebraically closed field and V ⊆ Kn is an
irreducible variety, then RM(V ) is equal to the Krull dimension of V .

Proof We prove this by induction on the Krull dimension of V . If V has
Krull dimension 0, then V is a point and RM(V ) = 0.

Suppose that V has Krull dimension k > 0. Let φ(v) be the LK -formula
defining V . If a ∈ φ(M), let Va ⊆ V be

{x ∈ Kn : f(a) = 0 → f(x) = 0 for all f ∈ K[X]}
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(i.e., Va is V (Ia) where Ia is the prime ideal of polynomials in K[X] van-
ishing at a). If Va ⊂ V , then V has Krull dimension at most k − 1 and, by
induction,

RM(a/K) ≤ RM(Va) ≤ k − 1.

Suppose that Va = V . Then, Ia = I(V ) and the field K(a) is ex-
actly the function field K(V ). By Theorem 6.2.19 RM(a/K) = dim(a/K).
By Proposition 3.2.15, the model-theoretic notion of algebraic closure
agrees with the classical algebraic notion in algebraically closed fields.
Thus, RM(a/K) is the transcendence degree of K(V ), which is k. Because
RM(V ) = max{RM(a/K) : a ∈ φ(M)}, RM(V ) = k.

Suppose that K is an algebraically closed field and K is a large saturated
model with K ≺ K. If V ⊆ Kn is an irreducible algebraic variety defined
by polynomial equations with coefficients in K, then we can also consider
V (K) the subset of Kn defined by the same system of equations. By model-
completeness, V (K) is still irreducible (see Exercise 3.4.17).

Definition 6.2.24 We say that a ∈ V (K) is a generic point of V over K
if a �∈ W (K) for any Zariski closed W ⊂ V defined over K.

If Ia = {f ∈ K[X] : f(a) = 0}, then a is a generic point if and only if
Ia = I(V ). The following lemma will motivate an important definition in
Chapter 7. We leave the proof as an exercise.

Lemma 6.2.25 If V ⊆ Kn is an irreducible Zariski closed set and a ∈
V (K), then RM(a/K) = RM(V ) if and only if a is a generic point of V .

The following lemma will be useful in Chapter 7.

Lemma 6.2.26 Suppose that V ⊆ Kn is an irreducible closed set, X ⊆ Kn

is constructible, and RM(X) = RM(V ). There is an open O ⊆ Kn such
that O ∩ V ⊆ X and O ∩ V �= ∅.

Proof By quantifier elimination, X =
⋃n

i=1 Fi ∩ Oi where Fi ⊆ F is
Zariski closed, Oi ⊆ Kn is Zariski open, and Fi ∩ Oi is nonempty. Because
RM(X) = RM(V ) and V is irreducible, X is not contained in any proper
closed subset of F . Thus, there is an i such that Fi = F and F ∩ Oi ⊆ X.

6.3 Forking and Independence

For this section we assume that T is a complete ω-stable theory.
Suppose that we have a type p ∈ Sn(A) and A ⊆ B. It will often be

important to find q ∈ Sn(B) with p ⊆ q such that q is as “free” as possible
(i.e., q imposes the fewest possible restrictions on its realizations). For ex-
ample if K is an algebraically closed field, k ⊆ l are subfields and p ∈ S1(k)
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is the type of an element transcendental over k. Then q will be the type of
a transcendental over l. Any other r ∈ S1(l) will be less “free” as we have
asserted that v satisfies algebraic equations that are not imposed by p. The
next definition describes the “free” extensions.

Definition 6.3.1 Suppose that A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p ⊆ q.
If RM(q) < RM(p), we say that q is a forking extension of p and that q
forks over A. If RM(q) = RM(p), we say that q is a nonforking extension
of p.

The nonforking extensions will be the “free” ones.2 Our first goal is to
show that nonforking extensions exist.

Theorem 6.3.2 (Existence of nonforking extensions) Suppose that
p ∈ Sn(A) and A ⊆ B.

i) There is q ∈ Sn(B) a nonforking extension of p.
ii) There are at most degM(p) nonforking extensions of p in Sn(B), and,

if M is an ℵ0-saturated model with A ⊆ M , there are exactly degM(p)
nonforking extensions of p in Sn(M).

iii) There is at most one q ∈ Sn(B), a nonforking extension of p with
degM(p) = degM(q). In particular, if degM(p) = 1, then p has a unique
nonforking extension in Sn(B).

Proof Let φ(v) ∈ p be of minimal Morley rank and degree with RM(φ) =
α.

i) Let M be an ℵ0-saturated model containing B. Let ψ(v) be an LM -
formula such that ψ(M) ⊆ φ(M), RM(ψ) = α, and degM(ψ) = 1.

Let q = {θ(v, b) : θ is an L-formula, b ∈ B, and RM(θ(v, b)∧ψ(v)) = α}.
Because RM(ψ) = α, for any LB-formula χ(v) either χ ∈ q or ¬χ ∈ q.
Because degM(ψ) = 1 if χ1, χ2 ∈ q, then χ1 ∧ χ2 ∈ q. In particular, for any
χ(v), exactly one of χ and ¬χ is in q. Thus q ∈ Sn(M). Clearly, p ⊆ q and
RM(q) = α.

ii) Suppose that A ⊆ B and q1, . . . , qm are distinct nonforking extensions
of p. Let ψi(v) be a formula of minimal rank and Morley degree in qi.
Then, RM(ψi) = α while RM(ψi ∧ ψj) < α for i, j ≤ d with i �= j. Thus
m ≤ degM(φ).

If M is an ℵ0-saturated model containing A and RM(φ) = d, there are
ψ1, . . . , ψd such that RM(ψi) = α while RM(ψi ∧ ψj) < α for i, j ≤ d with
i �= j. As in i), we can find qi ∈ Sn(M) extending p such that RM(qi) = α
and ψi ∈ qi. Because ψj �∈ qi for i �= j, the qi are distinct.

iii) Exercise.

2It is unfortunately typical of model-theoretic terminology that the desirable property
(in this case nonforking) is defined as the negation of the undesirable property (forking).
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Definable Types
To analyze nonforking extensions, we need the notion of a definable type.

Definition 6.3.3 We say that a type p ∈ Sn(A) is definable over B if for
each L-formula φ(v, w) there is an LB-formula dpφ(w) such that

φ(v, a) ∈ p if and only if dpφ(a)

for all a ∈ A.

We first show that in an ω-stable theory every type in Sn(A) is definable
over A. We need one lemma.

Lemma 6.3.4 Suppose that M is ℵ0-saturated, φ(v) is an LM -formula
with RM(φ) = α, and ψ(v) is an LM-formula with RM(φ ∧ ψ) = α. There
is a ∈ M such that M |= φ ∧ ψ(a).

Proof We prove this by induction on α. If α = 0, this is clear because
φ(M) is finite and φ(M) = φ(M). Suppose that α > 0. If degM(φ) = d > 1,
then we can find LM -formulas θ1(v), . . . , θd(v) of Morley rank α and Morley
degree 1 such that M |= φ(v) ↔

∨
θi(v). We must have RM(ψ ∧ θi) = α

for some i, and it suffices to find a ∈ M such that M |= ψ ∧ θi(a). Thus,
without loss of generality, we may assume that degM(φ) = 1.

If degM(φ) = 1, then RM(φ ∧ ¬ψ) = β for some β < α. Because M is
ℵ0-saturated, by Lemma 6.2.16 ii) we can find LM -formulas θ0(v), θ1(v), . . .
such that RM(θi) = β and θ0(M), θ1(M), . . . are pairwise disjoint subsets
of φ(M). Because RM(φ ∧ ¬ψ) = β, RM(¬ψ ∧ θi) < β for some i (indeed,
for all but finitely many i). Thus, RM(ψ ∧ θi) = β and by induction there
is a ∈ M such that M |= ψ ∧ θi(a) and M |= ψ ∧ φ(a).

Theorem 6.3.5 Let M be an ℵ0-saturated model, φ(v) be an LM -formula
with RM(φ) = α, and ψ(v, w) be an L-formula. The set {b ∈ M :
RM(ψ(v, b) ∧ φ(v)) = α} is definable with parameters from M.

Moreover, if A ⊆ M and φ is an LA-formula, then {b ∈ M : RM(ψ(v, b)∧
φ(v)) = α} is definable with parameters from A.

Proof We first argue that we may, without loss of generality, assume
degM(φ) = 1. If degM(φ) = d > 1, let θ1, . . . , θd be LM -formulas of Morley
rank α and Morley degree 1 such that M |= φ(v) ↔

∨
θi(v). Because

{b ∈ M : RM(ψ(v, b) ∧ φ(v)) = α} =
n⋃

i=1

{b ∈ M : RM(ψ(v, b) ∧ θi(v)) = α},

it suffices to prove that each set {b ∈ M : RM(ψ(v, b) ∧ θi(v)) = α} is
definable.
Claim For each c ∈ M such that RM(φ(v) ∧ ψ(v, c)) = α, there is a
finite set Xc ⊂ φ(M) ∩ ψ(M, c) such that for all b, if Xc ⊂ ψ(M, b), then
RM(φ(v) ∧ ψ(v, b)) = α.
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Suppose not. We build a sequence a0, b0, a1, b1, . . . violating the order
property such that, ai ∈ φ(M) ∩ ψ(M, c) and RM(φ(v) ∧ ψ(v, bi)) < α for
all i. Suppose that we have already constructed a0, b0, . . . , an, bn. Because

RM

(
φ(v) ∧ ψ(v, c) ∧

n∧
i=1

¬ψ(v, bi)

)
= α,

by Lemma 6.3.4 there is

an+1 ∈ φ(M) ∩ ψ(M, c) \
n⋃

i=1

ψ(v, bi).

By assumption, we can find bn+1 such that {a0, . . . , an+1} ⊂ ψ(M, bn+1)
such that RM(φ ∧ ψ(v, bn+1)) < α.

By construction, ψ(ai, bj) if and only if i < j. This violates the order
property.

Let Y = {X ⊂ φ(M) : X is finite, and if X ⊂ ψ(M, b), then RM(φ(v) ∧
ψ(v, b)) = α}. For each X ∈ Y , let θX(w) be the LM -formula∧

x∈X

ψ(x,w).

By the claim,

RM(φ(v) ∧ ψ(v, b)) = α ⇔
∨

X∈Y

θX(b).

Thus, RM(φ(v) ∧ ψ(v, w)) = α is equivalent to an infinite disjunction of
LM -formulas.

A similar argument with ¬ψ(v,w) shows that RM(φ(v) ∧¬ψ(v,w)) = α
is equivalent to an infinite disjunction of LM -formulas.

Because M is saturated (see Exercise 4.5.34), there is a finite Y0 ⊆ Y
such that ∨

X∈Y0

θX(w) ↔
∨

X∈Y

θX(w).

The formula
∨

X∈Y0
θX(w) is an LM -formula defining {b : RM(φ(v) ∧

ψ(v, w)) = α}.
Suppose that A ⊆ M and φ is an LA-formula. If σ is any automorphism

of M fixing A pointwise, then, by Lemma 6.2.2,

RM(φ(v) ∧ ψ(v, b)) = α if and only if RM(φ(v) ∧ ψ(v, σ(b))) = α

for all b. Because {b : RM(φ(v)∧ψ(v, b)) = α} is definable and fixed setwise
by any automorphism of M that fixes A pointwise, this set is definable over
A by Proposition 4.3.25.
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Corollary 6.3.6 If p ∈ Sn(A), then p is definable over A0 for some finite
A0 ⊆ A.

Proof Let φ(v) ∈ p be of minimal Morley rank and degree. Let A0 ⊆ A
such that φ is an LA0 -formula, and let RM(φ) = α. For any formula ψ(v,w)
and a ∈ M ,

ψ(v, a) ∈ p if and only if RM(φ(v) ∧ ψ(v, a)) = α.

By Theorem 6.3.5, this is definable by an LA0 -formula.

The following corollary shows that if M is ω-stable and D ⊆ M is
∅-definable, then any definable subset of Dn can be defined using only
parameters from D.

Corollary 6.3.7 Suppose that A ⊆ M and X ⊆ Mn is A-definable. Then,
any Y ⊆ Xm is A ∪ X-definable.

Proof Let ψ(v, b) define Y . Then Y = {c ∈ Xn : ψ(c, b) ∈ tp(b/X)}.
Because tp(b/X) is definable over X, Y is definable over A ∪ X.

We can use the definition of a type to understand the nonforking exten-
sions. The situation is most clear for types of Morley degree 1.

Proposition 6.3.8 Suppose that p ∈ Sn(A) and degM(p) = 1. Then, p is
definable over A. If B ⊇ A, let

pB = {ψ(v, b) : M |= dpψ(b), b ∈ B, ψ an L-formula}.

Then, q is the unique nonforking extension of p to B and q is definable
over A—indeed, we can take dqψ = dpψ for all L-formulas ψ.

Proof Suppose that p ∈ Sn(A), RM(p) = α, and degM(p) = 1. Let φ(v)
be an LA-formula with RM(φ) = α and degM(p) = 1. If ψ(v,w) is an
L-formula, there is an LA-formula dpψ such that RM(φ ∧ ψ(v, v)) = α if
and only if M |= dpφ(a). Suppose that A ⊆ B. The proof of Theorem 6.3.2
shows that

q = {ψ(v, b) : b ∈ B and RM(φ(v) ∧ ψ(v, a)) = α, ψ an L-formula}

is the unique nonforking extension of p, but

q = {ψ(v, b) : M |= dpψ(b), b ∈ B, ψ an L-formula}.

Thus, q is definable over A. Indeed we can use dqφ = dpφ to define q.

We could replace A by any A0 ⊆ A such that there is an LA0 -formula of
Morley rank α and Morley degree 1.

If degM(p) > 1, the situation is more complicated. We will show that any
nonforking extension of p ∈ Sn(A) is definable over the algebraic closure of
A in Meq.
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Suppose that M is ℵ0-saturated, A ⊆ M , p ∈ Sn(A), q ∈ Sn(M), p ⊆ q,
RM(p) = RM(q) = α, and degM(q) = 1. Let φ(v) and ψ(v,w) be LA-
formulas and b ∈ M such that φ(v) ∈ p is a formula of minimal rank and
degree and ψ(v, b) ∈ q has Morley rank α and Morley degree 1. We may
assume that ψ(v,w) implies φ(v).

Let X = {c : RM(ψ(v, c)) = α and ∀d if RM(ψ(v, d)) = α, then either
RM(ψ(v, c) ∧ ψ(v, d)) < α or RM(ψ(v, c) ∧ ¬ψ(v, d)) < α}. By Theorem
6.3.5, X is definable over A.

Define E ⊆ X × X by

(c, d) ∈ E ⇔ RM(ψ(v, c) ∧ ψ(v, d)) = α.

Claim E is an A-definable equivalence relation with at most degM(φ)
equivalence classes.

By Theorem 6.3.5, E is A-definable. It is clear that E is symmetric and
reflexive. Suppose cEd and ¬(cEe). Then, RM(ψ(v, d)∧¬ψ(v, c)) < α and
RM(ψ(v, c) ∧ ψ(v, e)) < α. Because ψ(v, c) ∧ ψ(v, d) implies

(ψ(v, d) ∧ ¬ψ(v, c)) ∨ (ψ(v, c) ∧ ψ(v, e)),

RM(ψ(v, d)∧ψ(v, e)) < α. Thus, ¬(dEe) and E is an equivalence relation.
If b1, . . . , bm ∈ X are E-inequivalent, then ψ(v, bi) defines a Morley rank

α subset of φ(M) and RM(ψ(v, bi) ∧ ψ(v, bj)) < α for i �= j. Thus m ≤
degM(φ).

Suppose that cEb. Because degM(ψ(v, b)) = 1, RM(ψ(v, c)) = α, and
RM(ψ(v, c) ∧¬ψ(v, b)) < α, ψ(v, c) is also a formula in q of Morley rank α
and Morley degree 1. Thus, q is definable over A∪c. In fact, for any formula
θ(v, z) and a ∈ M , θ(v, a) ∈ q if and only if RM(ψ(v, c) ∧ θ(v, a)) = α. In
particular, there is an LA-formula θ∗(w, z) such that θ(v, a) ∈ q if and only
if θ∗(c, a). The definition of q depends on b/E rather than the choice of c.

We think of b/E as an element of Meq (see Lemma 1.3.10). Because E
is definable over A and has only finitely many equivalence classes b/E is
algebraic over A in Meq. We let acleq(A) denote the algebraic closure of A
in Meq.

We summarize our analysis in the following theorem.

Theorem 6.3.9 Suppose that A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and q does
not fork over A. There is α ∈ acleq(A) such that q is definable over A∪{α}.
In other words, there is an A-definable equivalence relation E with finitely
many classes and a ∈ M such that for any L-formula φ(v,w) there is an
LA-formula dpφ(w, z) such that if bEa then

φ(v, d) ∈ p if and only if dpφ(d, b)

for all d ∈ B.
If degM(p) = 1, then any nonforking extension of p is definable over A.
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Proof We choose M, an ℵ0-saturated model containing B, and q∗ ∈
Sn(M), a nonforking extension of q. The argument above shows that q∗,
and hence q, is definable over acleq(A).

Corollary 6.3.10 If M |= T , p ∈ Sn(M), M ⊆ B and q ∈ Sn(B) is a
nonforking extension of p, then q is definable over M.

Proof If E is a definable equivalence relation with finitely many classes,
then, because M ≺ M, every a ∈ M is equivalent to an element of M .

Our analysis can also be used to show that types over models have unique
nonforking extensions.

Definition 6.3.11 We say that p ∈ Sn(A) is stationary if, for all B ⊇ A,
there is a unique nonforking extension of p to B.

Corollary 6.3.12 Let M |= T , and let φ(v) be an LM -formula with
RM(φ) = α and degM(φ) = d.

i) There is an LM -formula θ(v) such that θ(M) ⊆ φ(M), RM(θ) = α,
and θ has Morley degree 1.

ii) There are LM -formulas θ1, . . . , θd such that each θi has Morley rank
α and Morley degree 1 and φ(M) is the disjoint union of θ1(M), . . . , θd(M).

iii) If p ∈ Sn(M), then p has Morley degree 1. In particular, p is sta-
tionary.

Proof
i) In our argument above, we had ψ(v,w) and b ∈ M and an M -definable

equivalence relation E with finitely many classes such that if aEb, then
ψ(M, a) is a Morley rank α, Morley degree 1 subset of φ(M). Because E
has only finitely many classes, there is a ∈ M such that aEb, so ψ(v, a) is
the desired formula.

ii) We inductively define θ1, . . . , θd. For m < d, if we are given θ1, . . . , θm−1,
use i) to find θm defining a Morley rank α, Morley degree 1 subset of

φ(M) \
m−1⋃
i=1

θi(M).

Let

θd = φ ∧
d−1∧
i=1

θi.

iii) If p ∈ Sn(M), choose φ(v) ∈ p such that RM(φ) = RM(p), and let
θ1, . . . , θd be as in ii). Then p must contain one of the formulas θi, so p has
Morley degree 1. Because the number of nonforking extensions is at most
the Morley degree, p is stationary.

Corollary 6.3.12 generalizes from models to sets that are algebraically
closed in Meq. We leave the proof to Exercise 6.6.24.
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Corollary 6.3.13 If p ∈ Sn(acleq(A)), then p is stationary.

We next prove a partial converse to Theorem 6.3.9.

Lemma 6.3.14 Suppose that M |= T , p ∈ Sn(M), M ⊆ B, q ∈ Sn(B),
p ⊆ q, and q is definable over M . Then, q is a nonforking extension of p.

Proof There is r ∈ Sn(B) a nonforking extension of p that is definable
over M . Because q and r both extend p,

M |= ∀w drφ(w) ↔ dqφ(w)

for all formulas φ(v,w). Because M ≺ M, M |= drφ(b) ↔ dqφ(b) for all
b ∈ B. Thus p = q.

Independence
Forking can be used to give a notion of independence in ω-stable theories.

Definition 6.3.15 We say that a is independent from B over A if tp(a/A)
does not fork over A ∪ B. We write a |�A

B.

This notion of independence has many desirable properties.

Lemma 6.3.16 (Monotonicity) If a |�A
B and C ⊆ B, then a |�A

C.

Proof Because RM(a/A) ≥ RM(a/A∪C) ≥ RM(a/A∪B), if RM(a/A) =
RM(a/A ∪ B), then RM(a/A) = RM(a/A ∪ C).

Lemma 6.3.17 (Transitivity) a |�A
b, c if and only if a |�A

b and
a |�A,b

c.

Proof Because RM(a/A, b, c) ≤ RM(a/A, b) ≤ RM(a/A), RM(a/A) =
RM(a/A, b, c) if and only if RM(a/A) = RM(a/A, b) and RM(a/A, b) =
RM(a/A, b, c).

Lemma 6.3.18 (Finite Basis) a |�A
B if and only if a |�A

B0 for all fi-
nite B0 ⊆ B.

Proof
(⇒) This is clear because for any B0 ⊆ B, RM(a/A) ≤ RM(a/A∪B0) ≤

RM(a/A ∪ B).

(⇐) Suppose that a |/�A
B. Then, there is φ(v) ∈ tp(a/A ∪ B) with

RM(φ) < RM(a/A). Let B0 be a finite subset of B such that φ is an
LA∪B0 -formula. Then a |/�A

B0.

Lemma 6.3.19 (Symmetry) If a |�A
b, then b |�A

a.
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Proof Suppose that RM(a/Ab) = RM(a/A). We must show that
RM(b/Aa) = RM(b/A). Let α = RM(a/A) and β = RM(b/A).

We first assume that A = M , an ℵ0-saturated model. Let φ(v) ∈ tp(a/M)
such that α = RM(φ) and degM(φ) = 1. Let ψ(v) ∈ tp(b/M) such that
β = RM(ψ) and degM(ψ) = 1. Suppose, for purposes of contradiction, that
there is a formula θ(v,w) such that M |= θ(a, b) and RM(θ(a,w)) < β.
By Theorem 6.3.5, there is an LM -formula χ(v) defining {x : RM(ψ(w) ∧
θ(x,w)) < β}. Because RM(a/M, b) = α, the formula

φ(v) ∧ θ(v, b) ∧ χ(v)

has rank α. Thus, by Lemma 6.3.4, there is a′ ∈ M such that θ(a′, b) and
RM(ψ(w) ∧ θ(a′, w)) < β, contradicting the fact that RM(b/M) = β.

For the general case, let M be an ℵ0-saturated model containing A. Let
b
′
realize a nonforking extension of tp(b/A) to M. Then RM(b

′
/M) = β.

Because M is saturated, there is c such that tp(a, b/A) = tp(c, b
′
/A). Let a′

realize a nonforking extension of tp(c/A, b
′
) to M, b

′
. Then RM(a′/M, b

′
) =

α = RM(a′/M). By the first part of the proof, RM(b
′
/M, a′) = RM(b

′
/M) =

β. Hence

RM(b/A, a) = RM(b
′
/A, a′) ≥ RM(b

′
/M, a′) = β.

Thus RM(b/A, a) = RM(b/A).

Corollary 6.3.20 a, b |�A
C if and only if a |�A

C and b |�A,a
C.

Proof Because forking occurs over a finite subset, it suffices to assume
that C is a finite sequence c.

a, b |�A
c ⇔ c |�A

a, b by symmetry

⇔ c |�A
a and c |�A,a

b by transitivity

⇔ a |�A
c and b |�A,a

c by symmetry.

Symmetry also gives an easy proof that no type forks when it is extended
to the algebraic closure.

Corollary 6.3.21 For any a, a |�A
acl(A).

Proof Suppose that b ∈ acl(A). By Lemma 6.2.7 iii), RM(b/A, a) =
RM(b/A) = 0. Thus, b |�A

a and, by symmetry, a |�A
b.
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6.4 Uniqueness of Prime Model Extensions

Throughout this section T will be a complete theory in a countable language
with infinite models.

In Theorem 4.2.20 we proved the existence of prime model extensions for
ω-stable theories. In this section, we will prove that these extensions are
unique up to isomorphism.

Constructible Models

Definition 6.4.1 Let M be an L-structure and let A ⊆ M . Let δ be an
ordinal and (aα : α < δ) be a sequence of elements from M . Let Aα =
A ∪ {aβ : β < α}. We call (aα : α < δ) a construction over A if tp(aα/Aα)
is isolated for all α < δ.

We say that B ⊆ M is constructible over A if there is a construction
(aα : α < δ) such that B = A ∪ {aα : α < δ}. We say that a model M is
constructible over A if M is constructible over A.

Note that if (aα : α < δ) is a construction over A, then it is also a
construction over Aα for all α < δ.

Our proof of Theorem 4.2.20 can be broken into the following two asser-
tions about constructible models.

Lemma 6.4.2 i) If T is ω-stable, M |= T , and A ⊂ M , there is N ≺ M
constructible over A.

ii) If M is constructible over A, then M is prime over A and every type
realized in M is isolated over A.

We will prove the uniqueness of prime model extensions in two steps.
We will first prove Ressayre’s Theorem that constructible extensions are
unique for any theory. We will then prove that in ω-stable theories all prime
model extensions are constructible.

Definition 6.4.3 Suppose that (aα : α < δ) is a construction of M over A.
For each α < δ, let θα(v) be a formula with parameters from Aα isolating
tp(aα/Aα). We say that C ⊆ M is sufficient if whenever aα ∈ C, then all
parameters from θα are in C.

Lemma 6.4.4 Suppose that (aα : α < δ) is a construction of M over A.
i) Each Aα is sufficient.
ii) If Ci is sufficient for all i ∈ I, then

⋃
i∈I Ci is sufficient.

iii) If X ⊆ M is finite, then there is a finite sufficient C ⊇ X.
iv) If C ⊆ M is sufficient, then M is constructible over A ∪ C.

Proof
i) and ii) are clear.
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iii) We prove by induction on α that if X ⊆ Aα is finite, then there is a
finite sufficient C ⊇ X. This is clear if α = 0 or α is a limit ordinal. Suppose
that α = β + 1 and X = X0 ∪ {aβ} where X0 ⊆ Aα. Let B ⊆ Aα be the
parameters from θβ. By induction, there is a finite sufficient C ⊇ X0 ∪ B.
Then, C ∪ {aβ} is a finite sufficient set containing X.

iv) We must show that tp(aα/Aα ∪C) is isolated for all α < δ. If aα ∈ C,
this is trivial, so we will assume that aα �∈ C. In this case, we claim that θα

isolates tp(aα/Aα ∪C). Suppose not. Then, there is an LA-formula ψ(v, w)
and b ∈ C such that ψ(aα, b), but

ThAα∪C(M) �|= θα(v) → ψ(v, b).

Thus, θα does not isolate tp(aα/Aα, b). By ii) and iii) we may, without
loss of generality, assume that Aα, b is sufficient. We may assume that
b = (aα1 , . . . , aαn

) where α < α1 < . . . < αn. Note that Aα∪{aα1 , . . . , aαm
}

is sufficient for m = 1, . . . , n.

Claim For each i = 1, . . . , m, there is an LAα
-formula isolating

tp(aα1 , . . . , aαm
/Aα+1).

We prove this by induction on m. Suppose that the claim holds for
l < m. The formula θαl+1 isolates tp(aα/Aαl+1). All parameters occurring
in θαl+1 are in Aα ∪ {aα1 , . . . , aαl

}. Thus, θαl+1 isolates tp(aαl+1/Aα+1 ∪
{aα1 , . . . , aαl

}).
Let θαl+1 be ψ(aα1 , . . . , aαl

, vl+1) where ψ(v1, . . . , vl+1) is an LAα
-

formula. By induction, there is an LAα
-formula φ(v1, . . . , vl) isolating

tp(aα1 , . . . , aαl
/Aα+1). As in the proof of Lemma 4.2.21,

tp(aα1 , . . . , aαl+1/Aα+1) is isolated by φ(v1, . . . , vl) ∧ ψ(v1, . . . , vl+1). This
proves the claim.

Let ψ(w) be an LAα
-formula isolating tp(b/Aα+1). Then, θα(v) ∧ ψ(w)

isolates tp(aα, b/Aα). Because aα does not occur as a parameter in ψ, θα(v)
isolates tp(aα/Aα, b), as desired.

We can now give Ressayre’s proof of the uniqueness of constructible
extensions.

Theorem 6.4.5 (Uniqueness of Constructible Models) Suppose that
A ⊆ M, M ≺ M, N ≺ M, and M and N are constructible over A. The
identity map on A extends to an isomorphism between M and N .

Proof Let (aα : α < δ) and (bα : α < γ) be the constructions of M and
N over A. Let κ = |M |. Let I = {f : X → N : f is partial elementary,
A ⊂ X, X is sufficient in M, f |A is the identity, and img(X) is sufficient
in N}. Because the identity map on A is in I and the union of a chain
of elements of I is an element of I, we may apply Zorn’s Lemma to get a
maximal f : X → N in I. We claim that f is an isomorphism between M
and N . We must show that dom(f) = M and img(f) = N .
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Suppose that a ∈ M \ X. Let C0 be a finite sufficient subset of M with
a ∈ C0. By Lemma 6.4.4 iv) and 6.4.2 ii), tp(C0/X) is isolated. Thus, we
can extend f to a partial elementary f0 : X ∪C0 → N . Let D0 ⊇ f0(C0) be
a finite sufficient subset of N . Because tp(D0/f(X)) is isolated, by Exercise
4.5.11, tp(D0/f(X ∪ C0)) is isolated. Thus, we can find a finite C′

0 ⊇ C0
and a surjective partial elementary f ′

0 : X ∪ C′
0 → f(X) ∪ D0. Let C1 be a

finite sufficient set containing C ′
0. By the same argument, tp(C1/X ∪ C′

0)
is isolated and we may extend f ′

0 to a partial elementary f1 : C1 → M .
Continuing in this manner, we build C0 ⊆ C1 ⊆ C2 ⊆ . . ., a sequence of

finite sufficient subsets of M , and f ⊆ f0 ⊆ f1 ⊆ . . . where fi : X ∪ Ci →
N is partial elementary and fi(Ci) is contained in a sufficient subset of
fi+1(Ci+1). If g =

⋃
fi, then g ∈ I, contradicting the maximality of f .

Thus X = M .
A symmetric argument shows that img(f) = N . Thus, f is the desired

isomorphism.

Prime Models of ω-Stable Theories
It remains to show that if T is ω-stable, then any prime model extension is
constructible. We need one lemma relating forking and isolation in ω-stable
theories. This lemma is a special case of the Open Mapping Theorem (see
Exercise 6.6.30).

Lemma 6.4.6 Let T be ω-stable. If A ⊆ B, p ∈ Sn(A), p′ ∈ Sn(B), p′ is
a nonforking extension of p, and p′ is isolated, then p is isolated.

Proof We work in Meq. Let φ(v, b) isolate p′. Let q = tp(b/acleq(A)). By
Theorem 6.3.9, there is an Lacleq(A)-formula ψ0(v) such that

ψ0(a) if and only if φ(a,w) ∈ tp(b/acleq(A))

(ψ0 is just dqφ, where we interchange the roles of the variables). Let ψ0(v)
be ψ1(v, α) where ψ1(v, u) is an LA-formula and α ∈ acleq(A). Let θ(u)
isolate tp(α/A), and let ψ(v) be ∃u (ψ1(v, u) ∧ θ(u)).

We claim that ψ isolates p. Suppose that r ∈ Sn(B) and ψ ∈ r. Then,
there is β ∈ acleq(A) such that θ(β) and r∪{ψ1(v, β)} is satisfiable. Because
θ isolates tp(α/A), r∪{ψ1(v, α)} is satisfiable. Let r′ ∈ Sn(acleq(A)) be an
extension of r with ψ1(v, α) ∈ r′. By Corollary 6.3.21, r′ does not fork over
A. Let r′′ be a nonforking extension of r′ to acleq(A)∪{b}, and let a realize
r′′. Because a |�acleq(A)

b, by symmetry b |�acleq(A)
a. Thus, b realizes the

unique nonforking extension of q to acleq(A). But this type has the same
definition as q. Because M |= ψ1(a, α), M |= φ(a, b). Because φ isolates p′,
a realizes p′ and thus a realizes b.

We can now prove the main lemma needed to show that a prime model
of an ω-stable theory is constructible.
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Lemma 6.4.7 Suppose that T is ω-stable, M is constructible over A, and
A ⊆ B ⊆ M . Then, B is constructible over A.

Proof Let (aα : α < κ) be an enumeration of M . We start by building
(Xα : α < κ), a sequence of subsets of M such that:

i) X0 = A, Xα ⊆ Xβ for α < β < κ, and each Xα is sufficient;
ii) aα ∈ Xα+1 for all α < κ;
iii) |Xα+1 \ Xα| ≤ ℵ0;
iv) if d is a sequence from Xα, then d |�Xα∩B

B for all α.

If α is a limit ordinal, we can take Xα =
⋃

β<α Xβ .
Suppose that we have built Xα. Let C0 be a finite sufficient set con-

taining aα. Let c0 be an enumeration of C0. We can find b ∈ B such that
c0 |�Xα,b

B. Let C1 be a finite sufficient set containing C0∪{b}. Continuing
in this way, we build a sequence of finite sufficient sets C0 ⊆ C1 ⊆ C2 ⊆ . . .
such that if cn is an enumeration of Cn, then

cn |�Xα∪(B∩Cn+1)
B. (1)

Let Xα+1 = Xα ∪
⋃∞

n=0 Cn. Let x ∈ Xα. There is y ∈ Xα such that

cn |�(Xα+1∩B)∪{x,y}B. (2)

By our inductive assumption,

x, y |�Xα∩B
B and hence x, y |�Xα+1∩B

B. (3)

By Corollary 6.3.20, it follows from (2) and (3) that

x, y, cn |�B∩Xα+1
B.

It follows that
d |�B∩Xα+1

B)

for any sequence d ∈ Xα+1.
Let Bα = Xα ∩ B.

Claim If b ∈ B, then tp(b/Bα) is isolated for each α.
Because Xα is sufficient, M is constructible over Xα and tp(b/Xα) is iso-

lated by some formula φ(v, d) with d ∈ Xα. By iv), d |�Bα
b. By symmetry

b |�Bα
d. Because tp(b/Bα, d) is isolated tp(b/Bα) is isolated, by Lemma

6.4.6.

If b0, b1, . . . is an enumeration of Bα+1 \ Bα, then, by the claim and
Exercise 4.5.11, (b0, b1, . . .) is a construction over Bα. Combining these
constructions, we see that B is constructible over A.
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Theorem 6.4.8 (Uniqueness of Prime Models) Suppose that T is ω-
stable, A ⊆ M, M0 ≺ M, M1 ≺ M, and M0 and M1 are prime models
over A. The identity map on A extends to an isomorphism between M0
and M1.

Proof By Lemma 6.4.2, there is N ≺ M, a constructible model over A.
Because each Mi is prime over A, we can find an elementary embedding
of Mi into N . By the previous lemma, each Mi is constructible. Thus,
by the uniqueness of constructible models, there is f : M0 → M1, an
isomorphism fixing A pointwise.

Differential Closures
We give one application of the uniqueness of prime models.

Definition 6.4.9 Let K and k be differential fields with k ⊆ K. We say
that K is a differential closure of k if K is differentially closed and for any
differentially closed L ⊇ k, there is a differential field embedding f : K → L
fixing k pointwise.

Because the theory of differentially closed fields has quantifier elimination
(Theorem 4.3.32), a differential field embedding of differentially closed fields
is an elementary embedding. Thus, a differential closure of k is a model of
DCF prime over k. In Exercise 4.5.43, we argued that DCF is ω-stable.

Theorem 6.4.10 Let k be a differential field. There is K ⊇ k a differential
closure of k. If K and L are differential closures of k, then K and L are
isomorphic over k. If K is a differential closure of k, then tp(a/k) is isolated
for all a ∈ K.

Proof Because DCF is ω-stable and a differential closure of k is a prime
model of DCF over k, this follows from the existence and uniqueness of
prime model extensions for ω-stable theories (Theorems 4.2.20 and 6.4.8).

Because the differential closure is a prime model over k, every a ∈ K
realizes an isolated type over k.

6.5 Morley Sequences

In Theorem 4.3.15 we proved that if T is ω-stable and κ is a regular cardinal,
then T has a saturated model of cardinality κ. In this section we will extend
this result to singular cardinals. The new idea we will need is the notion of
a Morley sequence.

Throughout this section T will be a complete ω-stable theory in a count-
able language and M will be a monster model of T .
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Definition 6.5.1 Suppose that p ∈ S1(A) and δ is an ordinal. We say
that (aα : α < δ) is a Morley sequence for p over A if for each α the type
tp(aα/A ∪ {aβ : β < α}) is an extension of p of the same Morley rank and
degree.

In particular each aα is a realization of p with aα |�A
{aβ : β < α}. Recall

from Theorem 6.3.2 that for any B ⊆ A there is at most one nonforking
extension of A to B of the same Morley degree. If degM(p) = 1, then p is
stationary and there is a unique nonforking extension of p to any B ⊇ A.

We first show that Morley sequences are sets of indiscernibles.

Theorem 6.5.2 Suppose that I = (aα : α < δ) is an infinite Morley
sequence for p over A. Then, I is an infinite set of indiscernibles.

Proof By Theorem 5.2.13, it suffices to show that I is a sequence of
order indiscernibles. Let d = degM(p). We will show by induction on n that
tp(aα1 , . . . , aαn

/A) = tp(aβ1 , . . . , aβn
/A) if α1 < . . . , αn < δ, β1 < . . . <

βn < δ. For n = 1, aα1 and aβ1 are both realizations of p so tp(aα1/A) =
tp(aβ1/A).

Suppose that tp(aα1 , . . . , aαn−1/A) = tp(aβ1 , . . . , aβn−1/A). Let σ be an
automorphism of M with σ(aαi) = aβi for i < n. Because aαn |�A

{aγ :
γ < αn}, aαn

|�A
{aα1 , . . . , aαn−1} and aαn

realizes the unique nonforking
extension p to A∪{aα1 , . . . , aαn−1} of Morley degree d. Thus, σ(aαn

) realizes
the unique nonforking extension of p to A ∪ {aβ1 , . . . , aβn−1} of Morley
degree d. Because aβn

also realizes the unique nonforking extension of p to
A ∪ {aβ1 , . . . , aβn−1} of Morley degree d,

tp(aα1 , . . . , aαn
/A) = tp(σ(aα1), . . . , σ(aαn

)/A) = tp(aβ1 , . . . , aβn
/A),

as desired.

Lemma 6.5.3 Suppose that I is an infinite set of indiscernibles over A ⊂
M. For any b ∈ M, there is a finite J ⊂ I such that I \ J is a set of
indiscernibles over A ∪ {b}.

Proof Let p = tp(b/A∪I). There is a finite J ⊂ I such that p|A∪J has the
same Morley rank and degree as p. Let x1, . . . , xn, y1, . . . , yn ⊂ I \ J with
xi �= xj and yi �= yj for i < j ≤ n. Because I is a set of indiscernibles over
A, there is a partial elementary σ with domain A∪J ∪{x} fixing A∪J with
σ(xi) = yi for i ≤ n. Let q = tp(b/A∪J∪{x}) and r = tp(b/A∪J∪{y}). By
choice of J , RM(p) = RM(q) = RM(r) and degM(p) = degM(q) = degM(r).
Because r is the unique extension of p to A∪ J ∪{y} of the same rank and
degree, we must have σq = r. Thus, we can extend σ to A∪J ∪{x, b} with
σ(b) = b.

In particular,
φ(x) ↔ φ(y)
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for any LA,b-formula φ(v). Thus, I \ J is an infinite set of indiscernibles
over A, b.

We can now prove that there are saturated models of all infinite cardi-
nalities.

Theorem 6.5.4 Let T be a complete ω-stable theory in a countable lan-
guage, and let κ be an infinite cardinal. There is a saturated M |= T with
|M | = κ.

Proof In Theorem 4.3.15, we proved this when κ is regular. Thus, we
may assume that κ is singular. We can use Theorem 4.3.15 to build an
elementary chain (Mα : α < κ), and each Mα is a saturated model of T
of cardinality (ℵ0 + |α|)+. Let M =

⋃
α<κ Mα. Then, |M | = κ and we will

prove that M is saturated.
Let A ⊂ M with |A| < κ, and let q ∈ S1(A). We must show that q is

realized in M. There is a finite A0 ⊆ A such that q does not fork over
A0. Without loss of generality, we may assume that A0 ⊆ M0. By taking a
nonforking extension of q to A∪M0, we may also, without loss of generality,
assume that M0 ⊆ A. Let p = q|M0. Because M0 is a model, p is stationary
by Corollary 6.3.12.

We begin by building a Morley sequence {aα : α < κ} for p such that
for each δ < κ there is a γ < κ such that {aα : α < δ} ⊂ Mγ . Given
(aα : α < δ) ⊂ Mγ , choose β ≥ γ such that Mβ is |M0 ∪ δ|+-saturated. Let
pδ be the unique nonforking extension of p to M0 ∪ {aα : α < δ}. Because
Mβ is saturated, we can find aδ ∈ Mβ realizing pδ.

We now extend this sequence to a Morley sequence in M of ordinal length
κ+κ as follows. Let pκ be the unique nonforking extension of p to M . Note
that pκ ⊃ q. Let aκ realize pκ. For κ < δ < κ + κ, let aδ ∈ M realize pδ the
unique nonforking extension of p to M ∪ {aα : κ ≤ α < δ}.

Because I = (aα : α < κ+κ) is a Morley sequence, by Theorem 6.5.2 it is
an infinite set of indiscernibles over M0. Suppose that b is a finite sequence
from A. By Lemma 6.5.3, we can find a finite Jb ⊂ I such that I \ Jb is a
set of indiscernibles over M0, b. Let J =

⋃
b∈A<ω

Jb. Then, |J | = |A| < κ and

I \ J is a set of indiscernibles over A.
Choose α < κ and β > κ such that aα, aβ ∈ I \ J . Because pκ ⊃ q, aβ

realizes q. Thus, by indiscernibility, aα realizes q. But aα ∈ M , as desired.

We give one further application of Morley sequences to show that all un-
countable models of ω-stable theories contain infinite sets of indiscernibles.
An interesting feature of this proof is that we do not use any partition
theorems.

Theorem 6.5.5 Suppose that T is ω-stable, M |= T , A ⊂ M , |A| < |M |,
and |M | ≥ ℵ1. There is I ⊂ M an infinite set of indiscernibles over A.
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Proof If κ = |M | is a limit cardinal we could find N ≺ M such that
A ⊂ N , |A| < |N |, and |N | is a successor cardinal. Thus, we may, without
loss of generality, assume that κ is regular.

If B ⊂ M and |B| < κ, then |S1(B)| < κ and, because κ is regular, there
is p ∈ S1(B) such that p has κ realizations in M . We call such a p large.
Let (γ, d) be least in the lexicographic order such that there is M ⊃ B ⊇ A
with |B| < κ, p ∈ S1(B) large, RM(p) = γ, and degM(p) = d. Choose A0
and p0 ∈ S1(A0) large with RM(p0) = γ and degM(p0) = d.
Claim i) Suppose that M ⊃ B ⊇ A0 and |B| < κ. There is a unique
pB ∈ S1(B) with pB ⊇ p0 and pB large.

ii) RM(pB) = γ and degM(pB) = d.
iii) If A0 ⊆ B ⊆ C ⊂ M and |C| < κ, then pC ⊇ pB .
Because p0 is large and |Sn(B)| < κ, there is a large pB ⊇ p0 in Sn(B).

Because pB ⊇ p0, RM(pB) ≤ γ. By our choice of A0, RM(pB) = γ. If
q ∈ Sn(B), q �= pB , q ⊃ p0, and q is large, then RM(q) = γ as well. Because
q and pB are both nonforking extensions of p0 to B, both must have Morley
degree less than d, contradicting our choice of A0. Thus, pB is unique and
degM(pB) = d.

If A0 ⊆ B ⊆ C, then pC |B is a large extension of p0. Because pB is the
unique large extension of p0 to B, pB = pC |B.

We build a Morley sequence (aα : α < κ) as follows. Let a0 ∈ M realize
p0. Given (aα : α < δ), let Aδ = A0 ∪ {aα : α < δ), and let aδ realize pAδ

.
This is possible because pAδ

is large. By the claim, (pAα
: α < κ) is an

increasing sequence of types of Morley rank α and Morley degree d. Thus,
(aα : α < κ) is a Morley sequence over A0. By Theorem 6.5.2, (aα : α < κ)
is a set of indiscernibles over A0 ⊇ A.

6.6 Exercises and Remarks

Exercise 6.6.1 Show that the theory of the group (Z/4Z)ω is κ-categorical
for all uncountable cardinals but not strongly minimal.

Exercise 6.6.2 Give an example of an uncountably categorical theory
where there is no strongly minimal formula over ∅.

Exercise 6.6.3 Let M |= Th(Z, s). We can find a set X such that M ∼=
X × Z where s(x, n) = (x, n + 1). Show that dim(M) = |X|.

Exercise 6.6.4 Prove Lemma 6.1.6 when A = ∅.

Exercise 6.6.5 a) Give examples of uncountably categorical theories
where the dimensions of the prime models are 0, 1, and ℵ0.

b) Let L = {R}, where R is a ternary relation symbol. Suppose that
V is a Q-vector space. We view V as an L-structure by interpreting R as
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{(a, b, c) : a + b + c = 0}. Show that the L-theory of V is uncountably
categorical and the prime model has dimension 2.

Exercise 6.6.6 Prove Lemma 6.2.7 i) and ii).

Exercise 6.6.7 Suppose that T is ω-stable and M |= T is ℵ0-saturated,
and φ is an LM -formula with RM(φ) = α an ordinal. Show that there
is a maximum d such that there are LM -formulas ψ1, . . . , ψd such that
ψ1(M), . . . , ψd(M) are disjoint subsets of φ(M) and RM(ψi) = α for
i = 1, . . . , d. Show that for any N |= T , if N contains the parameters oc-
curring in φ and ψ1, . . . , ψn are LN -formulas such that ψ1(N ), . . . , ψn(N )
are disjoint subsets of φ(N ) and RM(ψi) = α, then n ≤ d. Prove these
results without using the monster model assumptions. (This is the type of
argument one needs to do to completely avoid using monster models.)

Exercise 6.6.8 Suppose that T is ω-stable and φ is an LM-formula with
RM(φ) = α. Show that for all ordinals β < α there is an LM-formula ψ
such that M |= ψ → φ and RM(ψ) = β.

Exercise 6.6.9 Suppose that T is a complete ω-stable theory. Show that
there is an ordinal α < ω1 such that for all A ⊂ M if p ∈ Sn(A), then
RM(p) < α.

Exercise 6.6.10 Show that RM(a) ≥ 0 for all a ∈ M.

Exercise 6.6.11 Show that RM(a, b/A) ≥ RM(a/A).

Exercise 6.6.12 Show that in a strongly minimal theory the notions of
independence from Definitions 6.3.15 and 6.1.5 agree.

Exercise 6.6.13 Prove Lemma 6.2.16.

Exercise 6.6.14 Suppose that K is an algebraically closed field, X ⊆ Kn

is constructible, and V ⊇ X is the closure of X in the Zariski topology.
Show that RM(V \ X) < RM(X) and hence RM(X) = RM(V ). [Hint: By
quantifier elimination, it suffices to prove this when V is irreducible, O is
Zariski open, and X = V ∩ 0.]

Exercise 6.6.15 a) Prove Lemma 6.2.25.
b) Show that if V ⊆ Kn is an irreducible Zariski closed set and a, b ∈

V (K) are generic points of V , then tp(a/K) = tp(b/K).
c) Suppose that V ⊆ Kn is a Zariski closed set, K ≺ K, and a ∈ V (K).

Then, RM(a/K) = RM(V ) if and only if a is the generic point of an
irreducible W ⊆ V with RM(W ) = RM(V ).

Exercise 6.6.16 Recall that if F, K and L are fields with F ⊆ K ∩ L,
then K and L are free over F if whenever a1, . . . , an ∈ K are algebraically
dependent over L, they are already algebraically dependent over F .

Let K be a saturated algebraically closed field, a, b ∈ K and F ⊂ K a
subfield. Show that a |�F

b if and only if F (a) and F (b) are free over F .
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Exercise 6.6.17 We define the Morley rank of a theory to be the Morley
rank of the formula v = v.

a) Let L = {E}, where E is a binary relation symbol. Let T be the
theory of an equivalence relation with infinitely many classes, each of which
is infinite. Show that RM(T ) = 2.

b) Let L = {P0, P1, . . .} where each Pi is a unary predicate. Let T be the
theory that asserts P0 ⊃ P1 ⊃ . . ., ¬P0 is infinite, Pn \ Pn+1 is infinite for
each n. Show that RM(T ) = 2.

c) For each n < ω, give an example of a theory with RM(T ) = n.
d) Let K ⊂ F be algebraically closed fields of characteristic 0. Let L =

{+, ·, U, 0, 1}, where U is a unary predicate, let M be the L-structure with
universe F where U(M) = K, and let T be the theory of M. Show that K
is an ω-stable theory and that the formula v = v has Morley rank ω. [Hint:
For example, if x ∈ K \ F , {y ∈ K : ∃a, b ∈ F y = ax + b} is in definable
bijection with F 2 and has Morley rank at least 2.]

Exercise 6.6.18 † Let K be a differentially closed field. We follow the
notation of Exercise 4.5.43. If p ∈ S1(X) is a type, let f(X) ∈ Ip be of
minimal order and degree. We let ord(p) be the order of f , if Ip �= {0}.
Otherwise, we let ord(p) = ω. Let Vp = {x ∈ Kn : g(x) = 0 for all g ∈ Ip}.
We will need one fact from differential algebra (see [65]). If Vp ⊂ Vq, then
ord(p) < ord(q).

a) Show that RM(p) ≤ ord(p) for all p ∈ S1(M).
b) Show that the formula v(n) = 0 has Morley rank n.
c) Let p be the type of an element differentially transcendental over K.

Show that RM(p) = ω.
d) Conclude that RM(DCF) = ω.

Exercise 6.6.19 (Cantor–Bendixson Analysis) Let X be a compact Haus-
dorff space (for example, a Stone space Sn(A) or the real unit interval). Let
Γ(X) = {x ∈ X : x is not isolated in X}. For α an ordinal, we inductively
define Γα(X) as follows:

i) Γ0(X) = X;
ii) Γα+1(X) = Γ(Γα(X));
iii) Γα(X) =

⋃
β<α

Γβ(X) if α is a limit ordinal.

We call Γ the Cantor–Bendixson derivative.

a) Show that Γα(X) is a closed subset of X and hence a compact Haus-
dorff space.

b) Show that there is an ordinal δ such that Γδ(X) = Γα(X) for all
α > δ. We let Γ∞(X) denote Γδ(X).

c) Show that Γ∞(X) is a closed subset of X with no isolated points.
d) Suppose that X is separable (i.e., there is a countable collection of

open sets U0, U1, . . . such that for all x and all open V there is an i such
that x ∈ Ui ⊆ V ) then there is α < ω1 such that Γα(X) = Γ∞(X).
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e) If X is separable, then either Γ∞(X) = ∅ or |Γ∞(X)| = 2ℵ0 .
f) Show that, for any closed X ⊆ Rn, there is P ⊆ X such that X \ P

is countable and either P = ∅ or P is a closed set with no isolated points
and |P | = 2ℵ0 .

g) Let T be an ω-stable theory, and let M |= T be ℵ0-saturated. Consider
the Cantor–Bendixson derivative Γ on Sn(M). For each type p ∈ Sn(M), we
say that p has Cantor–Bendixson rank α if and only if p ∈ Γα+1(Sn(M)) \
Γα(Sn(M)). Show that every type has a Cantor–Bendixson rank and that
the Cantor–Bendixson rank is exactly the Morley rank.

Exercise 6.6.20 Prove Theorem 6.3.2 iii).

Exercise 6.6.21 Suppose that T is ω-stable, M,N |= T , and M ≺ N .
If X ⊆ Nk is definable in N , then X ∩ Mk is definable in M. [Hint: Let
φ(v, a) define X, and use the definability of tp(a/M).]

Exercise 6.6.22 If K is a differential field, the field of constants of K is
the subfield CK = {x ∈ k : δ(x) = 0}.

a) Show that CK is algebraically closed in K. (Suppose that Xn+
∑

aiX
i

is the minimal polynomial of α
CK

. Differentiate αn +
∑

aiα
i.) If K is dif-

ferentially closed, show that CK is an algebraically closed field.
b) Suppose that k ⊆ l are differential fields and c ∈ Cl is algebraic

over k; then, c is algebraic over Cl. [Hint: If Xn +
∑

aiX
i is the minimal

polynomial of c over k, show that
∑

a′
ici = 0, contradicting minimality

unless each a′
i = 0.]

c) Suppose K is differentially closed and X ⊆ Cn is definable in K.
Show that X is a constructible subset of Cn (i.e., X is already definable
in the fields (C,+, ·, 0, 1)). [Hint: Combine quantifier elimination in DCF
with Exercise 6.6.21 in ACF.]

Exercise 6.6.23 a) Suppose that M is ω-stable, A, B ⊆ Mn are defin-
able, RM(A) is finite and f : A → B is a definable surjective map such
that RM(f−1(b)) = k for all b ∈ B. Show that RM(A) ≥ RM(B) + k.
[Hint: Prove by induction on rank that RM(f−1(X)) ≥ RM(X) + k for all
definable X ⊆ B.]

b) Suppose that G is an ω-stable group of finite Morley rank and H ≤ G
is an infinite definable subgroup. Show that RM(G) ≥ RM(H)+RM(G/H).
In particular, RM(G) > RM(G/H).

c) Show that b) is not true for all ω-stable groups. [Hint: Let K be a
differentially closed field and consider the derivation δ : K → K.]

Exercise 6.6.24 Prove Corollary 6.3.13.

Exercise 6.6.25 (U-rank) Suppose that T is ω-stable. Let A ⊂ M, and
let p ∈ Sn(A); we inductively define RU(p), the U-rank of p, as follows:

RU(p) = sup{RU(q) + 1 : ∃B A ⊂ B ⊂ M q ∈ Sn(p), p ⊂ q and q forks
over A}.
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a) Show that RU(p) = 0 if and only if RM(p) = 0 if and only if p has
only finitely many realizations.

b) Show that RU(p) is well defined for all types and RU(p) ≤ RM(p).
c) Let T be as in Exercise 6.6.17 b). Let p be the unique 1-type containing

Pi(v) for all i. Show that RM(p) = 2 but RU(p) = 1.

Exercise 6.6.26 (Strong Types) The strong type of a over A is stp(a/A) =
{vEa : E an A-definable equivalence relation with finitely many classes}.

a) Show that if stp(a/A) = stp(b/A), then tp(a/A) = tp(b/B).
b) Show that stp(a/A) = stp(b/A) if and only if tp(a/acleq(A)) =

tp(b/acleq(A)).
c) Suppose that T is ω-stable. Show that stp(a/A) = stp(b/A) if and

only if there is M |= T with A ⊆ M such that tp(a/M) = tp(b/M).

Exercise 6.6.27 (Finite Equivalence Relation Theorem) Suppose that T
is ω-stable, A ⊆ B, p, q ∈ Sn(B) do not fork over A, and p �= q. Show that
there is E an A-definable equivalence relation with finitely many classes
such that if a realizes p and b realizes q, then stp(a/A) �= stp(b/A).

Exercise 6.6.28 Suppose that p ∈ Sn(A) and q0, q1 ∈ Sn(M) are non-
forking extensions of p. Show that there is an automorphism σ of M with
σq0 = q1.

Exercise 6.6.29 a) Show that if p ∈ Sn(M) is definable over A, then p
does not fork over A. [Hint: First replace A by a model M .]

b) Show that if A ⊆ M and p ∈ Sn(M) is definable over acleq(A), then
p does not fork over A. [Hint: Use i).]

Exercise 6.6.30 [Open Mapping Theorem] Suppose T that is ω-stable.
Let A ⊆ B, and let Sn(B/A) be the set of types in Sn(B) that do not fork
over A. We give Sn(B/A) the subspace topology. Show that the restriction
map p 	→ p|A is an open map. [Hint: Modify the proof of Lemma 6.4.6.]

Exercise 6.6.31 Prove Lemma 6.4.2.

Exercise 6.6.32 Suppose that k is a differential field and K is the differen-
tial closure of k. Show that the constant field of K is the algebraic closure
of the constant field of k. [Hint: Let c ∈ CK . There is a formula φ(v) that
isolates tp(c/K). Show that c is algebraic over k. Argue that c is algebraic
over Ck.]

Exercise 6.6.33 Suppose that p ∈ S1(A) is stationary and {a1, . . . , an}
is a finite Morley sequence. Show that {a1, . . . , an} extends to an infinite
Morley sequence.

Give an example showing that this may not be possible if degM(p) > 1.

Exercise 6.6.34 Suppose that T is ω-stable and I is an infinite set of
indiscernibles. For any A, we define the average of I over A, Av(I/A) =
{φ(v) : φ an LA-formula such that φ(x) for all but finitely many x ∈ I}.

a) Show that Av(I/A) ∈ S1(A).
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b) Suppose that p ∈ S1(A0), A0 ⊆ A, and I is a Morley sequence over
A0. Then, Av(I/A) is a nonforking extension of p.

Exercise 6.6.35 Suppose that p ∈ S1(A), degM(p) = 1, and I = (aα : α <
δ) is an infinite Morley sequence for p. Show that if σ is any automorphism
of M fixing I setwise, then σp = p.

Exercise 6.6.36 Suppose that ai ∈ Mk for i ∈ I. We say that (ai : i ∈ I)
is an indiscernible set of k-tuples if

M |= φ(ai1 , . . . , ain
) if and only if M |= φ(aj1 , . . . , ajn

)

whenever i1, . . . , in ∈ I and j1, . . . , jn ∈ I are two sequences of distinct
elements.

a) Generalize the definition of Morley sequences to stationary k-types.
b) Show that if I = (aα : α < κ) is a Morley sequence for a k-type, then

I is an indiscernible set of k-tuples.
c) Generalize Lemma 6.5.3 and Exercise 6.6.35 to indiscernible sets of

k-tuples.

Remarks
Morley [71] introduced ranks in his proof of the Categoricity Theorem. He
originally defined rank using the Cantor–Bendixson derivative as discussed
in Exercise 6.6.19.

There are several alternative approaches to the monster model M. Ziegler
[104] views the monster model as a proper class—rather than a set—
containing all set models of T . Hodges [40] defines a notion of κ-big models
such that if M is κ-big, then M is κ-saturated, and whenever A, B ⊂ M ,
|A|, |B| < κ, and f : A → B is elementary, then f extends to an automor-
phism of M. He shows that if κ is a regular cardinal greater that |L| + ℵ0,
then there is a κ-big model M with |M | ≤ κ<κ. If we are considering
models of cardinality less than κ, we can use a κ-big model as the monster
model.

All of Section 6.3 is due to Shelah. Although we have only defined forking
and independence for ω-stable theories, these concepts can be defined for
arbitrary stable theories so that most of the results of Section 6.3 hold. One
notable exception is that, in a stable theory, if p ∈ Sn(A), then there is a
countable A0 ⊆ A such that p does not fork over A but p might fork over
every finite subset of A. There are a number of good references on stable
theories—for example, [7], [18] or [75]. Recently, many of these ideas have
also been generalized to simple unstable theories (see, for example, [54]).

The notion of U-rank from Exercise 6.6.25 was introduced by Lascar. If
T is superstable, then RU(p) < ∞ for all p ∈ Sn(A). Although U-rank is
not quite as natural as Morley rank, it has some properties that make it
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very nice to work with. If α is an ordinal, we can write α as a finite sum

α =
n∑

i=1

ωαimi,

where α1 > α2 > . . . αn and mi ∈ N. If α =
∑

ωαimi and β =
∑

ωαini,
then α⊕β is defined to be

∑
ωαi(mi+ni). We call ⊕ the symmetric sum of

α and β. Note that α+β ≤ α⊕β and equality need not hold. For example,
2 + ω = ω while 2 ⊕ ω = ω + 2 > ω. Lascar proved the following U-rank
inequality.

Theorem 6.6.37 If T is superstable, then

RU(a/A, b) + RU(b/A) ≤ RU(a, b/A) ≤ RU(a/A, b) ⊕ RU(b/A).

For a proof, see [18] 6.1.1.
The uniqueness of constructible models is an unpublished result of

Ressayre.
In Exercise 4.5.28, we argued that we have prime model extensions in

o-minimal theories. Pillay and Steinhorn [83] showed that in o-minimal
theories prime model extensions are constructible. Thus, by Ressayre’s The-
orem, we have unique prime model extensions in o-minimal theories.

The uniqueness of prime models is due to Shelah. The proof of Lemma
6.4.7 can easily be generalized to stable theories, although stable theories
need not have prime model extensions.

Blum [11] showed that DCF is ω-stable and stability to show the ex-
istence and uniqueness of differential closures. Kolchin [56] later gave an
algebraic proof. Kolchin, Rosenlicht, and Shelah gave independent proofs
that differential closures need not be minimal. For more on differentially
closed fields, see [65].

Morley introduced Morley sequences and proved Theorem 6.5.5. Theo-
rem 6.5.4 is due to Harnik and Shelah.





7
ω-Stable Groups

7.1 The Descending Chain Condition

By an ω-stable group, we mean an ω-stable structure (G, ·, 1, . . .) where
(G, ·, 1) is a group. We will say that G is a group of finite Morley rank if
(G, ·, 1, . . .) is ω-stable with RM(G) < ω.

We have already encountered several simple examples. Of course, all
finite groups are ω-stable, but we will focus on infinite groups. If G is a
torsion-free divisible Abelian group, then Th(G) is ℵ1-categorical and hence
ω-stable. If p is prime, then an infinite-dimensional vector space over Fp is
categorical in every infinite cardinal and hence ω-stable.

If M is ω-stable and (G, ·, 1, . . .) is interpretable in M, then G is ω-stable.
In particular, any group interpretable in an algebraically closed field is ω-
stable. For example, the multiplicative group of an algebraically closed field
is ω-stable. We can go much further on these lines.

Algebraic Groups
Let K be an algebraically closed field and let GLn(K) be the group of
invertible n × n matrices over K. If A is an n × n matrix over K, we
naturally think of A as an element of Kn2

and we can identify GLn(K) with
the Zariski closed set V = {(A, w) ∈ Kn2+1 : w det(A) = 1}. We can define
multiplication on V by (A, w)(B, v) = (AB, wv). This is a polynomial map.
By Cramer’s rule, the inverse is also a polynomial map.
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Definition 7.1.1 A linear algebraic group is a Zariski closed subgroup of
GLn(K).

For example, SLn(K) = {(A, w) ∈ GLn(K) : w = 1} and{(
a b
0 1

)
: a, b ∈ K, a �= 0

}
are linear algebraic groups. Because linear algebraic groups are inter-
pretable in algebraically closed fields, they are ω-stable.

Other groups are interpretable in algebraically closed fields. For example,
let P2 be the projective plane over an algebraically closed field, and let
E ⊂ P2 be the elliptic curve {(X, Y, Z) ∈ P2 : Y 2Z = X3 + XZ2}. The
curve E has one point at infinity O = (0, 1, 0). We can define a group law
on E (see [95]). For example if A, B and C are three collinear points of E,
then A ⊕ B ⊕ C = 0. By Theorem 3.2.20, (E,⊕, O) is an ω-stable group.
In Section 7.4, we will give a general definition of algebraic groups that
includes both the linear algebraic groups and elliptic curves.

One of our main themes in this chapter will be that ω-stable groups
behave very much like algebraic groups. Indeed, the following conjecture is
one of the guiding problems in the subject.

Cherlin–Zil’ber Conjecture If G is an infinite simple group of finite
Morley rank, then G interprets an algebraically closed field K and G is
definably isomorphic to a simple algebraic group defined over K.

Chain Conditions
If G is a group, we write H ≤ G if H is a subgroup of G and H � G if H
is a normal subgroup of G.

In algebraically closed fields, there are no infinite descending chains of
Zariski closed sets. Thus, in linear algebraic groups there are no infinite de-
scending chains of algebraic subgroups. We will generalize this to arbitrary
ω-stable groups.

Suppose that G is an ω-stable group and H ≤ G is a definable subgroup.
Because H ⊆ G, RM(H) ≤ RM(G). For a ∈ G \ H, the coset aH is a
subset of G disjoint from H and, because x 	→ ax is a definable bijection,
RM(H) = RM(aH). Thus, if [G : H] is infinite, then RM(H) < RM(G).
If 1 < [G : H] < ℵ0, then RM(H) = RM(G) but degM(H) < degM(G),
indeed, degM(G) = [G : H]degM(H). These easy observations have very
important consequences.

Theorem 7.1.2 (Descending Chain Condition) If G is an ω-stable
group, then there is no infinite descending chain of definable subgroups
G > G1 > G2 > . . . .

Proof Let α = RM(G). Let ηi = (RM(Gi),degM(Gi)). If G > G1 >
G2 > . . . is a descending chain, then the remarks above show that η1 >lex
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η2 >lex . . . where <lex is the lexicographic order on α × ω. Because this is
a well-ordering, there are no infinite descending chains.

A simple corollary shows that in some ways ω-stable groups behave like
finite groups.

Corollary 7.1.3 Suppose that G is an ω-stable group and σ : G → G is a
definable injective group homomorphism. Then, σ is surjective.

Proof If not then, because σG ∼= G, G ⊃ σG ⊃ σ2G ⊃ . . ., contradicting
the Descending Chain Condition.

Corollary 7.1.4 If G is an ω-stable group and {Hi : i ∈ I} is a collection
of definable subgroups, then there is I0 ⊆ I finite such that⋂

i∈I

Hi =
⋂
i∈I0

Hi.

Proof If not we can find i0, i1, . . . such that if Gm = Hi0 ∩ . . .∩Him
, then

G0 > G1 > G2 > . . ..

We can use the Descending Chain Condition to find some interesting
definable subgroups of G.

Suppose that A ⊆ G. The centralizer of A is C(A) = {g ∈ G : ga = ag
for all a ∈ A}. If G is an arbitrary group and A is definable, then C(A) is
definable. In ω-stable groups, C(A) is definable even if A is not.

Corollary 7.1.5 If G is an ω-stable group and A ⊆ G, then the centralizer
C(A) is definable.

Proof Because
C(A) =

⋂
a∈A

C({a}),

there are a1, . . . , am ∈ A such that C(A) = {g ∈ G : gai = aig for i =
1, 2, . . . , m}.

Corollary 7.1.6 If G is an ω-stable group, there is G0 ≤ G the smallest
definable finite index subgroup of G. Moreover, G0 is a normal subgroup of
G and definable over ∅.

Proof Let H = {H ≤ G : H definable, [G : H] < ℵ0}. By Corollary 7.1.4,
there are H1, . . . , Hm ∈ H such that⋂

H∈H
H = H1 ∩ . . . ∩ Hm.

Let G0 = H1 ∩ . . . ∩ Hm. Clearly, G0 is contained in every finite index
subgroup of G. Because G0 is an intersection of finitely many finite index
subgroups, [G : G0] is finite.
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We need to show that G0 is definable over ∅. Let [G : G0] = n. Suppose
that φ(v,w) is an L-formula, a ∈ G, and φ(v, a) defines G0. Then, W =
{b : φ(v, w) defines a subgroup of index n} is defined over ∅. If b ∈ W and
H = {g ∈ G : G |= φ(g, b)}, then H ∩ G0 is a finite index subgroup of G0.
Because G0 is the smallest definable subgroup of G of finite index, H = G0.
Thus

G0 = {g : ∃b ∈ W ∧ φ(g, b)}
is definable over ∅.

If h ∈ G, then x 	→ hxh−1 is a group automorphism. Thus, hG0h−1 is a
definable subgroup with [G : hG0h−1] = [G : G0], so hG0h−1 = G0 and G0

is normal.

Definition 7.1.7 We call G0 the connected component of G. If G = G0,
then we say that G is connected.

We leave the proof of the following useful lemma as an exercise.

Lemma 7.1.8 Suppose that G is an ω-stable group and σ : G → G is a
definable group automorphism. Then, σ fixes G0 setwise.

Stabilizers
We can view the group G as acting on S1(G) by

gp = {φ(x) : φ(gx) ∈ p}.

If G ≺ G′, and a ∈ G′ realizes p, then ga realizes gp.

Definition 7.1.9 The stabilizer of p is the group Stab(p) = {g ∈ G : gp =
p}.

We have considered the “left” action of G on S1(G). We could also con-
sider the “right” action where pg = {φ(x) : φ(xg) ∈ p} and define the right
stabilizer of p.

Theorem 7.1.10 If G is an ω-stable group and p ∈ S1(G), then Stab(p)
is a definable subgroup of G.

Proof For φ(v) an LG-formula, let Stabφ(p) = {g ∈ G : φ(hv) ∈ p if and
only if φ(hgv) ∈ p for all h ∈ G}.
Claim 1 Stab(p) =

⋂
φ∈p

Stabφ(p).

(⊆) Suppose that g ∈ Stab(p), φ(v) ∈ p, and h ∈ G. Let ψ(v) be the
formula φ(hv). Because g stabilizes p,

φ(hv) ∈ p ⇔ ψ(v) ∈ p ⇔ ψ(gv) ∈ p ⇔ φ(hgv) ∈ p.

Thus g ∈ Stabφ(p).
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(⊇) Suppose that φ(v) ∈ p and g ∈ Stabφ(p); then, (using h = 1) φ(v) ∈ p
if and only if φ(gv) ∈ p. Thus, if g ∈ Stabφ(p) for all φ(v) ∈ p, then gp = p.
Claim 2 Each Stabφ(p) is a definable subgroup of G.

If g1, g2 ∈ Stabφ(p) and h ∈ G, then, applying the definition first with h
and then with hg1,

φ(hv) ∈ p ⇔ φ(hg1v) ∈ p ⇔ φ(hg1g2v) ∈ p.

Thus g1g2 ∈ Stabφ(p). Applying the definition with hg−1
1 ,

φ(hg−1
1 v) ∈ p ⇔ φ(hg−1

1 g1v) ∈ p ⇔ φ(hv) ∈ p.

Thus, g−1
1 ∈ Stabφ(p) and Stabφ(p) is a subgroup of G.

Let ψ(w, v) be the formula φ(wv). By definability of types (Theorem
6.3.5), there is an LG-formula dpψ(w) such that ψ(g, v) ∈ p if and only if
G |= dpψ(g). Thus, Stabφ(p) = {g ∈ G : ∀h (dpψ(h) ↔ dpψ(hg)))} is a
definable subgroup of G.

Thus, Stab(p) is an intersection of definable subgroups of G. By Corollary
7.1.4, there are φ1, . . . , φm ∈ p such that Stab(p) = Stabφ1(p) ∩ . . . ∩
Stabφm(p). Hence, Stab(p) is a definable subgroup of G.

Suppose that G ≺ G1 and p1 is the unique nonforking extension of p to
G1. The formula defining Stab(p) in G also defines Stab(p1) in G1 (this is
Exercise 7.6.3).

We can bound the rank of the stabilizer by the rank of p.

Lemma 7.1.11 RM(Stab(p)) ≤ RM(p).

Proof Let G ≺ G1 with a, b ∈ G1 such that a realizes p, b ∈ Stab(p) such
that RM(b/G) = RM(Stab(p)), and a and b are independent over G. Then
RM(ba/G, a) = RM(b/G, a) = RM(b/G) = RM(Stab(p)). On the other
hand, RM(ba/G, a) ≤ RM(ba/G) = RM(p).

Lemma 7.1.12 Stab(p) ≤ G0.

Proof Let a ∈ Stab(p), and let ψ(v) define G0. Let b ∈ G such that
ψ(b−1v) ∈ p. Thus ψ(b−1av) ∈ p. Let G ≺ H with c ∈ H realizing p. Then
b−1ac ∈ H0 and b−1c ∈ H0. Thus

(b−1c)−1b−1ac = c−1ac ∈ H0.

Because H0 is normal, a ∈ H0. Thus a ∈ G0.

7.2 Generic Types

In Lemma 6.2.25 and Exercise 6.6.15 we introduced generic points of alge-
braic varieties. In this section, we will generalize this notion to arbitrary ω-
stable groups. Generics will be a powerful tool for studying ω-stable groups.
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Throughout this section, G = (G, ·, . . .) is an infinite ω-stable group. We
let G be a monster model with G ≺ G.

Definition 7.2.1 Let p ∈ S1(G). We say that p is generic if and only if
RM(p) = RM(G). We say that a ∈ G is generic over G if RM(tp(a/G)) =
RM(G).

We begin by proving some of the basic properties that we will use about
generic types.

Lemma 7.2.2 If tp(x/G) is generic and a ∈ G, then tp(ax/G) and
tp(x−1/G) are generic.

Proof The maps x 	→ ax and x 	→ x−1 are definable bijections and hence
preserve Morley rank.

Lemma 7.2.3 p ∈ S1(G) is generic if and only if [G : Stab(p)] < ℵ0.

Proof
(⇐) If Stab(p) has finite index, RM(Stab(p)) = RM(G). But

RM(Stab(p)) ≤ RM(p). Thus, p is generic.
(⇒) Because there are only finitely many types of maximal Morley rank,

{ap : a ∈ G} is finite. Choose b1, . . . , bn such that if a ∈ G, then ap = bip
for some i ≤ n. If ap = bip, then b−1

i a ∈ Stab(p) and a ∈ bi(Stab(p)). Thus
[G : Stab(p)] ≤ n.

Corollary 7.2.4 p ∈ S1(G) is generic if and only if Stab(p) = G0.

Proof
(⇐) Clear from Lemma 7.2.3.
(⇒) By Lemma 7.2.3, G0 ≤ Stab(p), and by Lemma 7.1.12, Stab(p) ≤

G0.

We have proved Lemma 7.2.3 and Corollary 7.2.4 for left stabilizers, but
symmetric arguments show that they are also true for right stabilizers.

Lemma 7.2.5 i) G has a unique generic type if and only if G is connected.
ii) degM(G) = [G : G0].

Proof
i) (⇒) Let p be the unique generic type. For all a ∈ G, ap is generic and

hence ap = p. Thus, G = Stab(p) and, by Corollary 7.2.4, G = G0.
(⇐) Suppose that p and q are distinct generic types. We will get a con-

tradiction by showing that if a and b are independent realizations of p and
q, then ba realizes both p and q.

Let G1 be an elementary extension of G containing b. Let p1 ∈ G1
be the unique nonforking extension of p and let a1 realize p1. Because
a1 and a both realize the unique nonforking extension of p to G ∪ {b},
tp(a, b/G) = tp(a1, b/G). Because G1 is connected and p1 is a generic
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type of G1, by Corollary 7.2.4, Stab(p1) = G1. Thus, ba1 realizes p1. In
particular, ba1 realizes p and hence ba realizes p. A symmetric argument,
using right stabilizers, shows that ba realizes q, a contradiction.

ii) Because connected groups have a unique type of maximal Morley
rank, the connected component G0 must have Morley degree 1. Because G
is a union of [G : G0] disjoint translates of G0, the Morley degree of G is
exactly the index [G : G0].

Next, we show that every element is the product of two generics.

Lemma 7.2.6 If g ∈ G, there are a, b ∈ G generic over G such that g = ab.

Proof Let a ∈ G be generic over G. Because x 	→ gx−1 is a definable
bijection, b = ga−1 is also generic over G and g = ab.

Corollary 7.2.7 Suppose that G is connected and A ⊆ G is a definable
subset with RM(A) = RM(G). Then G = A · A = {ab : a, b ∈ A}.

Proof Let φ(v) be an LG-formula defining A. For any g ∈ G, we can find
a, b ∈ G generic over G such that g = ab. Because there is a unique generic
type, φ(a) and φ(b). Thus G |= ∃x∃y (φ(x) ∧ φ(y) ∧ xy = g). Because
G ≺ G, there are a′, b′ ∈ A such that g = a′b′.

We say that a definable A ⊆ G is generic if RM(A) = RM(G). Next, we
show that finitely many translates of a generic set cover the group.

Lemma 7.2.8 Let A ⊆ G be a definable generic subset of G. There are
a1, . . . , an ∈ G such that G = a1A ∪ . . . ∪ anA.

Proof Because finitely many translates of G0 cover G, we may, without
loss of generality, assume that G is connected. Let φ(v) be the LG-formula
defining A. Let p ∈ S1(G) be the unique generic type.
Claim For any q ∈ S1(G), there is g ∈ G such that φ(gv) ∈ q (i.e.,
φ(v) ∈ gq).

Let a and b be independent realizations of p and q. Because ab is generic,
φ(ab). Let ψ(v, w) be the formula φ(w ·v). By definability of types, there is
an LG-formula dqψ such that ψ(v, g) ∈ q if and only if G |= dqψ(g). Because
b realizes the unique nonforking extension of q to G ∪ {a}, G |= dqψ(a).
Thus G |= ∃w dqψ(w). Because G ≺ G, there is g ∈ G such that φ(gv) ∈ q.

For each g ∈ G, let Og = {q ∈ S1(G) : φ(gv) ∈ q}. This is an open subset
of S1(G) and by the claim S1(G) =

⋃
g∈G Og. By compactness, there are

a1, . . . , an ∈ G such that S1(G) = Oa1 ∪ . . . ∪ Oan . In particular, if g ∈ G,
and q is the unique type containing the formula v = g, there is an i such
that q ∈ Oai . But then φ(aig) and g ∈ a−1

i A. Thus G = a−1
1 A∪ . . .∪a−1

n A.

When working with generic types, we frequently tacitly assume that G
is somewhat saturated. We say things like “let a ∈ G be generic over A.”
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By this we mean let a ∈ G such that RM(a/A) = RM(G). Also, if X ⊆ G
is definable and a is generic, we say that a ∈ X if a ∈ X(G), the elements
of G that satisfy the formula defining X.

ω-stable Fields
We will conclude this section by using generic types to prove two important
results. The first is Macintyre’s theorem that any infinite ω-stable field is
algebraically closed. The second is Reineke’s theorem that minimal ω-stable
groups are Abelian.

The proof of Macintyre’s Theorem uses the following result from Galois
theory (see [58] VIII §6 Theorems 10 and 11).

Theorem 7.2.9 a) Suppose that L/K is a cyclic Galois extension of degree
n, where n is relatively prime to the characteristic of K and K contains
all nth roots of unity. The minimal polynomial of L/K is Xn − a for some
a ∈ K.

b) Suppose that K has characteristic p > 0 and L/K is a Galois extension
of degree p. The minimal polynomial of L/K is Xp+X−a for some a ∈ K.

Theorem 7.2.10 If (K, +, ·, . . .) is an infinite ω-stable field, then K is
algebraically closed.

Proof We first show that the additive group (K, +, . . .) is connected.
Suppose that K0 is the connected component of the additive group. For
a ∈ K \ {0}, x 	→ ax is a definable group automorphism. By Lemma 7.1.8
K0 is closed under multiplication by a. Thus, K0 is an ideal of K. Because
K is a field, there are no proper ideals and K0 = K.

Because K is connected as an additive group, there is a unique type of
maximal Morley rank. Thus, the multiplicative group (K×, ·, . . .) is also
connected.

For each natural number n, the map x 	→ xn is a multiplicative homo-
morphism. If a is generic, then, because an is interalgebraic with a, an is
also generic. Thus, Kn, the subgroup of nth powers, contains the generic.
Because the multiplicative group is connected, Kn = K and every element
has an nth root. In particular, if K has characteristic p > 0, then every
element of K has a pth root. Thus, K is perfect.

Suppose that K has characteristic p > 0. The map x 	→ xp + x is an
additive homomorphism. If a is generic, then, because ap + a is interalge-
braic with a, ap + a is also generic. Thus, as above, the homomorphism is
surjective.
Claim 1 Suppose that K is an infinite ω-stable field containing all mth
roots of unity for m ≤ n. Then, K has no proper Galois extensions of
degree n.

Let n be least such that there is an ω-stable field K containing all mth
roots of unity for m ≤ n and K has a proper Galois extension L of degree n.
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Let q be a prime dividing n. By Galois theory, there is K ⊆ F ⊂ L such that
L/F is Galois of degree q. The field F is a finite algebraic extension of K
and thus interpretable in K (see Exercise 1.4.12). Because F is interpretable
in an ω-stable structure, F is also ω-stable. Thus, by the minimality of n,
F = K and n = q.

If K has characteristic 0 or characteristic p �= q, then, by Theorem 7.2.9
a), the minimal polynomial of L/K is Xq − a for some a ∈ K. But every
element of K has a qth root, thus Xq − a is reducible, a contradiction.

If K has characteristic p = q, then, by Theorem 7.2.9 b), the minimal
polynomial of L/K is Xp+X−a for some a ∈ K. But the map x 	→ xp+x−a
is surjective; thus Xp +X −a is reducible, a contradiction. This proves the
claim.

Claim 2 If K is an infinite ω-stable field, then K contains all roots of
unity.

Let n be least such that K does not contain all nth roots of unity. Let ξ
be a primitive nth root of unity. Then K(ξ) is a Galois extension of K of
degree at most n − 1. This contradicts the previous claim.

Because K contains all roots of unity, the first claim implies that K
has no proper Galois extensions. Because K is perfect, K is algebraically
closed.

Minimal Groups
Next, we prove Reineke’s Theorem. Recall that for G a group, the center
of G is the group Z(G) = {a ∈ G : ∀g ∈ G ag = ga}.

Theorem 7.2.11 If G is an infinite ω-stable group with no proper defin-
able infinite subgroups, then G is Abelian.

Proof Suppose not. Then, the center Z(G) is finite and for all a ∈ G\Z(G),
the centralizer C(a) = {g ∈ G : ag = ga} is finite.

Let a ∈ G \ Z(G), and let b be generic over a.

Claim 1 b is algebraic over {a, bab−1}.
The set {c : cac−1 = bab−1}{c : b−1c ∈ C(a)} is a finite set containing b.

Thus, RM(bab−1/a) = RM(b/a) and bab−1 is generic over a, so aG =
{gag−1 : g ∈ G} is generic.

Suppose a, b ∈ G\Z(G). Because G is connected there is a unique generic
type. Thus aG ∩ bG �= ∅ (indeed, it must be generic). If cac−1 = dbd−1,
then b = d−1cac−1d ∈ aG. Similarly, a ∈ bG, so aG = bG. Thus, any two
elements not in Z(G) are conjugate.

Let H = G/Z(G). Then, H is an infinite ω-stable group, and all elements
except 1 are conjugate.

Claim 2 All elements of H \ {1} have the same order.
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Suppose that bn = 1 and cac−1 = b. Then

1 = bn = (cac−1)n = canc−1.

Thus an = 1.

Claim 3 Some element of H does not have order 2.
Suppose that every element of H has order 2. Let a, b ∈ H. Then

ab = (ab)−1 = b−1a−1 = ba.

Thus, H is Abelian, but then for all a ∈ H, aH = {a}, a contradiction.

Suppose that all elements of H \ {1} have order n > 0. Clearly, n must
be a prime number. Let a ∈ H, there is b ∈ H such that bab−1 = a−1. Note
that ba−1b−1 = a. Thus, for all k ≥ 1

bkab−k =
{

a if k is even
a−1 if k is odd

.

This leads to a contradiction because n is odd, so bnab−n = a−1. But
bn = 1; thus bnab−n = a.

Corollary 7.2.12 If G is an infinite ω-stable group, then there is an infi-
nite definable Abelian H ≤ G.

Proof By the Descending Chain Condition, there is an infinite definable
H ≤ G with no infinite definable proper subgroups.

Corollary 7.2.13 If G is a group of Morley rank 1, then G is Abelian-by-
finite (i.e., there is a definable Abelian subgroup of finite index).

Proof If RM(G) = 1, then G0 is Abelian.

Corollary 7.2.14 If G is an infinite ω-stable group with no definable in-
finite proper subgroups, then either G is a divisible Abelian group or every
element of G has order p for some prime p.

Proof For any prime p, Gp = {gp : g ∈ G} is a definable subgroup and
hence must either be finite or all of G. If Gp = G, then every element is
divisible by p. If G is p-divisible for all primes p, then G is divisible. If Gp

is finite then {g ∈ G : gp = 1} is an infinite definable subgroup and hence
must be all of G.

Note that even if G is divisible, G might have some torsion elements. For
example, if K is an algebraically closed field of characteristic zero and E
is an elliptic curve, then E is divisible and has n2 elements of order n for
each n.
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7.3 The Indecomposability Theorem

In this section, we prove a theorem of Zil’ber’s that is an important tool
for studying groups of finite Morley rank. It again generalizes a result from
algebraic group theory (see [14] I.2.2).

Definition 7.3.1 We say that a definable X ⊆ G is indecomposable if and
only if whenever H is a definable subgroup of G the coset space X/H =
{xH : x ∈ X} is either infinite or contains a unique element.

Indecomposable sets play the role of irreducible subvarieties in arbitrary
finite Morley rank groups (see Exercise 7.6.13). For example, if X ≤ G
is an infinite connected definable subgroup, then X is indecomposable. If
H ≤ G is a definable group and a, b ∈ X, then aH = bH if and only if
b ∈ a(X ∩ H). Thus, the number of cosets in X/H is equal to the index
[X : X ∩ H]. Because X is connected, this is either one or infinite.

Theorem 7.3.2 (Zil’ber’s Indecomposability Theorem) Let G be a
group of finite Morley rank and (Xi : i ∈ I) a collection of definable in-
decomposable subsets of G each containing 1. Then, the subgroup of G
generated by

⋃
i∈I Xi is definable and connected.

Proof For each σ = (i1, . . . , in) ∈ I<ω, let Xσ = {x1 · · ·xn : x1 ∈
Xi1 , . . . , xn ∈ Xin

}. Because RM(G) is finite, there is a σ such that
RM(Xσ) = k is maximal. Let p ∈ S1(G) be a type of Morley rank k
containing the formula v ∈ Xσ. Let H = Stab(p).
Claim Each Xi ⊆ H.

If not, then |Xi/H| > 1 as 1 ∈ Xi ∩ H and Xi �⊆ H. Because Xi

is indecomposable, there are a1, a2, . . . in Xi such that anH �= amH for
n �= m. Because a−1

m an �∈ H = Stab(p), anp �= amp for n �= m. Thus,
a1p, a2p, . . . are infinitely many distinct types of rank k. But each of these
types contains the formula v ∈ Xi · Xσ. Thus, X i · Xσ has rank at least
k + 1, contradicting our choice of σ.

Thus, the group generated by
⋃

i∈I Xi is contained in H.
Because H = Stab(p), by Lemma 7.1.11, RM(H) ≤ RM(p) = RM(Xσ) ≤

RM(H). Thus, p ∈ H and RM(p) = RM(H), so p is a generic type of H.
Because any ω-stable group acts transitively on its generic types (see Ex-
ercise 7.6.9) and H = Stab(p) fixes p, H is connected. Because Xσ ⊆ H is
generic, by Lemma 7.2.7, H = Xσ ·Xσ. Thus, H is contained in the group
generated by

⋃
i∈I Xi.

We have shown that H is the group generated by
⋃

i∈I Xi and H is
connected.

The proof of the Indecomposability Theorem shows a bit more. Namely,
there are i1, . . . , im ∈ I such that H = Xi1 · · ·Xim . If we start with a single
indecomposable set X, and H is the group generated by X, then there is a
number m such that every element of H is a product of m elements of X.
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Let Γ be a group and S a set. An action of Γ on S is a map α : Γ×S → S
such that α(1, s) = s for all s ∈ S and α(γ, α(µ, s)) = α(γµ, s) for all
γ, µ ∈ Γ and s ∈ S. When no confusion arises, we write γs for α(γ, s).
We say that X ⊆ S is Γ-invariant if γX = X for all γ ∈ Γ. We say that
Γ acts transitively on X ⊆ S if for all x, y ∈ X there is γ ∈ Γ such that
γx = y. If G is a group, we say that α : Γ×G → G is the action of a group
of automorphisms, if for each γ ∈ Γ, the function g 	→ α(γ, g) is a group
automorphism.

We say that the action is ω-stable if (Γ, ·, S, α) is interpretable in an ω-
stable structure. Similarly, we say that the action has finite Morley rank if
(Γ, ·, S, α) is interpretable in a finite Morley rank structure.

For example, if G is a group, G acts on itself by conjugation α(h, g) =
hgh−1. If K is a field, then K× acts on (K, +) by α(a, x) = ax. If G and
K are ω-stable (finite Morley rank), then these actions are also ω-stable
(finite Morley rank).

The next lemma shows that to test the indecomposability of a Γ-invariant
X we need only show that it is indecomposable by Γ-invariant definable
subgroups.

Lemma 7.3.3 Suppose that there is an ω-stable action of Γ on a group G
as a group of automorphisms, X ⊆ G is Γ-invariant, and for all definable
Γ-invariant subgroups H of G either |X/H| = 1 or X/H is infinite. Then,
X is indecomposable.

Proof Suppose that H is a definable subgroup of G and 1 < |X/H| < ℵ0.
Suppose that X ⊆ x1H ∪ . . . ∪ xnH. If γ ∈ Γ and x ∈ X, then γ−1x ∈
X. Thus, γ−1x = xih for some h ∈ H and x = (γxi)(γh). Thus X ⊆
(γx1)(γH) ∪ . . . ∪ (γxn)(γH). In particular, X/γH is finite.

Let H∗ =
⋂

γ∈Γ γH. By the Descending Chain Condition there are
γ1, . . . , γm ∈ Γ such that H∗ = γ1H ∩ . . .∩γmH. Because X is Γ-invariant,
X/γiH is finite for each i and X/H∗ is finite. Thus 1 < |X/H∗| < ℵ0. But
H∗ is Γ-invariant, a contradiction.

If g, h ∈ G we let gh denote hgh−1. If H ≤ G, we let gH = {gh : h ∈ H}.

Corollary 7.3.4 Suppose that G is an ω-stable group. If H is a definable
connected subgroup of G and g ∈ G, then gH is indecomposable.

Proof The group H acts on G via conjugation, and gH is invariant under
this action. Thus, by the preceding lemma, it suffices to show that gH is
indecomposable for definable N ≤ G where hNh−1 = N for all h ∈ H.
Suppose that gH/N is finite and m is minimal such that gH ⊆ a1N ∪
a2N ∪ . . . ∪ amN for some a1, . . . , am ∈ gH . If h ∈ H, then haHh−1 = aH

and h(aiN)h−1 = ah
i (hNh−1) = ah

i N . Thus, for each i there is a unique j
such that ah

i N = ajN . This gives a definable transitive action of H on the
finite set {a1, . . . , am}. By Exercise 7.6.11, m = 1 as desired. Thus, gH is
indecomposable.
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For a, b ∈ G, we let [g, h] denote the commutator g−1h−1gh. The com-
mutator subgroup G′ is generated by {[g, h] : g, h ∈ G}.

Corollary 7.3.5 If G is a connected group of finite Morley rank, then the
commutator subgroup G′ is a connected definable subgroup of G.

Proof By Corollary 7.3.4, gG is indecomposable. Thus, g−1(gG) is inde-
composable, 1 ∈ g−1(gG) and G′ is the group generated by {g−1(gG) :
g ∈ G}. By Zil’ber’s Indecomposability Theorem, G′ is definable and con-
nected.

Next, we use the Indecomposability Theorem to show that for groups of
finite Morley rank, simplicity is preserved under elementary equivalence.

Theorem 7.3.6 If G is an infinite non-Abelian group of finite Morley rank
and G has no nontrivial definable normal subgroups, then G is simple.

Proof Because G0 is a normal subgroup of G, G is connected. For a ∈ G,
let C(a) be the centralizer {g ∈ G : ga = ag}. For g, h ∈ G, ag = ah if
and only if g ∈ hC(a). Suppose aG is finite. Then, C(a) is a finite index
subgroup of G. Because G is connected, C(a) = G, and a is in the center,
Z(G) = {a : ga = ag for all g ∈ G}. Because Z(G) is a definable normal
subgroup and G is non-Abelian, Z(G) = {1}. Thus, we may assume aG is
infinite for all a ∈ G \ {1}.

Suppose that N is a nontrivial normal subgroup of G and a ∈ N \
{1}. Let X = a−1(aG). By Corollary 7.3.4 (and Exercise 7.6.12) X is
indecomposable and gXg−1 is indecomposable for all g ∈ G. Because N is
normal, gXg−1 ⊆ N for all g ∈ G. Let H be the subgroup of N generated
by {gXg−1 : g ∈ G}. Because aG is infinite, H is nontrivial. By Zil’ber’s
Indecomposability Theorem, H is definable.

We claim that H is normal. If h = (g1x1g
−1
1 ) · · · (gnxng−1

n ) where
x1, . . . , xn ∈ X and g1, . . . , gn ∈ G, then

ghg−1 = (gg1x1g
−1
1 g−1)(gg2x1g

−1
2 g−1) · · · (ggnxng−1

n g−1) ∈ H.

Because G has no proper definable normal subgroups, this is a contradic-
tion.

We leave the proof of the following corollary for Exercise 7.6.18.

Corollary 7.3.7 If G is a simple group of finite Morley rank and H ≡ G,
then H is simple.

Finding a Field
If G is an algebraic group over an algebraically closed field K, then the field
K is interpretable in G. Indeed, if V is any infinite variety, we can find a
projection map π : V → K such that the image of V is a cofinite subset of
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K. We can use the equivalence relation x ∼ y if and only if π(x) = π(y) to
interpret K.

To have any hope of proving the Cherlin–Zil’ber Conjecture, we would
have to show that any simple group of finite Morley rank interprets an
algebraically closed field. For the remainder of this section, we will show
how the Indecomposability Theorem gives us ways to interpret fields in
some finite Morley rank groups.

Definition 7.3.8 We say that an action α : H × A → A is faithful if
whenever g, h ∈ H and g �= h there is a ∈ A such that α(g, a) �= α(h, a).

Theorem 7.3.9 Let (H, ·) and (A,+) be infinite Abelian groups, and sup-
pose that there is a faithful ω-stable action of H on A as a group of auto-
morphisms such that no infinite definable B ≤ A is H-invariant. Then, we
can interpret an algebraically closed field K.

Proof Because A0 is invariant under all definable automorphisms, A0 is
H-invariant, and hence A = A0 so A is connected. Let a ∈ A be sufficiently
generic.
Claim 1 Ha is infinite.

If Ha is finite, then H0a is finite and, by Exercise 7.6.11, H0a = {a}.
Thus, X = {x ∈ A : H0x = {x}} is generic and every element of A is a
product of two elements of X. But then H0b = {b} for all b ∈ A. Because
H acts faithfully, H0 = {1} and H is finite, a contradiction.

Claim 2 Ha ∪ {0} is indecomposable.
Because Ha ∪ {0} is H-invariant, by Lemma 7.3.3 we need only test

indecomposability for H-invariant subgroups. If B is a definable proper H-
invariant subgroup of A, then B is finite. Because Ha is infinite, Ha∪{0}/B
is infinite. Thus, Ha ∪ {0} is indecomposable.

By the Indecomposability Theorem, the subgroup generated by Ha∪{0}
is definable. Because this group is H-invariant, it must be all of A. From
the proof of the Indecomposability Theorem, we see that there is an n such
that every element of A is a sum of n elements in Ha ∪ {0}.

Let End(A) be the ring of endomorphisms of the group G. We can iden-
tify H with a subset of End(A). Let R be the subring of End(A) generated
by H. Because H is Abelian, R is commutative. If b ∈ A, then b =

∑m
i=1 hia

for some h1, . . . , hm ∈ H and m ≤ n. If r ∈ R, then

r(b) =
m∑

i=1

rhia =
m∑

i=1

hira

because R is commutative. Thus if r1, r2 ∈ R and r1a = r2a, then r1 = r2.
Suppose ra = b and b =

∑m
i=1 hia. Then h1 + . . . + hm ∈ R and ra =

(h1 + . . . + hm)a. Thus, r = h1 + . . . + hm and every r ∈ R is the sum of n
elements of H ∪ {0}.
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Claim 3 The ring R is interpretable.
Define ∼ on (H ∪ {0})n by

(h1, . . . , hn) ∼ (g1, . . . , gn) if and only if
∑

hia =
∑

gia.

Define ⊕ and ⊗ on (H ∪ {0})n/ ∼ by

h ⊕ g = l if and only if
∑

hia +
∑

gia =
∑

lia

and

h ⊗ g = l if and only if
n∑

i=1

n∑
j=1

higja =
n∑

k=1

lia.

Then R ∼= ((H ∪ {0})n/∼,⊕,⊗).

Claim 4 R is a field.
Suppose that r ∈ R and r �= 0. If b ∈ B and rb = 0, then for any h ∈ H,

r(hb) = (rh)b = (hr)b = h(rb) = 0. Thus, the kernel of r is H-invariant. By
our assumptions about A, the kernel of r is finite. Because A is connected,
by Exercise 7.6.5, r is surjective. Thus, there is c ∈ A with rc = a. Let
c =

∑
hia and s =

∑
hi ∈ R. Then sa = c and rsa = a. Because 1a = a

and elements of R are determined by their actions on a, rs = 1.
The additive group R+ of the interpreted field is isomorphic to A via

the map r 	→ r(a), and we can view H as a subgroup of the multiplicative
group of R so that the action of H on A corresponds to multiplication. In
particular, the field R is infinite and, by Macintyre’s Theorem, algebraically
closed.

Definition 7.3.10 A group G is solvable if there is a chain of normal
subgroups G = G0 � . . . � Gn = {1} such that Gi/Gi+1 is Abelian for
each i.

If G is a group, we define the derived series by G(0) = G, G(n+1) = G(n)′
,

the commutator subgroup of G(n).

We need two facts about solvable groups. See, for example, [89] 7.46 and
7.52.

Lemma 7.3.11 i) A group G is solvable if and only if G(n) = {1} for
some n.

ii) If G is solvable, then all subgroups and quotients of G are solvable.

Theorem 7.3.12 If G is an infinite connected solvable group of finite Mor-
ley rank with finite center, then G interprets an algebraically closed field.

Proof We will prove this by induction on the rank of G. We first argue
that we may, without loss of generality, assume that G is centerless. Sup-
pose that Z(G) is finite. We claim that G/Z(G) is centerless. Let a ∈ G
such that a/Z(G) ∈ Z(G/Z(G)). For all g ∈ G, a−1g−1ag ∈ Z(G). Thus,
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a−1aG ⊆ Z(G), and, hence, aG is finite. Thus, [G : C(a)] is finite. Because
G is connected, C(a) = G and a ∈ Z(G). Thus, G/Z(G) is solvable and
centerless. By Exercise 7.6.4, G/Z(G) is connected. Because G/Z(G) is in-
terpretable in G, if G/Z(G) interprets an algebraically closed field, so does
G.

Let A � G be a minimal infinite definable normal subgroup. By Lemma
7.3.11 and Corollary 7.3.5, A is solvable and A′ is a proper connected
normal definable subgroup of A. Moreover, any automorphism of A fixes
A′ setwise, thus A′ � G. By choice of A, A′ = {1} and A is Abelian.

Let C(A) = {g ∈ G : ga = ag for all a ∈ A}. Because G is centerless,
C(A) �= G. Because A is normal, so is C(A). Let G1 = G/C(A).

If g, h ∈ G and g = hc where c ∈ C(A), then for a ∈ A

hah−1 = gcac−1g−1 = gag−1.

Thus, G1 acts on A by conjugation. If gag−1 = hah−1 for all a ∈ A, then
g−1hah−1ga = a and g−1h ∈ C(A). Thus, g/C(A) = h/C(A) and G1
acts faithfully on A. Moreover, because A is the smallest infinite normal
definable subgroup, no infinite definable subgroup of A is G1-invariant.

The group G1 is solvable and, because A ≤ C(A), RM(G1) < RM(G).
If Z(G1) is finite, then G1 (and hence G) interprets an algebraically closed
field by induction. Thus, we may assume that Z(G1) is infinite. Let H be a
minimal definable infinite subgroup of Z(G1). Then, H is Abelian, H � G1,
and H acts faithfully on A by conjugation.

If there are no definable infinite H-invariant proper subgroups of A,
then by Theorem 7.3.9 there is an interpretable algebraically closed field.
Otherwise, let B < A be a minimal infinite H-invariant definable subgroup.
Let H0 = {h ∈ H : bh = b for all b ∈ B}.

Suppose that H = H0 (i.e., H acts trivially on B). Because B is a min-
imal H-invariant subgroup, B is indecomposable by 7.3.3 and, by Lemma
7.6.12, Bg is indecomposable for all g ∈ G1. Because H ≤ Z(G1), if h ∈ H
and b ∈ B, then

(bg)h = (bh)g = bg.

Thus, H acts trivially on Bg as well. By Zil’ber’s Indecomposability The-
orem, the group generated by 〈Bg : g ∈ G1〉 is a definable G1-invariant
subgroup of A. But A is a minimal G1-invariant subgroup, thus A is gener-
ated by 〈Bg : g ∈ G1〉. Because H acts trivially on each Bg, H acts trivially
on A, a contradiction.

Thus, H0 is a proper subgroup of H and, because H is minimal, H0
is finite. But then H/H0 acts faithfully on B and there are no infinite
definable H/H0-invariant subgroups of B. Thus, by Theorem 7.3.9, we can
interpret an algebraically closed field.



7.4 Definable Groups in Algebraically Closed Fields 267

We have already seen a concrete example of Theorem 7.3.12 in Section
1.3. Let K be an algebraically closed field and G be the group of matrices

G =
{(

a b
0 1

)
: a, b ∈ K, a �= 0

}
;

then G is a connected, solvable, centerless group of finite Morley rank
(see Exercise 7.6.19). The proof of Theorem 7.3.12 is an abstraction of the
concrete interpretation of the field in Section 1.3.

We will give one more extension of this result.

Definition 7.3.13 A group G is nilpotent if there is a chain of normal
subgroups G = G0 � . . . � Gn = {1} such that Gi/Gi+1 ≤ Z(G/Gi+1) for
all i < n.

For a group G, we define the lower central series as Γ0(G) = G,
Γn+1(G) = [Γn(G) : G] the group generated by commutators {[a, b] : a ∈
Γn(G), b ∈ G]}. Then G � Γ1(G) � Γ2(G) . . .. We define the upper central
series by Z0(G) = {1} and Zn(G) = {g ∈ G : g/Zn−1 ∈ Z(G/Zn−1)}.

We will use the following facts about nilpotent groups. See, for example,
[89] 7.54.

Lemma 7.3.14 A group G is nilpotent if and only if there is an n such
that Γn(G) = {1} if and only if there is an n such that Zn(G) = G.

Theorem 7.3.15 If G is an infinite connected, solvable, nonnilpotent
group of finite Morley rank, then G interprets an algebraically closed field.

Proof Let Z0(G) � Z1(G) . . . be the upper central series of G. Because
G has finite Morley rank, there is an n such that RM(Zn(G)) is maximal.
Then, Zn+1(G)/Zn(G) is finite and, because G is nonnilpotent, Zn(G) �= G.

Consider G/Zn(G). By Lemma 7.3.11 and Exercise 7.6.4 G/Zn(G) is a
connected solvable group of finite Morley rank. Because Z(G/Zn+1(G)) =
Zn+1(G)/Zn(G) is finite, G/Zn(G) has finite center. By Theorem 7.3.12,
G/Zn(G), and hence G, interprets an algebraically closed field.

7.4 Definable Groups in Algebraically Closed
Fields

In this section, we will investigate groups interpretable in algebraically
closed fields. Our goal is to show that any such group is definably isomor-
phic to an algebraic group. If G is interpretable in an algebraically closed
field K, then, by elimination of imaginaries, there is a definable X ⊆ Kn

and a definable f : X × X → X such that (G, ·) is definably isomorphic
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to (X, f). Thus, to study interpretable groups it suffices to study groups
where the underlying set and multiplication are definable sets. In alge-
braically closed fields, the definable subsets are exactly the constructible
subsets, so our goal is to show that any constructible group is definably
isomorphic to an algebraic group.

Varieties
We have already encountered two types of algebraic groups: linear algebraic
groups and elliptic curves. We define the category of algebraic groups to
include both types of examples. We begin by defining an abstract algebraic
variety. The idea is that we build abstract varieties from Zariski closed
subsets of Kn in the same way that we build manifolds from open balls in
Rn or Cn.

Definition 7.4.1 A variety1 is a topological space V such that V has a
finite open cover V = V1 ∪ . . .∪Vn where for i = 1, . . . , n there is Ui ⊆ Kni

a Zariski closed set and a homeomorphism fi : Vi → Ui such that:
i) Ui,j = fi(Vi ∩ Vj) is an open subset of Ui, and
ii) fi,j = fi ◦ f−1

j : Uj,i → Ui,j is a rational map.
We call f1, . . . , fn charts for V .

Varieties arise in many natural ways. Let K be an algebraically closed
field.

Lemma 7.4.2 i) If V ⊆ Kn is Zariski closed, then V is a variety.
ii) If V ⊆ Kn is Zariski closed and O ⊆ Kn is Zariski open, then V ∩ O

is a variety.
iii) P1(K) is a variety.
iv) If V ⊆ Pn(K) is Zariski closed and O ⊆ Pn(K) is Zariski open, then

V ∩ O is a variety.

Proof
i) Clear.
ii) Let O =

⋃m
i=1 Oi where Oi = {x ∈ Kn : gi(x) �= 0} for some gi ∈

K[X1, . . . , Xn]. Let Vi = {x ∈ V : gi(x) �= 0}. Then, Vi is an open subset
of V and V ∩ O = V1 ∪ . . . ∪ Vn. Let Ui = {(x, y) ∈ Kn+1 : x ∈ V and
ygi(x) = 1}, and let fi : Vi → Ui be x 	→ (x, 1

fi(x) ). Then, fi is a rational
bijection with rational inverse (x, y) 	→ x, so Vi and Ui are homeomorphic.
In this case, Ui,j is the open set {(x, y) ∈ Ui : fj(x) �= 0} and fi,j is the
rational map (x, y) 	→ (x, 1

fi(x)).

1The objects we are defining here are usually called prevarieties and varieties are
prevarieties where the diagonal {(x, y) : x = y} is closed in V × V . If a prevariety
has a group structure, the diagonal is automatically closed, so this distinction is not so
important to us. See Exercise 7.6.22.
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iii) Projective 1-space P1(K) is the quotient of K2\{(0, 0)} by the equiv-
alence relation (x, y) ∼ (u, v) if there is λ ∈ K such that λx = u and
λy = v, (i.e., if xv = yu). Let V1 = {(x, y)/ ∼: x �= 0}, and let V2 =
{(x, y)/ ∼: x �= 0}. Let U1 = U2 = K, and let f1((x, y)/ ∼) = y/x, while
f2((x, y)/ ∼) = x/y. Then, U1,2 = U2,1 = K\{0} and fi,j(x) = fj,i(x) = 1

x .
iv) Exercise.

A quasiprojective variety is the intersection of Zariski open and Zariski
closed subsets of projective space. Part iv) of the preceding lemma shows
that quasiprojective varieties are examples of abstract algebraic varieties.

Lemma 7.4.3 If V is a variety, then V is interpretable in the algebraically
closed field K.

Proof Let V = V1 ∪ . . . ∪ Vn with charts fi : Vi → Ui, without loss of
generality, there is an m such that each Ui ⊆ Km. Let a1, . . . , an ∈ K be
distinct, and let X = {(x, y) ∈ Km+1 : y = ai and x ∈ Ui for some i ≤ n}.
Then, X is a Zariski closed subset of Km+1. We define an equivalence
relation ∼ on X, by (x, ai) ∼ (y, aj), if and only if ai = aj and x = y or
ai �= aj , x ∈ Ui,j, y ∈ Uj,i, and fi,j(y) = x.

If V is a variety with charts f1 : V0 → U0, . . . , fn : Vn → Un, X ⊆ Ui is
open in Ui, and W = f−1

i (X), then we call W an affine open subset of V .
Any open subset of V is a finite union of affine open subsets of V .

We will consider maps between varieties that are given locally by rational
functions.

Definition 7.4.4 Suppose that V and W are varieties and f : V → W .
We say that f is a morphism if we can find V1, . . . , Vn and W1, . . . , Wm

covers of V and W by affine open sets with homeomorphisms fi : Vi → Ui,
gj : Wj → U ′

j , where Ui and U ′
j are open subsets of affine Zariski closed

sets and gj ◦ f ◦ f−1
i is a rational function for each i ≤ n, j ≤ m.

In characteristic p > 0, one should also consider quasimorphisms where
the maps are locally given by quasirational functions (i.e., compositions of
rational functions and x 	→ p

√
x).

We next define the product of two varieties.

Definition 7.4.5 Suppose that V and W are varieties and f : V → W .
Suppose that V = V1 ∪ . . . ∪ Vn and fi : Vi → Ui and W = W1 ∪ . . . ∪ Wm

and gi : Wi → U ′
i are charts for V and W . We topologize Vi × Wj so that

(fi, gj) : Vi × Wj → Ui × U ′
j is a homeomorphism and take {Vi × Wj : i ≤

n, j ≤ m} as a finite open cover of V × W .

Note that the topology on V × W is a proper refinement of the product
topology. For example the line y = x is a closed subset of K2, but it is not
closed in the product topology on K × K.
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We summarize some of the basic topological properties of varieties that
we will need. These follow easily from the corresponding properties of
Zariski closed sets. We leave the proofs as exercises.

Lemma 7.4.6 Suppose that V and W are varieties.
i) If V is a variety and X ⊆ V is open, then X is a variety.
ii) There are no infinite descending chains of closed subsets of V .
iii) Any closed subset of V is a finite union of irreducible components

(see Exercise 3.4.17).
iv) If f : V → W is a morphism, then f is continuous.
v) If f : V → W and for each a ∈ V there is an open U ⊆ V such that

a ∈ U and f |U is a morphism, then f is a morphism.
vi) The product V × W is a variety and the topology on V × W refines

the product topology.

In our proof that constructible groups are definably isomorphic to alge-
braic groups, we will use heavily Proposition 3.2.14, which states that if
X is constructible and f : X → K is definable, then we can partition X
into constructible sets X1, . . . , Xm such that f |Xi is quasirational for each
i ≤ m. The next lemma shows how we will combine Proposition 3.2.14 and
Lemma 6.2.26.

Lemma 7.4.7 Suppose that V and W are varieties, V0 ⊆ V is open, and
f : V0 → W is a definable function. There is an affine open U ⊆ V0 such
that f |U is a quasimorphism.

Proof Without loss of generality, we may assume that V0 is an affine open
subset of V , the closure of V0 is irreducible, W0 is an affine open subset
of W , and f : V0 → W0. By Proposition 3.2.14, there are quasirational
functions f1, . . . , fm such that for each a ∈ V0 there is i ≤ m such that
f(a) = fi(a). Choose i such that {x ∈ V0 : f(x) = fi(x)} has maximal
rank. By Lemma 6.2.26, this set has a nonempty interior in V0.

Algebraic Groups

Definition 7.4.8 An algebraic group is a group (G, ·) where G is a variety
and · and x 	→ x−1 are morphisms.

We derive some basic properties of algebraic groups.

Lemma 7.4.9 A definable subgroup of an algebraic group is closed.

Proof Suppose that G is an algebraic group and H ≤ G is definable. Let
V be the closure of H in G. Suppose, for contradiction, that a ∈ V \ H.
By Exercise 6.6.14, RM(V \ H) < RM(H). Every open set containing a
intersects H. If b ∈ H, then x 	→ bx is continuous. Thus, every open set
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containing ba intersects H and Ha ⊆ V \ H. But x 	→ xa is a definable
bijection. Thus

RM(H) = RM(Ha) ≤ RM(V \ H) < RM(H),

a contradiction.

In particular an algebraic group is connected if it has no proper algebraic
subgroups of finite index.

Lemma 7.4.10 A connected algebraic group is irreducible.

Proof Let G be a connected algebraic group. Let V1, . . . , Vm be the ir-
reducible components of G. If a ∈ G, then x 	→ ax is continuous. Thus,
each aVi is irreducible and G = aV1 ∪ . . . ∪ aVm. Because the decom-
position into irreducible components is unique, G acts on the irreducible
components. Because there are only finitely many irreducible components,
H = {a : aV1 = V1} is a finite index subgroup of G. Because G is con-
nected, we must have H = G. Because aV1 = V1 for all a ∈ G, we must
have V1 = G.

For the remainder of this section, we will make the simplifying assump-
tion that K has characteristic zero so that we do not have to deal with
quasirational functions. In characteristic p > 0, our proof will show that
every constructible group is definably isomorphic to a “quasialgebraic”
group (i.e., one where multiplication and inversion are quasimorphisms).
A second argument is then needed to show that quasialgebraic groups are
definably isomorphic to algebraic groups. We refer the reader to [86] for
details in this case.

We will be doing some model-theoretic arguments with generic types
and generic elements of our field. Let K ≺ K be a monster model. The
formulas defining a group G in K will define a group G in K that will also
be a monster model. If X ⊆ G is definable and a ∈ G, we will sometimes
write “a ∈ X,” to mean that a satisfies the formula defining X.

Lemma 7.4.11 Suppose that K is an algebraically closed field of char-
acteristic zero. Suppose that G is a variety, (G, ·) is a group, and · is a
morphism. Then, (G, ·) is an algebraic group.

Proof We must show that x 	→ x−1 is a morphism. Let G0 be the con-
nected component of G, and let U ⊆ G0 be an affine open subset of G0.
Because G0 is irreducible, it is the closure of U . Thus, U is a generic subset
of G0. Because x 	→ x−1 preserves the unique generic type of G0, if a is a
generic of G0, then a, a−1 ∈ U .

By Lemma 7.4.7, there is an open V ⊆ U such that the inverse map is
a morphism on V . Let V1 = V ∩ V −1. Then V1 is an open subset of U
containing the generic, the inverse is given by a rational function on V1,
and if x ∈ V1, then x−1 ∈ V1.
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Because V contains a generic type of G, by Lemma 7.2.8, there are
a1, . . . , am ∈ G such that G = a1V1 ∪ . . . ∪ amV1. On aiV1, the inverse is
obtained by the composition of morphisms

x 	→ a−1
i x 	→ (a−1

i x)−1 	→ (a−1
i x)−1a−1

i .

By Lemma 7.4.6 v), inversion is a morphism on G.

Lemma 7.4.12 Suppose that K is an algebraically closed field of charac-
teristic zero, G and H are algebraic groups and f : G → H is a definable
group homomorphism, then f is a morphism.

Proof Let a ∈ G0 be generic. By Lemma 7.4.7, there is an affine open set
U such that f |U is a morphism. Finitely many translates of U cover G. If
x ∈ aU , then f(x) is given by the composition

x 	→ a−1x 	→ f(a−1x) 	→ f(a)f(a−1x).

Because a−1x ∈ U , this is a composition of morphisms; thus, f is a mor-
phism.

Constructible Groups
We now begin the proof that constructible groups are isomorphic to alge-
braic groups. If G is a constructible group, we must find a finite cover by
definable open sets V1, . . . , Vn and find definable charts fi : Vi → Ui making
G an algebraic variety such that multiplication becomes a morphism.

We first show that, without loss of generality, we may assume that G is
connected.

Lemma 7.4.13 Suppose that K is an algebraically closed field of charac-
teristic zero, G is a constructible group, and G0 is definably isomorphic to
an algebraic group; then, so is G.

Proof Let A be a set of representatives for G/G0. For g ∈ G, let i(g) ∈ A
such that g ∈ i(g)G0. We can choose A such that i(1) = 1 and a−1 ∈ A for
all a ∈ A. Then, G is the disjoint union

⋃
a∈A aG.

We will use the variety structure of G0 to topologize G. We say that
U ⊆ aG0 is open if and only if {x ∈ G0 : ax ∈ U} is open, and X ⊆ G is
open if and only if X ∩ aG0 is open for all a ∈ A. It is easy to see that this
topology makes G a variety.

We must show that multiplication is a morphism. The variety G × G is
covered by the disjoint open sets aG0 × bG0 for a, b ∈ A. Let a, b ∈ A and
x, y ∈ G0, then

axby = ab(b−1xb)y = i(ab)i(ab)−1ab(b−1xb)y.
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Because i(ab)−1ab ∈ G0 and b−1xb ∈ G0 (because G0 is normal), axby ∈
i(ab)G0. Thus, multiplication maps aG0 × bG0 to i(ab)G0. It suffices to
show that (x, y) 	→ i(ab)−1axby is a morphism of G0. Because G0 � G, x 	→
b−1xb is a definable automorphism of G0 and hence, by Lemma 7.4.12, a
morphism. Because i(ab)−1ab ∈ G0 the map z 	→ i(ab)−1abz is a morphism
of G0. Thus

(x, y) 	→ i(ab)−1ab(b−1xb)y = i(ab)−1axby

is a morphism of G0, as desired.

Theorem 7.4.14 Let K be an algebraically closed field of characteristic
zero. If G ⊆ Kn is a constructible group, then G is definably isomorphic to
an algebraic group.

Proof Without loss of generality, we may assume that G is connected.
By quantifier elimination, G =

⋃n
i=1 Fi ∩ Oi where Fi is Zariski closed and

irreducible and Oi is open. Let V1 be some Fi ∩ Oi containing the generic
type of G. Note that V1 is a variety. Because x 	→ x−1 is definable, we can
find an open V2 ⊆ V1 containing the generic such that inversion is rational
on V2. Because (x, y) 	→ x · y is definable, there is an open W1 ⊂ V2 × V2
and a rational function f such that f(x, y) = x · y for (x, y) ∈ W1. Then,
V3 = {x ∈ V2 : (y, x) ∈ W1 and (y−1, yx) ∈ W1 for all y generic over x}
contains the generic of G and, by definability of types, V3 is definable. Thus,
there is V4 ⊆ V3 such that V4 is open in V3 and V4 contains the generic.
Let V = V4 ∩ V −1

4 and W = {(x, y) ∈ W1 : x, y, xy ∈ V }. Note that:
• V and W are open;
• multiplication is a morphism on W ;
• if a ∈ V and x ∈ G is generic over a, then (x, a) ∈ W and (x−1, xa) ∈

W .

Claim 1 If a, b ∈ G, then Ua,b = {(x, y) ∈ V × V : axby ∈ V } is open in
V × V and (x, y) 	→ axby is a morphism from Ua,b to V .

Because V is generic, we can find b′, b′′ ∈ V such that b = b′b′′. Suppose
that x0, y0 ∈ V and ax0by0 ∈ V . Let c be a realization of the generic
independent from a, x0, b

′, b′′, y0. The following pairs are all in W : (ca, x0),
(cax0, b

′), (cax0b
′, b′′), (cax0b

′b′′, y0). In each case, the first element of the
pair is generic over the second. Because

X = {(x, y) : x ∈ V, y ∈ V, (ca, x), (cax, b′), (caxb′, b′′), (caxb′b′′, y) ∈ W}

is the inverse image of W under a composition of morphisms, X is an open
set containing (x0, y0). If (x, y) ∈ X, then axby ∈ V . Thus X ⊆ Ua,b and
Ua,b is open. Because multiplication is rational on W , (x, y) 	→ axby is a
composition of rational functions on X. Hence. (x, y) 	→ axby is a morphism
from Ua,b to V .
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Claim 2 Let c ∈ G, then Vc = {y ∈ V : cy ∈ V } = V ∩ c−1V is open and
y 	→ cy is a morphism from Vc to V .

Let x0 ∈ V . Let a = cx−1
0 and b = 1. Then, Ua,b = {(x, y) ∈ V × V :

cx−1
0 xy ∈ V } is open and (x, y) 	→ cx−1

0 xy is a morphism. Considering the
section where x0 = x, we see that Vc is open and y 	→ cy is a morphism.

Because V is generic, we can cover G by finitely many translates of V .
We say that X ⊆ cV is open if and only if {x ∈ V : cx ∈ X} is open in V .
By the claim 2, V ∩ cV is open in V ; thus, aV ∩ bV is an open subset of
aV and bV . Thus, we can topologize G by making X ⊆ G open if and only
if X ∩ aV is open for all a ∈ G. This topology makes G a variety.

To show that multiplication is a morphism, we argue that for a, b, c ∈ G
Y = {(x, y) ∈ V × V : axby ∈ cV } is open and (x, y) 	→ c−1axby is a
morphism. But Y = Uc−1a,b, so this follows from the first claim.

By elimination of imaginaries, we can extend Theorem 7.4.14 to inter-
pretable groups.

Corollary 7.4.15 If G is a group interpretable in an algebraically closed
field of characteristic zero, then G is definably isomorphic to an algebraic
group.

Corollary 7.4.16 If K is an algebraically closed field of characteristic
zero, G is an algebraic group and H ≤ G is an algebraic subgroup, then
G/H is an algebraic group.

Proof Because G/H is interpretable, by elimination of imaginaries it
is constructible and, by Theorem 7.4.14, it is isomorphic to an algebraic
group.

Both corollaries are true in finite characteristic as well.

Differential Galois Theory
Poizat [84] showed how Theorem 7.4.14 can be used to give a new proof of
a result of Kolchin’s in differential Galois theory.

Definition 7.4.17 Suppose that k and l are differential fields with k ⊆ l.
The differential Galois group G(l/k) is the group of all differential field
automorphisms of l that fix the field k pointwise.

Differential Galois groups were first studied when l is obtained from k
by adjoining solutions of linear differential equations. We say that f(X) ∈
k{X} is a linear differential polynomial over k if

f(X) = anX(n) + . . . + a2X
′′ + a1X

′ + a0X + b

where a0, . . . , an, b ∈ k. If an �= 0, then we say that f has order n. If b = 0,
we say that f(X) = 0 is a homogeneous linear differential equation.



7.4 Definable Groups in Algebraically Closed Fields 275

Definition 7.4.18 Let x0, . . . , xn be elements of some differential field.
We define the Wronskian of x0, . . . , xn to be the determinant

W (x0, . . . , xn) =

∣∣∣∣∣∣∣∣
x0 x1 . . . xn

x′
0 x′

1 . . . x′
n

...
...

. . .
...

x
(n)
0 x

(n)
1 . . . x

(n)
n

∣∣∣∣∣∣∣∣
The next lemma summarizes some of the basic facts we will need about

linear differential equations. If k is a differential field, we let Ck denote the
constant field of k.

Lemma 7.4.19 Let k be a differential field with constants Ck. Let f(X) ∈
k{X} be a homogeneous linear differential polynomial of order n.

i) The solutions to f(X) = 0 in k form a vector space over Ck of dimen-
sion at most n.

ii) Let x0, . . . , xn ∈ k; then W (x0, . . . , xn) = 0 if and only if x0, . . . , xn

are linearly dependent over Ck.
iii) Let K ⊇ k be differentially closed. There are x1, . . . , xn ∈ K solutions

to f(X) = 0 such that x1, . . . , xn are linearly independent over CK.

Proof i) and ii) are standard facts that can be found in any book on
differential equations (for example, [39] or [65]).

iii) Given x1, . . . , xm with m < n. Because W (x1, . . . , xm+1) has or-
der m < n, we can find xm+1 ∈ K such that f(xm+1) = 0 and
W (x1, . . . , xm+1) �= 0.

In particular, if K is differentially closed with constant field CK , and
f(X) = 0 is a homogeneous linear differential equation of order n, then
there are x1, . . . , xn linearly independent over CK such that the solution
set for f(X) = 0 is exactly the CK-vector space spanned by x1, . . . , xn. In
this case, we call x1, . . . , xn a fundamental system of solutions.

Definition 7.4.20 Let l/k be differential fields. We say that l is a Picard–
Vessiot extension of k if there is a homogeneous linear differential equation
f(X) = 0 and x1, . . . , xn ∈ l a fundamental system of solutions such that
l = k〈x1, . . . , xn〉 and Ck = Cl. We say that l/k is a Picard–Vessiot exten-
sion for f .

Using differential closures, it is easy to show the existence of Picard–
Vessiot extensions. Recall that in Exercise 6.6.32 we proved that if k is
a differential field and K is the differential closure of k, then CK is the
algebraic closure of Ck. In particular, if Ck is algebraically closed, then
CK = Ck.
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Lemma 7.4.21 Let k be a differential field with algebraically closed con-
stant field Ck, and let f(X) = 0 be a homogeneous linear differential equa-
tion over k. There is l/k a Picard–Vessiot extension for f with l contained
in the differential closure of k. Moreover, if l1 is a second Picard–Vessiot
extension of k for f , then l1 is isomorphic to l over k.

Proof Let K be the differential closure of k. By Exercise 6.6.32, CK =
Ck. By Lemma 7.4.19, we can find x1, . . . , xn ∈ K a fundamental system
of solutions for f(X) = 0. Thus, l = k〈x1, . . . , xn〉 is a Picard–Vessiot
extension of k.

Suppose that l1 is a second Picard–Vessiot extension of k for f . Let K1 be
the differential closure of l1. By Exercise 6.6.32, CK1 = Cl1 = Ck. Because
K is the differential closure of k, there is a differential field embedding σ :
K → K1 fixing k. Let y1 . . . yn ∈ K1 be a fundamental system of solutions
of f(X) = 0 such that l1 = k〈y1 . . . yn〉. But then each σ(xi) is in the
span of (y1, . . . , yn) over Ck and each yi is in the span of (σ(x1), . . . , σ(xn))
over Ck. Thus, l1 is the image of l. Thus, f(X) = 0 determines a unique
Picard–Vessiot extension of k.

Picard–Vessiot extensions have linear algebraic differential Galois groups.

Theorem 7.4.22 Suppose that k is a differential field with algebraically
closed constant field C. Let f(X) ∈ k{X} be a homogeneous linear differ-
ential equation of order n, and let l/k be a Picard–Vessiot extension for f .
The differential Galois group G(l/k) is isomorphic to an algebraic subgroup
of GLn(C).

Proof Suppose that l = k〈x1, . . . , xn〉, where x1, . . . , xn is a fundamental
system of solutions to linear equation f(X) = 0. Because l/k is Picard–
Vessiot, Cl = C.

Let V = {y ∈ l : f(y) = 0}. Then V is an n-dimensional vector space
over C. We let GL(V ) denote the group of C-linear automorphisms of this
vector space. We can identify GL(V ) with the algebraic group GLn(C).

Let K be a monster model of DCF with l ⊂ K.
Claim Suppose that y1, . . . , yn ∈ V . Then, tp(x/k) = tp(y/k) if and only
if there is σ ∈ G(l/k) such that σ(xi) = yi for i = 1, . . . , n.

If x and y realize the same type over k, then there is an automorphism τ of
K fixing k such that τ(xi) = yi for all i = 1, dots, n. In this case, y1, . . . , yn

is also a fundamental system of solutions for f = 0 and x1, . . . , xn are
in the C-linear span of y1, . . . , yn. Thus, k〈y1, . . . , yn〉 = l and σ = τ |l ∈
G(l/k). On the other hand, if there is σ ∈ G(l/k) with σ(xi) = yi, then,
by quantifier elimination, tp(x/k) = tp(y/k).

By Lemma 7.4.21, we can embed l into K the differential closure of
k. By Theorem 6.4.10, tp(x/k) is isolated by some formula ψ(v). Thus,
G = {τ ∈ GLn(V ) : ψ(τ(x))} is definable in K. Because G is a definable
subgroup of the algebraic group GLn(C), by Exercise 6.6.22, G is definable
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in the pure field (C,+, ·). By Lemma 7.4.9, G is an algebraic subgroup of
GLn(C).

There is a very beautiful Galois theory for Picard–Vessiot extensions. For
example, there is a correspondence between differential subfields of l/k and
algebraic subgroups of G(l/k). We refer the reader to [63] for an exposition
of these results.

Kolchin generalized the notion of Picard–Vessiot extension to a class
of extensions where the differential Galois groups are arbitrary algebraic
groups over the constants.

Let K be a monster model of the theory of differentially closed fields. We
consider only differential subfields of K.

Definition 7.4.23 Let k and l be differential fields with k ⊆ l. We say
that l/k is strongly normal if and only if

i) Cl = Ck is algebraically closed;
ii) l/k is finitely generated;
iii) if σ : K → K is a differential field automorphism fixing k point-

wise, then 〈l, CK〉 = 〈σ(l), CK〉, where 〈E,F 〉 denotes the differential field
generated by E and F .

If Ck is algebraically closed and l/k is Picard–Vessiot, we show that l/k
is strongly normal. Suppose that l = k〈a〉, where a is a fundamental system
of solutions to a linear equation over k. For any automorphism σ fixing k
pointwise, σ(a) ∈ 〈l, CK〉, thus 〈l, CK〉 ⊇ 〈σ(l), CK〉. Similarly, l is contained
in 〈σ(l), CK〉, so equality holds.

Lemma 7.4.24 Suppose that l/k is strongly normal and K is the differ-
ential closure of k. Then l ⊆ K.

Proof Let l = k〈a〉 and let F be the differential closure of l. We may
assume that K ⊆ F . Note that CF = Cl = Ck. Suppose, for purposes of
contradiction, that a �∈ K. Let p = tp(a/K), let q be the unique nonforking
extension of p to F and let b realize q. In particular, b �∈ F .
Claim CF 〈b〉 = Ck.

If not, there is a K-definable function f(x, y) and d ∈ F such that
f(b, d) ∈ CF 〈b〉 \ Ck. Let φ(v,w) be the formula f(v,w)′ = 0, and let
ψ(v, w, u) be the formula f(v,w) = u. Because p is definable and q is the
unique nonforking extension of p, by definability of types, there are LK-
formulas dpφ(w) and dpψ(w, u) such that for α, β ∈ F

φ(v, α) ∈ q ⇔ F |= dpφ(α)

and
ψ(v, α, β) ∈ q ⇔ F |= dpψ(α, β).

Thus,
F |= dpφ(d) ∧ ∀x (x′ = 0 → ¬dpψ(v, d, x)).
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By model-completeness, there is β ∈ K such that

K |= dpφ(β) ∧ ∀x (x′ = 0 → ¬dpψ(v, β, x)).

Then, because a realizes p, f(a, β)′ = 0 and f(a, β) �= c for all c ∈ CK .
Thus, f(a, β) ∈ CF \ CK , a contradiction.

Let L be the differential closure of F 〈b〉. Then CL = CF .
Because a and b realize the same type over k, there is an automorphism

of K fixing k and sending a to b. Because l/k is strongly normal, b ∈ 〈l, CK〉.
In particular, there is a k-definable function f such that

K |= ∃c (
∧

c′
i = 0 ∧ f(a, c) = b).

By model-completeness,

L |= ∃c (
∧

c′
i = 0 ∧ f(a, c) = b).

Thus b ∈ 〈l, CL〉 = l ⊆ F , a contradiction.

If l = k〈a〉/k is strongly normal, then, because a is in the differential clo-
sure of k, tp(a/k) is isolated. Let ψ(v) be an LK -formula isolating tp(a/k).

Lemma 7.4.25 ψ(v) isolates tp(a/〈k, CK〉).

Proof Suppose, for contradiction, that b ∈ k, c ∈ CK, and φ(v, b, c) and
¬φ(v, b, c) split ψ(v). Then

K |= ∃c
(∧

c′
i = 0 ∧ ∃v∃w (ψ(v) ∧ ψ(w) ∧ φ(v, b, c) ∧ ¬φ(w, b, c))

)
.

By model-completeness, this is also true in the differential closure of k.
But the differential closure of k has the same constants as k. Thus, ψ does
not isolate tp(a/k), a contradiction.

Let k be algebraically closed, and suppose that G is an algebraic group
defined over k. We can view G ⊆ Km as a constructible group defined over
k. The k-rational points of G are the points in G ∩ km.2

Theorem 7.4.26 Suppose that l/k is strongly normal and C is the con-
stant field of k. The differential Galois group G(l/k) is isomorphic to the
C-rational points of an algebraic group defined over C.

Proof Suppose l = k〈a〉. Let ψ(v) isolate tp(a/k).
If ψ(b), then tp(a/k) = tp(b/k) and there is σ ∈ G(K/k) such that

σ(a) = b. Because l/k is strongly normal, b ∈ 〈l, CK〉. In particular, there is

2This is rather awkward. A more general view is that the k-rational points are the
points of the algebraic group G fixed by all automorphisms of K fixing k pointwise.
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a k-definable function gb and c ∈ CK such that gb(a, c) = b. By compactness
and coding tricks, we can find a single k-definable function g such that for
all b ∈ ψ(K) there is c ∈ CK such that b = g(a, c).

Let F be the differential closure of k. Then, l ⊂ F and CF = C. If b ∈ F ,
then any automorphism of l sending a to b lifts to an automorphism of K.
By model-completeness, there is c ∈ C such that b = g(a, c).

It is easy to see that σ ∈ G(l/k) is determined by its action on a. Clearly,
ψ(σ(a)) and, if ψ(b), then there is σ ∈ G(l/k) with σ(a) = b.

Consider the relation R(b, d, e), which asserts that if σ(a) = b and τ(a) =
d, then σ ◦τ(a) = e. Then R(b, d, e) holds if and only if σ(d) = e. But there
are constants c ∈ C such that d = g(a, c). But then σ(d) = g(b, c), so

R(b, d, e) ⇔ ψ(b) ∧ ψ(d) ∧ ψ(e) ∧ ∃c
∧

c′
i = 0 ∧ d = g(a, c) ∧ e = g(b, c).

Let X be the set ψl and define · on X by b ·d = e if and only if R(b, d, e).
We have shown that (X, ·) is isomorphic to G(l/k).

We can do even better. Let Y = {c ∈ C : ψ(g(a, c))}. We define an
equivalence relation E on Y by c0Ec1 if and only if g(a, c0) = g(a, c1).
We also define a ternary relation R∗ on Y by R∗(c0, c1, c2) if and only if
R(g(a, c0), g(a, c1), g(a, c2)). Clearly, R∗ is E-invariant.

Because C is a pure algebraically closed field, Y , E, and R∗ are definable
in the language of fields. By elimination of imaginaries in algebraically
closed fields, we can find a field-definable function f : Y → Cn such that
cEc0 if and only if f(c) = f(c0). Let G be the image of Y under f . Define
· on G by x0 · x1 = x2 if and only if there are c0, c1 and c2 ∈ Y such that
f(ci) = xi and R∗(c0, c1, c2). Then, (G, ·) is isomorphic to G(l/k) and (G, ·)
is definable in the pure field structure of C. By Theorem 7.4.14, G(l/k) is
isomorphic to the C-rational points of an algebraic group defined over C.

7.5 Finding a Group

One of the most powerful ideas in modern model theory is that when one
finds an interesting pattern of dependence it is often caused by a defin-
able group. In this section we will prove some of the most basic results of
this kind. In particular, we will prove Hrushovski’s result that a “generi-
cally presented” group is a group. We begin by investigating groups and
semigroups that are nearly definable.
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-Definable Groups and Semigroups

Definition 7.5.1 We say that X ⊆ M is
∧

-definable if there is I with
|I| < |M| and LM-formulas, φi(v) for i ∈ I such that

X =
{

x ∈ M :
∧
i∈I

φi(x)
}

.

We will consider G ⊆ M that is
∧

-definable and ∗ a function definable
on D ×D, where D is a definable set containing G. We say that (G, ∗) is a
right-cancellation semigroup if ∗ is associative, there is an identity element
1, and if f ∗ g = h ∗ g, then f = h.

Lemma 7.5.2 If M is stable, then any
∧

-definable right-cancellation semi-
group is a group.

Proof Let
∧

i∈I φi(v) define G.

Claim 1 We can find a definable D ⊇ G such that for x, y, z ∈ D, x ∗ (y ∗
z) = (x ∗ y) ∗ z, x ∗ 1 = 1 ∗ x = x, and if x ∗ y = z ∗ y, then x = z.

Because G is a right-cancellation semigroup,

M |=
(∧

i∈I

φi(x) ∧
∧
i∈I

φi(y) ∧
∧
i∈I

φi(z)

)
→

(x ∗ (y ∗ z) = (x ∗ y) ∗ z ∧ x ∗ 1 = 1 ∗ x = x)

and

M |=
(∧

i∈I

φi(x) ∧
∧
i∈I

φi(y) ∧
∧
i∈I

φi(z) ∧ x ∗ y = z ∗ y

)
→ x = z.

By compactness and saturation, there is a finite I0 ⊆ I such that

M |=
(∧

i∈I0

φi(x) ∧
∧
i∈I0

φi(y) ∧
∧

i∈I0

φi(z)

)
→

(x ∗ (y ∗ z) = (x ∗ y) ∗ z ∧ x ∗ 1 = 1 ∗ x = x)

and

M |=
(∧

i∈I0

φi(x) ∧
∧
i∈I0

φi(y) ∧
∧

i∈I0

φi(z) ∧ x ∗ y = z ∗ y

)
→ x = z.

We define D by
∧
i∈I0

φi(v).

Let a ∈ G. We must find an inverse to a in G.

Claim 2 For all definable D ⊇ G, there is b ∈ D such that a∗b = b∗a = 1.
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Because

M |=
(∧

i∈I

φi(x) ∧
∧
i∈I

φi(y)

)
→
∧
i∈I

φi(x ∗ y)

there is a definable D1 ⊆ D such that G ⊆ D1 and x ∗ y ∈ D for x, y ∈ D1.
By the claim 1, we may assume that ∗ is associative and satisfies right-
cancellation on D1.

Let θ(x, y) be ∃u ∈ D1u ∗ x = y. Then, M |= θ(am, an) for m ≤ n.
Because M is stable, θ does not have the order property (see Exercise
5.5.6). Thus there is m < n such that M |= θ(an, am). Suppose that c ∈ D1
and c ∗ an = am. Because we have associativity and right-cancellation on
D1, ((c∗an−m−1) ∗a)∗am = 1∗am and (c∗an−m−1) ∗a = 1. On the other
hand, a ∗ (c ∗ an−m−1) ∗ a = a ∗ 1 = 1 ∗ a. Thus a ∗ (c ∗ an−m−1) = 1. Thus,
c ∗ an−m−1 is a left and right inverse to a.

We claim that a has an inverse in G. Suppose not. Then, by a final
compactness argument, we can find a definable D ⊇ G such that a has no
inverse in D, contradicting our second claim.

Theorem 7.5.3 Suppose that M is ω-stable and G ⊆ M is an
∧

-definable
group. Then, G is definable.

Proof Let
∧

i∈I φi(v) define G. Without loss of generality, we may assume
that if I0 ⊆ I is finite, there is j ∈ I such that

φj(v) →
∧
i∈I0

φi(v).

As above, by compactness we can find l ∈ I such that if φl(x), φl(y),, and
φl(z), then x∗ (y ∗z) = (x∗y)∗z, x∗1 = 1∗x = x, and if x∗y = x∗z, then
y = z. Further, we can choose k ∈ I such that φk(v) → φl(v) and φk(v)
is of minimal Morley rank and degree. Let M ≺ M contain all parameters
occurring in any φj , j ∈ I. Let p1, . . . , pm ∈ S1(M) list the finitely many
1-types over M such that φk ∈ pj and RM(pj) = RM(φk) for j = 1, . . . , m.
Note that if y is a realization of any pj , then y ∈ G.

Let H = {x ∈ M : φk(x) and φk(x∗y) for all y ∈ G such that tp(y/M) =
pj for some j = 1, . . . , m and y |�M

x}. By definability of types (Theorem
6.3.5), H is definable. We need only show that H = G.

Suppose that x ∈ H and y is a realization of pj with y |�M
x. Thus

φk(x ∗ y). Because we have left-cancellation on φk(M), the map g 	→ x ∗ g
is one-to-one on φk(M) and RM(x ∗ y/M ∪ {x}) = RM(y/M ∪ {x}). Thus

RM(x ∗ y/M) ≥ RM(x ∗ y/M ∪ {x}) = RM(y/M ∪ {x}) = RM(y/M).

Because φk(x ∗ y) and RM(x ∗ y/M) is maximal, x ∗ y realizes some pj .
Hence x ∗ y ∈ G. Because φk(x) and y ∈ G,

x = x ∗ (y ∗ y−1) = (x ∗ y) ∗ y−1.
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But x ∗ y, y−1 ∈ G, and hence x ∈ G. Thus H ⊆ G.
On the other hand, suppose that x ∈ G, y ∈ G realizes some pj and

y |�M
x. Because x ∗ y ∈ G, φk(x ∗ y) and x ∈ H. Thus G ⊆ H.

In Exercise 7.6.20, we give an example of an unstable structure where
there is a

∧
-definable group that is not definable.

Generically Presented Groups
We now state and prove Hrushovski’s Theorem.

Theorem 7.5.4 Suppose that T is ω-stable and M is a monster model of
T . Let A ⊂ M, and let p ∈ S1(A) be a stationary type (for notational
simplicity, we will assume that A = ∅, but this is no loss of generality).
For B ⊂ M, we let pB denote the unique nonforking extension of p to B.
Suppose that ∗ is a definable partial function such that:

i) for all small B, if a and b realize pB and a |�B
b, then a ∗ b is defined

and a ∗ b realizes pB and a, b and a ∗ b are pairwise-independent over B.
ii) if a, b, c are independent realizations of p, then a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Then there is a group G definable in Meq and an injective definable func-

tion σ mapping realizations of p to realizations of the generic of G such that
σ(a) ∗ σ(b) = σ(a ∗ b) for independent realizations of p.

Proof Suppose that f and g are definable functions. We say that f and g
have the same germ at p if and only if whenever A is large enough so that
f and g are both defined over A, and a realizes pA, then f(a) = g(a). We
write f ∼ g.

Suppose that F (v, w) is a definable function. For c in some definable set
A, let fc be the function x 	→ F (x, a) and let F be the family of germs of
functions fa for a ∈ A. Let φ(v, w, u) be the formula “F (v, w) = F (v, u)”.
Then fb ∼ fc if and only if φ(v, b, c) ∈ pA if and only if M |= dpφ(b, c).
Thus the equivalence relation ∼ is definable on the family F . We can thus
think of the germs of functions in F as elements of Meq.

Suppose that g is a germ of a function in F and a realizes pg. Suppose
that b1, b2 ∈ A such that bi |�g

a and if fi(x) = F (x, bi), then f1, f2 ∈ g.
We claim that f1(a) = f2(a). This gives a well-defined value to the germ g
at a.

Choose b3 ∈ A such that b3 |�g
a, b1, b2 and if f3(x) = F (x, b3), then

f3 ∈ g. Because b3 |�g
a, b1 and b1 |�g

a, we have b1, b3 |�g
a. By symmetry,

a |�g
b1, b3. Because a |�∅g, we have a |�∅b1, b3. Because f1 and f3 are in

the same germ, f1(a) = f3(a). Similarly f2(a) = f3(a). Thus, f1(a) = f2(a),
as desired.

Suppose that f and g are germs at p such that if a realizes pf,g, f(a)
and g(a) realize p as well. One can consider the composition f ◦ g, which
is also a germ at p. Let S(p) be the semigroup of all germs at p mapping
realizations of p to realizations of p. In general, S(p) is not definable.
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We argue that S(p) has right-cancellation. Suppose g◦h ∼ f ◦h. Let a be
independent of g, h, f . Then, h(a) is well-defined and h(a) |�f, g. Because
f(h(a)) = g(h(a)), f ∼ g, as desired.

Consider the map p 	→ S(p), which sends a to fa, the germ of the function
x 	→ a ∗ x.

We first show that this is one-to-one. This uses the following key fact.
Suppose that a, b realize pB and b |�B

a. Then, there is b1 realizing p such
that b1 |�B

a and b ∗ b1 = a. To prove this, begin by taking c, c1 realiza-
tions of p independent over B. Let d = c ∗ c1. Then, d, c, c1 are pairwise-
independent over B and a, b realize the same type as d, c over B.

Suppose that a1, a2 realize p and fa1 = fa2 . Let b realize pa1,a2 . There
are c1, c2 such that ci ∗ b = ai. Let d realize pa1,a2,b,c1,c2 . Then, ai ∗ d =
(ci ∗ b) ∗ d = ci ∗ (b ∗ d) because b, ci, d are independent. But fa1 = fa2 so
a1 ∗ d = a2 ∗ d. Because b ∗ d is a realization of p independent from c1 and
c2, fc1 and fc2 must be the same germ. But then c1 ∗b = c2 ∗b and a1 = a2,
as desired. Thus a 	→ fa is one-to-one.

Next, we show that the semigroup of germs generated by the fa is in fact∧
-definable. Let G be the collection of germs {fa ◦ fb : a, b realizations of

p}. G is
∧

-definable and is contained in the semigroup of germs generated
by the fa. If a ∈ p, then, as above, we can find b and c independent
realizations of p such that b ∗ c = a. If d a realization of pa,b,c, then a ∗ d =
(b ∗ c) ∗ d = b ∗ (c ∗ d) and fa = fb ◦ fc. Thus, G contains the germs fa

for a realizing p. We claim that G is closed under composition. Suppose
that a, b, c realize p. It suffices to show that there are d and e realizing p
such that fa ◦ fb ◦ fc = fd ◦ fe. We can, as above, find b1 and b2 such that
b1 |�a,c

b2, bi |�a, b, c, and b1 ∗ b2 = b. Let x realize pa,b,c,b1,b2 . Using the
generic associativity of ∗, we see

fa ◦ fb ◦ fc(x) = a ∗ ((b1 ∗ b2) ∗ (c ∗ x))
= a ∗ (b1 ∗ (b2 ∗ (c ∗ x)))
= (a ∗ b1) ∗ (b2 ∗ (c ∗ x))
= (a ∗ b1) ∗ ((b2 ∗ c) ∗ x).

Thus, if we let d = a∗b1 and e = b2∗c, we see that a∗(b∗(c∗x)) = d∗(e∗x)
so the germs fa ◦ fb ◦ fc = fd ◦ fe.

Thus, G is a
∧

-definable right-cancellation semigroup. By Lemma 7.5.2
and Theorem 7.5.3, G is a definable group.

Clearly, a generic of G will arise from fa ◦ fb, where a and b are indepen-
dent realizations of p. But in this case, fa ◦ fb = fa∗b. Thus, for a realizing
p, fa is a generic of G.

We mention one corollary to Theorems 7.5.4 and 7.4.14. This result of
Weil is used in the construction of Jacobians (see, for example [59] II §3).

Corollary 7.5.5 Let K be an algebraically closed field, and let V ⊆ Kn

be an irreducible variety. Suppose that f is a rational function defined on
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a Zariski open U ⊆ V × V such that if a, b, c are independent generic
points of V , then f(a, b) is a generic point of V , a, b, f(a, b) are pairwise-
independent, and f(a, f(b, c)) = f(f(a, b), c). Then, there is an algebraic
group G and a birational map σ : V → G such that σ(a) · σ(b) = σ(f(a, b))
for a, b ∈ V independent generic points.

The Group Configuration
Theorem 7.5.4 is the first example of a theorem where we produce a defin-
able group once we have spotted some trace evidence of its existence. We
conclude this section by stating a version of the most powerful result of
this type.

Definition 7.5.6 Suppose that M is ω-stable. We call a, b, c, x, y, z ∈ Meq

a group configuration if:
i) RM(a) = RM(b) = RM(c) = RM(x) = RM(y) = RM(z) = 1;
ii) any pair of elements has rank 2;
iii) RM(a, b, c) = RM(c, x, y) = RM(a, y, z) = RM(b, x, z) = 2;
iv) any other triple has rank 3;
v) RM(a, b, c, x, y, z) has rank 3.

We represent the group configuration by the following diagram.

�
�
�
�
�
�
�
��

���������

�

�

�

� �

�

c

b

a y z

x

The points in the diagram have rank 1. Conditions iii) and iv) assert
that each line has rank 2 while any three non-collinear points have rank 3.

There is one easy way that a group configuration arises. Suppose that
G is a strongly minimal Abelian group. Let a, b, x be independent generic
elements of G. Let c = ba, y = cx, and z = bx; then, y = az and it is easy
to check that conditions i)–v) hold. Remarkably, Hrushovski proved that
whenever there is a group configuration there is also a definable group.

Theorem 7.5.7 Suppose that there is a group configuration in Meq. Then,
there is a rank one group definable in Meq.

We give an application of the group configuration in Theorem 8.3.1.
Proofs of Hrushovski’s Theorem appear in [18] §4.5 and [76] §5.4.
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7.6 Exercises and Remarks

Throughout the Exercises G is an ω-stable group.

Exercise 7.6.1 a) Show that the Descending Chain Condition fails for
the stable group (Z,+, 0).

b) Suppose that G is a stable group and φ(x, y) is a formula. Show that
we cannot find a1, a2, . . . such that Gi = {x : G |= φ(x, ai)} is a subgroup
of G and G1 ⊃ G2 ⊃ G3 ⊃ . . .. [Hint: Suppose not and find a violation of
the order property.]

Exercise 7.6.2 Prove Lemma 7.1.8.

Exercise 7.6.3 Let p ∈ S1(G), let G1 be an elementary extension of G,
and let p1 be the unique nonforking extension of p to G1. Show that the
formula that defines Stab(p) in G defines Stab(p1) in G1.

Exercise 7.6.4 Show that if G is connected and H � G is definable, then
G/H is connected.

Exercise 7.6.5 Suppose that G is a connected ω-stable group and σ :
G → G is a definable homomorphism with finite kernel. Show that σ is
surjective.

Exercise 7.6.6 Use Lemma 7.5.2 to show that any infinite stable integral
domain is a field.

Exercise 7.6.7 Suppose that (K, +, ·, . . .) is a field of finite Morley rank.
Show that K has no infinite definable subrings. [Hint: By Exercise 7.6.6,
any definable subring is a subfield. Show that if there is a definable subfield,
then K must have infinite rank.]

Conclude that if σ : K → K is a nontrivial field automorphism and
(K, +, ·, σ, 0, 1) has finite Morley rank, then K has characteristic p > 0 and
the fixed field of σ is finite.

Exercise 7.6.8 Let K be a finite Morley rank field of characteristic 0.
a) Show that there are no nontrivial definable additive subgroups of K.

[Hint: Let G be a definable subgroup and consider R = {a : aG = G}.]
This is still an open question in characteristic p.

b) If σ : Kn → Km is a definable additive homomorphism, then σ is
K-linear. [Hint: Consider {a : ∀x σ(ax) = aσ(x)}.] In particular, the only
definable homomorphisms of K+ are x 	→ ax, a ∈ K.

Exercise 7.6.9 Show that G acts transitively on the generic types of G.

Exercise 7.6.10 Show that if RM(p) = RM(Stab(p)), then Stab(p) is
connected and p is a translate of the generic of Stab(p).

Exercise 7.6.11 Suppose that Γ is a connected group and there is a de-
finable transitive action of Γ on a finite set S. Then |S| = 1.
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Exercise 7.6.12 Show that if X ⊆ G is definable and indecomposable and
g ∈ G, then gX is indecomposable and gXg−1 is indecomposable.

Exercise 7.6.13 Suppose that G is an algebraic group and X ⊆ G is an
irreducible subvariety. Prove that X is indecomposable.

Exercise 7.6.14 Show that if G is an infinite group of finite Morley rank
with no definable infinite proper subgroups, and X ⊆ G is infinite and
definable, then X generates G.

Exercise 7.6.15 Show that if G is an ℵ0-saturated ω-stable group and
X ⊆ G is an infinite definable set, then there are Y1, . . . , Yn ⊆ X such that
X = Y1 ∪ . . . ∪ Yn and Y1, . . . , Yn are indecomposable.

Exercise 7.6.16 Suppose that (K, +, ·, . . .) is a field of finite Morley rank
and X ⊆ K is an infinite definable set.

a) Show that there are a1, . . . , an ∈ K such that K = a1X +a2X + . . .+
anX. [Hint: Without loss of generality, assume that K is ℵ0-saturated and,
by Exercise 7.6.15, that X is indecomposable. Let x ∈ X and Y = X − x.
Show that the additive subgroup A generated by {aY : a ∈ K} is definable.
Argue that A = K.]

b) Show that if the language L is countable, then the theory of K is
categorical in all uncountable powers.

Exercise 7.6.17 Let F be an infinite field, and let G be a group of
automorphisms of F such that the action of G on F has finite Morley rank.
Show that G = {1}. [Hint: Without loss of generality, G is Abelian. Using
Exercise 7.6.7, F has characteristic p > 0 and for all σ ∈ G − {1}, Fix(σ),
the fixed field of σ, is finite. Show that if σ ∈ G − {1} then for all n > 1,
σn �= 1 and |Fix(σn)| > |Fix(σ)|. Thus, if G �= {1}, then G is infinite.
On the other hand, if G is infinite and σ is generic, so is σn. Derive a
contradiction.]

Exercise 7.6.18 Show that if G is a simple group of finite Morley rank,
and H ≡ G, then H is simple. [Hint: You first must show that an infinite
Abelian simple group is not ω-stable.]

Exercise 7.6.19 Let K be an algebraically closed field, and let G be the
affine group of matrices

G =
{(

a b
0 1

)
: a, b ∈ K, a �= 0

}
.

a) Show that G is connected.
b) Show that

G′ =
{(

1 b
0 1

)
: b ∈ K

}
and G′′ = {1}. Thus, G is solvable.
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c) Show that G is centerless.

Exercise 7.6.20 Let M be a monster model of the theory of real closed
fields. Let I = {x ∈ M : |x| < 1

n for n = 1, 2, . . .}. Show that (I,+) is an∧
-definable group that is not definable.

Exercise 7.6.21 Fill in the details in the proof of Lemma 7.4.2 iv).

Exercise 7.6.22 Let K be an algebraically closed field.
a) Show that there is a variety V with open cover V0∪V1 and fi : Vi → K

a homeomorphism such that fi(Vi ∩ V1−i) = K \ {0} and fi ◦ f−1
1−i is the

identity on K \ {0} for i = 0, 1. (The variety V looks like the line K with
0 “doubled”.)

b) Show that ∆ = {(x, y) ∈ V × V : x = y} is not closed in V × V .
c) Show that if G is an algebraic group, then ∆ = {(x, y) ∈ G×G : x = y}

is closed in G.

Exercise 7.6.23 Prove Lemma 7.4.6.

Remarks
We know some things about the Cherlin–Zil’ber Conjecture for groups of
very small rank. Of course, a connected group of rank 1 is Abelian. Cherlin
proved that there are no non-Abelian simple groups of rank 2.

Theorem 7.6.24 If G is a connected rank 2 group, then G is solvable.

Problems arise in the analysis starting at rank 3.

Definition 7.6.25 We say that G is a bad group if G is connected, non-
solvable, and all proper connected definable subgroups of G are nilpotent.

An algebraic group over an algebraically closed field is not a bad group.
The real algebraic group SO3(R) is connected, nonsolvable, and all real
algebraic subgroups are one-dimensional, but SO3(R) is unstable. It is not
known whether there are any bad groups of finite Morley rank. The next
result of Cherlin shows how bad groups could be obstacles to proving the
Cherlin–Zil’ber Conjecture.

Theorem 7.6.26 If G is a simple group of Morley rank 3, then
i) G is a bad group, or
ii) G interprets an algebraically closed field K and G is definably iso-

morphic to PSL2(K).

For proofs of these results and more on groups of finite Morley rank, see
[86] or [15].
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Macintyre first noted the Descending Chain Condition for ω-stable
groups. Although the Descending Chain Condition does not hold for sta-
ble groups, Baldwin and Saxl showed that there are no uniformly defined
descending chains (see Exercise 7.6.1).

The notion of generic types is due to Poizat. There are important gen-
eralizations in stable and superstable groups (see [86]).

The proof we gave that an ω-stable field is algebraically closed follows
the proof given by Cherlin and Shelah, who, using U-rank, generalized the
result to superstable fields.

The Indecomposability Theorem and its consequences for groups of finite
Morley rank are due to Zil’ber. The exercises on finite Morley rank fields
are due to Poizat and Wagner [101].

Theorem 7.4.14 was first stated by van den Dries, who noticed that
it follows from Weil’s group chunk theorem. The proof above was given
by Hrushovski. In fact, one can prove a stronger version of the theorem.
Suppose that the constructible group G is defined over a subfield k; then G
is definably isomorphic to an algebraic group defined over k. This requires
a descent argument of Weil’s. A sketch of the proof is given in [77].

The model theoretic treatment of Kolchin’s differential Galois theory
is due to Poizat. Surveys of differential Galois theory for linear differen-
tial equations can be found in [50], [63], and [96]. Pillay [78] developed a
generalized differential Galois theory where arbitrary finite Morley rank
differential algebraic groups arise as Galois groups.



8
Geometry of Strongly Minimal Sets

8.1 Pregeometries

In our proof of Morley’s Categoricity Theorem in Chapter 6, we examined
the algebraic closure relation on strongly minimal sets. In this chapter, we
will return to strongly minimal sets and study more carefully the combi-
natorial geometry of algebraic closure. One of the great insights of modern
model theory is that the local properties of the geometry of strongly min-
imal sets have a great influence on global properties of structures. These
ideas play an important role in Hrushovski’s proof of the Mordell–Lang
Conjecture for function fields. In Theorem 8.3.20, we sketch how this works
in one simple case.

We begin by reviewing some basic ideas from combinatorial geometry.
The proofs are quite easy, and we leave them as exercises.

Definition 8.1.1 Let X be a set and let cl : P(X) → P(X) be an operator
on the power set of X. We say that (X, cl) is a pregeometry if the following
conditions are satisfied.

i) If A ⊆ X, then A ⊆ cl(A) and cl(cl(A)) = cl(A).
ii) If A ⊆ B ⊆ X, then cl(A) ⊆ cl(B).
iii) (exchange) If A ⊆ X, a, b ∈ X, and a ∈ cl(A∪{b}), then a ∈ cl(A) or

b ∈ cl(A ∪ {a}).
iv) (finite character) If A ⊆ X and a ∈ cl(A), then there is a finite

A0 ⊆ A such that a ∈ cl(A0).

We say that A ⊆ X is closed if cl(A) = A.
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By Lemmas 6.1.3 and 6.1.4, if D is strongly minimal, we can associate a
pregeometry by defining cl(A) = acl(A) ∩ D for A ⊆ D. We can generalize
basic ideas about independence and dimension from strongly minimal sets
to arbitrary pregeometries.

Definition 8.1.2 If (X, cl) is a pregeometry, we say that A is independent
if a �∈ cl(A \ {a}) for all a ∈ A and that B is a basis for Y if B ⊆ Y is
independent and Y ⊆ acl(B).

The natural generalization of Lemma 6.1.9 is true for all pregeometries.

Lemma 8.1.3 If (X, cl) is a pregeometry, Y ⊆ X, B1, B2 ⊆ Y , and each
Bi is a basis for Y , then |B1| = |B2|.

We call |Bi| the dimension of Y and write dim(Y ) = |Bi|.

If A ⊆ X, we also consider the localization clA(B) = cl(A ∪ B).

Lemma 8.1.4 If (X, cl) is a pregeometry, then (X, clA) is a pregeometry.

If (X, cl) is a pregeometry, we say that Y ⊆ X is independent over A if
Y is independent in (X, clA). We let dim(Y/A) be the dimension of Y in
the localization (X, clA). We call dim(Y/A) the dimension of Y over A.

Definition 8.1.5 We say that a pregeometry (X, cl) is a geometry if
cl(∅) = ∅ and cl({x}) = {x} for any x ∈ X.

If (X, cl) is a pregeometry, then we can naturally associate a geometry.
Let X0 = X \ cl(∅). Consider the relation ∼ on X0 given by a ∼ b if and
only if cl({a}) = cl({b}). By exchange, ∼ is an equivalence relation. Let X̂

be X0/ ∼. Define ĉl on X̂ by ĉl(A/∼) = {b/∼: b ∈ cl(A)}.

Lemma 8.1.6 If (X, cl) is a pregeometry, then (X̂, ĉl) is a geometry.

We distinguish some properties of pregeometries that will play an im-
portant role.

Definition 8.1.7 Let (X, cl) be a pregeometry.
We say that (X, cl) is trivial if cl(A) =

⋃
a∈A cl({a}) for any A ⊆ X.

We say that (X, cl) is modular if for any finite-dimensional closed
A, B ⊆ X

dim(A ∪ B) = dimA + dimB − dim(A ∩ B).

We say that (X, cl) is locally modular if (X, cla) is modular for some a ∈ X.

In Exercise 8.4.8, we show that a localization of a modular geometry is
modular.

We give several illustrative examples.
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Example 8.1.8 Pure Sets

Let D be a set with no structure. Then for all a ∈ D, acl(a) = {a} and
acl(∅) = ∅. Thus, (D, acl) is a trivial geometry.

Example 8.1.9 Successor

Let D |= Th(Z, s), where s(x) = x + 1. Then, acl(∅) = ∅ and acl(A) =
{sn(a) : a ∈ A, n ∈ Z} for any A ⊆ D. Thus, (D, acl) is a trivial pregeom-
etry that is not a geometry.

Example 8.1.10 Projective Geometry

Let F be a division ring and V be an infinite vector space over F . We view
V as a structure in the language L = {+, 0, λa : a ∈ F} where λa(x) = ax.
Then, V is a strongly minimal set, and for any set A ⊆ V the algebraic
closure of A is equal to the smallest F -subspace spanned by A. The usual
dimension theorem for intersections of linear subspaces shows that this
pregeometry is modular. This is not a geometry because cl(∅) = {0} and
for any a ∈ V \{0}, cl(a) is the line through a and 0. To form the associated
geometry, we take as points the lines through 0. The closure of a set of lines
is the set of all lines in their linear span. Thus, the associated geometry is
just the projective space associated to V . If dimV = n, then the projective
space has dimension n − 1.

Example 8.1.11 Affine Geometry

Let V and F be as above. We define a second geometry on V where
the closure of a set A is the smallest affine space containing it and
cl(∅) = ∅. (An affine space is any translate of a linear space). Here
cl({a}) = {a}, so this is a geometry. Let a, b, c ∈ V be noncollinear. Then,
dim(a, b, c, c + b − a) = 3, whereas dim(a, b) = dim(c, c + b − a) = 2 and
cl(a, b) ∩ cl(c, c + b − a) = ∅ because these are parallel lines. Thus, the
geometry is not modular. If we localize at zero, then the pregeometry is
exactly projective geometry, so this is locally modular.

For F = Q, we can view this as the algebraic closure geometry of a
strongly minimal set by viewing V as a structure in the language {τ}
where τ(x, y, z) = x + y − z. (For arbitrary F , add function symbols for
ax + y − az for each a ∈ F .)

Example 8.1.12 Algebraically Closed Fields

Let K be an algebraically closed field of infinite transcendence degree.
We claim that (K, acl) is not locally modular. Let k be an algebraically
closed subfield of finite transcendence degree. We will show that even lo-
calizing at k the pregeometry is not modular. Let a, b, x be algebraically
independent over k. Let y = ax + b. Then, dim(k(x, y, a, b)/k) = 3 and
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dim(k(x, y)/k) = dim(k(a, b)/k) = 2. We contradict modularity by show-
ing that acl(k(x, y)) ∩ acl(k(a, b)) = k. To see this, suppose for purposes
of contradiction that d ∈ (acl(k(a, b)) ∩ acl(k(x, y))) \ k. Because k(x, y)
has transcendence degree 2 over k, we may, without loss of generality,
assume that y is algebraic over k(d, x). Let k1 = acl(k(d)). Then, there
is p(X, Y ) ∈ k1[X, Y ] an irreducible polynomial such that p(x, y) = 0.
By model-completeness, p(X, Y ) is still irreducible over acl(k(a, b)). Thus,
p(X, Y ) is α(Y − aX − b) for some α ∈ acl(k(a, b)) which is impossible as
then α ∈ k1 and a, b ∈ k1.

Algebraically closed fields are the only known naturally arising examples
of nonlocally modular strongly minimal sets. Zil’ber conjectured that every
non-locally modular strongly minimal set interprets an algebraically closed
field. In [41], Hrushovski gave a general method of constructing non-locally
modular strongly minimal sets and showed that many of these sets do
not even interpret groups. Hrushovski’s method has been generalized to
construct many interesting pathological structures. For example, in [42]
Hrushovski showed that there is a strongly minimal structure (D,+, ·,⊕,⊗)
where (D,+, ·) is an algebraically closed field of characteristic p ≥ 0 and
(D,⊕,⊗) is an algebraically closed field of characteristic q �= p.

Next, we give a useful characterization of modularity.

Lemma 8.1.13 Let (X, cl) be a pregeometry. The following are equivalent.
i) (X, cl) is modular.
ii) If A ⊆ X is closed and nonempty, b ∈ X, and x ∈ cl(A, b), then there

is a ∈ A such that x ∈ cl(a, b).
iii) If A, B ⊆ X are closed and nonempty, and x ∈ cl(A, B), then there

are a ∈ A and b ∈ B such that x ∈ cl(a, b).

Proof
i)⇒ ii) By the finite nature of closure, we may assume that dim A is finite.

If x ∈ cl(b), we are done, so we may assume x �∈ cl(b). By modularity,

dim(A, b, x) = dimA + dim(b, x) − dim(A ∩ cl(b, x))

and

dim(A, b, x) = dim(A, b) = dimA + dim b − dim(A ∩ cl(b)).

Because dim(b, x) = dim(b)+1, there is a ∈ A such that a ∈ cl(b, x) \ cl(b).
By exchange, x ∈ cl(b, a).

ii)⇒ iii) We may suppose that A and B are finite-dimensional. We pro-
ceed by induction on dimA. If dimA is zero then iii) holds. Suppose that
A = cl(A0, a), where dim A0 = dimA − 1. Then x ∈ cl(A0, B, a). By ii),
there is c ∈ cl(A0, B) such that x ∈ cl(c, a). By induction, there is a0 ∈ A0
and b ∈ B such that c ∈ cl(a0, b). Again by ii), there is a∗ ∈ cl(a0, a) ⊆ A
such that x ∈ cl(a∗, b).
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iii)⇒ i) Suppose that A, B ⊆ X are finite-dimensional and closed. We
prove i) by induction on dimA. If dimA = 0, then we are done. Suppose
that A = cl(A0, a), where dimA0 = dimA−1 and we assume, by induction,
that

dim(A0, B) = dimA0 + dimB − dim(A0 ∩ B).

First, assume that a ∈ cl(A0, B). Then dim(A0, B) = dim(A, B) and,
because a �∈ A0, dimA = dimA0 +1. Because a ∈ cl(A0, B), by iii) there is
a0 ∈ A0 and b ∈ B such that a ∈ cl(a0, b). Because a �∈ cl(a0), by exchange,
b ∈ cl(a, a0). Thus b ∈ A. But b �∈ A0, because otherwise a ∈ A0. Therefore,
dim(A ∩ B) = dim(A0 ∩ B) + 1, as desired.

Next, suppose that a �∈ cl(A0, B). In this case, we need to show that
A ∩ B = A0 ∩ B. Suppose that b ∈ B and b ∈ cl(A0, a) \ cl(A0). Then, by
exchange, a ∈ cl(A0, b), a contradiction.

If V is a vector space, a1, . . . , an is a basis for A ⊆ V , and b1, . . . , bm

is a basis for B, then any x in the span of A ∪ B is the sum of a linear
combination of the ai and a linear combination of the bj . Thus, condition
iii) above holds.

Lemma 8.1.13 can be used to give another proof that algebraically closed
fields are not locally modular (see Exercise 8.4.9).

8.2 Canonical Bases and Families of Plane Curves

Let D be a strongly minimal set. In this section, we will consider families
of strongly minimal subsets of D2.

Definition 8.2.1 Suppose that D ⊆ Mn is strongly minimal and A ⊆ Meq

is definable. We say that a definable C ⊆ D2×A is a family of plane curves if
for all a ∈ A the set Ca = {(x, y) ∈ D : (x, y, a) ∈ C} is a strongly minimal
subset of D2.

Consider the following two examples. Suppose that V is a Q vector space.
Let E = {(x, y, z) ∈ V 3 : y = mx + z} where m ∈ Q. For a ∈ V , let
Ea = {(x, y) : (x, y, a) ∈ E}. We think of E as describing the family of
plane curves {Ea : a ∈ V }. We call V the parameter space for the family
E. Note that in this case the parameter space is rank 1. Indeed, if E is a
family of plane curves in V 2 and the parameter space has rank greater than
1, then there is a one-dimensional family C such that for any Ea there is
Cb such that Ea & Cb is finite. This says that every family of plane curves
is “essentially one-dimensional.”

On the other hand, suppose that K is an algebraically closed field. Fix
n ∈ N and consider

E = {(x, y, z0, . . . , zn−1) : y = xn + zn−1x
n−1 + . . . + z1x + z0}.
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If

Ea = {(x, y) : y = xn +
n−1∑
i=0

aix
i}

for a = (a0, . . . , an−1) ∈ Kn, then
{

Ea : a ∈ Kn
}

is an n-dimensional
family of strongly minimal sets.

In this section, we will examine families of plane curves and show that a
strongly minimal set is locally modular if and only if any family of plane
curves is “essentially one-dimensional.” To make these notions precise, we
must first digress and discuss canonical bases.

Canonical Bases
We work in a monster model M. To find canonical bases, we will usually
have to work in Meq. We recall from Lemma 1.3.10 that every automor-
phism of M lifts to an automorphism of Meq and every automorphism of
Meq restricts to an automorphism of M. Thus, we can naturally identify
the automorphism groups Aut(M) and Aut(Meq). Recall that acleq(A) is
the algebraic closure of A in Meq and dcleq(A) is the definable closure of
A in Meq.

Definition 8.2.2 Let X ⊆ Mn be definable. We say that A ⊂ Meq is a
canonical base for X if σ fixes X setwise if and only if σ fixes A pointwise
for all σ ∈ Aut(M).

If p ∈ Sn(M), then A ⊆ Meq is a canonical base for p if σp = p if and
only if σ fixes A pointwise for all σ ∈ Aut(M).

For any theory, we can find canonical bases for definable sets in Meq.

Lemma 8.2.3 Suppose that X ⊆ M is definable. There is α ∈ Meq such
that α is a canonical base for X. Indeed, if X is A-definable, we can find
a canonical base in dcleq(A).

Proof Suppose that X is defined by the formula φ(x, a). Let E be the
equivalence relation

a E b ⇔ (φ(x, a) ↔ φ(x, b)).

Let α = a/E ∈ Meq. Then, α is a canonical base for X.

Next, we consider canonical bases for types. We first note that canonical
bases are determined up to definable closure in Meq. This works equally
well for definable sets instead of types.

Lemma 8.2.4 If A is a canonical base for p ∈ Sn(M), then B is a canon-
ical base for p if and only if dcleq(A) = dcleq(B).
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Proof Suppose that C ⊂ M and |C| < |M|; let Aut(M/C) denote the
automorphisms of M fixing C pointwise. The proof of Proposition 4.3.25
generalized to Meq shows that

dcleq(C) = {x ∈ Meq : σ(x) = x for all σ ∈ Aut(M/C)}.

Suppose that B is a canonical base for p. If σ is an automorphism fixing
B pointwise, then σp = p and σ fixes A pointwise. Thus A ⊆ dcleq(B).
Similarly, if τ is an automorphism fixing A pointwise, τp = p and τ fixes
B pointwise. Thus B ⊆ dcleq(A). Hence dcleq(A) = dcleq(B).

Conversely, suppose that dcleq(A) = dcleq(B). If σ ∈ Aut(M), then σ
fixes A pointwise if and only if σ fixes B pointwise. Because A is a canonical
base for p, so is B.

Definition 8.2.5 If A is any canonical base for p, let cb(p) = dcleq(A).

By Lemma 8.2.4, this definition of cb(p) does not depend on the choice
of A. It is easy to see that cb(p) is the largest possible choice of canonical
base for p.

Using definability of types, it is easy to find canonical bases in ω-stable
theories.

Lemma 8.2.6 Suppose that M is ω-stable and p ∈ Sn(M). Then, p has a
canonical base in Meq.

Proof For each L-formula φ(v,w), let Xφ = {a ∈ M : φ(v, a) ∈ p}. By
definability of types, Xφ is definable. If σ is an automorphism of M, then
σp = p if and only if σ fixes each Xφ setwise. Let αφ ∈ Meq be a canonical
base for Xφ, and let A = {αφ : φ an L-formula}. Then, σp = p if and only
if σ fixes A pointwise. Thus, A is a canonical base for p.

A more careful analysis shows that we can always find a finite canonical
base in acleq(A) for any A over which p does not fork.

Theorem 8.2.7 Suppose that M is ω-stable and p ∈ Sn(M) does not fork
over A ⊆ M. There is α ∈ acleq(A), a canonical base for p. If p|A is
stationary, then we can find a canonical base α ∈ dcleq(A).

Proof Suppose that φ(v,w) is an L-formula such that φ(v, a) ∈ p and
RM(φ(v, a)) = RM(p). Let X = {b : φ(v, b) ∈ p}. By definability of types,
X is definable. Indeed, by Theorem 6.3.9, X is definable over acleq(A) and,
if p|A is stationary, X is definable over A.
Claim If σ is an automorphism of M, then σp = p if and only if σX = X.

If σp = p, then

c ∈ X ⇔ φ(v, c) ∈ p ⇔ φ(v, c) ∈ σp ⇔ c ∈ σX.

Thus σX = X.
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Conversely, suppose σX = X. Then, a ∈ σX and φ(v, a) ∈ σp. Because
RM(p) = RM(σ(p)) and degM(φ(v, a)) = 1, σp = p.

Thus, B ⊂ Meq is a canonical base for p if and only if B is a canonical
base for X. Because X is acleq(A)-definable, by Lemma 8.2.4, we can find
a canonical base in acleq(A). If p|A is stationary, then X is A-definable and
we can find a canonical base in dcleq(A).

If p ∈ Sn(M), then p is definable over any canonical base. Thus, the
converse to Theorem 8.2.7 holds as well.

Corollary 8.2.8 Suppose M is ω-stable, then p ∈ Sn(M) does not fork
over A if and only if cb(p) ⊆ acleq(A).

We say that the canonical base for a set X (or a type p) has rank α if α
is least such that there is a canonical base b ∈ Meq with RM(b) = α.

For strongly minimal theories, we can compute ranks in Meq using the
following elimination of imaginaries result of Lascar and Pillay. We have
already proved a special case in Lemma 3.2.19, and the proof of the general
case is a straightforward generalization, which we leave as an exercise.

Lemma 8.2.9 Let M be a strongly minimal set and let X ⊂ M be infinite.
Suppose that E is an ∅-definable equivalence relation on Mm. Let a ∈ Mm

and α = a/E. There is a finite C ⊂ Mk (for some k) such that any
automorphism of M fixing X fixes α if and only if it fixes C setwise.

In particular, if MX is M viewed as an LX-structure, then for every
α ∈ M

eq
X there is d ∈ M such that acleq(α, X) = acleq(d, X).

Suppose that M is strongly minimal and α ∈ Meq. Let X ⊂ M be infi-
nite such that α |�X. Because RM(α) = RM(α/X), it suffices to calculate
RM(α/X). By Lemma 8.2.9, there is d ∈ M such that the set α is interal-
gebraic with d over X. Then, RM(α) is equal to RM(d/X).

Families of Plane Curves
Using canonical bases, we can make precise the idea that in locally mod-
ular strongly minimal sets families of plane curves are “essentially one-
dimensional.”

Definition 8.2.10 Suppose that D ⊂ Mn is strongly minimal and φ is
the strongly minimal formula defining D. We say that D is linear if for all
p ∈ S2(D), if φ(v1)∧φ(v2) ∈ p and RM(p) = 1, then the canonical base for
p has rank at most 1.

Suppose that φ(v1, v2, b) is strongly minimal. Let F be the family of sets
Ca = {(x, y) : φ(x, y, a)} where a and b realize the same type. There is a
natural equivalence relation on F , Ca ∼ Cc if and only if Ca&Cc is finite.
In Exercise 8.4.11, we show that ∼ is definable. If p is the generic type of
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φ, then the Morley rank of the canonical base of p intuitively corresponds
to the dimension of F/ ∼. Thus, D is linear if and only if there is no family
of plane curves of dimension greater than 1. Algebraically closed fields are
nonlinear because we have the family of curves C(a,b) = {(x, y) : y = ax+b},
whereas vector spaces are linear.

Next, we show that the linear strongly minimal sets are exactly the locally
modular ones.

Theorem 8.2.11 Let D ⊆ Mn be a strongly minimal set. The following
are equivalent:

i) for some small B ⊂ D, the pregeometry DB is modular;
ii) D is linear;
iii) for any b ∈ D \ acl(∅), Db is modular;
iv) D is locally modular.

Proof Often when we want to prove things about arbitrary strongly min-
imal sets D ⊆ Mn, we instead assume that M is strongly minimal. This is
no great loss of generality. By extending the language, we may assume that
D is ∅-definable. By Corollary 6.3.7, any subset of Dn that is definable is
definable using parameters from D. Thus, to study definability in D, we
can ignore all of M outside of D. For this reason, we may, without loss of
generality, assume that D is the universe of our structure.

i)⇒ ii) We first claim that if D is nonlinear, then DB is also nonlin-
ear. Suppose that p ∈ S2(D), RM(p) = 1, α is a canonical base for
p, and RM(α) ≥ 2. If α′ realizes a nonforking extension of tp(α) to
B, then α′ is a canonical base for a rank 1 type and DB is nonlin-
ear. Thus, adding the parameters B to the language, we assume that
B = ∅ and D is modular.

Let p ∈ S2(D) with RM(p) = 1. Let φ(v1, v2, a) be a strongly minimal
formula in p. Let b1, b2 realize p. Let X = acl(a)∩acl(b1, b2). By modularity,

dimX = dim(a) + dim(b1, b2) − dim(a, b1, b2).

Because dim(a, b1, b2) = dim(a) + 1 and 1 ≤ dim(b1, b2) ≤ 2, dimX ≤ 1.
Thus,

dim(b1, b2/a) = dim(b1, b2, a) − dim(a)
= dim(b1, b2) − dimX
= dim(b1, b2/X).

Thus dim(b1, b2/X) = 1 and p does not fork over X. By Theorem 8.2.7,
cb(p) ⊆ acleq(X), so RM(α) ≤ 1.

ii)⇒ iii) Let b ∈ D \ acl(∅). We will use the equivalence from Lemma
8.1.13. Suppose that B is a finite-dimensional closed set. Suppose that a1 ∈
acl(a2, B, b). We must find d ∈ acl(B, b) such that a1 ∈ acl(a2, d, b). Clearly,
we may assume that a1 �∈ acl(B, b), a2 �∈ acl(B, b), and a1 �∈ acl(a2, b)
(otherwise we are done). Thus, dim(a1, a2/b) = 2 and dim(a1, a2/Bb) = 1.
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Let α ∈ acleq(B, b) be a canonical base for the type of a1, a2 over
acleq(B, b).
Claim α ∈ acleq(a1, a2).

Because α is a canonical base, RM(a1, a2α) = 1. Because RM(a1, a2/α) <
RM(a1, a2), RM(α/a1, a2) < RM(α). By ii), RM(α) = 1; thus α ∈
acleq(a1, a2).

Because RM(a1, a2/b) = 2 and RM(a1, a2/α) = 1, α �∈ acl(b). Thus,
because b �∈ acl(∅), b �∈ acl(α). Thus, a1 and b realize the same type over
α and, by saturation, there is d ∈ D such that tp(a1, a2/α) = tp(b, d/α).
Then

d ∈ acl(b, α) ⊆
(
acl(a1, a2, b) ∩ acl(Bb)

)
and d �∈ acl(b).

We claim that d �∈ acl(a2, b). If d ∈ acl(a2, b), then, because d �∈ acl(b),
a2 ∈ acl(d, b) ⊆ acl(B, b), a contradiction.

Thus, because d ∈ acl(a1, a2, b) \ acl(a2, b), a1 ∈ acl(a2, b, d), as desired.
iii)⇒ iv) and iv)⇒ i) are clear.

One-Based Theories
We give one further characterization of locally modular strongly minimal
sets. In Exercise 8.4.6, we show that a pregeometry is modular if and only
if any two closed sets A and B are independent over A ∩ B. It turns out
to be interesting to look at theories where any two sets A and B that are
algebraically closed in Meq are independent (in the sense of forking) over
A ∩ B.

Definition 8.2.12 Suppose T is an ω-stable theory with monster model
M. We say that T is one-based if whenever A, B ⊆ Meq, A = acleq(A), and
B = acleq(B), then A |�A∩B

B.

The next lemma explains why we call these theories one-based.1

Lemma 8.2.13 Suppose that T is ω-stable. The following are equivalent.
i) T is one-based.
ii) For all a ∈ Meq and B ⊆ Meq, if tp(a/B) is stationary, then

cb(tp(a/B)) ⊆ acleq(a).

Proof
i) ⇒ ii) Let A = acleq(a). Because tp(a/acleq(B)) does not fork over B,

we may without loss of generality assume that B = acleq(B). Because T is
one-based, a |�A∩B

B. Thus cb(tp(a/B)) ⊆ A ∩ B ⊆ A.

1Compare this to Exercise 8.4.12 for arbitrary ω-stable theories.
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ii) ⇒ i) Let A, B ⊆ Meq with acleq(A) = A, acleq(B) = B, and a ∈ A.
For any ω-stable theory, cb(tp(a/B)) is contained in acleq(B) = B. By ii),
cb(tp(a/B)) ⊆ acleq(a) ⊆ A. Thus, cb(tp(a/B)) ⊆ A∩B and tp(a/B) does
not fork over A ∩ B.

Theorem 8.2.14 Suppose that M is strongly minimal. Then, T is one-
based if and only if D is locally modular.

Proof We first assume
(∗) For every α ∈ Meq, there is d ∈ M such that acleq(α) = acleq(d).

Under this assumption we claim that M is one-based if and only if M

is modular. Suppose that M is one-based. If A, B ⊂ M are algebraically
closed, then A |�acleq(A)∩acleq(B)

B. By (∗), we can find d ∈ A∩B such that
A |�d

B. By monotonicity, A |�A∩B
B, as desired.

Suppose, on the other hand, that M is modular. If A, B ⊆ Meq

are algebraically closed in Meq, we can find A0, B0 ⊆ M such that
acleq(A0) = A and acleq(B0) = B. By modularity, A0 |�acl(A0)∩acl(B0)

B0.
Thus, A |�A∩B

B by Corollary 6.3.21.

We need to show that one-basedness is preserved by localization. Suppose
that X ⊂ M. Let MX denote M viewed as an LX-structure.

Claim M is one-based if and only if MX is one-based.
Suppose M is one-based. If A, B ⊆ Meq, then

acleq(AX) |�acleq(AX)∩acleq(AX)
acleq(BX).

Thus, MX is one-based.
Suppose MX is one-based. Let B ⊆ M and a ∈ M. We want to show that

cb(tp(a/B)) ⊆ acleq(a). Because tp(a/B) does not fork over some finite
B0 ⊆ B, we may, without loss of generality, assume that B is finite. Also,
without loss of generality, we may assume that a, B |�∅X. Otherwise, we

replace a and B by a′ and B
′
, realizing a nonforking extension of tp(a, B)

over X.
Because a, B |�X, a |�B

X by transitivity. Let c be a canonical base for
tp(a/B, X). Because a |�B

X, c ∈ acleq(B) and, because MX is one-based,
c ∈ acleq(a, X). But c |�a

X because a, B |�∅X. Thus, c ∈ acleq(a).

We can now finish the proof. Suppose that M is locally modular. We
can find d ∈ M such that Md is modular. By Lemma 8.2.9, if X ⊂ M is
infinite, then MX,d satisfies (∗). By Exercise 8.4.8, MX,d is also modular.
Thus, MX,d is one-based and M is one-based. On the other hand, if M is
one-based and X ⊂ M is infinite, then MX is one-based and satisfies (∗).
Thus, MX is modular. By Theorem 8.2.11, M is locally modular.

There are much stronger versions of Theorem 8.2.14.
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Theorem 8.2.15 Suppose that T is uncountably categorical and M is the
monster model of T . The following are equivalent.

i) T is one-based.
ii) Every strongly minimal D ⊆ Mn is locally modular.
iii) Some strongly minimal D ⊆ Mn is locally modular.

For a proof, see Theorem 4.3.1 in [18].

8.3 Geometry and Algebra

In this section, we will sketch some important results showing the relation-
ship between the geometry of strongly minimal sets and the presence of
definable algebraic structure. We conclude with a sketch of how these ideas
come together in Hrushovski’s proof of the Mordell–Lang Conjecture for
function fields.

Nontrivial Locally Modular Strongly Minimal Sets
So far, the only examples we have given of nontrivial locally modular
strongly minimal sets are affine and projective geometries. In both cases,
there is a group present. The following remarkable theorem of Hrushovski
shows that this is always the case.

Theorem 8.3.1 Suppose that M is strongly minimal, nontrivial, and lo-
cally modular; then there is an infinite group definable in Meq.

Proof We will deduce this result using the group configuration theorem.
A direct proof of this result would be an easier special case of the group
configuration theorem. The reader can find direct proofs in [18] or [76].

Because M is nontrivial, we can find a finite A ⊂ M and b, c ∈ M\acl(A)
such that c ∈ acl(A, b) \ (acl(A) ∪ acl(b)). Choose d ∈ M independent from
A, b, c. By Theorem 8.2.11, Md is modular. Adding d to the language, we
may assume that M is modular. Because d is independent from A, b, c, we
still have c ∈ acl(A, b) \ (acl(A) ∪ acl(b)).

Let C = acl(A) ∩ acl(b, c). By modularity (see Exercise 8.4.6),

dim(b, c, A) = dim(b, c) + dim(A) − dimC.

Because dim(b, c, A) = dimA+1 and dim(b, c) = 2, dimC = 1. Thus, there
is a ∈ C with dim(a) = 1. Note that

dim(a, c) = dim(a, b) = dim(b, c) = dim(a, b, c) = 2.

Choose y, z ∈ M such that (b, c) and (y, z) realize the same type over
acleq(a) and (y, z) are independent from (b, c) over a (i.e., dim(y, z/a, b, c) =
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dim(y, z/a) = dim(b, c/a) = 1). Thus, dim(a, b, c, x, y) = 3. Because (y, z)
and (b, c) realize the same type over a,

dim(a, z) = dim(a, y) = dim(y, z) = dim(a, y, z) = 2.

Because a ∈ acl(b, c), z ∈ acl(b, c, y). Thus, dim(b, c, y) = 3 and dim(b, y) =
2. Symmetric arguments show that

dim(b, z) = dim(c, y) = dim(c, z) = 2

and
dim(b, c, z) = dim(b, y, z) = dim(c, y, z) = 3.

Let X = acl(c, y) ∩ acl(b, z). By modularity,

dim(c, y, b, z) = dim(c, y) + dim(b, z) − dimX.

Thus, dimX = 1 and there is x ∈ X with dim(x) = 1. Then

dim(c, x, y) = dim(c, x) = dim(c, y) = 2

and
dim(b, x, z) = dim(b, x) = dim(b, z) = 2.

If u = y or z and v = b or c, then a, b, c, x, y, z ∈ acl(a, u, v), thus;
dim(a, u, v) = 3. Similarly, dim(b, x, y) = dim(c, x, z) = 3.

Using the fact that dimension and Morley rank are the same in strongly
minimal sets, we have:

i) RM(a) = RM(b) = RM(c) = RM(x) = RM(y) = RM(z) = 1;
ii) any pair of elements has rank 2;
iii) RM(a, b, c) = RM(c, x, y) = RM(a, y, z) = RM(b, x, z) = 2;
iv) all other triples have rank 3;
v) RM(a, b, c, x, y, z) = 3.
Thus, a, b, c, x, y, z is a group configuration and, by Theorem 7.5.7, there

is a definable rank one group in Meq.

Theorem 8.3.1 is just the beginning of the story. In fact, the group that
we define tells us a great deal about the structure of M. For example,
Hrushovski proved the following.

Theorem 8.3.2 Let M be a nontrivial locally modular strongly minimal
set. Then, there is a rank 1 Abelian group G definable in Meq such that G
acts definably as a group of automorphisms of the unique rank 1 type of M.

One-Based Groups
Theorem 8.3.1 shows that to understand nontrivial locally modular strongly
minimal sets we must understand locally modular groups. In this section
we will go one step further and analyze ω-stable one-based groups.
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Suppose that (G, ·, . . .) is an ω-stable, one-based group. We will prove
that G0 is Abelian and any definable X ⊆ Gn is a Boolean combination of
cosets of definable subgroups. This analysis of one-based groups is due to
Hrushovski and Pillay.

Let G ≺ G be a monster model.

Lemma 8.3.3 If H ≤ Gn is a connected definable subgroup, then cb(H) ⊆
acleq(∅).

Proof We will assume that n = 1. If n > 1, then we can replace G by
the group G∗ = (Gn, ·, G, π1, . . . , πn, . . .), where G is a predicate that picks
out the elements of the form (g, 1, . . . , 1) and π1, . . . , πn are the coordinate
maps. It is easy to see that G∗ is one-based (see Exercise 8.4.13) and every
X ⊆ Gm is definable in G if and only if it is definable in G∗.

Let g ∈ G be generic over G. Let p be the generic type of H, and let a
realize p with a |�G

g. Let q be the nonforking extension of tp(ga/G, g) to
G. Note that

RM(q) = RM(ga/G, g) = RM(a/G, g) = RM(H).

Let α be a canonical base for H, and let β be a canonical base for q.

Claim 1 α ∈ dcleq(β).
Let φ(v, b) be the formula defining H. Let H = {g ∈ G : G |= φ(v, b)}. It

suffices to show that if σ is an automorphism of G and σq = q, then σ fixes
H setwise. Because φ(g−1v, b) ∈ q, φ(σ(g)−1v, σ(b)) ∈ σq. If σq = q, then
φ(g−1v, b)∧φ(σ(g)−1v, σ(b)) ∈ q. The formula φ(v, σ(b)) defines the group
σH. Thus, q asserts that v is in gH ∩ σ(g)σH. Hence, RM(gH ∩ σ(g)H) ≥
RM(q). Because gH ∩ σ(g)σH is a coset of H ∩ σH,

RM(q) ≥ RM(H) ≥ RM(H ∩ σH) ≥ RM(q).

Thus, H ∩ σH is a definable subgroup of H of finite index. Because H is
connected, H∩σH = H. Thus H ⊆ σH. A symmetric argument shows that
σH ⊆ H. Thus σH = H, as desired.

Because G is one-based, β ∈ acleq(ga), and, by the claim, α ∈ acleq(ga).

Claim 2 α |�∅ga.
Because a |�G

g, by symmetry g |�G
a. Because g is generic over G, ga is

generic over G, a. In particular

RM(G) ≥ RM(ga/α) ≥ RM(ga/G) = RM(G).

Thus α |�∅ga.

Because α ∈ acleq(ga) and α |�∅ga, α ∈ acleq(∅), as desired.

One-based groups have very few definable subgroups.
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Corollary 8.3.4 If G is an ω-stable, one-based group, then there are at
most countably many definable subgroups of Gn.

Proof Any definable subgroup H has a canonical base in acleq(∅). Because
our language is countable, acleq(∅) is countable and there are only countably
many definable subgroups.

Next, we prove that one-based groups are Abelian-by-finite.

Lemma 8.3.5 If G is a connected one-based ω-stable group, then G is
Abelian. Thus every one-based ω-stable group is Abelian-by-finite.

Proof For g ∈ G, let Hg = {(h, g−1hg) : h ∈ G} ⊆ G × G. Then,
Hg = Hh if and only if g/Z(G) = h/Z(G). If G is non-Abelian, then
Z(G) has infinite index in G; thus {Hg : g ∈ G} is an infinite collection of
definable subgroups of G × G. Because G is saturated, there must be |G|
subgroups, a contradiction.

Lemma 8.3.6 If p ∈ S1(G), then there is b ∈ G such that “v ∈
Stab(p)b” ∈ p. In, particular, every 1-type is the translate of the generic
type of its stabilizer.

Proof By adding the canonical base for p to the language, we may, without
loss of generality, assume that cb(p) = ∅. If p′ is the unique nonforking
extension of p to G, then the formula defining the stabilizer of p defines the
stabilizer of p′. Because any automorphism of G fixes p′, it also fixes the
stabilizer of p′. Thus, Stab(p) is defined over ∅.

Let G1 be a |G|+-saturated elementary extension of G. Let g ∈ G1 be
generic over G. Let a be a realization of p such that a |�G

G1. Let q be
a nonforking extension of tp(ga/G1) to G. Let α be a canonical base for
gStab(p′) and let β be a canonical base for q.
Claim 1 α and β are interdefinable.

Let σ be an automorphism of G. We must show that σq = q if and only
if σ(g Stab(p′)) = g Stab(p′). Because q = gp′ and σ(p′) = p′,

σq = σ(g)σ(p′) = σ(g)p′.

Thus
σq = q ⇔ σ(g)p′ = gp′

⇔ g−1σ(g)p′ = p′

⇔ g−1σ(g) ∈ Stab(p′)
⇔ σ(g)Stab(p′) = g Stab(p′)
⇔ σ(g)Stab(p′) = g Stab(p′).

The last equivalence follows because σ(g Stab(p′)) = σ(g)σ(Stab(p′)) =
σ(g)Stab(p′).

Claim 2 a |�G
ga, α.
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First, note that

RM(G) ≥ RM(ga/G) ≥ RM(ga/G, a) ≥ RM(g/G, a) = RM(g/G)

because a |�G
G1. But RM(g/G) = RM(G). Thus, RM(ga/G) =

RM(ga/G, a) and a |�G
ga.

Because G is one-based, β ∈ acleq(ga). But α and β are interdefinable.
Thus, α ∈ acleq(ga) and a |�G

ga, α.
Let c ∈ G1 realize p with c |�G

α. Because c ∈ G1, β is a canonical base
for tp(ga/G1), and β and α are interdefinable,

c |�G,α
ga.

Because c |�G
α, by transitivity, c |�G

ga, α.
Because a and c are both realizations of p, a |�G

ga, α and c |�G
ga, α, a

and c both realize the unique nonforking extension of p to G, ga, α. Thus
tp(a/G, ga, α) = tp(c/G, ga, α).

Clearly, ga ∈ gStab(p′)a. Because gStab(p′) is definable from α, we must
have ga ∈ gStab(p′)c and a ∈ Stab(p′)c.

Let φ(v, w) be the formula “v ∈ Stab(p)w.” By definability of types,
there is an LG-formula dpφ defining φ. Because c ∈ G1 and G ≺ G1, there
is b ∈ G with G |= dpφ(b). Thus “v ∈ Stab(p)b” ∈ p.

The lemma above also works for n-types.

Corollary 8.3.7 Suppose that p ∈ Sn(G) then, there is b ∈ Gn such that
“v ∈ Stab(p)b”∈ p.

Proof As we argued above, the group Gn is also one-based, and we can
view p as a 1-type over Gn and apply the previous lemma.

Next, we show that, for a ∈ Gn, tp(a/G) is determined by the cosets of
definable subgroups to which a belongs.

Corollary 8.3.8 Suppose that p, q ∈ Sn(G) and for all definable subgroups
H of Gn and all a ∈ Gn,

“v ∈ Ha” ∈ p if and only if “v ∈ Ha” ∈ q.

Then p = q.

Proof Choose b and c realizing p and q with b |�G
c. Suppose, without

loss of generality, that RM(p) ≥ RM(q). We will show that b also realizes
q.

By Corollary 8.3.7, there is a ∈ Gn such that “v ∈ Stab(q)a” ∈ q.
By assumption, “v ∈ Stab(q)a” ∈ p as well. Let q′ be the nonforking
extension of q to G. The same formula defines Stab(q) and Stab(q′). Thus,
b, c ∈ Stab(q′)a. Thus bc−1 ∈ Stab(q′).
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Claim c |�G
bc−1.

Because b |�G
c, RM(bc−1/G, c) = RM(b/G, c) = RM(p) ≥ RM(q) ≥

RM(Stab(q)) ≥ RM(bc−1/G) ≥ RM(bc−1/G, c). Thus, RM(bc−1/G, c) =
RM(bc−1/G), as desired.

Let d realize q′. Because bc−1 ∈ Stab(q′), bc−1d realizes q′. But c and
d both realize the unique nonforking extension of q to G ∪ {bc−1}. Thus,
b = bc−1c realizes q.

Theorem 8.3.9 If G is an ω-stable one-based group and X ⊆ Gn is defin-
able, then X is a finite Boolean combination of cosets of definable subgroups
H ≤ Gn.

Proof This follows from Corollary 8.3.8 and Exercise 4.5.13.

Zariski Geometries
In Theorem 8.3.1, we saw that nontrivial locally modular, strongly min-
imal sets interpret groups. Zil’ber conjectured that if a strongly mini-
mal set is nonlocally modular, it is because it interprets an algebraically
closed field. As we noted above, Hrushovski refuted Zil’ber’s conjecture,
but Hrushovski and Zil’ber found an important class of strongly minimal
sets where Zil’ber’s conjecture is true. This work also answers the inter-
esting metamathematical question: Can one characterize the topological
spaces that arise from the Zariski topology on an algebraic curve?2 We will
describe their work but refer the reader to [44] and [45] for the proofs and
[67] for a more lengthy survey.

We say that a topological space is Noetherian if there are no infinite
descending chains of closed sets. If K is a field, then the Zariski topology
on Kn is Noetherian. If K is a differential field, the Kolchin topology on
Kn is Noetherian (see Exercise 4.5.43).

A closed set X is irreducible if there are no proper closed subsets X0 and
X1 such that X = X0 ∪ X1. The following lemma is an easy application of
König’s Lemma, we leave the proof as an exercise.

Lemma 8.3.10 Suppose that X is a Noetherian topology. If Y ⊆ X is
closed, then there are irreducible closed sets Y1, . . . , Yn such that Y =
Y1 ∪ . . . ∪ Yn and Y is not the union of any proper subset of {Y1, . . . , Yn}.
Moreover, if W1, . . . , Wm are irreducible closed sets, Y = W1 ∪ . . . ∪ Wm,
and Y is not the union of any proper subset of {W1, . . . , Wm}, then n = m
and W1, . . . , Wn is a permutation of Y1, . . . , Yn. We call Y1, . . . , Yn the ir-
reducible components of Y .

2This work could be thought of in the same spirit as the result that a Pappian
projective plane is coordinatized by a field.
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In Noetherian topological spaces, we can inductively assign an ordinal
dimension to any nonempty irreducible closed set X by

dimX = sup{dimY + 1 : Y ⊂ X, Y �= ∅, Y irreducible}.

Note that if a ∈ X, then dim{a} = sup ∅ = 0. The dimension of a reducible
closed set is the maximum dimension of an irreducible component.

Definition 8.3.11 A Zariski geometry is an infinite set D and a sequence
of Noetherian topologies on D, D2, D3, . . . such that the following axioms
hold.

(Z0) i) If f : Dn → Dm is defined by f(x) = (f1(x), . . . , fm(x)) where
each fi : Dn → D is either constant or a coordinate projection, then f is
continuous.

ii) Each diagonal ∆n
i,j = {x ∈ Dn : xi = xj} is closed.

(Z1) (Weak QE): If C ⊆ Dn is closed and irreducible, and π : Dn → Dm

is a projection, then there is a closed F ⊂ π(C) such that π(C) ⊇ π(C)\F .
(Z2) (Uniform one-dimensionality): i) D is irreducible.
ii) Let C ⊆ Dn × D be closed and irreducible. For a ∈ Dn, let C(a) =

{x ∈ D : (a, x) ∈ C}. There is a number N such that, for all a ∈ Dn, either
|C(a)| ≤ N or C(a) = D. In particular, any proper closed subset of D is
finite.

(Z3) (Dimension theorem): Let C ⊆ Dn be closed and irreducible. Let W
be a nonempty irreducible component of C∩∆n

i,j . Then dimC ≤ dimW +1.

The basic example of a Zariski geometry is a smooth algebraic curve C
over an algebraically closed field where Cn is equipped with the Zariski
topology. In this case, Z0 is clear, Z1 follows from quantifier elimination,
and Z2 follows from the fact that C is strongly minimal. The verification
of Z3 uses the smoothness of C (although a weaker condition suffices).

Zariski geometries may be locally modular. If X is an infinite set, we can
topologize Xn by taking the positive quantifier-free definable sets in the
language of equality (allowing parameters) as the closed sets. This deter-
mines a trivial Zariski geometry on X. If K is a field, we could topologize
Kn by taking the affine subsets (i.e., cosets of subspaces). This is a non-
trivial, locally modular Zariski geometry. Clearly, a locally modular Zariski
geometry will not interpret a field, but Hrushovski and Zil’ber showed that
this is the only restriction.

First, one must see how model theory enters the picture. Given a Zariski
geometry D, let L be the language with an n-ary relation symbol for each
closed subset of Dn. Let D be D viewed in the natural way as an L-
structure.

Lemma 8.3.12 The theory of D admits quantifier elimination, and D is
a strongly minimal set. Moreover, Morley rank in D is exactly dimension.
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Theorem 8.3.13 Suppose that D is a nonlocally modular Zariski geome-
try; then D interprets an algebraically closed field K. If X ⊆ Kn is definable
in D, then X is definable using only the field structure of K (we say that
K is a pure field).

Hrushovski and Zil’ber give a more refined version of Theorem 8.3.13
with additional geometric information. By a family of plane curves in D
we mean closed sets X ⊆ Dm and C ⊂ D2 × X such that, for all a ∈ X, if
we let Ca denote {(x, y) ∈ D2 : (x, y, a) ∈ C}, then Ca is a one-dimensional
irreducible closed subset of D2.

Definition 8.3.14 We say that a family of plane curves is ample if when-
ever x and y are independent generic points of D2 there is a plane curve
Ca with x, y ∈ Ca.

An ample family is called very ample if for x, y (not necessarily inde-
pendent) generic points in D2 there is a curve C(a) with x ∈ C(a) and
y �∈ C(a). In this case, we say that the family separates points.

We say that D is (very) ample if there is a (very) ample family of plane
curves.

Using Theorem 8.2.11 it is not hard to show that a Zariski geometry is
nonlocally modular if and only if it is ample.

Corollary 8.3.15 If D is an ample Zariski geometry, then D interprets
an algebraically closed field.

For most model-theoretic applications, we only need the results for ample
Zariski geometries, but the following result shows that very ample geome-
tries are intimately related to smooth algebraic curves.

Theorem 8.3.16 If D is a very ample Zariski geometry, then there is an
interpretable algebraically closed field K, C a smooth quasiprojective curve
defined over K, and a definable bijection f : D → C such that the induced
maps fn : Dn → Cn are homeomorphisms for all n.

Hrushovski and Sokolović showed that Zariski geometries arise naturally
in differentially closed fields (see [67] for a proof).

Theorem 8.3.17 If K is a differentially closed field and D is a strongly
minimal set, there is a finite X ⊂ D such that if we topologize (D\X)n with
the restriction of the Kolchin topology, then (D \X) is a Zariski geometry.

This shows that, in differentially closed fields, any nonlocally modular,
strongly minimal set interprets an algebraically closed field. This field must
have finite rank. Sokolović showed that any finite rank field interpretable in
a differentially closed field is definably isomorphic to the field of constants.
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Thus, in differentially closed fields, any nonlocally modular strongly mini-
mal set interprets the constants.3

Applications to Diophantine Geometry
Theorem 8.3.9 plays an important role in Hrushovski’s applications of
model theory to Diophantine geometry. We will try to briefly give the
flavor of these applications.

Definition 8.3.18 Suppose that K is an algebraically closed field. An
algebraic group A that is embedded as an irreducible closed set in projective
n-space over K is called an Abelian variety. We say that A is simple if A
has no proper infinite algebraic subgroups.

For example, an elliptic curve is a simple Abelian variety. The next lemma
summarizes some of the group-theoretic properties of Abelian varieties. See
[38] for details.

Lemma 8.3.19 Suppose that A is an Abelian variety.
i) A is a commutative divisible group.
ii) If K has characteristic zero, the subgroup of n-torsion points of A has

size n2d, where d is the dimension of A.
iii) The torsion points of A are Zariski dense in A.

If G is an algebraic group and we consider the structure (G, ·, . . .) where
we have predicates for all constructible subsets of Gn, then G is not one-
based. Indeed, we can always find a definable subset X ⊆ G and a definable
map X 	→ K such that the image is a cofinite subset of K. Using this map,
we can interpret the field, a nonlocally modular, strongly minimal set,
contradicting Exercise 8.4.14.

Surprisingly, this is not true for differential algebraic groups. Let K be
a differentially closed field, and let C be the field of constants of K. If A
is an Abelian variety defined over K, then we can still view A as a group
definable in the differentially closed field K. In Exercise 4.5.43, we intro-
duced the Kolchin topology, the extension of the Zariski topology where we
also consider solution sets of algebraic differential equations, and showed
that there are no infinite descending chains of Kolchin closed sets. Even if
there are no interesting algebraic subgroups of A, there will be new Kolchin
closed subgroups. The following result is due to Hrushovski and Sokolović,
drawing on earlier work of [64] and Buium[20].

Theorem 8.3.20 Suppose that K is a differentially closed field and A is a
simple Abelian variety defined over K that is not isomorphic to an Abelian
variety defined over C. Let A# be the closure in the Kolchin topology of

3Recently, Pillay and Ziegler [82] have given a direct proof of this avoiding the Zariski
Geometry machinery.
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the torsion points of A. Then, A# is a one-based group and there are no
proper infinite definable subgroups of A#.

The results of Manin and Buium show that A# is a finite Morley rank
group with no infinite definable subgroups. There are two cases to consider.
If all strongly minimal subsets of A# are locally modular, then A# is one-
based. If there is any nonlocally modular strongly minimal subset of A#,
then, using Zariski geometries, we can interpret the constants in A#. In
this case, one can, by some additional model-theoretic arguments, show
that A is isomorphic to an Abelian variety defined over the constants. A
more detailed sketch is given in [66].

We argue that in fact A# is strongly minimal. Suppose that X ⊆ A# is
strongly minimal. Because A# is one-based, X is a Boolean combination of
cosets of definable subgroups of A#. Because A# has no infinite definable
proper subgroups, A# \ X is finite and A# is strongly minimal.

The following simple application is a special case of Hrushovski’s proof
of the Mordell–Lang Conjecture for function fields.

Theorem 8.3.21 Let K and k be algebraically closed fields of characteris-
tic zero with k ⊆ K. Let A be a simple Abelian variety defined over K that
is not isomorphic to an Abelian variety defined over the algebraic closure
of k. If V ⊂ A is a proper subvariety of A, then V contains only finitely
many torsion points of A.

Proof We can define a derivation δ on K such that the constant field is k
(see [58] X §7). If K̂ is the differential closure of (K, δ), then, by Exercise
6.6.32, the constant field of K̂ is k. Thus, replacing K by K̂ if necessary, we
may assume that K is differentially closed. Let A# be the Kolchin closure
of the torsion points of A. We will show that A# ∩ V is finite.

If A# ∩ V is infinite, then, because A# is strongly minimal, A# \ V is
finite. Because A# contains the torsion points of A, A# is Zariski dense in
A. Thus, V is Zariski dense in A, contradicting the fact that V is a proper
subvariety.

8.4 Exercises and Remarks

Throughout the Exercises assume that we are working in an ω-stable theory.

Exercise 8.4.1 Prove Lemma 8.1.3.

Exercise 8.4.2 Prove Lemma 8.1.4.

Exercise 8.4.3 Suppose that (X, cl) is a pregeometry, A, Y ⊆ X,
dim(A) < ℵ0 and dim(Y ) < ℵ0. Then, dim(Y/A) = dim(A∪Y )−dim(A).

Exercise 8.4.4 Prove Lemma 8.1.6.
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Exercise 8.4.5 Suppose that M |= Th(Z, s). Show that the associated
geometry (M̂, âcl) has acl(A) = A for all A ⊆ M̂ .

Exercise 8.4.6 Show that a pregeometry is modular if and only if any two
closed sets A and B are independent over A ∩ B.

Exercise 8.4.7 Prove Lemma 8.2.9.

Exercise 8.4.8 Suppose that (X, cl) is a modular pregeometry. Show that
any localization of (X, cl) is also modular.

Exercise 8.4.9 a) Suppose that K is an algebraically closed field,
x, a0, . . . , an ∈ K are algebraically independent, and

y =
n∑

i=0

aix
i,

then y is not algebraic over k(x) for k a subfield of acl(a0, . . . , an) of di-
mension less than n + 1.

b) Use Lemma 8.1.13 to conclude that algebraically closed fields are not
locally modular.

Exercise 8.4.10 Suppose that A is a canonical base for X and dcleq(A) =
dcleq(B), then B is also a canonical base for X.

Exercise 8.4.11 Suppose that D is a strongly minimal set and C ⊆ D×A
is a family of strongly minimal subsets of D ×D. Let ∼ be the equivalence
relation a ∼ b if and only if Ca & Cb is finite. Show that ∼ is definable.

Exercise 8.4.12 Suppose that p ∈ Sn(A) is stationary and p′ ∈ Sn(M) is
the unique nonforking extension of p. Let a1, a2, . . . be a Morley sequence
for p. Show that there is an n such that cb(p) ⊆ dcleq(a1, . . . , an). In other
words for any stationary type p, we can find a finite set of realizations of p
over which p′ does not fork. [Hint: Use Exercise 6.6.35 and its generalization
to n-types.]

Thus, if p = tp(a/B) is stationary, then a canonical base for p can be
found in the definable closure of a sufficiently large finite set of independent
realizations of p.

Exercise 8.4.13 Suppose that M is one-based. Consider the structure M∗

with universe Mn where, for some a ∈ M, we have a predicate picking out
{(x, a, a, . . . , a) : x ∈ M} which we identify with M. We also have projection
maps π1, . . . , πn where πi(x1, . . . , xn) = (xi, a, a, . . . , a). For each function
(relation) symbol of L, we have a function (relation) symbol in L∗, which
we interpret in the natural way. Show that M∗ is one-based.

Exercise 8.4.14 Show that if M is an ω-stable one-based structure, then
any strongly minimal set D interpretable in M is locally modular. [Hint:
Prove that D is one-based.]
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Exercise 8.4.15 a) Prove Lemma 8.3.10.
b) Let α be an ordinal. Topologize α by taking closed sets of the form

{γ : γ ≤ β} for β < α + 1. Show that α is a Noetherian topology, and
calculate the dimension of the space.

Exercise 8.4.16 Prove that a Zariski geometry is nonlocally modular if
and only if it is ample.

Remarks
Zil’ber was the first to recognize the importance of studying the combina-
torial geometry of algebraic closure. Pillay’s Geometric Stability Theory is
an excellent reference for the material in this chapter.

Although Zil’ber’s conjecture is false, the analog for o-minimal theories
is true. Peterzil and Starchenko [74] proved that, in an o-minimal theory, if
there are two-dimensional families of plane curves, then one can interpret
a real closed field.

Zariski geometries also arise when studying compact complex manifolds.
Suppose that M is a complex manifold. We say that X ⊆ M is analytic
if for all a ∈ M there is an open neighborhood U of a and f1, . . . , fm

holomorphic functions on U such that

X ∩ U = {x ∈ U : f1(x) = . . . = fm(x) = 0}.

If M is compact, then there are no infinite descending chains of analytic
subsets. Thus, we can give Mn a Noetherian topology where the closed sets
are exactly the analytic subsets.

If M is a complex manifold we consider the structure M, where the
underlying set is M and we have relation symbols for each analytic subset
of M,M2, M3, . . .. If a ∈ M , then {a} is analytic so this language will have
size 2ℵ0 .

Zil’ber proved the following result (see [80]).

Theorem 8.4.17 If M is a compact complex manifold, then M has elim-
ination of quantifiers and is totally transcendental. Indeed, if A ⊆ Mn is
analytic, then RM(A) is at most the complex dimension of A.

If M is strongly minimal, then M is a Zariski geometry.

One way to get a compact complex manifold is by taking a smooth pro-
jective variety. By Chow’s Theorem (see [37] B.2.2), every analytic subset
of projective space is already defined algebraically. Thus, these examples
are interpretable in the field C and hence nothing new. In particular, a
smooth projective variety is strongly minimal if and only if it is an alge-
braic curve. Riemann’s Existence Theorem (see [37] B.3.1) says that any
one-dimensional compact complex manifold is a smooth projective alge-
braic curve. Thus, to look for new examples, we need to consider manifolds
of dimension greater than one.



312 8. Geometry of Strongly Minimal Sets

Suppose that α1, . . . , α2n ∈ Cn and α1, . . . , α2n are linearly independent
over R. Let Λ be the lattice Zα1 ⊕ . . . ⊕ Zα2n. We can form a compact
complex manifold M , by taking the quotient structure Cn/Λ. We call M a
complex torus. Because Λ is an additive subgroup of Cn, M is a complex
Lie group.

If α1, . . . , α2n are algebraically independent over Q, we call M a generic
torus. Classical results from complex manifolds (see [91] VIII 1.4) imply
that M is strongly minimal. Pillay [81] showed that M is a locally modular
group.

The most striking recent result in model theory is Hrushovski’s [43] proof
of the Mordell–Lang Conjecture for function fields. We conclude our re-
marks by explaining the conjecture and stating Hrushovski’s result.

Let K be an algebraically closed field of characteristic zero and A an
Abelian variety defined over K. Suppose that Γ is a subgroup of A. We
say that Γ is finite rank if there is a finitely generated subgroup Γ0 such
that Γ ⊆ {g ∈ A : ng ∈ Γ0 for some n = 1, 2, . . .}. For example, taking
Γ0 = {0}, the torsion subgroup of A is of finite rank.

Mordell–Lang Conjecture (characteristic zero) Suppose that K has
characteristic zero, A is an Abelian variety, Γ is a finite rank subgroup
of A and X is a proper subvariety of A. Then, X ∩ Γ is a finite union of
cosets of subgroups of A.

Next we show how the Mordell-Lang conjecture implies the Mordell Con-
jecture. Suppose that C is a curve of genus g > 1 defined over a number field
k. The Mordell Conjecture asserts that C has only finitely many k-rational
points (i.e., points with coordinates in k).

To any curve C of genus g ≥ 1, we can associate a g-dimensional Abelian
variety J(C) defined over k called the Jacobian of C (see [38]). The curve C
is a subvariety of J(C), and J(C) is the smallest Abelian variety in which
C embeds. If C has genus 1, then C is an elliptic curve and J(C) = C.

Let C have genus g > 1. Let Γ be the k-rational points of J(C). The
Mordell–Weil theorem (see [38]) asserts that Γ is a finitely generated group.
Thus, C ∩ Γ is a finite union of cosets of subgroups of Γ. If any of these
subgroups is infinite, then the Zariski closure of that coset is also a coset
and the Zariski closure must be the entire curve C. But then there would
be a group structure defined on C and C would be an Abelian variety
contradicting the fact that J(C) ⊃ C and J(C) is the smallest Abelian
variety in which C embeds. Thus, C ∩ Γ is finite and C contains only
finitely many k-rational points.

The Mordell Conjecture was proved by Faltings, who also proved the
Mordell–Lang Conjecture in case Γ is finitely generated. The full charac-
teristic zero Mordell–Lang Conjecture was proved by McQuillen, building
on Faltings’ work as well as work of Raynaud, Hindry, and Vojta.

In number theory, when studying question about number fields, it is often
insightful to ask the same question about finitely generated extensions of
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algebraically closed fields (we call these function fields). Long before Falt-
ings’ work, Manin proved the function field case of the Mordell Conjecture.

Theorem 8.4.18 Let k be algebraically closed of characteristic zero, and
let K ⊃ k. Let C be a curve of genus g > 1 defined over K. Then, either
C has only finitely many K-rational points or C is isomorphic to a curve
defined over k.

So far, we have only considered characteristic zero. What about charac-
teristic p > 0? The obvious generalization of the Mordell–Lang Conjecture
to characteristic p is false. Suppose that C is a curve of genus g > 1 defined
over Fp and let J(C) be its Jacobian. Let α be a generic point of C. Let
Γ be the group of Fp(α)-rational points of J(C). By the Lang–Néron The-
orem (the function field version of the Mordell–Weil Theorem (see [38])),
Γ is finitely generated. If σ is the Frobenius automorphism x 	→ xp, then
σn(α) ∈ C for all n. Thus, C ∩ Γ is infinite, but C is not a coset of a sub-
group. In this case, our curve C is defined over the prime field. Abramovich
and Voloch [1] stated a plausible version of the Mordell–Lang Conjecture
for function fields in characteristic p and proved it in many important cases.
Their conjecture was proved by Hrushovski, who also gave a new proof for
the function field case in characteristic zero.

Theorem 8.4.19 (Mordell–Lang Conjecture for function fields)
Let k be an algebraically closed field with K ⊃ k. Let A be an Abelian
variety defined over K, X a subvariety of A, and Γ a finite rank subgroup
of A. Suppose that X∩Γ is Zariski dense in X. Then, there is a sub-Abelian
variety A1 ⊆ A, an Abelian variety B defined over k, a surjective homo-
morphism g : A1 → B, and a subvariety X0 of B defined over k such that
g−1(X0) is a translate of X.

For more on Hrushovski’s result, see [16], [17], and [79].





Appendix A
Set Theory

In this Appendix, we will survey some of the elementary results from set
theory that we use in the text. We give very few proofs and refer the reader
to set theory texts such as [26], [47], or [57] for further details.

We will work in ZFC, Zermelo–Fraenkel set theory with the Axiom of
Choice. The Axiom of Choice asserts that if (Ai : i ∈ I) is a family of
nonempty sets, then there is a function f with domain I such that f(i) ∈ Ai

for all i ∈ I.

Zorn’s Lemma and Well-Orderings

If X is a set and < is a binary relation on X, we say that (X, <) is a partial
order if (X, <) |= ∀x ¬(x < x) and (X, <) |= ∀x∀y∀z ((x < y ∧ y < z) →
x < z).

We say that (X, <) is a linear order if in addition
(X, <) |= ∀x∀y (x < y ∨ x = y ∨ y < x).

If (X, <) is a partial order, then we say that C ⊆ X is a chain in X if C
is linearly ordered by <.

Theorem A.1 (Zorn’s Lemma) If (X, <) is a partial order such that
for every chain C ⊆ X there is x ∈ X such that c ≤ x for all c ∈ C, then
there is y ∈ X such that there is no z ∈ X with z > x. In other words, if
every chain has an upper bound, then there is a maximal element of X.
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We give one application of Zorn’s Lemma. We say that a linear order
(A, <) is a well-order if for any nonempty C ⊆ A, there is a ∈ C such that
a ≤ b for all b ∈ C. The following characterization is also useful.

Lemma A.2 (A, <) is a well-order if and only if there is no infinite de-
scending chain a0 > a1 > a2 > . . . in A.

Theorem A.3 (Well-Ordering Principle) If A is any set, then there
is a well-ordering of A.

Proof Let X = {(Y, R) : Y ⊆ A and R is a well-ordering of A}. We
say that (Y, R) < (Y1, R1) if Y ⊂ Y1, R ⊂ R1, and if a ∈ Y1 \ Y and
b ∈ Y ; then bRa (i.e. every new element is greater than every old element).
Suppose that C ⊂ X is a chain. Let

Ŷ =
⋃

(Y,R)∈C

Y and R̂ =
⋃

(Y,R)∈C

R.

We claim that R̂ is a well-ordering of Ŷ . We first show that R̂ is a linear
order. Clearly, ¬(aR̂a) for all a ∈ Ŷ . If a1, a2, a3 ∈ Ŷ such that a1R̂a2

and a2R̂a3, then we can find (Yi, Ri) ∈ C such that ai ∈ Yi for i = 1, 2, 3.
Because C is a chain, there is j such that (Yi, Ri) ≤ (Yj , Rj) for each
i = 1, 2, 3. Because (Yi, Ri) is transitive, a1Rja3 and a1R̂a3.

If a0 > a1 > . . . is a decreasing chain in R̂, we can find (Y, R) ∈ C such
that a0 ∈ Y . Because of the way we order X, all of the ai ∈ Y . In this case,
R would not be a well-order, a contradiction. Thus (Ŷ , R̂) ∈ X. Clearly,
(Ŷ , R̂) ≥ (Y, R) for all (Y, R) ∈ C. Thus, every chain has an upper bound.

By Zorn’s Lemma, there is (Y, R) ∈ X maximal. We claim that Y = A.
Suppose that a ∈ A \ Y . Let Y ′ = A ∪ {a}, and let R′ = R ∪ (Y × {a})
(i.e., we order Y ′ by making a the largest element). Then, R′ is a well-
ordering and we have contradicted the maximality of (Y, R). Thus ,R is a
well-ordering of A.

Zorn’s Lemma and the Well-Ordering Principle are equivalent forms of
the Axiom of Choice.

Ordinals

Definition A.4 We say that X is transitive if, whenever x ∈ X and y ∈ x,
then y ∈ X. We say that a set X is an ordinal if X is transitive and
well-ordered by ∈. Let On be the class of all ordinals.

Lemma A.5 i) On is transitive and well-ordered by ∈.
ii) If α and β are ordinals, then the orderings (α,∈) and (β,∈) are

isomorphic if and only if α = β.
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It follows from i) that On is not a set. If On were a set, then On is itself
an ordinal and On ∈ On. This gives rise to an infinite descending chain
contradicting the fact that On is well-ordered by ∈.

Because ∈ is an ordering of On we often write α < β instead of α ∈ β.
Note that α = {β ∈ On : β < α}.

Every well-ordering is isomorphic to an ordinal.

Proposition A.6 If (X, <) is a well-ordering, then there is an ordinal
α such that (X, <) is isomorphic to (α,∈). We call α the order type of
(X, <).

Lemma A.7 i) ∅ is an ordinal and if α ∈ On, and α �= ∅ then ∅ ∈ α.
Thus, ∅ is the least ordinal.

ii) If α is an ordinal, then suc(α) = α∪{α} is an ordinal, and if β ∈ On,
then β ≤ α or suc(α) ≤ β.

iii) If C is a set of ordinals, then δ =
⋃

α∈C α is an ordinal, and δ is the
least upper bound of the ordinals in C.

Lemma A.7 gives us a description of the first ordinals. By i), 0 = ∅ is
the least ordinal. The next ordinals are 1 = {∅}, 2 = {∅, {∅}}, . . .. In
general, we let n + 1 = suc(n). Note that n = {0, 1, . . . , n − 1}. Thus, the
natural numbers are an initial segment of the ordinals. The next ordinal is
ω = {0, 1, 2, 3, . . .}.

If α ∈ On, we say that α is a successor ordinal if α = suc(β) for some
ordinal β. If α �= 0 and α is not a successor ordinal then we can say α is
a limit ordinal. The next proposition is the main tool for proving things
about ordinals.

Theorem A.8 (Transfinite Induction) Suppose that C is a subclass of
the ordinals such that

i) 0 ∈ C,
ii) if α ∈ C, then suc(α) ∈ C, and
iii) if α is a limit ordinal and β ∈ C for all β < α, then α ∈ C.

Then C = On.

We can define addition, multiplication, and exponentiation of ordinals. If
α, β ∈ On, let X be the well-order obtained by putting a copy of β after a
copy of α. More precisely, X = ({0}×α)∪ ({1}×β) with the lexicographic
order. Then α+β is the order type of X. Let Y be the well-order obtained
by taking the lexicographic order on β × α. Then α · β is the order type of
β × α. We define αβ by transfinite recursion as follows:

i) α0 = 1;
ii) αsuc(β) = αβα;
iii) if β is a limit ordinal, then αβ = sup{αγ : γ < β} =

⋃
γ<β αγ .

Addition and multiplication are not commutative, but we do have the
following properties.
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Lemma A.9 i) suc(α) = α + 1.
ii) suc(α + β) = α + suc(β).
iii) α + (β + γ) = (α + β) + γ.
iv) α(βγ) = (αβ)γ.
v) α(β + γ) = αβ + αγ.
vi) If β = supγ∈C γ, then α + β = supγ∈C α + γ.

We can start building the ordinals above ω:
ω, ω + 1, ω + 2, . . ., sup{ω + n : n < ω} = ω + ω = ω2, ω2 + 1, ω2 + 2, . . .,

sup{ω2 + n : n < ω} = ω2 + ω = ω3, . . . , ω3, . . . , ω4, . . . , ω5 . . ., sup{ωn :
n < ω} = ω × ω = ω2, ω2 + 1, . . . , ω3, . . . , ω4, . . ., sup{ωn : n < ω} = ωω.

Continuing this way: . . . , ωω+1, . . . ,ωω+2, . . . , ωω2, . . . , ωω3, . . . , ωω2
, . . . ,

ωωn

, . . . , ωωω

, . . . , ωωωω

, . . .

This is the limit of the ordinals we can easily describe. The next ordinal
is

ε0 = sup{ω, ωω, ωωω

, . . .}.

We could now continue as before. Indeed, all of the ordinals we have de-
scribed so far are still quite small.

Cardinals

We need a method of comparing sizes of sets. Let A be any set. By the Well-
Ordering Principle, there is a well-ordering < of A and, by Proposition A.6,
there is an ordinal α such that (A, <) is isomorphic to α. We let |A| be the
least ordinal α such that there is a well-ordering of A isomorphic to α.

Proposition A.10 The following are equivalent.
i) |A| = |B|.
ii) There is a bijection f : A → B.
iii) There are one-to-one functions f : A → B and g : B → A.

We say that A is countable if |A| ≤ ω. All of the ordinals α ≤ ε0 that we
described above are countable. Let ω1 = {α ∈ On : α is countable}. It is
easy to see that ω1 is transitive and well-ordered by ∈. If ω1 is countable,
then ω1 ∈ ω1 and we get a contradiction. Thus, ω1 is the first uncountable
ordinal. Note that |ω1| = ω1.

We say that an ordinal α is a cardinal if |α| = α. We recursively define
ωα for α ∈ On as follows:

ω0 = ω;
ωα+1 = {δ ∈ On : |δ| = ωα};
if α is a limit ordinal, then ωα = supβ<α ωβ.

Proposition A.11 i) Each ωα is a cardinal and ωα < ωβ if α < β.
ii) If κ is a cardinal, then either κ < ω or κ = ωα for some α ∈ On.
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We also use the notation ℵα = ωα. When we are thinking of it as an
ordinal, we use ωα and when we are thinking of it as a cardinal, we use ℵα.

If κ is a cardinal, there is a least cardinal greater than κ, which we call
κ+. We say that κ is a successor cardinal if κ = λ+ for some λ, otherwise (if
κ is nonzero), we say that κ is a limit cardinal. Note that infinite successor
cardinals are limit ordinals.

For any limit ordinal α ≥ ω, the cofinality of α is the least cardinal λ
such that there is a function f : λ → α and the image of f is unbounded
in α. We let cof(α) denote the cofinality of α.

For example, cof(ω) = ℵ0 because a finite function cannot be unbounded
in ω. On the other hand, cof(ωω) = ω because the function n 	→ ωn has
unbounded image.

If κ ≥ ℵ0 is a cardinal, we say that κ is regular if cof(κ) = κ; otherwise,
we say that κ is singular.

Proposition A.12 If κ ≥ ℵ0 is a cardinal, then κ+ is regular.

ℵ0 is a regular limit cardinal. It may be the only cardinal with both
properties. We say that κ > ℵ0 is inaccessible if κ is a regular limit cardinal.
Although we cannot prove that inaccessible cardinals exist, it seems likely
that we also cannot prove that they do not exist. Inaccessible cardinals are
quite large.

Proposition A.13 If κ > ℵ0 is inaccessible, then κ = ℵκ.

Proof An induction shows that ωα ≥ α for all α. If κ = ℵα where α < κ,
then β 	→ ωβ is an unbounded map from α into κ, a contradiction.

Cardinal Arithmetic

We define addition and multiplication of cardinals. If |X| = κ and |Y | = λ,
then κ + λ = |({0} × X) ∪ ({1} × Y )| and κλ = |X × Y |. These operations
are commutative but not very interesting.

Lemma A.14 Let κ and λ be cardinals. If κ and λ are both finite, then
these operations agree with the usual arithmetic operations. If either κ or
λ is infinite, then

κ + λ = κλ = max{κ, λ}.

Corollary A.15 i) If |I| = κ and |Ai| ≤ κ for all i ∈ I, then |
⋃

Ai| ≤ κ.
ii) If κ is regular, |I| < κ, and |Ai| < κ for all i ∈ I, then |

⋃
Ai| < κ.

iii) Let κ be an infinite cardinal. Let X be a set and F a set of functions
f : Xnf → X. Suppose that |F| ≤ κ and A ⊆ X with |A| ≤ κ. Let cl(A)
be the smallest subset of X containing A closed under the functions in F .
Then |cl(A)| ≤ κ.
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Exponentiation is much more interesting. If A and B are sets, then AB

is the set of functions from A to B and |A||B| = |AB|.
Lemma A.16 Let κ, λ, and µ be cardinals.

i) (κλ)µ = κλµ.
ii) If λ ≥ ℵ0 and 2 ≤ κ < λ, then 2λ = κλ = λλ.
iii) If κ is regular and λ < κ, then κλ = sup{κ, µλ : µ < κ}.

Proof iii) If f : λ → κ, then, because κ is regular, there is α < κ such
that f : λ → α. Thus κλ =

⋃
α<κ αλ. The right-hand side is the union of κ

sets each of size µλ for some µ < κ.

We say that an inaccessible cardinal κ is strongly inaccessible if 2λ < κ
for all λ < κ.

Corollary A.17 If κ is strongly inaccessible and λ < κ, then κλ = κ.

We know by Cantor that 2κ > κ for all cardinals κ. The next theorem is
a slight generalization.

Proposition A.18 (König’s Theorem) If κ ≥ ℵ0, then κcof(κ) > κ.

This gives us Cantor’s theorem because 2κ = κκ > κ but also gives us, for
example, that ℵℵ0

ω > ℵω.
ZFC is too weak to answer basic questions about cardinal exponentiation.

The most interesting is the Continuum Hypothesis.
Continuum Hypothesis (CH) 2ℵ0 = ℵ1.
Generalized Continuum Hypothesis (GCH) 2ℵα = ℵα+1.

The Continuum Hypothesis is unprovable in ZFC, but GCH is consistent
with ZFC.1 Assuming the Generalized Continuum Hypothesis, we get a
complete picture of cardinal exponentiation.

Proposition A.19 Assume the Generalized Continuum Hypothesis. Let
κ, λ ≥ 2 with at least one infinite.

i) If λ ≤ κ, then λκ = κ+.
ii) If λ < cof(κ), then κλ = κ.
iii) If cof(κ) ≤ λ < κ, then κλ = κ+.

Finite Branching Trees

Definition A.20 A finite branching tree is a partial order (T, <) such
that:

i) there is r ∈ T such that r ≤ x for all x ∈ T ;
ii) if x ∈ T , then {y : y < x} is finite and linearly ordered by <;

1Provided ZFC itself is consistent.
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iii) if x ∈ T , then there is a finite (possibly empty) set {y1, . . . , ym} of
incomparable elements such that each yi > x and, if z > x, then z ≥ yi for
some i.

A path through T is a function f : ω → T such that f(n) < f(n + 1) for
all n.

Lemma A.21 (König’s Lemma) If T is an infinite finite branching
tree, then there is a path through T .

Proof Let S(x) = {y : y ≥ x} for x ∈ T . We inductively define f(n)
such that S(f(n)) is infinite for all n. Let r be the minimal element of
T , then S(r) is infinite. Let f(0) = r. Given f(n), let {y1, . . . , ym} be the
immediate successors of f(n). Because S(f(n)) = S(y1)∪ . . .∪S(yn), S(yi)
is infinite for some i. Let f(n + 1) = yi.

Forcing Constructions

Definition A.22 Let (P, <) be a partial order. We say that F ⊆ P is a
filter if:

i) if p ∈ F , q ∈ P , and p < q, then q ∈ F ;
ii) if p, q ∈ F , there is r ∈ F such that r ≤ p and r ≤ q.
We say that D ⊆ P is dense if for all p ∈ P there is q ∈ D such that

q ≤ p. If D is a collection of dense subsets of P , we say that G ⊆ P is a
D-generic filter if D ∩ G �= ∅ for all D ∈ D.

Lemma A.23 For any partial order P , if D is a countable collection of
dense subsets of P , then there is a D-generic filter G.

Proof Let D0, D1, . . . , list D. Choose p0 ∈ P . Given pn, we can find
pn+1 ≤ pn with pn+1 ∈ Dn. Let G = {q : q ≥ pn for some n}.

Lemma A.23 is the best we can do without extra assumptions. Let P be
the set of all finite sequences of zeros and ones ordered by p < q if p ⊃ q.
The following sets are dense:

En = {p ∈ P : n ∈ dom(p)} for n ∈ ω;
Df = {p ∈ P : ∃n ∈ dom(p) p(n) �= f(n)} for f ∈ 2ω.
If G is a filter meeting all of the En then g =

⋃
p∈G p. Then g : ω → 2. If

G meets Df , then g �= f . Thus if D= {En, Df : n ∈ ω, f ∈ 2ω}, then there
is no D-generic filter.

We say that p and q ∈ P are compatible if there is r ≤ p, q and say that
(P, <) satisfies the countable chain condition if whenever A ⊂ P and any
two elements of A are incompatible, then |A| ≤ ℵ0.
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Martin’s Axiom If (P, <) is a partial order satisfying the countable chain
condition, and D is a collection of dense subsets of P with |D| < 2ℵ0 , then
there is a D-generic filter on P .

Of course, if the Continuum Hypothesis is true, then Martin’s Axiom is
a trivial consequence of Lemma A.23. On the other hand, Martin’s Axiom
is consistent with, but not provable from, ZFC +¬CH.
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Real Algebra

We prove some of the algebraic facts needed in Section 3.3. All of these
results are due to Artin and Schreier. See [58] XI for more details. All fields
are assumed to be of characteristic 0.

Definition B.1 A field K is real if −1 can not be expressed as a sum of
squares of elements of K. In general, we let

∑
K2 be the sums of squares

from K.

If F is orderable, then F is real because squares are nonnegative with
respect to any ordering.

Lemma B.2 Suppose that F is real and a ∈ F \ {0}. Then, at most one
of a and −a is a sum of squares.

Proof If a and b are both sums of squares, then a
b

= a
b2

b is a sum of
squares. Thus, if F is real, at least one of a and −a is not in

∑
F 2.

Lemma B.3 If F is real and −a ∈ F \
∑

F 2, then F (
√

a) is real. Thus,
if F is real and a ∈ F , then F (

√
a) is real or F (

√
−a) is real.

Proof We may assume that
√

a �∈ F . If F (
√

a) is not real, then there are
bi, ci ∈ F such that

−1 =
∑

(bi + ci

√
a)2 =

∑
(b2

i + 2cibi

√
a + c2

i a).

Because
√

a and 1 are a vector space basis for F (
√

a) over F ,

−1 =
∑

b2
i + a

∑
c2
i .



324 Appendix B. Real Algebra

Thus

−a =
1 +

∑
b2
i∑

c2
i

=

(∑
b2
i

) (∑
c2
i

)
+
(∑

c2
i

)
(
∑

c2
i )

2

and −a ∈
∑

F 2, a contradiction.

Lemma B.4 If F is real, f(X) ∈ F [X] is irreducible of odd degree n, and
f(α) = 0, then F (α) is real.

Proof We proceed by induction on n. If n = 1, this is clear. Suppose, for
purposes of contradiction, that n > 1 is odd, f(X) ∈ F [X] is irreducible
of degree n, f(α) = 0, and F (α) is not real. There are polynomials gi

of degree at most n − 1 such that −1 =
∑

gi(α)2. Because F is real,
some gi is nonconstant. Because F (α) ∼= F [X]/(f), there is a polynomial
q(X) ∈ F [X] such that

1 =
∑

g2
i (X) + q(X)f(X).

The polynomial
∑

g2
i (X) has a positive even degree at most 2n− 2. Thus,

q has odd degree at most n − 2. Let β be the root of an irreducible factor
of q. By induction, F (β) is real, but −1 =

∑
g2

i (β), a contradiction.

Definition B.5 We say that a field R is real closed if and only if R is real
and has no proper real algebraic extensions.

If R is real closed and a ∈ R, then, by Lemmas B.2 and B.3, either
a ∈ R2 or −a ∈ R2. Thus, we can define an order on R by

a ≥ 0 ⇔ a ∈ R2.

Moreover, this is the only way to define an order on R because the squares
must be nonnegative. Also, if R is real closed, every polynomial of odd
degree has a root in R.

Lemma B.6 Let F be a real field. There is R ⊇ F a real closed algebraic
extension. We call R a real closure of F .

Proof Let I = {K ⊇ F : K real, K/F algebraic}. The union of any chain
of real fields is real; thus, by Zorn’s Lemma, there is a maximal R ∈ I.
Clearly, R has no proper real algebraic extensions; thus, R is real closed.

Corollary B.7 If F is any real field, then F is orderable. Indeed, if a ∈ F
and −a �∈

∑
F 2, then there is an ordering of F , where a > 0.

Proof By Lemma B.3, F (
√

a) is real. Let R be a real closure of F . We
order F by restricting the ordering of R because a is a square in R, a > 0.

The following theorem is a version of the Fundamental Theorem of Al-
gebra.
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Theorem B.8 Let R be a real field such that
i) for all a ∈ R, either

√
a or

√
−a ∈ R and

ii) if f(X) ∈ R[X] has odd degree, then f has a root in R.
If i =

√
−1, then K = R(i) is algebraically closed.

Proof

Claim 1 Every element of K has a square root in K.
Let a + bi ∈ K. Note that a+

√
a2+b2

2 is nonnegative for any ordering of
R. Thus, by i), there is c ∈ R with

c2 =
a +

√
a2 + b2

2
.

If d = b
2c , then (c + di)2 = a + bi.

Let L ⊇ K be a finite Galois extension of R. We must show that L = K.
Let G = Gal(L/R) be the Galois group of L/R. Let H be the 2-Sylow
subgroup of G.
Claim 2 G = H.

Let F be the fixed field of H. Then F/R must have odd degree. If F =
R(x), then the minimal polynomial of x over R has odd degree, but the
only irreducible polynomials of odd degree are linear. Thus, F = R and
G = H.

Let G1 = Gal(L/K). If G1 is nontrivial, then there is G2 a subgroup of
G1 of index 2. Let F be the fixed field of G2. Then, F/K has degree 2.
But by Claim 1, K has no extensions of degree 2. Thus, G1 is trivial and
L = K.

Corollary B.9 Suppose that R is real. Then R is real closed if and only
if R(i) is algebraically closed.

Proof
(⇒) By Theorem B.8.
(⇐) R(i) is the only algebraic extension of R, and it is not real.

Let (R,<) be an ordered field. We say that R has the intermediate value
property if for any polynomial p(X) ∈ R[X] if a < b and p(a) < 0 < p(b),
then there is c ∈ (a, b) with p(c) = 0.

Lemma B.10 If (R,<) is an ordered field with the intermediate value
property, then R is real closed.

Proof Let a > 0 and let p(X) = X2 −a. Then p(0) < 0, and p(1+a) > 0;
thus, there is c ∈ R with c2 = a.

Let

f(X) = Xn +
n−1∑
i=0

aiX
i
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where n is odd. For M large enough, f(M) > 0 and f(−M) < 0; thus,
there is a c such that f(c) = 0.

By Theorem B.8, R(i) is algebraically closed. Because R is real, it must
be real closed.

Lemma B.11 Suppose that R is real closed and < is the unique ordering,
then (R,<) has the intermediate value property.

Proof Suppose f(X) ∈ R[X], a < b, and f(a) < 0 < f(b). We may assume
that f(X) is irreducible (for some factor of f must change signs). Because
R(i) is algebraically closed, either f(X) is linear, and hence has a root in
(a, b), or

f(X) = X2 + cX + d,

where c2 − 4d < 0. But then

f(X) =
(
X +

c

2

)2
+
(

d − c2

4

)
and f(x) > 0 for all x.

We summarize as follows.

Theorem B.12 The following are equivalent.
i) R is real closed.
ii) For all a ∈ R, either a or −a has a square root in R and every

polynomial of odd degree has a root in R.
iii) We can order R by a ≥ 0 if and only if a is a square and, with respect

to this ordering, R has the intermediate value property.

Finally, we consider the question of uniqueness of real closures. We first
note that there are some subtleties. For example, there are nonisomorphic
real closures of F = Q(

√
2). The field of real algebraic numbers is one real

closure of F . Because a + b
√

2 	→ a − b
√

2 is an automorphism of F ,
√

2
is not in

∑
F 2. Thus, by Corollary B.5, F (

√
−2) is real. Let R be a real

closure of F containing F (
√

−2). Then, R is not isomorphic to the real
algebraic numbers over F .

This is an example of a more general phenomenon. It is proved by suc-
cessive applications of Lemmas B.2 and B.3.

Lemma B.13 If (F, <) is an ordered field, then there is a real closure of
F in which every positive element of F is a square.

Because Q(
√

2) has two distinct orderings, it has two nonisomorphic real
closures. The field Q(t) of rational functions over Q has 2ℵ0 orderings and
hence 2ℵ0 nonisomorphic real closures.

The next theorem shows that once we fix an ordering of F , there is a
unique real closure that induces the ordering.
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Theorem B.14 Let (F, <) be an ordered field. Let R0 and R1 be real clo-
sures of F such that (Ri, <) is an ordered field extension of (F, <). Then,
R0 is isomorphic to R1 over F and the isomorphism is unique.

The proof of Theorem B.14 uses Sturm’s algorithm.

Definition B.15 Let R be a real closed field. A Sturm sequence is a finite
sequence of polynomials f0, . . . , fn such that:

i) f1 = f ′
0;

ii) for all x and 0 ≤ i ≤ n−1, it is not the case that fi(x) = fi+1(x) = 0;
iii) for all x and 1 ≤ i ≤ n − 1, if fi(x) = 0, then fi−1(x) and fi+1(x)

have opposite signs;
iv) fn is a nonzero constant.

If f0, . . . , fn is a Sturm sequence and x ∈ R, define v(x) to be the number
of sign changes in the sequence f0(x), . . . , fn(x).

Suppose that f ∈ R[X] is nonconstant and does not have multiple roots.
We define a Sturm sequence as follows:

f0 = f ;
f1 = f ′.
Given fi nonconstant, use the Euclidean algorithm to write

fi = gifi−1 − fi+1

where the degree of fi+1 is less than the degree of fi−1. We eventually reach
a constant function fn.

Lemma B.16 If f has no multiple roots, then f0, . . . , fn is a Sturm se-
quence.

Proof
iv) If fn = 0, then fn−1|fi for all i. But f has no multiple roots; thus f

and f ′ have no common factors, a contradiction.
ii) If fi(x) = fi+1(x) = 0, then by induction fn(x) = 0, contradicting

iv).
iii) If 1 ≤ i ≤ n − 1 and fi(x) = 0, then fi−1(x) = −fi+1(x). Thus,

fi−1(x) and fi+1(x) have opposite signs.

Theorem B.17 (Sturm’s Algorithm) Suppose that R is a real closed
field, a, b ∈ R, and a < b. Let f be a polynomial without multiple roots. Let
f = f0, . . . , fn be a Sturm sequence such that fi(a) �= 0 and fi(b) �= 0 for
all i. Then, the number of roots of f in (a, b) is equal to v(a) − v(b).

Proof Let z1 < . . . < zm be all the roots of the polynomials f0, . . . , fn

that are in the interval (a, b). Choose c1, . . . , cm−1 with zi < ci < zi+1. Let
a = c0 and b = cm. For 0 ≤ i ≤ m − 1, let ri be the number of roots of
f in the interval (ci, ci+1). Clearly,

∑
ri is the number of roots of f in the
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interval (a, b). On the other hand,

v(a) − v(b) =
m−1∑
i=0

(v(ci) − v(ci+1)).

Thus, it suffices to show that if c < z < d and z is the only root of any fi

in (c, d), then

v(d) =
{

v(c) − 1 z is a root of f
v(c) otherwise .

If fi(b) and fi(c) have different signs, then fi(z) = 0. We need only see
what happens at those places.

If z is a root of fi, i > 0, then fi+1(z) and fi−1(z) have opposite
signs and fi+1 and fi−1 do not change signs on [c, d]. Thus, the sequences
fi−1(c), fi(c), fi+1(c) and fi−1(d), fi(d), fi+1(d) each have one sign change.
For example, if fi−1(z) > 0 and fi−1(z) < 0, then these sequences are
either +, +,− or +,−,+, and in either case both sequences have one sign
change.

If z is a root of f0, then, because f ′(z) �= 0, f is monotonic on (c, d). If
f is increasing on (c, d), the sequence at c starts −,+, . . . and the sequence
at d starts +,+, . . .. Similarly, if f is decreasing, the sequence at c starts
+,−, . . ., and the sequence at b starts −,−, . . .. In either case, the sequence
at c has one more sign change than the sequence at d. Thus, v(c)−v(d) = 1,
as desired.

Corollary B.18 Suppose that (F, <) is an ordered field. Let f be a non-
constant irreducible polynomial over F . If R0 and R1 are real closures of F
compatible with the ordering, then f has the same number of roots in both
R0 and R1.

Proof Let f0, . . . , fn be the Sturm sequence from Lemma B.16. Note that
each fi ∈ F [X]. We can find M ∈ F such that any root of fi is in (−M,M)
(if g(X) = Xn +

∑
aiX

i, then any root of g has absolute value at most
1 +

∑
|ai|, for example). Then, the number of roots of f in Ri is equal to

v(−M) − v(M), but v(M) depends only on F .

Proof of Theorem B.14 Let K ⊂ R0 be a finite extension of F . Say
K = F (α). Let f(X) be the irreducible polynomial of α over F . Let α1 <
. . . < αn be the roots of f in R0, and let β1 < . . . < βn be the roots of f
in R1. We can map F (α1, . . . , αn) into R1 by αi 	→ βi, and this is the only
field embedding that could possibly extend to an isomorphism.

Using this idea and Zorn’s Lemma, build a maximal embedding of sub-
fields, this must be an isomorphism.

Uniqueness follows because the ith root of f(X) in R0 must be sent to
the ith root of f(X) in R1.



References

[1] D. Abramovich and F. Voloch, Towards a proof of the Mordell–Lang
conjecture in characteristic p, Int. Math. Res. Not. 2 (1992), 103–115.

[2] J. Ax, The elementary theory of finite fields, Ann. Math. 88 (1968),
239–271.

[3] J. Ax and S. Kochen, Diophantine problems over local fields I, Am. J.
Math. 87 (1965), 605–630.

[4] J. Ax and S. Kochen, Diophantine problems over local fields II, Am.
J. Math. 87 (1965), 631–648.

[5] J. Ax and S. Kochen, Diophantine problems over local fields III, Ann.
Math. 83 (1966), 437–456.

[6] M. Atiyah and I. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley, Reading, MA, 1996.

[7] J. Baldwin, Fundamentals of Stability Theory, Springer-Verlag, New
York, 1988.

[8] J. Barwise, Handbook of Mathematical Logic, North-Holland, Ams-
terdam, 1977.

[9] H. Becker and A. Kechris, The Descriptive Set Theory of Polish Group
Actions, Cambridge University Press, Cambridge, UK 1996.

[10] K. Binmore, Fun and Games, Heath, Boston, 1992.



330 References

[11] L. Blum, Differentially closed fields: a model theoretic tour, in Con-
tributions to Algebra, H. Bass, Phyllis J. Cassidy and Jerald Kovacic,
eds., Academic Press, New York, 1977.

[12] J. Bochnak, M. Coste, and M-F. Roy, Real Algebraic Geometry,
Springer-Verlag, New York, 1998.

[13] A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math.
20 (1969), 531-537.

[14] A. Borel, Linear Algebraic Groups, Springer-Verlag, New York, 1991.

[15] A. Borovik and A. Nesin, Groups of Finite Morley Rank, Oxford Sci-
ence Publications, Oxford, UK, 1994.

[16] E. Bouscaren, ed., Model Theory and Algebraic Geometry: An In-
troduction to E. Hrushovski’s Proof of the Geometric Mordell–Lang
Conjecture, Springer-Verlag, New York, 1998.

[17] E. Bouscaren, Proof of the Mordell–Lang conjecture for function fields,
in [16].

[18] S. Buechler, Essential Stability Theory, Springer-Verlag, New York,
1996.

[19] S. Buechler, Vaught’s conjecture for superstable theories of finite rank,
Ann. Pure Appl. Logic, to appear.

[20] A. Buium, Differential Algebra and Diophantine Geometry, Hermann,
Paris, 1994.

[21] B. F. Caviness and J. R. Johnson, eds., Quantifier Elimination and
Cylindric Algebraic Decomposition, Springer-Verlag, New York, 1998.

[22] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Ams-
terdam, 1990.

[23] Z. Chatzidakis, L. van den Dries, and A. Macintyre, Definable sets
over finite fields, J. Reine Angew. Math. 427 (1992), 107–135.
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