Wichtige Sätze und Definitionen zu

§1: Relationen und Halbgruppen

aus der Vorlesung:

LV-NR 150 239

Veranstaltung Diskrete Mathematik II, 4.0 std

Dozent Holtkamp, R.

mit Dank an Herrn T. Doliwa

für die Unterstützung

Es sei [n] stets die Menge $\{1,\ldots,n\}$ und Abb(X,Y) die Menge aller Abbildungen von $X\to Y$.

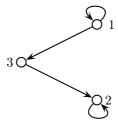
1.1

Es seien A und B Mengen und $A \times B$ ihr kartesiches Produk $(A \times B := \{(a,b) \mid a \in A, b \in B\})$.

- a) Die Potenzmenge Pot(A) ist die Menge aller Teilmengen von A.
- b) Eine Relation zwischen A und B ist ein Element $R \in Pot(A \times B)$, d.h eine Teilmenge $R \subseteq A \times B$.
- c) Ist A = B, so spricht man von einer (binären) Relation auf A.
- $d) \ \ \textit{Allgemeiner ist für } n \in \mathbb{N} \ \textit{eine n-\"{a}re Relation eine Teilmenge von} \underbrace{A \times \ldots \times A}_{n\text{-}mal} := A \times \underbrace{(A \times \ldots \times A)}_{n\text{-}mal}.$
- e) Ist $(a,b) \in R$, so sagt man, a steht mit b in Relation (Schreibweise: aRb).

Beispiel

Abbildungen zwischen zwei Mengen, gerichtete Graphen $R = \{(1,1), (2,2), (1,3), (3,2)\}$:



Satz 1 (Anzahl von Relationen)

Bezeichnet Rel(A) die Menge aller Relationen auf A und $Rel_r(A)$ die Menge aller Relationen auf A mit genau r Elementen (Pfeilen), so ist

$$\#Rel_r(A) = \binom{n^2}{r}$$

und

$$\#Rel\left(A\right) = \sum_{r=0}^{n} \binom{n^2}{r} = 2^{-n^2}$$

1.2

- a) Def $(R) := \{a \in A \mid \exists b \in A \text{ mit } (a, b) \in R\}$ Bild $(R) := \{b \in A \mid \exists a \in A \text{ mit } (a, b) \in R\}$
- b) R heißt injektiv : \iff für jedes $b \in Bild(R)$ ist $\#\{a \in Def(R) \mid (a,b) \in R\} = 1$

c) es sei $R^{inv} \subseteq A \times A$ die Relation $\{(b, a) \in A \times A \mid (a, b) \in R\}$

1.3

Es sei H Menge, $\circ \in Abb(H \times H, H)$. Man sagt \circ ist eine binäre Verknüpfung auf H und schreibt $(a \circ b) \circ c$ usw. statt $\circ (\circ (a, b), c)$. H zusammen mit \circ hei β t Halbgruppe : $\iff \circ$ ist assoziativ, d.h. $(a \circ b) \circ c = a \circ (b \circ c) \ \forall \ a, b, c \in H$.

 $e \in H$ heißt neutrales Element der Halbgruppe $(H, \circ) \iff e \circ a = a$ und $a \circ e = a \ \forall \ a \in H$.

Eine Halbgruppe mit neutralem Element heißt auch Monoid.

Konvention: Ist \circ kommutativ, d.h. $a \circ b = b \circ a \ \forall \ a, b \in H$, so schreibt man oft + oder \cdot statt \circ , auch bezeichnet man neutrale Elemente mit 0 (bei additiver Verknüpfung) bzw. 1 (bei multiplikativer Verknüpfung).

Satz 2 (Komposition von Relationen)

Für R, S auf A sei $S \circ R$ die Relation

$$\{(a,c) \in A \times A \mid \exists b \in A \text{ mit } (a,b) \in R \text{ und } (b,c) \in S\}$$

Dann ist die Menge Rel(A) aller Relationen zusammen mit \circ eine Halbgruppe.

Rel(A) zusammen mit der Komposition bildet (sogar) ein Monoid. Das neutrale Element ist

$$Id_A := \{(a, a) \mid a \in A\}$$

1.4

H sei Halbgruppe und $a \in H$.

a) Man definiert (rekursiv) die n-te Potenz von a:

$$a^{n} := \begin{cases} a^{0} = 1 & : falls \ H \ Monoid \\ a & : n = 1 \\ a \circ a^{n-1} & : n \ge 2 \end{cases}$$

b) Ist (H, +) additiv geschriebene Halbgruppe, $a \in H$, $n \ge 1$, so definiert man

$$n \cdot a := \begin{cases} a & : n = 1 \\ a + (n-1) \cdot a & : n \ge 2 \end{cases}$$

c) Für $m \geq 2$ heißt eine Relation Z auf A Zykel der Länge $m \iff$ es existieren $a_1, \ldots, a_m \in A$, paarweise verschieden, mit $Z = \{(a_1, a_2), (a_2, a_3), \ldots, (a_{m-1}, a_m), (a_m, a_1)\}.$

1.5

Ist (H, \circ) Halbgruppe, so heißt eine Teilmenge U von H zusammmen mit (der Einschränkung von) \circ auf U eine Unterhalbgruppe, wenn gilt:

$$a, b \in U \implies a \circ b \in U$$
 (Abgeschlossenheit)

Eine Unterhalbgruppe U heißt Untermonoid, wenn $e \in U$.

Satz 3 (Monoid der Abbildungen)

Die Menge Abb(A,A)der Abbildungen $A \to A$ bildet zusammen mit der Komposition ein Monoid, das als Untermonoid von $(Rel(A), \circ)$ aufgefasst werden kann.

Des Weiteren gilt: Ist eine Relation F auf A, X := Def(F), Y := Bild(F), und ist F injektive Abbildung $X \to Y$, so ist

$$F^{inv}\circ F=\mathrm{Id}_X,\ F\circ F^{inv}=\mathrm{Id}_Y\text{ und }\#X=\#Y$$

1.6

Sei $R \in Rel(A)$, $B \subseteq A$, $B^c := A - B$

- a) Die Einschränkung $R \mid B$ von R auf B ist die Relation $\{(a,b) \in R \mid a,b \in B\}$ auf B. (Teilrelation von R)
- b) R heißt zusammenhängend : \iff wenn $R = R|B \cup R|B^c$, so muss R|B oder $R|B^c$ leer sein.
- c) die bezüglich \subseteq maximalen zusammenhängenden Teilrelationen von R heißen **Zusammenhangs-komponenten**.

Beispiel

(Vereingungen von Zykeln und ähnliches)

1.7

Es sei $R \in Rel(A)$. Die Relation R heißt

- a) reflexiv \iff Id_A \subset R (d.h. \forall a \in A : (a, a) \in R)
- b) transitiv \iff $R \circ R \subseteq R \ (d.h. \ mit \ (a,b) \in R \ und \ (b,c) \in R \ ist \ auch \ (a,c) \in R)$
- c) Quasiordnung \iff R ist reflexiv und transitiv
- d) symmetrisch \iff $R = R^{inv}$ (d.h. mit $(a,b) \in R$ ist auch $(b,a) \in R$)
- e) antisymmetrisch $\iff R \cap R^{inv} \subseteq \operatorname{Id}_A (d.h. ist (a,b) \in R und (b,a) \in R, so a = b)$
- f) \ddot{A} quivalenzrelation \iff R ist reflexiv, transitiv und symmetrisch
- g) partielle Ordnung \iff R ist reflexiv, transitiv und antisymmetrisch (bez. oft mit \leq statt R)
- h) totale partielle Ordnung \iff R ist partielle Ordnung und \forall a, b \in A : (a, b) \in R \land (b, a) \in R

Beispiele

- $(\mathbb{N}_0,+)$
- (\mathbb{N}_0,\cdot)
- (\mathbb{N}_0, \max)
- (\mathbb{N}_0, \min)
- $(H, \circ_H) \leadsto (H^n, \circ_H)$
- $(\mathbb{N}^n, +)$
- $(Pot(\mathbb{N}), \cup)$
- $(Pot(\mathbb{N}), \cap)$

Satz 4 (Zerlegung in Zusammenhangskomponenten) Es sei $R \in Rel(A)$.

- (i) R sei Abbildung, A sei endliche Menge und R sei injektiv (also bijektiv). Dann ist jede Zusammenhangskomponente Z von R ein Zykel und R ist disjunkte Vereinigung $R = Z_1 \dot{\cup} \dots \dot{\cup} Z_r$ von Zykeln Z_1, \dots, Z_r . (Zykelzerlegung der Permutation R)
- (ii) R sei Äquivalenzrelation. Dann gilt für jede Zusammenhangskomponente Z von R:

$$Def(Z) = Bild(Z)$$
 und $Z = Def(Z) \times Def(Z)$.

Weiterhin gilt: A ist disjunkte Vereinigung (nichtleerer) Teilmengen $A_i, i \in I$, so dass

$$R = \bigcup_{i \in I} Z_i \text{ mit } Z_i := A_i \times A_i.$$

Die in Satz 4(ii) gegebenen Mengen $A_i, i \in I$, heißen Äquivalenzklassen (bzgl. R) und die Menge aller Äquivalenzklassen wird mit A/R bezeichnet. (Alternativ schreibt man statt R oft \sim und dann statt A/R auch A/\sim)

Aufgabe

Es sei R die Relation auf [4], die (als gerichteter Graph) gegeben ist durch:

Wie sieht die Folge $R, R^2, R^3, R^4, R^5 \dots$ der Potenzen von R aus?

Zunächst: $S := R^2 = R \circ R$ ist gegeben durch

Dann: $T := R^3 = R \circ R^2$ ist gegeben durch

Es ist leicht zu sehen, dass die Folge der Potenzen gegeben ist durch R, S, T, S, T, \ldots , wobei sich S, T immer wiederholen.

Insbesondere bilden R, S und T eine 3-elementige Unterhalbgruppe von $(Rel([4]), \circ)$.