

Sheet 11

Question 11.1

- (a) Describe explicitly all real line bundles on S^1 .
- (b) Describe explicitly all real line bundles on $\mathbb{R}P^n$.
- (c) Describe explicitly all complex line bundles on S^2 .

Question 11.2

- (a) Describe a sheaf cohomology group classifying all locally constant sheaves with fiber \mathbb{C} on a manifold M.
- (b) Compute this group if $M = \mathbb{R}P^2$.
- (c) Compute this group if M is an oriented surface with genus g.

Question 11.3

- (a) Show that fine sheaves are *c*-soft.
- (b) Define compactly supported de Rham cohomology and show that it computes compactly supported cohomology with coefficients in $\underline{\mathbb{R}}$.
- (c) Exhibit a generator for $H^n_{c,dR}(\mathbb{R}^n,\mathbb{R})$, starting with n=1.

Question 11.4

Consider the sheaf $S = \bigoplus_{n \in \mathbb{Z}} \mathbb{R}_n$ on \mathbb{R} where \mathbb{R}_n is a skyscraper sheaf with fiber \mathbb{R} at the point n.

Compute $H^*(\mathbb{R}, S)$ and $H^*_c(\mathbb{R}, S)$.

Compute $H^*(\mathbb{R}^2, S \boxtimes S)$ and $H^*_c(\mathbb{R}^2, S \boxtimes S)$ and compare the result with $H^*(\mathbb{R}, S) \otimes H^*(\mathbb{R}, S)$ and $H^*_c(\mathbb{R}, S) \otimes H^*_c(\mathbb{R}, S)$, respectively.

These questions will be discussed in the exercise class on 4 July 2025.

Questions with an asterisk are more challenging.